

Programmer's Guide
Excerpts from the VTScada Help Files
Copyright Trihedral Engineering Limited, 7/26/2016
All rights reserved.

Printed in Canada

Trihedral Engineering Limited

Head Office
1160 Bedford Highway, Suite
400
Bedford, Nova Scotia
Canada
B4A 1C1

Phone: 902-835-1575
Toll free: 800-463-2783
support@trihedral.com
sales@trihedral.com

Trihedral UK Limited

Glover Pavilion, Campus 3
Aberdeen Science Park
Balgownie Drive, Aberdeen
UK, AB22 8GW

Phone:+44 (0) 1224
258910
Fax: +44 (0) 1224 258911

Trihedral Inc.

Suite 160
7380 Sand Lake Road
Orlando, Florida
USA
32819

Phone: 407-888-8203
Fax: 407-888-8213

Trihedral Calgary Office

Suite 505 – 888 4 Ave SW,
Calgary, AB,
T2P 0V2
403.921.5199

Contents

Scripting and Automation 51
Start Here for Scripting and Automation 53
Quick Reference Guide for Expressions 55
Expressions in Tags and in Widget Properties 58
Script Code in Modules 61
Configuring a Script Tag 62
Syntax Rules and the Expression Editor 62
Test Conditions 65

Comparing Values in Expressions 66
Triggers and Events in Expressions 67

Access a Tag Value or Application Property 69
Relative Tag and Property References 70

Mark the Passage of Time 72
Obtaining User Input 73

Mouse Input 73
Keyboard Input 74
Selection Input 75

Usage Rules for Functions 76
Math Functions in Expressions 77
Text Functions in Expressions 78
Time and Date in Expressions 79
Examples of Expressions 81

The VTScada API 84
Parts of a VTScada Program 86
States and Steady State 88

State Naming Rules 89
Event-Driven Execution and Efficiency 90

Action Triggers and Scripts 92
The Trigger 94
The Script Block 96

VTScada Modules 98
Store and Declare Modules 102

Types of Module 102
Declaring and Passing Parameters 107
Parameter Metadata 109

Module Scope 110
Scope Resolution Operators 111
Module Inheritance 112

Constructors 113
Destructors 115
Reference Boxes in Graphic Modules 116

Functions 117
Format Examples for Functions 118
Function Parameters 119
Latching and Resetting Functions 120
Considerations for Graphics Functions 123

Threading 124
Operators in Statements 125

Operator Priority in Statements 126
List of VTScada Operators 127
Boolean Logic Operators 134

Value Types and Storage 135
Value Type Conversions 140
Invalid Values 143
Using Arrays 144

Multidimensional Arrays 145
Mismatched Array Dimensions 147
Comparison of Static and Dynamic Arrays 149

Using Pointers 154
Dictionaries 155

Creating a Dictionary 157
Dictionary Operations 158

Meta Data 162
Structures 162
Variable Storage, Retention, Access 165

Persisted Variables 165
Retained Variables 167
Shared Variables 170
Saved Variables 170
Network Values 170
Temporary Variables 175
Protected Variables 175

Variable Class Definitions 176
VTScada Value Types - Numeric Reference 177

Style Guide for VTScada Code 185
Basic Programming Tasks 191
Create a New Script Application 191

The Bonus Program 195
Add a Module to a VTScada Application 197

A 15-Minute Snapshot Report 198
Hide the VAM from Operators, but not Managers 200

Working with Pages 202
Create Windows & Use Graphics Functions 209

Best Practices for Graphics 211
Owned Windows versus Child Windows 215
Native Windows Tooltip Support 216
Working with Pages 217
Focus ID 221
Switching Graphics Pages 222
Placing Focus on an Object vs. Selecting an Object 222
Reference Boxes for Graphics Modules 223
Use Scaling to Position Graphic Objects 225
Drag & Drop to a Window 227
TreeControl Module 232

Time and Date 235
VTScada Time Zones 236
Timers and Timing 236

Build Custom Reports 237

How Reports Collect Data 238
Report Formatting 239
Common Features of a Report Module 239
Type Filters - Limiting the List of Available Tags 243
Parameters in a Custom Report 244
Query Modes and Time Ranges 245
A 15-Minute Snapshot Report 246

Diagnostic Files 249
Working with Speech 250
Interrupt the Shutdown Process 251

Alarm Manager 254
Alarm API Structure Definitions 255

Alarm Configuration Structure 255
Alarm Status Structure 257
Alarm Transaction Structure 257
Alarm Record Structure 258

Alarm Manager Function Constants 260
VTScada Event Logging 260
Query the Alarm History 262
Alarm Message Templates 263
Custom Alarm Hook API 265
Customize Columns in Alarm Displays 267

Alarm Column Graphics Modules 272
Configuration Management 276
Configuration Management API 276

Communication Drivers 280
Communication Driver Fundamentals 281

Data Exchange between VTScada and a Driver 282
What Happens Within the VTScada Code? 283

Communication Driver Design 287
Steps to Write a Communication Driver 288
Researching a Communication Driver Protocol 289
Designing an Addressing Scheme 289

Providing an AddressAssist Module 290
Controlling Access to Shared Resources 292
Modem Support 293
Writing a Communication Driver 293
Mandatory Communication Driver Components 294
Optional Communication Driver Components 294
VTSGetAddr 295
VTSRead 302
Data Propagation 305
VTSWrite 309
VTSMaxBlock 312

Communication Driver Template 314
The VTSDriver API 321

VTSDriver and Remote Applications 324
Driver Diagnostic tools 324

Statistics Logging 325
Rules for Writing a Communications Driver 327

Driver Module Instance Object Value 329
Error Checking 332
Maintaining Statistics 333
Common Driver Widgets 334
Debugging and Testing Communications Drivers 335

Add a New Driver to Your Application 336
Cryptography in VTS 337
Cryptography Terms and Abbreviations 337
Cryptography Architecture 340
Cryptographic Service Providers 341
Cryptographic Keys 342

Storage and Exchange of Cryptographic Keys 344
Data Encryption and Decryption 345
Cryptography Example 346

Custom Tag Types 350
Guide to This Chapter 351

Terms for Tag Types 352
Tag Template Modules 353
The Basic Tag - TagName.SRC 354

Tag Configuration Parameters 355
SQL Data Types for Tag Parameters 357
Adding New Parameters to Existing Tags 358
Encrypted Parameters 358
Example - The Analog Status Tag's Parameters 359

The Tag Variables Section 362
Required Variables 362
Optional Variables 363
Constant Definitions 364
Other Constants 365
Assigning Tag Groups 366
Submodule Declarations 368

Rules for Tag Variables, Constants and Modules 369
Tag States 370
ValueSyncService 372

API 373
The Refresh Module 374
TagShutdown Module 377
Tag Configuration Folders 378

Declaring the Configuration Folder Module 379
The Configuration Folder Module 379
Switching Tabs 382
Configuration Tab Contents 383
Alarm Tab Notes 385
Adding Expression Support for Parameters 387
Rules for Config Folders 388

Create or Assign Tag Widgets 389
Create a Custom Tag Widget 390
Widget Parameters 392
Example – Parameters for the Analog Status's Draw Widget 392

Edit Mode versus Run Mode 395
The Properties Panel 395
Widget States 399
Indicating Questionable and Manual Data 402
Rules for Tag Widgets 402

Common Module 404
Navigator Calls (Shortcut Menu) 405

Navigator Module Parameters 405
ToolTip Contents 408
Opening an HDV (PKTrend) Window 408
Common Module Example 409
Rules for the Common Module 411

Linking to a Driver 412
Triggering a Data Read 413
The NewData Module 414
Writing Data: The Set Module 419

Make a Custom Tag Visible to OPC Clients 421
Logging Tag Data 425

Configure a Tag for Logging 425
Custom Logging for Tags 427
Upgrading Tags That Used LogManager or Logger 428

Adding Alarms to Custom Tags 429
Alarm Containers 430
Adding Built-in Alarms to a Tag 431

Security Features for Tags 437
Containers, Contributors and Site Tags 439

Custom Filtering of the Sites List and Map 440
Overview of the AddContributor Function 441
Overview of the DeleteContributor Function 442
Overview of the GetContributors Function 443

Latitude and Longitude for Site Tags 443
Custom Help Systems 444
Expressions as Tag Parameters 446

ExpressionManager Usage for VTScada Programmers 447
Adding Expression Support to an Application 449
The ExpressionEdit Widget 450
Issues and Risks 451

Programming Parent Tags 452
Building Parent Tags 454
Widgets for Parent Tags 462
Optimizations and Considerations When Using Child Tags 464

Debugging and Analysis 465
Coordinates Application 466
Debugger Utility 466
Instance Count Application 471
Memory Tracer Application 472

Using the Memory Tracer Utility 473
Analyzing a Memory Trace File 474
Sorting Data in the Allocation Information List 475
Viewing Smaller Segments of a Time Slice 475

Profiler Application 476
Profiler Settings 479

RPC Timing Utility 481
Source Debugger 482

Source Debugger Components 484
Source Debugger: Tool Bar 485
Source Debugger: Module Tree 494
Source Debugger: Code Display 495
Source Debugger: Summary (Live) Tab 497
Source Debugger: Summary (Dump) Tab 498
Source Debugger: Module Content Window 500

Switch to module 502
View contents 502
Convert number 502
View metadata 503

Source Debugger: Action Window 505

Source Debugger: Watch Window 506
Selecting an Application for Debugging 506

Open a Source Code File for Debugging 508
Editing Code and Recompiling 508

Dump Files 508
Examining Code Paths Using Thread Display 509
Working with Breakpoints and Data Breakpoints 510

Setting a Breakpoint 511
Set a Data Breakpoint 513
Conditional Breakpoints 514
Examining State at a Breakpoint 514
Enable or Disable a Breakpoint 515
Run Code from a Breakpoint to a Selected Line 516

Working with Watches 516
Set a Watch 516
Remove a Watch 517

Working with Variables, Arrays, Pointers, Constants, and Para-
meters 517
Working with Modules 519

Display the Contents of a Module in a Separate Window 520
Search for a Specific Module Instance 520
Slay a Module Instance 522
Refresh the Module Tree 522
Step Into a Statement 522
Step Over Code 523
Sort Data in the Module Tree or Module Content Window 523
Filter Data in the Module Content Window 524

Working with the Execution History 524
Filter the Thread History 525
Select the Thread to Display 526

Copying and Pasting Code Using the Source Debugger 526
Source Debugger Options 527

Source Debugger Options Dialog: General Tab 528

Source Debugger Options Dialog: Source Paths Tab 529
Source Debugger Options Dialog: Symbol Server Tab 534

Confirm Workspace Load 535
Code Coverage 536

The Code Coverage Display 537
Refreshing the Code Coverage Display 538
Stepping Between Blocks of Covered Code 538
Using a Code Coverage Merge File 539
Resetting the code coverage counts 539

Test Framework Application 539
Test Framework Application Components 540
Writing Tests for the Test Framework 544

Assert Subroutines 545
Fixture Modules 546
Using the ThreadIdle Function 546

Running Tests 546
Running a Test 547
Viewing Test Results 548

Thread List Application 549
Trace Viewer Application 550

What the Trace Viewer can show you 552
Features for Driver Tracing 554
Features for SOAP Message Tracing 554
Features for Historian Diagnostics 555

Historian Trace Information 557
Historian Trace Options 557

Features for Remote Procedure Call (RPC) Tracing 558
Interpreting RPC Diagnostics Data 559
RPC Diagnostics Settings Dialog 559
Inter-machine Sockets Dialog 560
Inter-machine Sockets Data for Remote Machines 561
Inter-machine Sockets Data for the Local Machine 561
Services Dialog 562

Information Displayed for a Local Machine 563
Information Displayed for a Remote Machine 563
Information Displayed for a Client 564

Using the Trace Viewer 564
Select a Live Data Source to View 565
Viewing vs. Logging a Data Source 566
Select a Log File to View 567
Trace Viewer Options and Controls 568
Information Displayed for a Server 569
Clear the Current Trace 569
Print the Trace Viewer's Data 570
Export Data from the Trace Viewer 571
Highlight Records 571
Annotate Records 572
Navigate to the Previous or Next Mark 574
Pause and Run the Live Display 575
Toggle the Timestamp Display 575
Filter the Trace Viewer's List 576

Filtering Options 578
Select Columns for Display in the Trace Viewer's List 580

Trace Viewer Visibility and Display Options 581
Trace VTScada Actions Application 582

Historian - API and Queries 589
Recording Data 589

Specify the Storage Type for Historian Data 590
Specify the Location for Historian Data 590

Historian Manager API 592
Trending and Plotting Functions and Statements 592
Data Logged or Trended Variables in Tag Modules 593

VTScada SQLInterface Module 595
Programming Other Modes of Communication 597
Communicating Directly With Hardware 597

Configuring a VTSIO Driver as the Interface to PC Hardware 598

Configuring a single instance of the VTSIO driver: 598
Using COM in VTS 604

Introduction to COM 604
Accessing COM Objects 606
Syntactic Structure 608
Sample Code 613
Functions and Statements Related to COM 619

Using DDE 619
TCP/IP Networking 620
SNMP Agent Configuration 623

MIB Objects 625
Agent Tag Setup 625
Agent Tag Fields 627
Trihedral MIB Definition 628
Agent Tag Change Notification Traps 629
Custom MIB Setup 630
Support for Analog Tag Values 632
Support for Data Time Stamps 632

Using ODBC 632
Using DLLs 633

Modem Manager Service 634
Modem Manager Concepts 636
Canonical Address Format 637
Modem Manager Configuration Variables 639
Sequence of Events for Incoming Calls 641

Modem in Data Mode 641
Modem in Audio Mode 642

Sequence of Events for Outgoing Calls 644
Data Call 645
Audio Call 645

Allocating Modems in a Managed Pool for Outgoing Calls 646
Local Modems 647
Modem Manager Alarm and Event Reporting 648

Internal Event Recording 648
Modem Manager API 649

Required Subroutines in Custom Drivers 650
Modem Manager Functions 652
ModemControl Plug-in 653
Call Progress and Error Codes 654
Modem Tag Return Values 657
Modem Manager Constants 658
Modem Manager Properties 658
Example Audio Discriminator 659
Example Data Discriminator 661

TAPI and UniModem Considerations 663
RPC Manager Service 665
Overview of the RPC Manager Service 666

RPC High Level Design 669
Remote Procedure Calls (RPCs) 672
Session IDs 674
Types of RPC 676
Cross-Application RPC 676
Permitted Data Types in RPC 676
Compression 677
Packed RPC Streams 677

Services 678
Programming Example: Create a Simple Service 679

Adding Server-Only Synchronization 684
Configuring the Service 690
Adding More Servers 693
Server List Consistency 695
Client Revision Information 696
Client Changes 698
Read and Write Locks 700

Synchronization Sequence 701
Alternate Status 702

Sticky Status 703
Preventing Synchronization with Lower-Order Servers 704
Server Evaluation Rules 704

RPC Call-Backs 705
Connection Configuration and Management 708

Link Maintenance Cycle 708
Link Tolerances 710

Multi-homed Systems 713
Clients of Clients 714
WANs 715

Configure Cross-Application RPC 715
Cross-Application Services 716
Cross-Application Service Variations 718
Revised Code Example 719
CurSourceAppGUID 721

Application Control of Servership 721
RPCManager API 722
VTScada Plug-In API 723
Service Synchronization 726

System Level Services 727
Creating a System Level Service 727

API Reference 728
RPC Manager Functions 728
Deprecated RPC Methods 733
Server List Source Callback Methods 734

ServerListSubscribe 734
ServerListUnsubscribe 735
GetServerList 735
GetRPCServiceSettings 736

Diagnostics 736
RPC Routing and Execution 736

RPC Internal Routing 737
RPC External Routing 740

RPC Execution 742
RPC Security 742

Security Measures 743
[RPCManager-AllowIP] 744

Configuration 745
SETUP.INI [System] Values for RPC 746

RPCBufferLength 747
RPCConnectPort 747
RPCConnectStrategy 748
RPCDiagnostics 748
RPCMaxPacketSize 748
RPCMaxQLen 749
RPCMaxStartDelay 749
RPCMemBuffLimit 749
RPCMemSendLimit 750
RPCPingInterval 750
RPCReconnectTime 750
RPCResendDelay 750
RPCServerPort 751
RPCSktConnectAttemptMax 751
RPCSktResendAttempts 751
RPCSocketDeadTime 751
RPCSocketResendAttempts 752
RPCTrace 752
RPCUseBuffered 752

Variables available in \RPCManager 752
Application Settings for RPC 753

ABSharedRPC 754
CIPENIPSharedRPC 754
DataradioSharedRPC 754
DDESharedRPC 754
DNP3SharedRPC 755
DriverSetupDelay 755

MDSSharedRPC 755
ModiconPortSharedRPC 755
ModiconSharedRPC 757
OmronSharedRPC 757
OPCClientSharedRPC 757
RemCfgTransLog 757
SiemensS7PortSharedRPC 758
SiemensS7SharedRPC 758

Name Resolution 758
HOSTS File 759
Centralized Name Resolution 760
RAS Clients 760
Fully Qualified Domain Names 762

Protocol 763
Protocol Versions 764
General Structure 765
Version 3 Packet Format 765
Version 4 Packet Format 768
Session Table Message 770
Version 3 RPC Messages 772
Version 4 RPC Messages 774
Packed Parameters 777

Security Manager 780
Accounts 780

Account Storage 781
Alternate Identification 782

Roles 783
The Logged Off Role 783

Security Rules 784
Combining Security Roles and Rules 786

Security Implementation 787
System Privilege Reference for Programmers 787
Application Privileges 794

Shared Security 795
The SecurityManager API 795

AccountData Structure 796
SecurityRule Structure 798
Security Manager Return Codes 799
Security Manager Functions 799
Security Manager Public Variables 801
Security Plug-in Modules 801

Security Event Logging 802
Security NameSpaces 803

Socket Server Manager 806
Socket Server Manager - Error Logging 806
Socket Server Manager API 806

SocketServerManager\ArrayToString 807
SocketServerManager\Register 807
SocketServerManager\StringToArray 810
SocketServerManager\UnRegister 810

Time Synchronization Manager Service 813
Special Considerations for Time Adjustments 814

Web Services and XML 815
Terms Used with Web Services 816
Web Services Process 818
Module and Parameter Naming 820
VTScada Web Service Commands 821
WSDrvr Services 822
Web Services Example 827

Configuring a Realm 828
Creating a WSDL File 830
Create the VTScada Module 833
Modifying AppRoot.SRC 834
Requesting Values via the Web Service 835

VTScada Engine XML API 837
Validating versus non-Validating XML Processors 838

The Schema Cache Dictionary 839
XMLNodes 839
Accessing a portion of an XMLNode tree. 841
Obtaining a list of child tags 842
Determining if a member is an XMLNode or an array of nodes 842
Assigning values to an array of XMLNodes 843
Adding or deleting child tags 844
XML Namespaces 845

The VTScada Wizard Engine 847
Getting Started 848
Basic Wizard Engine Module 852

Wizard API 856
Flow Direction 860
Text Input and Output 860
Cleaning Up Input [Trim] 862
Error Messages [Error] 862
Skipping [SkipIf] 863
Branching [Switch] 863
Triggered Branch [ForceMove] 865
Unconditional Branch [NextIs] 865
Dead Ends [NoNext] 866
Dead Ends [NoBack] 866
Initial Action [InitCheckBox] 866
Final Action [FinalCheckBox] 867
Final Processing Stage [EndControl] 867

Wizard Configuration Settings 869
Cautionary Notes for Wizards 870

General Reference 871
ASCII Constants 872
VTScada Color Palette 874
Color Theme Definition 874
Constants for System Colors 877
Integrating Custom Help Files into VTS 878

User-Topics in the VTScada Help Folder 882
Database Type Codes used in the ODBC Manager 884
predefined Date Codes 885
Date Formatting Strings 887
Fill Patterns 888
Font Character Sets 889
GUI Object Return Codes 890
Known Path Aliases for File-Related Functions 891
Line Types 893
ParameterEdit Snap-ins 894
SlippyMapRemoteTileSource1 907
SQL Data Types 907
predefined Time Formats 908
Time Formatting Codes 909
VTScada and Time Synchronization 910
VTScada Value Types - Numeric Reference 911
Value and Type Conversions 918
Uninstall VTScada 921
Language Support 922
Using a Non-English Character Set 923

VTScada Functions - Grouped by Type 926
Usage Rules for Functions 1005
Format Examples for Functions 1006
Obsolete Functions 1008
4BtnDialog 1010
A Functions 1014

ABS 1014
AbsTime 1015
Accumulate 1017
Acknowledge 1019
ACos 1020
AcquireLock 1021
Active 1023

ActiveCode 1024
ActiveState 1024
ActiveWindow 1025
ActiveX 1025
AddAccount 1028
AddConnection 1031
AddContributor 1034
AddEditorText 1036
AddModule 1037
AddOptional 1039
AddParameter 1040
AddPrivToUser 1041
AddRead 1043
AddressEntry 1045
AddState 1048
AddStatement 1049
AddUser 1050
AddVariable 1052
AdjustArray 1055
AdjustCode 1057
AlignSelected 1058
AlternateIdCheck 1060
AlternateLogoff 1061
AlternateLogon 1061
AMax 1062
AMin 1063
And 1064
AppIsRunning 1065
AppIsStarted 1066
AppIsStarting 1067
ApplyChangeSetFile 1067
Arc 1069
ArrayDimensions 1070

ArrayOp1 1071
ArrayOp2 1075
ArraySize 1078
ArrayStart 1079
ArrayToBuff 1079
ASin 1083
ATan 1083
AudioFileLength 1084
Authenticate 1085
AValid 1086

B Functions 1087
Ball 1087
Bar 1089
Base64Decode 1091
Base64Encode 1092
Beep 1093
Bevel 1093
BinIP2Text 1095
Bit 1096
BitmapInfo 1097
Blend 1098
BlockDecrypt 1099
BlockEncrypt 1100
BlockWrite 1100
Boolean 1102
Box 1103
Brush 1104
BuffOrder 1106
BuffRead 1107
BuffStream 1116
BuffToArray 1117
BuffToHex 1120
BuffToParm 1121

BuffToPointer 1125
BuffWrite 1128
BuildDelete 1136
BuildFullName 1138
BuildInsert 1139
BuildSelect 1140
BuildUpdate 1142

C Functions 1144
Call 1144
CalledInstances 1145
Caller 1147
CallerID 1148
CancelCall 1148
CanEditDoc 1149
CaptureImage 1151
CaptureSettings 1152
Case 1153
Cast 1155
Ceil 1155
Change 1156
ChangePersistentSize 1158
CharCount 1159
CheckBox 1160
CheckFileExist 1163
CheckPathExist 1164
CheckTagGroup 1164
ChildDocs 1165
ChildInstances 1167
Circle 1169
CleanModule 1170
ClearModule 1171
ClearState 1171
ClearVarMetaData 1172

Click 1173
ClientSocket 1175
ClipboardGet 1181
ClipboardPut 1181
CloseStream 1182
Cls 1183
CodeText 1184
ColorSelect 1185
Combine 1189
COMClient 1190
COMEvent 1194
CommaFormat 1195
CommandLine 1196
Commission 1197
CommitEditedFiles 1199
Compile 1201
COMPort 1204
Compress 1211
COMStatus 1212
Concat 1213
Cond 1214
Configure 1216
ConnectToMachine 1217
ConstCount 1219
ConvertTimeStamp 1219
ConvertToDbDate 1222
ConvertToDbTime 1223
ConvertToDbTimeStamp 1224
ConvertToVTSDate 1225
ConvertToVTSTime 1226
ConvertToVTSTimeStamp 1227
Coordinates 1228
CoordToPixel 1229

CopyDir 1231
CopyIn 1231
CopyObjects 1232
CopyOut 1233
CopyRecords 1234
Cos 1235
CoverageSnapshot 1236
CRC 1238
CRCTable 1239
CreateModule 1241
CriticalSection 1241
Crop 1242
CrossReference 1244
CurrentLine 1247
CurrentTime 1248
CurrentWindow 1249

D Functions 1250
Date 1250
DateNum 1252
DateSelector 1253
Day 1254
DBAdd 1255
DBDropList 1258
DBGetStream 1260
DBGridList 1262
DBInsert 1265
DBListGet 1268
DBListSize 1278
DBRemove 1286
DBSystem 1287
DBTrace 1293
DBTransaction 1294
DBUpdate 1297

DBValue 1300
DDE 1302
DDEPoke 1303
DDEShareAdd 1305
DDEShareDel 1306
DeadBand 1306
Debugger 1308
Decode 1309
Decommission 1310
Decrypt 1311
DefaultNamingContext 1313
DefaultPrinter 1313
Deflate 1314
DeleteAccount 1319
DeleteArrayItem 1321
DeleteContributor 1322
DeleteModule 1323
DeleteOptional 1324
DeletePrivFromUser 1325
DeleteState 1327
DeleteStatement 1327
DeleteUser 1328
DeleteVariable 1329
DelPageFromApp 1330
DelRead 1331
Deriv 1332
DeriveKey 1333
DialogInitPos 1335
Dictionary 1336
DictionaryCopy 1338
DictionaryRemove 1339
Diff 1339
Dir 1343

DirectApply 1347
Disable 1349
DisconnectFromMachine 1350
DLL 1352
DoLoop 1353
DragHandle 1355
DrawArcPath 1355
DrawChordPath 1358
DrawEllipticalPath 1360
DrawPath 1361
DrawPiePath 1362
DrawScale 1364
DriveInfo 1368
Droplist 1370
DropTree 1376

E Functions 1379
Edge 1379
Edit 1380
EditFile 1387
EditINI 1388
EditINICheckBox 1392
Editor 1394
Ellipse 1397
Enable 1398
EnableHelp 1399
Encode 1400
Encrypt 1401
ErrMessage 1403
EvaluateAlarm 1404
Event 1405
Execute 1406
ExecuteQuery 1407
ExecuteQueryCached 1410

Exp 1411
ExportKey 1412

F Functions 1414
Fail 1414
FALSE 1414
FFT 1415
FileDialogBox 1418
FileFind 1423
FileRootModule 1425
FileSize 1426
FileStream 1427
Filter 1433
FiltHigh 1435
FiltLow 1436
FindAction 1438
FindModem 1439
FindVariable 1440
FirstState 1441
FitOffset 1442
FitR2 1443
FitSlope 1445
Flush 1446
FlushCache 1449
FocusID 1450
Folder 1451
Font 1452
FontDialog 1454
ForceEvent 1457
ForceServers 1461
ForceState 1462
FormalParms 1463
Format 1464
FormatBatchQuery 1465

FormatInteger 1467
FormatNumber 1468
FRead 1469
Freeze 1478
FWrite 1479

G Functions 1490
GenerateKey 1490
Get 1493
GetAccountID 1501
GetAccountInfo 1502
GetAlarmConfiguration 1503
GetAlarmList 1505
GetAlarmObject 1509
GetAlarmStateStats 1510
GetAlarmStatus 1511
GetAppInstance 1512
GetByte 1513
GetClientDiverts 1514
GetClientGUIDs 1515
GetClientIPs 1516
GetClientList 1517
GetClientMode 1518
GetClientNodes 1519
GetCodeObj 1520
GetColorInfo 1520
GetConfiguration 1521
GetConnList 1524
GetContainerNumActive 1525
GetContainerNumUnacked 1525
GetContributors 1526
GetCryptoProvider 1527
GetDefaultValue 1529
GetDevices 1529

GetFileAttribs 1530
GetFullName 1533
GetGroupName 1533
GetGUID 1534
GetHistory 1535
GetHostByName 1539
GetID 1540
GetInhibitedServiceList 1541
GetINIProperty 1541
GetInSyncServers 1543
GetInstance 1543
GetIP 1544
GetKeyCount 1545
GetKeyParam 1545
GetLoadedAppInstance 1547
GetLocalIP 1547
GetLocalNumber 1548
GetLog 1549
GetLogInfo 1553
GetMachineNode 1556
GetMakeAltPtr 1556
GetModuleRefBox 1557
GetModuleText 1559
GetNameOfRecord 1560
GetNextKey 1561
GetNumUnacked 1563
GetOEMLayer 1565
GetOneParmText 1566
GetOutputTypes 1567
GetOverrides 1568
GetParameter 1568
GetParmText 1569
GetParserOffset 1570

GetPathBound 1571
GetPlatformInfo 1572
GetPowerState 1573
GetReferencedValues 1574
GetRemoteVersion 1574
GetReportTypes 1575
GetReturnValue 1576
GetSelected 1576
GetSelectedInfo 1577
GetServer 1578
GetServerChanges 1579
GetServerMode 1581
GetServerNumber 1582
GetServerSIDPtr 1583
GetServersListed 1584
GetServiceScope 1585
GetSessionContainers 1586
GetSessionContainerTags 1587
GetSessionID 1589
GetShapePath 1590
GetSocketStatus 1591
GetState 1592
GetStatement 1593
GetStatementNum 1594
GetStateText 1594
GetStatus 1596
GetStreamLength 1597
GetStreamType 1598
GetSystemColor 1599
GetTagHistory 1601
GetTagList 1608
GetTagTypes 1610
GetToken 1611

GetTrajectoryPath 1612
GetTransform 1613
GetTransitText 1613
GetUserID 1615
GetUserName 1615
GetUserNameOfRecord 1615
GetUserSession 1616
GetValue 1618
GetVariableText 1619
GetVariableType 1620
GetVarMetadata 1621
GetVoices 1622
GetWCPath 1624
GetWCRevision 1625
GetXformRefBox 1625
GetXMLNodeArray 1627
GoToOffset 1628
Grid 1629
GridList 1631
GUIArc 1638
GUIBitmap 1644
GUIButton 1650
GUIChord 1664
GUIEllipse 1671
GUIPie 1676
GUIPipe 1683
GUIPolygon 1689
GUIRectangle 1696
GUIText 1702
GUITransform 1716

H Functions 1724
HasCompilationErrors 1724
Hash 1725

HasMetaData 1726
HasReturnStatement 1727
HasUndeployedChanges 1727
Help 1728
HexToBuff 1730
HighlightModule 1731
HistorianConnect 1731
HistorianDeleteRecords 1734
HistorianGetData 1735
HistorianGetInfo 1740
HistorianReadRecords 1743
HistorianWriteRecords 1744
HScrollbar 1746

I Functions 1748
IconMarker 1748
IF 1750
IfElse 1752
IfOne 1754
IfThen 1755
ImageArray 1756
ImageSweep 1759
ImportAPI 1761
ImportKey 1762
In 1764
InsertArrayItem 1765
Instance 1766
Int 1768
Intgr 1769
Invalid 1770
InWord 1771
IPAddressList 1772
IsActive 1774
IsAppEditable 1775

IsChild 1776
IsClient 1777
IsEqual 1779
IsDictionary 1780
IsDisabled 1780
IsLoggedOn 1781
IsMatch 1781
IsOnLocalBranch 1782
IsPotentialServer 1783
IsPrimaryServer 1784
IsRunning 1786
IsRunOnly 1786
IsSecured 1787
IsServiceReady 1787
IsShelved 1789
IsSuspended 1789
IsUnacked 1790
IsVICSession 1791

K Functions 1791
KeyCount 1791
KeyFake 1792
Keys 1793

L Functions 1794
LastSelected 1794
Latch 1795
Launch 1796
LayerInUse 1799
LayerRoot\Stop 1800
Limit 1800
Line 1802
LinearIndicator 1803
LinearLegend 1807
ListAdd 1809

Listbox 1810
ListKeys 1815
ListRemove 1817
ListVars 1818
Ln 1824
LoadDLL 1824
LoadMIB 1827
LoadModule 1830
LocalGroup 1832
LocalScope 1833
Locate 1834
LocCapture 1836
LocSwitch 1837
Log 1839
LogNTEvent 1839
LogOff 1843
LookUp 1844
LValue 1845

M Functions 1846
MACID 1846
MakeBitmap 1847
MakeBuff 1849
MakeCall 1850
MakeDAG 1855
MakeEditor 1856
MakeFixedBuff 1856
MakeNonPersistent 1857
MakeNonShared 1858
MakePersistent 1859
MakeShared 1859
MapDraw 1860
MatchKeys 1863
Max 1866

MCSInstance 1867
MCSMod 1867
Mean 1868
MemIn 1869
Memory 1870
MemOut 1871
MemTrace 1872
Merge 1873
Merge2 1874
MetaData 1877
Min 1878
MkDir 1879
ModemCount 1880
ModemDev 1881
ModemDial 1882
ModemDigits 1887
ModemList 1887
ModemMedia 1889
ModemStream 1891
ModemTransfer 1895
ModifyAccount 1895
ModifyBitmap 1897
ModifyConfiguration 1900
ModifyTags 1903
ModifyUserPrivilege 1908
ModuleFileName 1910
ModuleHighlighted 1911
Month 1911
MoveEditor 1912
MoveSibling 1913
MoveWindow 1913
MuteSound 1914

N Functions 1916

New 1916
NextFocusID 1918
Normal 1919
Normalize 1920
NormalTrip 1922
Not 1923
NotifyVIC 1923
Now 1924
NParm 1925
NumericParameterEdit 1927
NumInstances 1929
NumParms 1930
NumSelected 1930
NumSets 1931
NumVariables 1931

O Functions 1932
ODBC 1932
ODBCBeginTrans 1940
ODBCCommit 1942
ODBCConfigureData 1943
ODBCConnect 1947
ODBCDisconnect 1951
ODBCRollback 1952
ODBCSources 1953
ODBCStatus 1954
ODBCTables 1955
OffNormal 1957
Ones 1957
OpChange 1958
OPCServer 1960
Or 1967
Out 1968
Output 1969

OutWord 1972
OwningModule 1973

P Functions 1974
Pack 1974
PackParms 1978
PackRPC 1979
PAddressEntry 1980
PAlmPriority 1983
PalStatus 1986
Parameter 1987
ParameterEdit 1989
ParameterSet 1992
PAreaSelect 1992
ParentModule 1995
ParentObject 1996
ParentWindow 1997
ParmToBuff 1998
ParserSRO 2001
PasteObjects 2002
Path 2002
PathDraw 2003
PatternMatch 2005
PCheckBox 2006
PColorEdit 2009
PColorSelect 2012
PContributor 2015
PDroplist 2018
PEditfield 2023
PEditName 2030
PeekStream 2031
Pen 2032
Pending 2033
PersistentSize 2034

PHSliderBar 2035
PHueSelect 2037
Pick 2039
PickValid 2043
PID 2044
Pie 2050
PIPAddressList 2051
PIPListenerGroup 2054
Pipe 2056
PipeStream 2057
PixelColor 2058
Platform 2059
Play 2062
Plot 2064
PlotBuff 2072
PlotXY 2080
PMultiCheckBox 2088
Point 2090
PointerToBuff 2091
PointList 2094
Popup 2095
POverride 2096
Pow 2098
PPageSelect 2099
PPPDial 2102
PPPHandles 2104
PPPStatus 2107
PRadioButtons 2108
Print 2110
PrintDialogBox 2112
PrintLine 2115
Priority 2116
PriorityWeight 2118

ProcInfo 2118
Profile 2119
ProgressBar 2121
PrtScrn 2122
PSecBit 2125
PSelectObject 2128
PSpinbox 2131
PType 2135
PTypeToggle 2137

Q Functions 2141
QuietLogon 2141

R Functions 2142
RadialIndicator 2142
RadialLegend 2146
RadioButtons 2148
Rand 2151
Read 2152
ReadBlock 2153
ReadConfiguration 2154
ReadINI 2156
ReadINIProperties 2158
ReadLock 2159
ReadPropertiesFile 2161
ReadSectINI 2162
ReadX 2165
ReadXY 2166
RecommendAlternate 2168
RecommendPrimary 2169
RecordProperty 2170
Redirect 2172
Register (Alarm Manager) 2173
Register (Modem Manager) 2174
Register (RPC Manager) 2177

RegisterCustomTable 2180
ReleaseLock 2187
RemoveParameter 2187
RemWSDL 2188
Rename 2188
Replace 2189
ReplaceStatement 2191
ReportError 2192
RepoSubscribe 2195
Reset 2195
ResetParm 2196
ResultFormat 2197
ResyncDoc 2198
Return 2198
Reverse 2200
RibbonCmd 2201
RibbonContextUI 2202
RibbonGalleryItems 2203
RibbonPersistState 2204
RibbonSetProperty 2205
RmDir 2209
RootTransform 2210
RootValue 2211
RootWindow 2212
Rotate 2213
RTimeOut 2214
RUNFileName 2216
RUNFileVersion 2216
RunPack 2217

S Functions 2218
Save 2218
SaveHistory 2229
SaveImage 2233

SaveModule 2235
Scale 2235
Scope 2237
ScopeLocal 2239
SDev 2240
Seconds 2241
SectionControl 2242
SecurityCheck 2249
Seek 2250
SelectArea 2251
SelectCodePointer 2252
SelectDAG 2253
SelectGraphic 2254
SelectHandle 2255
SelectHandleNum 2256
SelectPath 2257
Self 2257
Send 2258
SendMail 2262
SerBreak 2266
SerCheck 2266
SerialNum 2268
SerialStream 2268
SerIn 2273
SerLen 2274
SerOut 2275
SerRcv 2276
SerRTS 2277
SerSend 2278
SerStrEsc 2280
SerString 2282
ServerList 2284
ServerSocket 2285

SerWait 2287
SetAllBlocks 2288
SetBit 2289
SetByte 2290
SetClock 2291
SetCodeText 2292
SetCursor 2293
SetDDEServer 2295
SetDefault 2296
SetDivert 2296
SetEditMode 2297
SetEnable 2298
SetFileAttribs 2299
SetHandle 2300
SetHelp 2300
SetINIProperty 2303
SetInstanceName 2304
SetInstanceRefBox 2305
SetKeyParam 2307
SetLibrary 2309
SetModuleRefBox 2309
SetModuleText 2312
SetOneParmText 2314
SetOPCData 2314
SetOverride 2316
SetParameter 2317
SetParmText 2318
SetParserParm 2319
SetRefRect 2320
SetRemoteValue 2321
SetReturnValue 2322
SetShelved 2323
SetStateText 2324

SetSyncComplete 2325
SetTransfer 2326
SetTransitText 2327
SetVariableClass 2328
SetVariableText 2329
SetVariableType 2330
SetVarMetadata 2331
SetVicParms 2332
SetWSDL 2334
SetXLoc 2336
SetYLoc 2336
ShiftStream 2337
ShowLexicon 2338
ShowPage 2339
SilenceSound 2340
SimpleOpChange 2341
SimulateMouse 2342
Sin 2344
SizeWindow 2345
Slay 2346
SocketAttribs 2348
SocketPingSetup 2350
SocketServerEnd 2351
SocketServerStart 2352
SocketWait 2354
Sort 2355
SortArray 2358
Sound 2361
Spawn 2363
Speak 2364
SpeakToFile 2368
Spinbox 2372
SplitList 2377

SplitListSelector 2381
SplitPath 2383
SplitTagSelector 2385
SQLQuery 2386
Sqrt 2391
SRead 2392
Start 2401
StartTag 2402
StateList 2408
StatementInstance 2408
StateName 2409
StaticSize 2409
StatsWin 2410
Step 2413
Stop 2414
StrCmp 2414
StreamEnd 2415
StrICmp 2416
StrJustify 2418
StrLen 2419
Struct 2419
SubStatementIndex 2420
SubStr 2421
Sum 2422
SumBuff 2423
SWrite 2424
SystemSelf 2433

T Functions 2433
TableSynch 2433
Tag 2435
TagIconMarker 2437
Tan 2438
Target 2439

TCPIPReset 2440
TempFileStream 2440
Text 2441
TextAttribs 2443
TextBox 2444
TextIP2Bin 2446
TextOffset 2447
TextSearch 2447
TextSize 2449
TGet 2449
Thread 2457
ThreadHistory 2459
ThreadIdle 2460
ThreadList 2461
ThreadName 2461
ThreadPriority 2462
Time 2463
TimeArrived 2467
TimeOut 2467
TimeZone 2469
TimeZoneList 2471
Today 2471
TODBC 2472
TODBCBeginTrans 2475
TODBCCommit 2477
TODBCConnect 2479
TODBCDisconnect 2481
TODBCRollback 2482
Toggle 2484
ToLower 2485
ToolBar 2486
ToUpper 2487
Trajectory 2488

Transaction 2489
TransactionCached 2490
TransferFields 2491
Trip 2492
TRUE 2493
TServerList 2493

U Functions 2494
UIErrorToText 2494
Unpack 2495
UnpackData 2498
UnpackParms 2500
Unregister (Alarm Manager) 2501
UnselectGraphics 2502
UnselectObject 2503
UnTransform 2503
UpdateCoordinates 2504
UserCredChange 2505
UserLogonDialog 2506

V Functions 2507
Valid 2507
ValidateEmailAddrs 2508
ValueType 2509
VarAttributes 2509
Variable 2510
VariableClass 2512
Variance 2513
Version 2514
VersionRequired 2515
Vertex 2516
VICInfo 2518
VICMessage 2519
VoiceTalk 2520
VScrollbar 2522

VStatus 2524
W Functions 2527

Watch 2527
WatchArray 2528
WatchForTagChanges 2530
WCSubscribe 2530
WhileLoop 2532
WinButton 2533
WinComboCtrl 2536
Window 2539
WindowClose 2546
WindowOptions 2547
WindowsLogon 2551
WindowSnapshot 2552
WinEditCtrl 2553
WinLocSwitch 2556
WinMatchKeys 2559
WinShiftKeys 2561
WinTooltipCtrl 2563
WinXLoc 2565
WinYLoc 2566
WKSList 2567
WKSPath 2567
WKSStatus 2569
WKStaInfo 2571
Write 2572
WriteHistory 2574
WriteINI 2577
WriteINIProperties 2579
WriteLock 2579
WritePropertiesFile 2580
WriteSectINI 2582

X Functions 2585

XLoc 2585
XMLAddSchema 2585
XMLCloneNode 2586
XMLCreateNode 2587
XMLDeleteMember 2588
XMLGetNode 2589
XMLParse 2590
XMLProcessor 2592
XMLWrite 2592
XOr 2594

Y Functions 2595
Year 2595
YLoc 2595

Z Functions 2596
ZBar 2596
ZBox 2598
ZButton 2599
ZColorChange 2601
ZEditField 2602
ZGrid 2604
ZLine 2606
ZPipe 2607
ZText 2609

Index 2611

Scripting and Automation

Intended audience: Advanced developers who want to create new fea-
tures for their application.
VTScada includes (and is largely built with) its own programming lan-
guage. You can use this language to create unique tools for your applic-
ation development work, including custom tags, script applications,
wizards and more. Support is provided for all the features you would
expect in a programming language, and for many features that are
unique to VTScada.

Related Information:

...Start Here for Scripting and Automation - For those who are new to
VTS scripting. Covers the fundamentals and helps you get started with
tag-based expressions.

...The VTScada API - The complete introduction to the VTS language

...Basic Programming Tasks - Examples of how to achieve common goals.

...Custom Tag Types - Creating new types of tags from scratch.

...Programming Parent Tags - Included for historical reference only.
Obsolete.

...The VTScada Wizard Engine - Create user-interface wizards for cus-
tomization tasks.

...Communication Drivers - How to write a driver.

...Programming Other Modes of Communication - Alternative I/O
options.

...Cryptography in VTS- Guide to cryptography functions that you can
use.

...Web Services and XML - How to use SOAP services to create an auto-
mated interface to VTScada.

...- Writing your own WAP modules.

...Alarm Manager - Guide to the features and tools in the alarm man-
ager.

...Historian - API and Queries - Guide to the features and tools in the his-
torian manager.

...Modem Manager Service - Guide to the features and tools in the
modem manager.

...Socket Server Manager - Guide to the features and tools in the socket
server manager.

...Security Manager - Guide to the publicly accessible tools in the security
manager.

...Time Synchronization Manager Service - An overview of the time sync.
service.

...RPC Manager Service - Detailed guide to remote procedure calls.

...Debugging and Analysis - Instructions for using the various tools
included with VTScada.

...Function Reference - See the VTScada Function Reference.

...Application Properties - See the VTScada Admin Guide. Control of your
application's appearance and behavior through settings.

Start Here for Scripting and Automation

If you are exploring the scripting and automation tools in VTScada, it is
likely that you will use some combination of the following components to
reach your goal.

On schedule, or in response to conditions...
l A tag's value changes or reaches a set point.

l A set time arrives, or an interval of time passes.

l An operator acts, including button-presses and security events.

... perform a calculation...
l Calculate values or words.

l Store a value.

... and do a task
l Display a message.

l Run a report.

l Set or write a value.

l etc.
Before starting to write script code, you must decide where to place it.
You have a choice between three options:

l Expressions are written inside tags. The expression uses a sub-set of the
scripting language to calculate a new value, and relies on the tag to save or
write that value. Choose this option for most tag-related automation.

l A module can make use of the entire scripting language and is stored in a
file, located in your application folder. How it is used is determined by how it
is declared, whether as a tag type, a service1, a report, etc. Choose this
option for reports, custom tag types that cannot be built in the Tag Browser,
enhanced security monitoring, etc.

1A VTScada module that is continuously running, usually waiting for an
event to trigger some action.

l A Script Tag combines the two, linking a module to a tag. The linked tag is
used either as a data source, a trigger, or both. Choose this option for tag-
related automation that requires tools from the entire VTScada scripting lan-
guage.

The following list of topics will provide everything you need to get star-
ted with scripting and automation:

Related Information:
Where to write your code...

...Expressions in Tags and in Widget Properties

...Script Code in Modules

...Configuring a Script Tag
On schedule, or in response to conditions...

...Test Conditions - Compare values and select which block of code to
run.

...Access a Tag Value or Application Property - Tools for accessing applic-
ation data.

...Mark the Passage of Time - Tools to run your code on time.

...Obtaining User Input - Tools to watch for buttons and key-presses.
Perform a calculation and do a task.

...Math Functions in Expressions

...Text Functions in Expressions

...Time and Date in Expressions

...Examples of Expressions

...The VTScada API - Complete reference to the VTScada scripting lan-
guage.

...Basic Programming Tasks - How to build common module types.

Quick Reference Guide for Expressions
This topic is for people who have some programming experience and
only want to see how fundamental tasks are done in the VTScada expres-
sion editor. Other topics in this chapter provide a comprehensive ref-
erence. You may also find the topic Expression Examples useful.

Reference Tag Values:

Tag values are referenced in expressions as follows:

[tag name]

Tag name must be the actual tag name string. This is a robust form to
use since it accommodates tag names with spaces and other punctuation
symbols.
Example: Averaging two tag values…
([Pump1 FlowRate] + [Pump2 FlowRate]) / 2

Reference Other Tag Parameters:

You can access parameters other than Value within tags. A few common
ones such as ScaledMin and ScaledMax might be useful to your expres-
sions.
Format:

[Tag Name]\ParameterName

Parameters will vary from one tag type to another and there is no guar-
antee that they will not change in future versions. Nonetheless, some
common parameter names are as follows:

l All tags:
\Value
\Name
\Area
\Description
\Questionable

l Analog tags:
\ScanInterval
\UnscaledMin & \UnscaledMax

\ScaledMin & \ScaledMax
\Units

l Digital Input tags:
\Bit0Address
\Bit1Address

l Digital Output tags:
\Address
\DataSourceTag

You can use the Source Debugger application to discover what variables
are available within any particular tag in your version of VTScada.

Comments

Comments are always useful and can be located anywhere in an expres-
sion. They are enclosed in braces: {This is a comment }

Substitute a default if a tag’s value is INVALID

A communication error or other event may result in an expression break-
ing when a tag’s value goes to INVALID. You can substitute a default
when this happens by using the PickValid function. This has the general
form: PickValid(expr_1, optional_expr_2…, some_guaranteed_constant).
For example, the following will return a zero if the flow rate Analog
Input tag is invalid:

PickValid([Pump2 FlowRate]), 0)

Constants

Constant values include text and numbers (integers, floating point, bin-
ary and hex). These can be part of an expression as follows: Concat
("Level is ",[TankLevel_1]) or [TankLevel_1] / 3.
The value returned by an expression is whatever was last calculated. If
the expression contains nothing but a constant, then that is what is
returned. This is useful for displaying one of two messages depending
on current conditions (see the example for the If Else Operator)

Basic Math Operators

l + Addition

l - Subtraction

l * Multiplication

l / Division
Use parenthesis to control the precedence of operations:

(2 + 3) / 4

Value Comparisons & Relational Operators

l < Less than

l <= Less than or equal to

l == Equivalent

l => Greater than or equal to

l > Greater than
Caution! Note that the test for equivalency is two equal signs, not one.
Here is an example of good code:

[ValveFlow] == 1 ? "On" : "Off"

The following is an example of a very serious programming error:

[ValveFlow] = 1 ? "On" : "Off"

Boolean Comparisons:

l && And

l || Or

If-Else Operator

l ... ? ... : ...
test expression ? expression if test is true : expression if test is false

Example: Return a warning message if a tank level exceeds 90…

[TankLevel] > 90 ? "Dangerous level!" : "Level is safe"

Note that you can cascade these by adding new If Else operators, instead
of the simple text constants shown in this example.

Cond Function

The Conditional function does the same thing as the ?: (If Else) operator.
The only difference is in how it is written: Cond(test_expression, expres-
sion_for_true_case, expression_for_false_case)

Cond([TankLevel] > 90, "Dangerous level!", "Level is safe")

Mathematic functions

Sqrt - Square root

Log - Logarithm
Min - Minimum of a list of values
etc. – see: Mathematic Functions

Read application property values

To access a value from the Settings.Dynamic file, you can use the fol-
lowing general form:

\Code\VarName

Expressions in Tags and in Widget Properties
An expression is "any calculation that returns a result".
In more practical terms, an expression is something that…

l Can combine or compare multiple tag values to better monitor your system.

l Can signal a need for control actions, based on any set of system conditions.

l Can take into account the time, date, logged-in operator, system status, etc.

l Can extend the capabilities of VTScada to meet any of your SCADA needs.
General steps to create an expression:

In any VTScada tag configuration field that has the options, Constant, Expres-
sion, Tag...

1. Click the Expression option to select it.

2. Click the expression editor button.

3. Enter an expression into the editor window.

The expression editor window can be re-sized if required for a longer expres-
sion.

4. Click OK to save your work and return to the tag configuration.

Note: You cannot save an expression that contains a syntax error. For
example: unbalanced parenthesis "2 + (2/3" , or using an operator
without an operand "2 + ".

Where to use expressions:
While expressions are most commonly used in Calculation tags, they can
also be a data source option for a wide variety of other uses. For
example, the title of a parametrized page, or...

l Analog Control, I/O tab configuration:

l MultiWrite tag, activation tab configuration:

l Alarm tag, trigger tab configuration:

Note: When looking through the reference guide for a function to use
in an expression, note the usage line of the definition. Many functions
are restricted to certain usages.

Related Information:

...Syntax Rules and the Expression Editor

...Quick Reference Guide for Expressions

...Access a Tag Value or Application Property

...Examples of Expressions

Related Functions:

...Math Functions in Expressions

...Comparing Values in Expressions

...Time and Date in Expressions

...Text Functions in Expressions

...Triggers and Events in Expressions

Script Code in Modules
Much of what you see in VTScada was written using the VTScada scripting
language. You can leverage the power of this language to write new func-
tions, reports, services, user-interface features and much more.
Like any programming language, there is a great deal to learn. You
should start with simple tasks and build your knowledge as you work
towards more powerful features. Please begin with the following topics:

Related Information:

...The VTScada API

...Basic Programming Tasks

...Create a New Script Application

Configuring a Script Tag
Script tags are one of the standard types built into VTScada. The script
tag links a VTScada script code module to another tag's value. It is used
to go beyond the power of in-tag expressions to allow the use of the full
VTScada scripting language inside a tag.
The module for a script tag must have two parameters, as follows:

(
PointObj { object value of AI to monitor };
 ScriptObj { Script Object };
)

PointObj is the tag whose value is monitored and used by the Script tag.
This matches the first field, "In Tag Scope", found in the Execute tab of
the Script tag's configuration panel.
ScriptObj is used internally to link to your script tag. Whatever cal-
culation is performed in your module must assign a value to ScriptOb-
j\value. This enables the module to pass its calculated value back to your
Script tag.

Related Information:

...Script Tags - Example and details for creating a Script Tag can be
found in the VTScada Developer's Guide

Syntax Rules and the Expression Editor
Expressions are written inside an expression editor. They are not typed
directly into a tag configuration field. To open the editor, select the
expression option below a field, then click the box as indicated.

An expression can be as simple as 1 + 1, or even just "1". Expressions
can be as simple or complex as you need, but must always return exactly
one value. An expression that uses a variety of calculations on a mul-
titude of tags is perfectly acceptable, so long as the final result is to find
one value.
For example, the following expression is legal. (Multiple calculations on
multiple lines, returning one result. Counts pump starts.)

Latch(PickValid(Edge([Pump1], 1), 0), Watch(0,
[PumpCounter]))
? (Value + 1)
: PickValid([PumpCounter], 0)

The next example is not legal (calculates two separate results).

1 + 1
2 + 2

If a valid expression has been entered, then when you close the editor
you will see the expression displayed, followed by a colon and the cal-
culated result of the expression. You must click on the expression
editor’s OK button in order to see the result of your expression – there is
no preview for the calculation.

An expression result

Note: Expressions are always examined by VTScada for syntax errors
before they are saved. If the expression doesn't follow the rules, then
you will be notified that a problem exists. Incorrect expressions are not
saved.

VTScada follows syntax rules that are common to most programming lan-
guages. The following is a quick overview for those who have not studied
programming:

l Every opening parenthesis must be matched by a closing parenthesis. (2 + 2)

l Text must be enclosed in quotation marks. Text not enclosed in quotation
marks is taken as the name of a variable. X = 2 + 3.

l Every opening quotation mark must be matched by a closing quotation
mark. "Hello World"

l To display a quotation mark in text, use a doubled set of quotation marks:
"The computer said, ""Hello World"". "

l Operators are symbols such as plus and minus signs. Operands are the
things being operated on by the operators. In the expression 2 + 2, the digits
"2" are operands and the "+" is an operator.

l You should always put a space between each operator and operand.
While not strictly required, the spaces will help you avoid errors and
will increase the clarity of your code. Operands must always be sep-
arated by spaces.

l Extra spaces are ignored.

l Line breaks are ignored, except that they count as a space between
operators and operands.

l There is a precedence to the order in which mathematic operations are per-
formed (multiplication before addition), but you should use parenthesis to
improve clarity and to explicitly control the order of the operations. ((2 + 3)
* 5). Evaluation proceeds from the inner-most sets of parenthesis to the
outer-most, thus in this example the 2 and 3 are added together before the
result is multiplied by 5.

Test Conditions
"If it is raining, then wear rubber boots, otherwise wear shoes."
Conditionals are used to compare values and then direct which actions to
take based on the result.
A conditional is built using the following parts:

l A keyword or symbol that indicates "this is a conditional". In VTScada, this
takes the form "IfElse", "IfThen", "Cond" or the in-line, " ? : " syntax.

l A test that can evaluate to TRUE or FALSE. This may be a comparison "A >=
B", a function that watches the clock TimeArrived(x)", or it can simply be "A"
if the value of A can change between zero (FALSE) and non-zero (TRUE).

l The code to run, depending on the result of the test.
In an expression, you may use only IfElse and the in-line ?: conditional.
In a module, you may use these plus IfThen, IfOne, IF, and Cond.
In computer code, there is a special value called "Invalid". It is the value
assigned to a variable when no other value can be calculated - for
example, x divided by zero. Invalid is not zero or non-zero, it is neither
TRUE nor FALSE. All comparisons to Invalid return Invalid.
To deal with Invalid, you have two tools: PickValid() and Valid(). PickValid
() takes a list of values and returns the first that is valid. Thus, if you are
comparing the value of X, and there is a chance that X may be invalid,
you can substitute a known value such as zero using the expression, Pick-
Valid(X, 0), thus ensuring that a valid value is always used in the com-
parison.
Valid(X) tests whether X is valid or invalid, returning TRUE or FALSE.

Related Functions:

... IF

... IfElse

... IfThen

... IfOne

... Cond

...Inline If-Else.

Related Information:

...Triggers and Events in Expressions

...Comparing Values in Expressions

... Boolean Logic Operators

Comparing Values in Expressions

Any comparison will return 1 as the value of the expression if the com-
parison is true and 0 if it is not.
The following operators are provided to allow you to compare one value
to another value in an expression.

Symbol Meaning

> Greater than

< Less than

== Equivalent (Notice the double equal sign. A single "=" won't do)

!= Not Equivalent

>= Greater than or equal

<= Less than or equal

An example of a comparison expression is as follows:

[Tank1Level] > 50

The preceding is a complete expression. The word "IF" is not required,
and indeed is not allowed.
Simply returning 1 if a comparison is true and 0 if it is false is useful (a
trigger for alarms is one example), but you can also provide your own val-
ues to be returned instead. This is done with an If… Else in four steps, as
follows:

1. Put a question mark after the comparison to indicate that you have finished
the IF part of the expression

2. Put the value or expression you want returned if the expression is TRUE

3. Put a colon to indicate the beginning of the ELSE part.

4. Put the value or expression that you want returned if the comparison is
FALSE.

For example, the following expression will display the words "Within safe
limits" while a tank’s level is below 50%, but will display "Above safe lim-
its" when the value rises above 50:

[TankLevel_1] <= 50 ?
 "within safe limits" :
 "above safe limits"

You are not restricted to constants for the values that are to be returned.
Any valid expression may be used for each of the two cases.
You could write the same expression using the IfElse function as follows:

IfElse([TankLevel_1] <= 50, "within safe limits", "above safe lim-
its")

Multiple Comparisons
Often, you will want to check more than just one tag. For example, if a
tank level is above 90% AND the safety valve is closed, then open the
valve. (If the valve is already open, there's no point opening it, and if the
tank level is below 90% you also don't want to open the safety valve.)
You can join as many comparisons as you want together with the sym-
bols && (which means "AND") and || (which means "OR"). Don't forget that
you can use parenthesis to make it clear which value is being compared
to which.
The following example will return true only when both the level in Tank 1
and the level in Tank 2 exceed 80%

[TankLevel_1] > 80 && [TankLevel_2] > 80

The next example returns true whenever either tank exceeds 80%

[TankLevel_1] > 80 || [TankLevel_2] > 80

Note: Remember! Use a double equal sign for comparisons "==". A
single one means "assign" not "compare".

Triggers and Events in Expressions

There are many functions that can be used to watch for a triggering
event that will start your code running.
When used in a tag-based expression, these functions will remain
latched after they have been triggered. Once the time has gone by, the

value has been reached, or the key has been pressed, your code will run,
but will not run again the next time. To reset the trigger for the next
event, you will need the Latch() function in your tag-based expressions
(description follows).
In your module-based script code, this does not apply. There is still a
use for the Latch() function, but many functions will automatically reset
themselves. This is noted in each function description.

Example:
The goal is to create an expression that toggles from TRUE to FALSE and
back again, switching every second. So, every two, four, six, eight ...
seconds, it becomes TRUE and every 3, 5, 7, 9 ... seconds it becomes
false.
AbsTime(1, 2, 0) will switch to TRUE on every multiple of a two-second
interval. But, in a tag-based expression, once it triggers to TRUE, it will
simply stay there. Let's add a Latch() to take care of this.
The Latch() function takes two parameters: when the first becomes TRUE,
the Latch() returns TRUE and the second parameter is reset if it was
TRUE. When the second becomes TRUE, the Latch () returns FALSE and
the first parameter is reset if it was TRUE.
The answer to the problem is:

Latch(AbsTime(1, 2, 0), AbsTime(1, 2, 1))

Both AbsTime functions cycle every two seconds, but the second is offset
by one second. The first parameter switches the Latch on every two
seconds. The second switches the Latch off one second later, and resets
the first parameter so that it can switch back on.

Related Functions:

... Latch

...Latching and Resetting Functions

Related Information:

...Comparing Values in Expressions

...Access a Tag Value or Application Property

...Mark the Passage of Time

...Obtaining User Input

Access a Tag Value or Application Property
When writing an expression within a tag, you can obtain and use the
value of any tag in your application using the following syntax:

[TagName]

This creates an absolute reference to the tag matching that name. If you
have a hierarchical tag structure, then you should provide the full name
to the tag. Relative paths can also be built using dots and backslashes.
For example, to refer to a tag two levels up in the hierarchy, use:

[..\..\TagName]

The "value" property is assumed by default. Any other property of the tag
may be accessed by adding "\PropertyName" following the [TagName].

[TagName]\Area
[TagName]\ScaledMin

Property Values
Also within a tag expression, application properties can be read as fol-
lows:

\Code\PropertyName

For example, if you want to find the total value of three analog inputs
that are monitoring tank volumes, you might write the following expres-
sion:

[TankVolume_1] + [TankVolume _2] + [TankVolume _3]

Note: Caution: Tag values may be "Invalid", especially at system startup.
The result of any calculation on an Invalid is always Invalid. (For
example, 1 + 0 is 1, but 1 + Invalid is Invalid.)

To avoid errors and the possible repercussions of returning an unwanted
Invalid value, you can use the PickValid function to supply a default

value. The PickValid function examines a list of values that you provide
as parameters. The first value that is not Invalid will be the one returned.

PickValid([TankVolume_1], 0)

- Returns the value of TankVolume_1 when that tag’s value is Valid
- Returns 0 when the tag’s value is Invalid.
The expression shown earlier that calculates the sum of three tank
volumes can be written as follows:

PickValid([TankVolume_1], 0) +
PickValid([TankVolume _2], 0) +
PickValid([TankVolume _3], 0)

Should any tag’s value go to Invalid for any reason, this expression will
substitute 0 for its value.
Note that the PickValid function should be used with care: There may be
instances where it would be better to return an invalid rather than an
incorrect value.

If you are writing script in a module, rather than an expression, use the
following syntax to refer to a tag's value:

Scope(\VTSDB, "FullTagName")\Value

It is often worth the extra effort to find and use the tag's unique ID value
rather than its name. This ensures that your code will continue to work
after a developer moves or renames the tag.

Scope(\VTSDB, "... tag's unique ID value...")\Value

Related Information:

...Relative Tag and Property References - addressing parent-child tag
structures

Relative Tag and Property References

The tag that you are referencing in your expression may not be at the
same level in a parent-child tag structure as the tag that contains the
expression. There are several ways that you can specify the relationship
between tags.

Note: In older versions of VTScada, the standard method of referencing
a tag was to use the expression, "Variable("TagName")\value". You may
type that if you wish, but upon saving the expression, it will be replaced
with the most appropriate of the following for the situation.

Code References...

[TagName] Open Relative Path. References the closest tag with that
name.

[ParentName\TagName] Finds the closest tag with this match. Common ancestors
above ParentName need not be included

[*ContextName\ChildName Ancestor Relative Path. References a sibling tag's value,
within a user-defined type. This format works across mul-
tiple instances of the type, always finding the sibling tag
in the local instance.

[..\..\TagName] Fixed Depth Path. Finds the tag having that name, at dis-
tance above the current tag, as specified by the number of
.. repetitions.

[<\Full Path\Tag Name>] Absolute path. Equivalent to providing the GUID of the tag
in question. This will continue to refer to the same tag,
even if that tag is moved or otherwise renamed.
The full path must be provided so that the correct tag can
be found. If that tag is moved, the path will update auto-
matically. This form of address is seldom used in a user-
defined type since it refers to one specific tag and is not
relative to each instance of the type.

[*TagType] References the nearest ancestor of the specified tag type.
Valid options include: *Port (nearest port tag ancestor),
*Device (nearest driver tag ancestor), *Trigger (nearest Trig-
ger tag ancestor), *Numeric (nearest numeric tag
ancestor), and *SQLLoggerGroup. If the current tag is of
the same type as the one being referenced (common with
*Numeric) then it is necessary to explicitly point away
from the current tag by adding "..\".
Use this to create expressions that can be transferred
from one parent to another, and will automatically find the
nearest appropriate parent tag. For example: [*Driver].

Assuming there are several stations, each with its own par-
ent driver tag, this expression can be taken from one sta-
tion to ensure that I/O tags are linked to the appropriate
driver.

PropertyName Uses the value of that property, as defined in the current
tag.

..\PropertyName Uses the value of that property, as found in the parent tag.
Will automatically continue searching upwards through
the tree for an ancestor that has this property.

Mark the Passage of Time
The functions listed here can help you write code that will execute on
schedule. Developers who are creating tag-based expressions should
note that the Trigger tag is designed for exactly this purpose, and in cer-
tain cases may be easier to use than an expression.

AbsTime(Enable, Interval, Offset) When enabled, becomes true when any mul-
tiple of Interval seconds since midnight has
passed. Times that are not evenly divisible by
Interval can be obtained by adding an offset.

CurrentTime(Type) Returns the number of seconds since Jan 1,
1970. Set Type to 2 for UTC time.

TimeArrived(UTCTime) Becomes true when the specified time (in UTC
format) arrives.

RTimeOut(Enable, NumSeconds) A cumulative timer. Becomes true when NumSe-
conds have passed.

TimeOut(Enable, NumSeconds) A continuous timer. Becomes true when an
uninterrupted NumSeconds have passed.

Related Functions:

...AbsTime

... CurrentTime

... TimeArrived

... TimeOut

... RTimeOut

Obtaining User Input
The tools listed in the topics of this chapter will help you watch for user
input, whether to request information or to respond to control events.
Choose the appropriate tool for the task: for much application devel-
opment work, it is far easier to use the widgets designed for control and
output tags than to write a user interface from scratch.
For programmers who are building dialog boxes for tag configuration: In
addition to the tools listed in this chapter, VTScada provides a set of
tools designed for use in tag configuration dialogs. These are the so-
called, "P-Tools," where "P" refers to "parameter editing".

Note: Tab order between user input controls follows their z-order
(that is, the order of the statements within the state), rather than their
Focus ID value.

Related Information:

...Mouse Input

...Keyboard Input

...Selection Input

...Placing Focus on an Object vs. Selecting an Object

Mouse Input

Several VTScada functions are designed to accept input from the user via
the screen pointer (mouse). Some, such as Pick, and ZButton are
designed to watch for click actions. Others, such as Target, XLoc and
YLoc simply watch the location of the pointer, and can be used to trigger
an action when the operator moves the pointer to a defined area.

All of the GUI-graphics commands (GUIButton, GUIBitmap, etc.) are
designed to watch for mouse input, and will return a numeric value indic-
ating which combination of mouse buttons were used when an operator
clicks on the graphic.
To use these functions, they must be placed in a module that is con-
tained in a window. They can be used as the trigger condition of an
action to allow scripts to be executed when an operator clicks within a
specified area.

Example:
If Target(120, 50, 220, 80);
[
 ...
]

This statement will cause the script to execute whenever the mouse
passes over the target area.

Related Information:

...Keyboard Input

Related Functions:

... Pick

...Click

... ZButton

... GUIButton

... Target

... XLoc

... YLoc

Keyboard Input

Keyboard input may be used to allow an operator to respond Y (Yes) or N
(No) in response to a prompt. It is also used whenever there is a need to
prompt for a numeric or text value.
In most operating VTS applications, tags that require user input are
drawn using an appropriate, built-in widget. The tools discussed here

are used in script applications, which do not have access to the tag wid-
gets, or in a heavily customize page of an application. If designing a con-
figuration dialog for a new type of tag, you should use the various P-
Tools, which have been designed specifically for use in configuration dia-
logs.
The most commonly used keyboard functions are MatchKeys and
ZEditField. MatchKeys is typically used to trigger an action when a spe-
cified key or sequence of keys is pressed. It does not display the key-
strokes entered.
The ZEditField function is used to accept text entered by the operator.
Before typing, the operator must activate the object by clicking on the
area of the window where the graphic is displayed, or by pressing the
TAB key to set the focus to that input object.

Related Information:

...Mouse Input

...ASCII Constants

Related Functions:

... Keys

... MatchKeys

... ZEditField

Selection Input

Radio boxes, drop lists, combo-controls and check boxes are all
examples of selection input. For all of these tools, the user is provided
with a selection of options from which they can choose. Also in this
group are tools such as the VTScada color selector.

Related Functions:

... CheckBox

... ColorSelect

... Droplist

... Listbox

... RadioButtons

... Spinbox

... WinComboCtrl

Usage Rules for Functions
VTScada code runs in two modes: Script or Steady State. Many functions
will work in only one mode. The "Usage" line in each function description
tells you the mode where the function can be used.

Note: Just because a function can be used in a given situation, doesn't
mean that it should be. For example:
* It makes no sense to put a graphics function into a Calculation tag's
expression.
* MatchKeys will capture keystrokes only when used in a window or
page, not in a service or Calculation tag.
* Script-mode functions can be used for optimized tag parameter con-
figuration, but many are not appropriate in that context.

If you are writing...

General Expressions (Calc. tags)
If you are writing an expression for a Calculation tag, or anywhere that
you have the option "Constant / Expression / Tag":

If the function is marked as "Script Only" then you cannot use it here.
If the function works in Steady State, then it will compile when used in a
Calc tag expression, but it may or may not be useful there. For example,

Tag Parameter Expressions - Optimized
Only functions that can be used in Script may be used for optimized tag
parameter expressions. These expressions are evaluated as the tag is

initialized, then not run again during normal operations. You cannot use
Steady State-only functions in this situation.

Tag Parameter Expressions - Not Optimized
Only functions that can be used in Steady State may be used for non-
optimized tag parameter expressions. These expressions are re-eval-
uated whenever any of the parameter values change. You cannot use
Script-only functions in this situation.

Page Code, Services, Reports, etc.
These are full VTScada modules, declared in the application's AppRoot
file. The full VTScada language and function list can be used.

Math Functions in Expressions
The symbols on your keyboard to use for the basic math functions are as
follows:

+ addition
- subtraction
* multiplication
/ division

There are rules of precedence to control which operations are done first.
For example, multiplication and division happen before addition and sub-
traction. You may wish to use parentheses in order to override the rules
or to make your intentions clear.

4 + 3 * 2 : 10
(4 + 3) * 2 : 14

There is no limit to how many sets of nested or consecutive parentheses
you can use. Just be sure that for every opening parenthesis, there is a
matching one to close.
The following are a few of the mathematic functions available to your
expressions. For a complete list, see Math functions in the VTScada Func-
tion Reference. (All math functions can be used in an expression.)

Max(X, Y, Z, …) Returns the variable having the largest value.

Pow(X, Y) Returns the value of X raised to the power of Y.

Sqrt(X) Returns the square root of the value in X.

Int(X) Returns the number with any digits following the decimal point trun-
cated.

Sin(X) Returns the trigonometric sine of X.

Cos(X) Returns the trigonometric cosine of X.

Related Functions:

...Math - Generic

...Math - Rounding

...Math - Trigonometric

Text Functions in Expressions
Expressions can be used to display calculated text as well as numeric val-
ues. For example, you might use the Concat() function to join the value
of a tag or the result of a calculation to a sentence.
A few of the string handling functions in VTScada are as follows. See
String and Buffer Functions for complete descriptions of these and other
functions. (Note: many string functions cannot be used in Steady State,
and thus cannot be used in an expression.)

Concat(a, b, c…) Concatenates any number of sub-strings into one sentence.

Concat("Level of Tank 1: ",[TankLevel_1], "%")

Returns (for example): "Level of Tank 1: 30.35552%"

Concat(" Viewing Station: ", StationNumber)

Example shows how to set the title of a parametrized page, where Sta-
tionNumber is a text or numeric parameter of that page.

Format(width,
precision, value)

Turns a numeric value into a text string, having the specified width and
precision (number of decimal points).

Format(5, 2, [TankLevel_1])

Returns (for example): "30.36"

Replace(sen-
tence, start,
length, find,
replace)

Searches the sentence, starting at the Start character and continuing for
Length characters, looking for every instance of Find and replacing it
with Replace. Note that character counting begins with 0.

Replace("This is good", 1, 12, "is", "was")

Returns: "Thwas was good"
(Note that every instance of "is" is replaced. This may have unintended
consequences.)

SubStr(sen-
tence, start,
length)

Returns a substring of Sentence, beginning with the Start character and
running for Length characters.

Substr("on a Halifax pier", 5, 7)

Returns: "Halifax"

Related Functions:

...String And Buffer

Time and Date in Expressions
VTScada counts time in seconds (and fractions of a second). This is use-
ful for calculating how long a pump has been running, but is not useful
for humans to view. Fortunately, VTScada also provides functions that
will translate the raw time into a format that is human-friendly.

Now(interval) Returns the number of seconds elapsed so far today, updated every
(interval) seconds.

Time(seconds,
format)

Return the number of seconds since midnight in a format that's easier
for a human to read and understand.
Examples:

Time(Now(1), 2)

Returns: 21:35:00

Time(Now(1), 7)

Returns: 09:35 PM

Today() Returns the date as a count of days since January 1, 1970.

Date(Daycount,
format)

Turns the result of the Today() function into a format that is easier for a
human to read.

Date(Today(), 2)

Returns: 12/25/09

Date(Today(), 21)

Returns: December 25

A partial list of the formatting codes for the Time function is as follows.
For a complete list of formatting codes and for other time-related func-
tions, see Time and Date Functions. (Many time and date functions work
only in Scripts, and thus may not be used in an expression.)

Format Example Code to use

No Time 0

hhmmss 173500 1

hh:mm:ss 17:35:00 2

hr:mm:ss HH 9:35:00 PM 6

The following table provides a partial list of formatting codes for the
Date function.

Value Date Format Value Date Format

0 No date 21 mmm..m d

1 yymmdd 22 mmm yyyy

2 mm/dd/yy 23 mmm..m yyyy

3 mm-dd-yy 24 dd/mm

4 mmm d, yyyy 25 dd-mm

Related Functions:

...Time And Date

Examples of Expressions
The following examples may be adapted to your application, or they may
spark an idea for what you can achieve using expressions.
Simple math. Add two AI tag values together:

[Valve1Flow] + [Valve2Flow]

Using logic to check conditions. All the tags in this example are Digital
Inputs that will be 1 (TRUE) or 0 (FALSE). In this test, we’re checking
whether either both of Valves 1 and 2 are open, or else if the overflow
valve is open.

([Valve1Status] && [Valve2Status]) || [OverflowValveStatus]

Limit a return value to be no less than 0

Max([Valve1Flow], 0)

Write a 1 when a test is true, otherwise write nothing. The following
example takes advantage of the fact that VTScada will not write an
Invalid.
If the following were being used to control a pump for example, it would
turn the pump on when the flow rate went above 1500, but would not
turn the pump off.

[Flow] > 1500 ? 1 : INVALID

Conditional math. Add together only the MVAR values (in AI tags) for gen-
erators whose breakers are closed (DI tags == 1)

([Gen1Breaker] == 1) * [Gen1Mvar] +
([Gen2Breaker] == 1) * [Gen2Mvar] +
([Gen3Breaker] == 1) * [Gen3Mvar]

Get the value of an INI file variable for display:

Scope(\Code, "MyAppVersion")

Build a text string based on values in bits of registers read from a PLC.

Bit([AI3], 15) ? "On " : "Off "

Calculate a steam flow from a DP cell reading on an AI tag:

SQRT((([FT-518-RAW])/4095)*100) * 1000

Calculate a steam flow from a DP cell reading on an AI tag. Force to 0 if a
DI tag is not on:

[BLR-001]==1 ? SQRT([FT-506-RAW]) * 3000 : 0

Figure out the bit number that is turned on in a word read from a PLC
into an AI tag:

Int((Log([AI3] % 65536) / Log(2)) + .5) + 1

Create a time string based on an AI tag, AI3, and replace the 00 hour
reading with 24:

Concat("HE ",Replace(Substr(Time((Scope([AMA.STA.MW-TS]) - (9 *
3600)) % 86400, 2),0,2),0,2,"00","24"))

Get the name of the PC that the application is running on:

\Code\RPCManager\WkStnName

Get the version of VTScada that is running:

Version()

Create a flag that toggles every 10 seconds

Latch(AbsTime(1, 20, 0), AbsTime(1, 20, 10))

Check if any user is logged on to a client PC. This example returns a mes-
sage, but you could just as easily return a 1 or 0 to determine whether a
control action should proceed.

\Code\SecurityManager\IsLoggedOn() ? "" : "Authorized Access Only.
Please Log On."

Get the name of the operator who is logged in:

\Code\SecurityManager\GetUserName()

Given an application with the following set of application privileges, you
want to configure the Push Button widget so that confirmation is
required when the button is pressed by anyone whose account does not
have the "Confirmation Not Reqd" privilege.

<SECURITYMANAGER-PRIVAPP>
PrivBitsTotal = 3
PrivDesc0 = Page Priv,0
PrivDesc1 = Operational Priv,1
PrivDesc2 = Confirmation Not Reqd,2

Confirmation Not Reqd is enumerated as privilege 2, therefore its index
value is 16 + 2 = 18. The expression for the Confirmation Dialog para-
meter of the widget would be:

1 - PickValid(\SecurityManager\SecurityCheck(18, 1), 0)

In a parametrized page, find the name of the tag that was used for a
given parameter:

\NameOfGivenParameter\Name

In a parametrized page, where a parameter is of type tag, use the descrip-
tion of the tag as part of the title:

concat("Details for: ", \NameOfGivenParameter\Description)

The VTScada API

Script code lies behind everything that you see in VTScada. An interesting
exercise to illustrate this is to copy any object from a VTScada applic-
ation page (Ctrl-C) and paste it into a text editor (Ctrl-V). Rather than
seeing the same image that was on the page appear in the editor, you
will see the code that animates that image. The same will work in
reverse.

Every VTScada page is a module1, stored in a separate file on disk, and
each of these files is a plain-text source file of VTS code. Examining the
source code for a page (or a user-defined drawing object) is a good way
to begin learning the language.
If you are familiar with programming other languages, you will quickly
discover that VTScada works in a unique way. Other than blocks of
script2 code, everything runs in what is termed, "steady state3". This is a

1A collection of states, scripts, variables, parameters, comments and pos-
sibly other modules, all of which make up a VTS program. Modules are
separate tasks that run simultaneously in an application. Behind every
page is a module and behind every tag on that page is an instance of
another module (usually with submodules controlling separate tasks).
2VTScada statements that are evaluated in order as written. Scripts are
triggered by an IF statement within a VTS state.
3The operating condition of the code within a State.

form of event-driven programming. In a block of code (a state1), such as
that used to display the objects in a page, each line will run once (for
example, to initially display the page), and then not run again until a vari-
able within the line changes value (for example, an I/O tag obtaining a
new reading from the PLC). In steady state, each individual line of code
(called a "statement") may execute at any time, and will do so inde-
pendently of every other statement. This makes VTScada extremely effi-
cient, but you will need to learn new coding techniques.
Study Guide
To learn the VTScada script language:

l Start with the fundamental components of expressions, states and steady
state, and VTScada modules.

l Review the style recommendations for writing VTScada code.

l Learn how to add your code into an application.

l As you write your code, refer as necessary to the definitions of variable
types, operators, and functions.

When you have mastered these basics, refer to the remaining chapters of
this guide as needed for examples and guidance when creating custom
tags, user-interface wizards, device drivers, etc.

Related Information:

...Parts of a VTScada Program

...States and Steady State

...Action Triggers and Scripts

...VTScada Modules

...Functions

... Threading

...Operators in Statements

1A collection of statements, grouped together within square brackets
and given a name. A state is the part of the module that performs a task.
Modules can have many states, but only one may be active at a time.

...Value Types and Storage

Parts of a VTScada Program
This example shows a complete VTS script program. When run, it will dis-
play the words "Hello World" within a small window. A description of the
various parts follows the example.

Building it up piece by piece...

l The smallest bit of code that will return a value is called an expression1. An
expression might be simple math, a call to a function2, or some other pro-
gramming construct.

l A statement3 is a complete line of code (possibly running over several lines
in the editor). Statements are built from one or more expressions.

l Statements are always found within a named state4. Code within a state is
executed in steady state5, which means that after running once when the
state is first activated, the statement lies dormant until triggered by a change
to a variable within it.

l Statements that must run in a given order, or run a predictable number of
times rather than being event-driven, are put into a script6 block within a
state. A statement called an action-trigger is used to start a script block run-
ning. Action-triggers are also used to transfer execution from one state to
another within a module.

l The entire block of code that holds one or more states, as well as variable
declarations, etc. is a module7. Within a module, only one state can be

1Any calculation that returns a result. Examples include a call to a func-
tion, assigning a value to a variable, and mathematic operations.
2A module that returns a value. For example, math functions such as
Sqrt(), Min() and Abs().
3A command made of one or more expressions and function calls,
always ending with a semi-colon, directing VTScada to perform an
action.
4A collection of statements, grouped together within square brackets
and given a name. A state is the part of the module that performs a task.
Modules can have many states, but only one may be active at a time.
5The operating condition of the code within a State.
6VTScada statements that are evaluated in order as written. Scripts are
triggered by an IF statement within a VTS state.
7A collection of states, scripts, variables, parameters, comments and pos-
sibly other modules, all of which make up a VTS program. Modules are
separate tasks that run simultaneously in an application. Behind every
page is a module and behind every tag on that page is an instance of
another module (usually with submodules controlling separate tasks).

active at a time. (You can get around this limit by having a module launch a
submodule with its own active state.)

States and Steady State
The executable code of a module is contained within one or more named
states. Each state contains a collection of instructions (statements)
describing what the module is to do while that state is active.

Note: Only one state in a module may be active at any time. While a
given state is active, all other states in the module are ignored.

The first state found in a module is always the one that will run when the
module starts. Execution can switch freely from one state to another
based upon programmer-defined action triggers (See: Actions and
Scripts). Until an action trigger occurs, the active state will remain active.
When a state becomes active, each statement within it will be executed
exactly once. The state remains active, but no statement is executed
again until one of the variables within it changes. This is referred to as
"steady state" in VTScada.
If two or more instances of a module are running, a different state may
be active in each.
A state is defined using a formal structure as follows. Note the square
brackets that enclose the body of the state.

StateName [
Statement1;
Statement2;

]

The following rules apply to states:
l There is no limit to the number of states in a module (other than the com-

puter's RAM).

l Every state must have a State Naming Rules, and enclose all of its statements
in square brackets.

l In any module, only one state may be active at a time.

l All statements within a state will execute once when the state first activates.

l Following the first run-through, any statement will execute again only when
triggered by a changing variable value. In steady state, there is no way to pre-
dict which statements will be triggered in which order.

l If the module must do two things at once, create a submodule and call it
from the state.

l In the module for a page, the z-order of graphics matches the order of their
statements.

l Excepting the previous point, the order of the statements is largely irrel-
evant.

l If order of execution matters, use a script.
It is common for a module to have only one state. Modules in which the
operations remain constant fall into this category. Typically, modules
that display pages or that handle alarms, PID control or I/O need the
same instructions to remain active regardless of plant activities or oper-
ator inputs. For example, it would be undesirable for a PID instruction to
be placed in a module with several states since the PID control action
would only occur when the module was in the state containing the PID
instruction.
The mechanism that transfers control from one state to another is the
same one that controls when a script1 should run: an Action Trigger.

Related Information:

...State Naming Rules

...Event-Driven Execution and Efficiency

State Naming Rules

State definitions begin with a name. Each state in a module must have a
unique name, however it is legal (although confusing) for a state to have
the same name as the module.

l State names must be a single word.

l Use an underscore or CamelCase to indicate multiple words

1VTScada statements that are evaluated in order as written. Scripts are
triggered by an IF statement within a VTS state.

l State names may not include most symbols, such as #&-+=<>{}[](), etc.

l State names are not case-sensitive. "Main" is the same as "main".

l State names may be numeric, so long as you do not include a negative sign.
In general, state names should be:

l Short

l Descriptive - of the state's purpose

l Verbs - when the state performs a task
You will often see modules that contain states named "INIT" and "MAIN".
There is no functional significance to these names, but by custom, INIT is
used for initialization tasks and MAIN is used for the state that forms the
main body of the module.

Event-Driven Execution and Efficiency

In steady-state, statements do not follow a strict sequential execution
after the initial run-through. All statements in a particular state are
executed once, in order, when that state first becomes active. After the
first execution, a statement or action trigger is executed again when the
value of any variable in the statement changes.
It is important to watch for possible race conditions. For example, if a
state called Monitor contains two action trigger statements:

If HighAlarm Shutdown;
If HighAlarm StartPump;

Both of these actions change to a new state on the same condition. It can-
not be predicted which will execute first, and the final state will be either
Shutdown or StartPump. This is called a "race condition", because the
module depends on which action trigger wins the race. When designing a
state, assume that all statements and action triggers will execute sim-
ultaneously. Although this is not strictly what happens, it is a good
design strategy to use.
Changes to a variable's value propagate through the system. For
example, consider the statement:

X = Y + 4;

Every time the variable Y changes, all statements that depend on the vari-
able Y will be updated, including the assignment to X. Then, because X
changed, all statements depending on the value of X will be updated.
This rule may affect how you write seemingly simple statements. For
example, if the following were to appear in steady state code, X would
continuously increment.

X = X + 1;

Presumably, you would only want X to increment in response to some spe-
cific condition or at a particular time. For this purpose, you could use a
script block.
This event-driven model results in VTS being very efficient. For example,
an active state could contain hundreds of output statements that display
one variable each. If all statements were to execute, it would take a cer-
tain length of time. If a looping mechanism were used to continuously
poll for which variables had changed, then much more time would be
required. But, in VTScada, if only one variable changes, the CPU need
only process one statement instead of hundreds. This means that the
response time for the page is cut to one percent or less of the time it
would take to update all statements..
Another example is a state with many actions, each looking at the same
variable:

If Stage == 1 Alarms;
If Stage == 2 Mixer;
...
If Stage == 100 TankFarm;

In this example, every time the variable Stage changes, VTScada attempts
to execute each of the action triggers once, in an unknown order. This
does not necessarily mean that all 100 actions are checked -as soon as
one is found to be true and it contains a state change, it will stop this
state and start a new one. When the state is stopped, the remaining
actions are no longer checked. It could be possible that all 100 actions
would have to be checked, however, it is more likely that an average of
50 actions would be checked, based on a uniform random distribution of
Stage.

When designing a module, it is a good idea to identify activities that take
place continuously, such as a flashing lamp or PID loop, and keep them
separate from activities that start on a trigger, such as starting a pump
when a level is too high, or switching the graphics screen at the press of
a button.

Action Triggers and Scripts
An action trigger is the instruction that passes control from one state to
another. Being a trigger, it requires a conditional expression to signal
when the state transfer is to occur.
When the purpose is to transfer control to another state, an action trig-
ger always takes the form:

IF conditional_test NextStateName;

Note the semi-colon after the name of the state that control will be trans-
ferred to. This line of code is a statement and must follow the rules for
all statements. Since it runs in steady state, it will be triggered whenever
the variables in the conditional expression change and the test then
becomes TRUE.
The same code can also be used as the signal to run a script. A script is a
set of statements that will run in order for as long as the trigger con-
dition is true. Scripts are used within states in order to execute code
where the order of the statements matters, and where you need to con-
trol how many times the code will be repeated.
VTScada includes functions that are designed to run only in steady state
and functions that are designed to run only in a script block. When read-
ing about a function in the reference section of this guide, take care to
note the Usage field.
To run a script, the action trigger is modified to include the script state-
ments, within a set of closed parenthesis, and following the IF statement
and its semi-colon. The general form is as follows:

IF conditional_test NextStateName;
[
first_script_statement;
second_script_statement;
...
]

A common example is an initialization state. It's purpose is to initialize
variables, and perhaps open a file stream or other I/O. Those tasks must
be done once and once only, therefore it makes sense to put them in a
script rather than in steady-state code.

InitState { name of the first state to run}
[
IF 1 MainState; { "IF 1" is guaranteed to be true, therefore the
script will run and control will then switch to MainState }
[{ script that should be run once }
x = 1;

{ other initialization tasks ... }
]
]
MainState { name of the state that does the work }
[
{ code that does the work }
]

Rules for Action Triggers
l When the next state name is provided, the script block is optional.

l When a script block is provided, the next state name is optional.

l When both are provided, the script block will be executed exactly once, and
then control will be transferred to the next state.

l If there is a script block, but no state to transfer to, then you must ensure
that the conditional test will become FALSE after one or more iterations
through the script. Otherwise, it will run indefinitely.

l While a script is active, no other statements in the state will execute (except-
ing the IF action trigger).

Note: Note: If the action trigger includes a destination state, all code in
the current state excepting the script block will STOP. This means that
variables outside the block will immediately become invalid and mod-
ules that were called from that state will terminate. If code in the script
block depends on any of these variables, use a ForceState function

within the script-block instead of a destination state in the action trig-
ger.

A typical action might look like the following example. Here, the first line
contains both the action trigger "If TimeOut(1, 5)" and the destination
state "Start". The square brackets delineate the script block.

IF TimeOut(1, 5) Start;
[
X = 0;

]

The trigger statement will become true five seconds after the state con-
taining this code becomes active. When this happens, X will be set to 0
and execution switch to a state named Start.

Related Information:

...The Trigger

...The Script Block

The Trigger

IF Trigger DestinationState;
[

{ script block }
]

The trigger is any logical expression that determines if a state transfer is
to take place. Nothing happens as long as the trigger expression eval-
uates to a logical false (0).
While an action trigger is false, no action is taken. When it becomes true,
the following occurs:

1. If there is a destination state, the active state (and all its statements) is
stopped(*).

2. The script block (if any) is executed in order from the top of the list to the bot-
tom.

3. The destination state (if any) is started as the new active state.

4. If there is no destination state, the script will be executed repeatedly while
the action trigger remains true.

This will continue until the action trigger becomes false. Take care not to
inadvertently create such a repetitive loop since it will consume processing
time and greatly degrade the overall system performance.

(*)Note: If the action trigger includes a destination state, all code in the
current state excepting the script block will STOP. This means that vari-
ables outside the block will immediately become invalid and modules
that were called from that state will terminate. If code in the script block
depends on any of these variables, use a ForceState function within the
script-block instead of a destination state in the action trigger.

Note: When combining function calls and other operations in an action
trigger, use care to follow the rules of operator precedence to avoid
unexpected results.

"1" is a common trigger condition to use when you want to force a script
to execute, followed by a state-change. Use care when this is done inside
a module that is run as a subroutine. It is essential in this case, that the
subroutine's Return statement be located in code that will not remain act-
ive. This can be done by ensuring that the return statement is in a script
and that the script does not remain active. Consider the following four
examples of subroutine modules:

ExampleSubroutine1
(

Input;
A;

)
[

Result;
]
StateOnly [

IF 1;
[

Result = SomeFunction
(Input, A);

Return(Result)
]
]

This is dangerous. If this sub-
routine is called from a script, all is
well. But, if this is called in steady

ExampleSubroutine2
(

Input;
A;

)
[

Result;
]
StateOnly [

IF Watch(1);
[

Result = SomeFunction
(Input, A);

Return(Result)
]
]

In this version of the module, the
script will be executed only once.
The IF statement resets the value

state (for example, in a Calculation
tag), then the script within it will
execute continuously, as fast as
VTScada can go, resulting in very
high CPU usage.

of the Watch() function to Invalid
after it runs once.

ExampleSubroutine3
(

Input;
A;

)
[

Result;
]
StateStart [

IF 1 StateDone;
[

Result = SomeFunction
(Input, A);

Return(Result)
]
]

StateDone [
{ empty state }
]

In this module, the script will also
be executed only once, but an extra
state is required. While this works,
it is generally regarded as poor
practice.

ExampleSubroutine4
(

Input;
A;

)
[

Result;
]
StateOnly [

IF Watch(1, Input, A);
[

Result = SomeFunction
(Input, A);

Return(Result)
]
]

In this module, the script will
execute when the module is first
started, and (if called from
steady-state) will then re-execute
whenever either of the inputs
change.

This is expected behavior that you can use to your advantage. Latching
and Resetting Functions

The Script Block

A script block contains a set of instructions that are executed in order
when the block is activated. The block is activated when its action trig-
ger's condition becomes true.
Standard programming constructs such as If-Else conditions and Do-
While loops may be found in a script block since the order of execution

is predictable. Script blocks are also used for most file I/O, for the same
reason.
Any number of statements may be present in a script, including none.
The only limitation upon the number of statements in a script is the avail-
able memory (RAM).
If the action trigger includes a transfer to another state, then the script-
block will execute exactly once before the state transfer occurs.
If the action-trigger does not include a transfer to another state, then
when the script block reaches its final statement, if the action-trigger's
condition remains true, the script-block will run again. Take care to not
create a script that run continuously.
While a script block is active, no instructions outside of the block will
execute. If the action trigger includes a destination state, then state-
ments outside the block will stop and all variables will go to INVALID.
For example...

X = DBSystem(...);
If A SomeOtherState;
[
 // X is now invalid
]
If B;
[
 // X would still be valid (if it was valid)
 ForceState("SomeOtherState");
]

If either A or B becomes true, a script block will execute and then control
will transfer to the destination, SomeOtherState, but the action is not
quite the same. When A becomes true, X immediately becomes invalid
and is not available to code in the script block. When B becomes true, X
will not update (that statement being outside the script block) but it will
also not become invalid until after the call to ForceState.
If B does not force a state change, and does include code that will change
B back to Invalid thus stopping the script-block, then the current state
will resume and X will still have its value.
There is one exception to the rule about scripts being executed in their
entirety: If the module that contains the script is a "launched module"

and the script contains a Slay statement, then the module will be stopped
immediately and the script execution along with it.

VTScada Modules
A VTScada module is the collection of all of components defined in the
preceding topics (state1, script2, statement3, expression4) into a pro-
gram that does something. A formal definition is: a state-logic control
program.
For example, every page in your application is a module. Each user-
defined widget is also a module, as is every tag. An application is built
with many program modules, each providing the instructions for a sep-
arate task to be done by the system.
There are no limits to the types and numbers of modules that you can
define in an application. It is also common to find many separate
instances of the same module running simultaneously in an application -
for example, every Analog Status tag that you define is a separate and
independent instance of the Analog Status module.
Modules are very often built using several submodules. Since only one
state may be active in a module at any given time, submodules are
required in order for the module to do two things at once. For example,

1A collection of statements, grouped together within square brackets
and given a name. A state is the part of the module that performs a task.
Modules can have many states, but only one may be active at a time.
2VTScada statements that are evaluated in order as written. Scripts are
triggered by an IF statement within a VTS state.
3A command made of one or more expressions and function calls,
always ending with a semi-colon, directing VTScada to perform an
action.
4Any calculation that returns a result. Examples include a call to a func-
tion, assigning a value to a variable, and mathematic operations.

an existing instance of an Analog Status tag will continue to read values
from the I/O driver while its configuration dialog is open. Within the Ana-
log Status module, there is one module that handles I/O and another
module is used to display the configuration dialog.
Module Files:
Source code for modules is stored in plain-text .SRC files. Compilation
(part of the "Import File Changes" process) produces a set of files known
as .RUN files. Source files can be excluded from the File Manifest before
building a ChangeSet of an application for distribution. Only the .RUN
files are required in order for VTScada to run the module.
Module Calls:
How a module is started is almost as important as the code within the
module. Very different behaviors can be obtained depending on whether
the module is called from script or steady state.
Module Structure:
There is a formal definition for how the parts of a module are put
together.

In order from top to bottom, the parts are:
l A comment section, describing the module.

While this has no effect on the module’s operation, it is a vital component
from the point of view of good coding practice.

l Reference box numbers, enclosed in parentheses. [Optional]
Found only in modules that are used to draw graphics on a page. These four
integer numbers within parenthesis, override the reference box that would

otherwise be defined by the total size of the graphic statements within the
modules.

l Parameters section, enclosed in parentheses. [Optional]
Not all modules will require a set of parameters. If the module does not have
parameters, the parentheses are optional, and are normally not included.

l Variable section, enclosed in square brackets.
All variables, constants and submodules used in the module must be
declared.
Constants must have their values assigned as part of the declaration. Vari-
ables may optionally be assigned values when they are declared.
Sub-modules (if any) must declared and include the keyword "Module". Addi-
tionally, if the submodule is stored in another file, that file name must be
provided.

l States.
Each state in the module begins with the name of the state, followed by
square brackets that enclose the code of the state. The first state found in
the module will always be the first state to run. It is commonly called "Init",
but the name has no special meaning.

l Statements. [Optional]
Complete lines of code (possibly running over several lines in the editor) and
ending with a semi-colon. Statements are built from one or more expres-
sions.

l Scripts, enclosed in square brackets and following an action-trigger state-
ment. [Optional]
States may include script blocks if there is code that must be executed in a
pre-determined order in response to a condition becoming true.

l Sub-modules, enclosed in angle brackets. [Optional]
These are also referred to as "child modules". The first module within any file
need not be enclosed in angle brackets, but each child module within the
same file must be. Within each child module, the structure is the same as lis-
ted in the preceding points.

Related Information:

...Store and Declare Modules

...Types of Module

...Module Scope

...Constructors

...Destructors

...Reference Boxes in Graphic Modules

Store and Declare Modules

Where you will store your module code depends on the purpose of the
module.
Pages are stored in the application's Pages folder and you must register
them with the application by importing them into the Idea Studio. (This
serves to declare the module in the (PAGES) group of the AppRoot.SRC
file.
User-defined widgets are stored in the root folder of the application, and
must similarly be registered using the Standard Library - User Draw Meth-
ods folder.
If you are creating a script application from scratch, you will probably
add your code into the AppRoot.SRC file of the application. Or, you may
choose to declare it within the Variables section of AppRoot.SRC and
store the actual code in one or more separate files.
If your goal is to add functionality to an application, then you must save
your module code in its own file(s). You will then declare the code within
the appropriate section of the application's AppRoot.SRC file. For
example, new tag modules are declared in the (POINTS) group and new
report modules are declared in the (PLUGINS) group.

Types of Module

VTS defines module types according to how they are called and their
behavior when called.

Called Module

Called modules are started from steady state. A set of parenthesis must
always follow the module call, regardless of whether parameters are

included within in them.
A sample module call:

Motor(398, 765 { X-Y coordinates },
 13 { Color },
 MtrStat { Motor status },
 MtrAmps { Motor current });

The state containing the called module call is the "calling state". Called
modules may themselves contain module calls, but take care not to call
the first module from within the second. A circular or a recursive situ-
ation will result in a module calling itself repeatedly until a stack over-
flow fault occurs and the application crashes.
When the state containing a module call activates, an instance of the
called module will start. When the state containing the module call stops,
the called module’s instance will also stop. Thus, called modules are act-
ive only while the calling state is active.
Parameter values are passed by reference. Any change to the parameter
values in the calling or the called module will affect those in the other.

Launched Module

There are situations where you might want a module to execute
whenever the calling module is active regardless of which state it is in.
You may also have a situation where you want to create multiple
instances of a module, where the number of instances to be started is
not known until the application is running. Launched modules answer
these needs.
A module is launched by placing its module call in a script, or by using
the Launch function (which enables better control of the module
instance's parent and caller). When a module is launched, the parameters
of the module are evaluated at the moment in which the statement is
executed and the values are set in the corresponding parameter vari-
ables in the launched module. (Pass by value) A later change in the call-
ing parameters does not affect the parameters in the module. The return
value for a launched module is always the object value of the launched
instance.

The launched module is stopped either when the calling module stops
(provided it is not a subroutine) or when a Slay statement is executed to
explicitly stop the module instance. In the case of modules launched by a
subroutine, the subroutine itself is not considered to be the parent or
caller, but rather, the module will be launched with the caller of the
nearest non-subroutine caller. This means that when the subroutine
ends, any modules launched by it will continue running until its non-sub-
routine caller stops.
Since repeatedly executing the same module call in a script will create
new instances of the launched module, any number of module instances
can be launched without having to have a separate line of code for each
instance.

Note: Launched modules must not have a Return statement in them. If
they do, they will be considered subroutines.

Use care in how you write a Launch statement. For example:

X = Launch(Scope(<variable>, "Y", TRUE)...

If it is unknown whether Y exists in the module pointed to by <variable>
or if in fact <variable> is valid, then setting the ScopeLocal parameter to
TRUE as shown, may help to avoid undesirable results.

Subroutine Module

Subroutines are syntactically similar to modules that are launched impli-
citly by being called inside of a script. The difference is that subroutine
modules have one or more Return statements in them. This causes their
behavior to be different, since the calling module will suspend execution
of the script that started the subroutine until the subroutine executes the
Return. Once the Return is executed, the subroutine module is stopped
immediately and the calling script resumes. This enables the building of
modules that return a value that can be used for subsequent statements
in a script.
A module that has a Return statement in it is only considered a sub-
routine, and will only behave in the manner as described above, if it is

called inside of a script. Program execution will not be suspended if the
module containing the Return is called in steady state.
The other difference between subroutines and launched modules is how
they launch other modules. A module launched by a subroutine will not
take the subroutine as its parent or caller, but rather, will consider the
nearest non-subroutine caller as its own caller.

Note: WARNING: Great care must be taken in the use of subroutines,
since no other statements, I/O or alarms will be executed while a sub-
routine is running. This means that if a sub-routine launches a module
with the intention of waiting for the results of its execution, the applic-
ation will hang, since even child modules will be blocked by their call-
ing sub-routine. It is vital to ensure that a subroutine executes a
Return statement since all other modules will be suspended until this
occurs.

Queued Module

To understand queued modules, it is necessary to recall that any number
of module calls can be created as statements in steady states. Normally,
the number of concurrent copies (instances) of a module that can be cre-
ated by module calls is limited by available RAM memory. Every module
call starts its own instance when it is active. Prefixing a module defin-
ition with the keyword "Queued" makes that module a queued module
and only a single instance of the module is allowed to run - all other
module calls will return invalid values and do nothing. All module calls
to that queued module that do not run will enter a queue for that mod-
ule, waiting for a chance to run. Each successive queued module may run
when the instance queued before it, stops.
Typically, the queued module will return a value to signal its calling mod-
ule that it has completed its work. The calling module will change to
another state, which will stop that instance of the module and make a
space available for the next queued module call to run an instance. The
next module to run will be the module which has been waiting the
longest in the queue (i.e. the one that entered the queue first or earliest).

Every instance of a queued module contains its own variables, and
behaves in every way like other modules, separate from other instances
of the same queued module.
Note that queuing will occur only with modules called from a steady
state; queued modules will not work on modules that are implicitly or
explicitly launched.
Programmers familiar with much earlier versions of VTScada might look
for "Fixed modules". "Fixed" is an obsolete term for what is now a
queued module.

Threaded Module

Threaded modules are very similar to launched modules, and within the
confines of their own thread behave much the same way. They may only
be destroyed by doing a Slay from within their own code, if an external
source has a copy of their object value upon which it may execute a Slay,
or if their caller stops.
Threading has the advantage that no one module may completely mono-
polize the processor, even if it has accidentally been created with an if 1
condition. You will notice this if you write an application with an infinite
loop in it and then attempt to debug the problem via the Debugger (see
"Debugging and Analysis: Debugger). The debugger will function nor-
mally because it is in its own thread, and therefore is not blocked. Any
other (non-threaded) statements in your application, however, such as
buttons that perform certain tasks, will be entirely crowded out from get-
ting access to the processor and will appear to be "locked up" or
"frozen". Different applications are likewise executed in their own indi-
vidual thread, so no one application will be able to block another from
executing.
Why then shouldn't you thread all of your modules? The answer is two-
fold - firstly, threaded modules will have no predictability as to when
they perform certain tasks relative to other statements being executed in
the system. The second and most important reason why threads should
be used sparingly is the overhead that each thread uses in terms of pro-
cessor time as well as its RAM requirements. Apart from the time that it

takes to create and destroy a thread, there is also the time it takes for
each switch between thread, as well as the time slice allotted to every
thread for execution. Although a thread will surrender its allocated time
slot with the processor if it has no tasks to perform, this in itself will
have used up a certain amount of time. This means that the more
threads that have been created, the more the application as a whole will
be slowed down, as the processor keeps cycling through all threads, giv-
ing each equal opportunity to execute, no matter how unimportant its
tasks may be relative to others in the application. Thus threaded mod-
ules performing trivial tasks could be taking away time from critical mod-
ules that may otherwise receive a larger portion of the processor's time.
As a general rule, the number of threads created by an application
should be fewer than six. They should strictly be reserved for crucial
modules whose execution would otherwise block the application, or
whose exclusion from executing would be detrimental to the proper func-
tioning of the application.
It should be noted that VTScada provides utilities to assist you in
troubleshooting threading in your applications. The Thread List utility
supplies a list of the separate threads of execution for which VTScada is
responsible within a local application (see Thread List Application).

Related Information:

...Declaring and Passing Parameters - The primary mechanism for hand-
ing information into modules.

...Parameter Metadata - Assign extra information when declaring para-
meters.

...Functions - A function is a module that returns a value.

Declaring and Passing Parameters

Modules often need to have information provided to them in order to
function. Parameters provide the primary mechanism for passing inform-
ation into (and sometimes out of) modules.

A parameter is declared by adding it to that module's parameter list,
which is a list of variable names, separated from each other by a comma
or a semi-colon, all of which are enclosed in a set of parenthesis and loc-
ated at the beginning of the module.
The parameters declared within a module are referred to as the "formal"
or "declared" parameters.
The parameters used when calling an instance of the module are referred
to as the "actual" parameters.
The order of the parameters is significant since the value of the first
actual parameter will be used for the first formal parameter, and so on.
There is however, no requirement that the lists contain the same number
of parameters.
If there are more formal parameters in the module than actual para-
meters in the module call, the extra formal parameters will have invalid
values. If there are more actual parameters in the module call than
formal parameters in the module definition, the extras will be ignored
(although a module can access these undeclared parameters using the
Parameter function).
Parameters act as placeholders for variables. The value within a variable
that is passed to a module can be used and altered by the module as if it
were a member variable of the module. If a constant, function, or expres-
sion is passed as a parameter, then that formal parameter’s value cannot
be altered.
In the case of parametrized modules, when the value of a variable passed
as a parameter is changed outside the module, its value is updated
inside the module. It is possible to reset the parameters to their original
values using the ResetParm function, but most applications do not need
this feature.
Parameters may be assigned default values in the module declaration.
For example:

Motor(398, 765 { X-Y coordinates },
 13 { Color },
 MtrStat = 1 { Motor status },
 MtrAmps = 30 { Motor current });

If the actual parameters for MtrStat and MtrAmpts do not have values, or
if these two actual parameters are missing when the module is called,
then these will be given the default values of 1 and 30, respectively.

Parameter Metadata

You can assign metadata to module parameters when declaring them.
This technique is used to ensure that extra information about the para-
meter is assigned when the module opens and before any of the state
code runs.
Parameter metadata is declared using the metadata assignment oper-
ators: <: :>
For example, given the module X, with parameter A, a metadata value
could be assigned as follows:

X
(
A <: 5 :>;

)

The function of the assignment operators is similar to that of the
SetVarMetaData function. The values can be read using GetVarMetaData.
The most common use of parameter metadata is found in tag modules.
The SQL data type of each parameter is assigned in the parameter declar-
ation section:

(
Name <:TagField("SQL_VARCHAR(255)", "Name", 0):>

};
Area <:TagField("SQL_VARCHAR(255)", "Area", 1):>

};
Description <:TagField("SQL_VARCHAR(255)", "Description", 2):>

};
)

The SQL database conversion data for each parameter is recorded by
instantiating TagField structures and assigning them in the parameter
declaration section
See also: MetaData, SetVarMetaData and GetVarMetaData.

Module Scope

"Scope" refers to the ability of a variable or named module to be seen by
calling code. For example, two modules may both declare a variable
named "X". X will have a unique value in each module and will refer to a
different memory address. Each version of X is local to the scope of the
module that it is declared within.
A module may declare and use submodules. Those submodules (child
modules) will also be able to see and use the variables of the main mod-
ule (parent module). The parent is within the scope of the child. Variables
declared in the child modules cannot be used by the parent unless dir-
ectly referenced with the backslash scope resolution operator "\"
(Child\Variable).
If one module needs to access variables or functions of another module,
it is possible to do this by fully describing the scope of the variable or
function being called. For example, many of the functions in the Func-
tion Reference will state the module they are a member of and provide
an example of how they can be called: \AlarmManager\Acknowledge
(AlarmName, EventTime, Operator);.
The following terms are used when describing scope:
Child
A submodule is a child of the module whose source file it is part of.
Another term for a child module is a "member module".
Parent
A parent is a module that contains submodules.
Descendant
Sub-modules may themselves contain their own submodules. A des-
cendant refers to any submodule of a parent.
Ancestor
Like "descendant", but looking in the other direction. Starting with any
submodule, an ancestor is any parent module up the declaration chain.
The root module is an ancestor of every module and every module is a
descendant of the root module.
Member

Any named object – a variable, constant, module, etc.

Related Information:

...Scope Resolution Operators

...Module Inheritance

Related Functions:

... Scope

...LocalScope

Scope Resolution Operators

There are two scope resolution operators: the dot (.) and the backslash
(\). The dot operator was added with VTScada version 11.2 and should be
used when the intent is to reference a value within the reference scope. If
there is no variable with a matching name in the current scope, the back-
slash operator will find a variable with the matching name in a higher
scope, whereas the dot operator will return invalid.
The dot operator is the equivalent of Scope(, , TRUE). For example,
Obj.Value is equivalent of Scope(Obj, "Value", TRUE).
The scope resolution operator, a backslash (\), allows access to vari-
ables and modules outside the current scope. This scope resolution oper-
ator must be used with an object value, and a member name (either a
variable or module name).
The backslash scope resolution operator may also be used to accomplish
a feature called "late binding". A variable is a named storage location
where a value is stored. The process of "binding" is the means by which
the name and the storage location in memory are associated. Late bind-
ing (also referred to as "dynamic binding") links a variable or object at
run time. Early binding refers to the process of assigning types to vari-
ables and expressions at compilation time.
When a scope resolution operator is placed before a variable or module
name, such as in:

\VarName

it is considered the equivalent of writing:

Self\VarName

but it uses less RAM than the second statement. Early binding is typically
more efficient than late binding as it reduces the amount of time
required to set or retrieve a value, whereas late binding consumes more
memory, and is slower than a direct variable reference; however, in some
instances it is useful to reference modules and variables that are not in
scope at compile time.

Related Functions:

... Scope

...LocalScope

Module Inheritance

When a member (a variable, constant or module) appears in a statement,
VTScada looks first in the current module where the statement appears.
If the member is found, it is used. If the member isn't found, VTScada
looks in the module's ancestors, starting with its parent, until the mem-
ber is found. If the member isn't found in the system module, VTScada
reports an error: no such member exists. An ancestor's members are
within the scope of all of its descendants.
Example:
A module called Motor is created as a member module of System. One of
its member variables is Amps. Within Motor a member module called Dis-
play is created. Display has no member variable Amps. If a statement
were entered in Display, which used the variable Amps, it will use its par-
ent's variable Amps (which is Motor's member variable Amps).

When searching for a member, VTScada always searches ancestors, not
descendants. So, in the example, if Display had the member Amps, and
Motor had no member Amps, and a statement was entered in Motor
which used Amps, VTScada would not find the Amps in Motor's child mod-
ule Display.
If both Display and Motor had members called Amps, each would use its
own member. This is because the current module is searched first. Note
also that each Amps could have different values, and different types.
To use a descendant's member, a scope resolution operator, the back-
slash character '\', and an object value are needed, as described in the
following topic.

Constructors

Constructors are subroutines that, if present in a module, are called auto-
matically when the module is created. Constructors are useful for ini-
tializing variables, opening files, streams and other I/O connections,
launching submodules or for registering the module with external ser-
vices before the module is fully ready for operation.
Constructors differ from initialization states (the first state to run when a
module is created) in that they will occur sooner. The constructor sub-
routine runs immediately as part of the launch, while there may be a
delay before the first state in the module runs. Since constructors were
introduced as part of VTS 10.1, you may see the use of a "Ready" flag in
older code. This was used as a work-around to ensure that the first state

in the module had a chance to run before other code that depended on
the completion of initialization tasks would begin.
Example:
Where MyModule is a launched module:

<
MyModule
(
 InstanceName;
)
[
Constructor Module;
CapsName;

]
Main [
...

]

<
Constructor
Main [
If 1;
[
CapsName = ToUpper(InstanceName);
Return(Invalid);

]
]
{ End of MyModule\Constructor }
>
{ End of MyModule }
>

The script code that launches the module might look like:

MyObj = MyModule("MyInstance");
InitCapsName = MyObj\CapsName;

In the above example, InitCapsName will be "MYINSTANCE", as the con-
structor subroutine is executed as part of the line of script that creates
the object and assigns it to MyObj. Remember that subroutines take con-
trol of executing code until they are finished, thus guaranteeing that
CapsName is set by the time the statement InitCapsName = MyOb-
j\CapsName runs.
Constructors execute inside a CriticalSection, so it is impossible for
external code to interact with a partially constructed module.
The parent object and caller object of a Constructor is the module being
constructed.

Destructors

Destructors are subroutines that, if present in a module, are called auto-
matically just before a module is slain or otherwise stopped. These
ensure that cleanup tasks such as closing files, freeing memory and de-
registering a module instance from external services are done even if the
module is interrupted unexpectedly. (For example, a user closes a dia-
log box rather than finishing its task.)

<
MyModule
(
UniqueName;

)

[
Constructor Module;
Destructor Module;

]
Main [
...

]
<
Constructor
Main [
If 1;
[
GlobalDictionary[UniqueName] = Caller(Self());
Return(Invalid);

]
]
{ End of MyModule\Constructor }
>

<
Destructor
Main [
If 1;
[{ UniqueName had been added to a global dictionary as part of

MyModule.}
DictionaryRemove(GlobalDictionary, UniqueName);
Return(Invalid);

]
]
{ End of MyModule\Destructor }
>
{ End of MyModule }
>

In the above example, GlobalDictionary is a dictionary of all instances of
MyModule, keyed by each module instance's UniqueName. The

Constructor makes sure that each instance of MyModule is present in
that dictionary, and the Destructor removes the instance from the dic-
tionary when the instance is slain.
Destructors execute inside a CriticalSection, so it is impossible for
external code to interact with a partially destructed module.
The parent object and caller object of a Destructor is the module being
destroyed.

Reference Boxes in Graphic Modules

If the purpose of a module is to display a graphic object, it is useful to
define a reference box. This defines the rectangle to be occupied by all
graphics drawn by the module, possibly including a margin around those
objects. If a reference box is not defined, then VTS will automatically cal-
culate one based on the graphics being displayed. Leaving the reference
box to be calculated automatically can have a negative effect if the mod-
ule contains various states with different graphic statements. If VTS must
re-calculate the reference box as the module changes from state to
state, transformations applied to the display can be affected.
Commonly, graphic objects are displayed using a GUITransform that sets
the size, location, and other attributes. The module's reference box will
be mapped to the bounding box defined and transformed by the
GUITransform. So for example, if you had a module named PumpSymbol,
you might display it as follows:

GUITransform(0, 150, 100, 50 { Bounding box of object },
 1, 1, 1, 1, 1 { No scaling },
 0, 0 { No trajectory or rotation },
 1, 0 { Object is visible; reserved },
 0, 0, 0 { Graphic cannot be focused },
 flow = PumpSymbol(1, amps) { A sample module call });

When a GUITransform is applied, the module will be scaled such that its
reference box will exactly fill the reference box of the transform, and
that will be acted upon by the other transform parameters. There is a
clear advantage to having the graphic object's reference box remain con-
stant, regardless of the active state.

The reference box is defined using constants (numbers or defined con-
stants) that are enclosed in parentheses and placed immediately after the
module's name in its definition. The x and y coordinates of the reference
box corners are defined in the order LeftReference, BottomReference,
RightReference, TopReference. Variables and expressions may not be
used.
For example:

PumpSymbol
(0, 100, 100, 0) { reference box }
({ parameters }
State { current pump state },

 Amps { Amperage to display }
)
[...

See also, SetModuleRefBox, but this is rarely used.

Related Information:

...Reference Boxes for Graphics Modules

...Use Scaling to Position Graphic Objects

Functions
A function is a named operation that may return a value, perform an
operation or both. For example, the square root of a number is returned
by a function named Sqrt. The Beep function will cause a tone to sound.
Function names are not case-sensitive in VTScada.
Some examples of functions are:

Sqrt(10);
Log(X);
Limit(X, 0, 100);
YLoc();
YLoc;

Note the use of commas to separate parameters when more than one is
required. If a function does not require parameters, you may omit the
parenthesis without affecting operation, but this is discouraged as a mat-
ter of practice.

Functions may be used as parameters for other functions. These func-
tions may then be used in other expressions, etc. There is no limit on the
level to which functions and operators may be nested and combined, how-
ever you should strive for clarity by limiting the level of nesting.
You may define your own functions by creating subroutine modules

Related Information:

...Types of Module - A function is a module that returns a value.

...Function Parameters - Declaring pass-by-reference and pass-by-value
parameters.

...Latching and Resetting Functions - Some functions will stay set, and
some will reset after being called.

...Considerations for Graphics Functions - Preparation for and proper
use of.

Format Examples for Functions

The format example, provided for every function, also provides relevant
information about how to use the function and the library that the func-
tion is a part of. The indication of the library is especially important to
anyone writing a Script-layer based application.

Optional Parameters
For most function examples, some of the parameters will be shown
inside square brackets. These parameters are optional. If the default val-
ues, as described in the parameter descriptions, will serve for your pur-
pose, then you may leave the parameters out. If you want to specify some
of the optional parameters, then you must provide all the parameters
between the last one required and the optional parameter you want to
specify. Use Invalid for each of the intervening optional parameters that
you do not want to specify.
Examples:

\System\DropList(X1, Y1, X2, Y2, Data, Title, Index, FocusID, Trig-
ger, NoEdit, Init, Variable [, DrawBevel, VertAlign, AlignTitle,
Style, BGColor, FGColor]);

All the parameters from DrawBevel onward are optional and may be left
out of the function call. Assuming that valid values have been defined for
the required parameters, this function will work if used as follows:

\System\DropList(X1, Y1, X2, Y2, Data, Title, Index, FocusID, Trig-
ger, NoEdit, Init, Variable);

If you wanted to draw a drop list with an orange background, and did not
care about any of the other parameters, you could use:

\System\DropList(X1, Y1, X2, Y2, Data, Title, Index, FocusID, Trig-
ger, NoEdit, Init, Variable, Invalid, Invalid, Invalid, Invalid, 135)

Will this Function Work in a Script Application?
Most development work is done within standard applications (those
based on the VTScada layer), and the documentation is written from that
point of view. Script applications will not have access to function libraries
that were created explicitly for the VTScada layer. Do not assume that
any function will work in your script application until you have tested it.
It is possible to offer general guidelines for recognizing which functions
are likely to work in a script application, but again, you should always
test first. When testing the function in a script application, try first with
the format as shown. If the test fails, try using the function with the pre-
fix \Layer\.

l Functions that are part of the \System layer will work in script applications.

l Most, but not all, of the basic string handling, math, time and date functions
will work in a script application.

l If the format example begins with a backslash (\) and is not part of the \Sys-
tem layer, then it is likely that the function will not work in a script applic-
ation, but test to be sure.

Function Parameters

In most cases, a function will have a fixed number of parameters. The
order in which the parameters are listed is significant since VTScada
interprets the meaning of each parameter according to its position in the
list.

Some functions have optional parameters that may be entered or omitted
at the user's discretion. In the function listings, later in this guide,
optional parameters are shown enclosed in square brackets ([]). If using
a function that has several optional parameters, and you wish to specify
only the first and last, use INVALID for the intervening parameters that
you do not want to specify.

Pass-by-reference / pass-by-value
l When a function is called from steady-state, parameters are always passed

by reference.

l When a function is called from script, parameters are always passed by
value.

You can override this by using pointers for parameters in script code,
thereby achieving a pass-by-reference. In steady-state, you can effect-
ively pass-by-value by using a copy of a value rather than the original.

Note: for some data types, all assignments are made by reference, not
by value. This includes Dictionaries and Arrays.

If a function has no required parameters, the empty parentheses fol-
lowing the name may be omitted while retaining exactly the same oper-
ation. It is however, good programming practice to always include the
parenthesis as a matter of style.
Functions may be used as parameters for other functions. These func-
tions may then be used in other expressions, etc. There is no limit on the
level to which functions and operators may be nested and combined, how-
ever you should strive for clarity by limiting the level of nesting.
Examples of functions nested within functions :

Sin(Sqrt(X) * 5);
Limit(Cos(X / 180), 0, Log(Sin(X / 180) + 2) + 1);

Latching and Resetting Functions

Most functions, called in steady-state, will change in value as their para-
meters change. For example, Y = SQRT(X). As X changes in value, so does
Y.

All functions and statements are reset when the state that contains them
is entered. They may also contain an enable parameter that enables them
to be reset. For example, the AbsTime() function will not start counting
time until its Enable parameter becomes TRUE.
VTS includes a class of functions referred to as the automatically-reset-
ting functions. These are designed such that their value will latch once
set, and will not change with future parameter changes. AbsTime() again
is an example - once the designated time has arrived and the function
becomes true, it will remain true until reset.
The automatically-resetting functions will reset when used as the action
trigger of an IF statement and the condition becomes true. For example,
in the case of MatchKeys, an action trigger might test for the operator
input of a specific single key. If the intent of such an action is to perform
a one-shot event, such as increasing a set point by a fixed amount, the
action trigger must be false the next time it is tested or else the script
will be executed innumerable times for just a single keystroke. Since the
MatchKeys function is automatically reset when the IF statement con-
taining it becomes true, the action script will execute only once when the
key is hit.

Note: Be aware that an IF statement will attempt to reset any subroutine
of yours that is used as the condition for the action trigger. See: Action
Triggers and Scripts

Some functions include the ability to reset themselves. For example
Latch(). The second parameter to this function is a 'reset', which when
true, resets the function for the next go-around.

Examples:

LightOn = AbsTime(1, 10, 0)

After the given time has elapsed, the light goes on and stays on.

If AbsTime(1, 1, 0);
[
 LightOn = !LightOn;
]

The light will switch on and off every second since the IF statement
resets the AbsTime function every time it becomes true. One second
later, it becomes true again.

LightOn = Latch(AbsTime(1, 2, 0), AbsTime(1, 2, 1))

This is functionally equivalent to the previous example. The light flashes
on and off each second.

If TimeOut(1, 1);
[
 J++;
]

J will increment once per second, since the Timeout is reset each time it
becomes true.

Z = TimeOut(1, 1);
If Z;
[
 J++;
]

J will increment continuously, as fast as your computer will allow.
When combining function calls and other operations in an action trigger,
use care to follow the rules of operator precedence to avoid unexpected
results.

Functions That Are Automatically Reset:
l AbsTime

l Change

l DeadBand

l Edge

l Intgr

l Latch

l MatchKeys

l Now

l Pick

l RTimeOut

l TimeOut

l Toggle

l Save

l Watch

l WatchArray

l WinMatchKeys
(*) Note: TimeArrived does not automatically reset.

Considerations for Graphics Functions

While it is generally the case that the order of statements within in state
is largely irrelevant, this is not the case for graphics functions. Each item
is added to the screen in turn (layered) according to its position within
the state.

Focus
Each graphic function that can receive keyboard focus has a parameter
called a FocusID. The input focus determines what graphic control
receives keyboard input. Like Microsoft Windows™, only one graphic con-
trol can receive keyboard input at a time. Each graphic item changes its
display to indicate it has the focus. For example, a button shows a
dashed line around its label. Pressing the return key while an item has
the focus is the equivalent of clicking the mouse on it with the correct
button combination (specified in its Button parameter).
The focus number is usually (but not necessarily) unique. The function,
NextFocusID can be used to automatically set the focus to the next item
with a certain focus ID number; FocusID returns the focus ID number of
the item that has focus.
Note that the above refers to keyboard focus. If several objects, such as
buttons, can react to a mouse-click, and if those objects overlap on the
screen, then that click will be used by all the overlapping objects.

Window Coordinates
In VTScada, the screen is laid out in an x-y grid with the x-axis hori-
zontal and the y-axis vertical. When VTScada is first started, the upper
left corner of the screen is the origin (where both x and y are 0). X

represents the number of pixels (dots) from the left side of the window.
Similarly, y represents the number of pixels (dots) from the top side of
the window.
Note that there is both a function that can provide the current display res-
olution (VStatus), and a statement that can change the world coordinate
limits (Coordinates).
Additionally, the VTScada Coordinates utility enables you to precisely
determine the horizontal and vertical coordinates of the mouse pointer
within any VTScada window (page or dialog). For further information on
the Coordinates utility, please refer to Coordinates Application.

Threading
VTScada provides the ability to have multiple control threads that share a
single address space, but appear to behave as if they were separate pro-
cesses (i.e. the processing time is divided equally among threads of the
same priority). This means that those statements that are deemed to be
threaded, and any modules that are called in their own thread will not
block each other waiting for their turn to execute, but will instead share
the processor's time, giving the appearance of simultaneous execution.
The chapter "Function Usage in States, Scripts, and Threading" lists which
functions are threaded. In cases where two versions of the same function
exist, one being threaded and the other not, the threaded version will
generally have a "T" appended to its name, such as in the case of Get and
TGet.
Great care must be exercised in using threaded functions or in launching
a module in its own thread by using the Thread statement (this is dis-
cussed further in the section on modules). Since each thread executes
independently of the others, except for its shared memory space, no
assumptions may be made as to when the statement is finished exe-
cution and its resultant variable assigned a value. Any variables set by
threaded statements must be checked for validity before proceeding to

use them. If order of execution is important and the task to be per-
formed is not an overly long and arduous one, it may be better to use the
non-threaded version of a function. For example, if you wish to retrieve
ten thousand records from a file and don't want your entire application
to be suspended while the data retrieval is happening, using a TGet is
probably appropriate. If on the other hand you have only two records to
retrieve (assuming that they don't each contain a thousand fields) you
may find that Get is more appropriate, since any processing of the data
can be included in the same script that executes the Get and there will
not be any time wasted in creating and destroying the thread in which
the function operates.
It should be noted that VTScada provides utilities to assist you in
troubleshooting threading in your applications. The Thread List supplies
a list of the separate threads of execution for which VTScada is respons-
ible within a local application.

Operators in Statements
Operators are symbols used to perform an operation, comparison, or
mathematical function (such as addition or subtraction). Operands are
variable names or expressions that are being compared or that a math-
ematical function is being performed upon.
Some operators are used in expressions by placing the symbol for the
operator between two operands. For example:

A + B

The operands A and B are variable names, but they could also have been
expressions. The + operator is placed between the two operands and
means that the expression A + B will return the value of the sum of the
values of the variables A and B.
Several operators follow a slightly different rule. The logical NOT (~ or !),
unary minus (-), preincrement (++), predecrement (--), pointer derefer-
ence (*), and address of (&) precede their operands.

Operators may be combined to form more complex expressions, such as
:

A + B * 5 / C <= 11.5

Related Information:

...Operator Priority in Statements

...List of VTScada Operators

... Boolean Logic Operators

...Scope Resolution Operators

Operator Priority in Statements

The order in which the operators are executed is significant. Consider
the expression:

1 + 2 * 3

The value of this expression depends upon whether the addition or mul-
tiplication is done first. If the addition is done first, the result is 9; oth-
erwise, it is 7. To resolve this type of ambiguity, VTScada assigns
priorities to operators - operators with higher priority are done first. Mul-
tiplication has a higher priority than addition, so in the previous example
the correct result is 7. If the addition were intended to be done before
the multiplication, the expression could be written as:

(1 + 2) * 3

Parentheses () force the expression within them to be done first. The fol-
lowing two expressions have the same value:

1 + 2 * 3
1 + (2 * 3)

Some operators have equivalent priorities, such as addition and sub-
traction. In these cases the evaluation is done starting with the left-most
operator. For example:

1 - 2 + 4 * 5

could be equally written :

(1 - 2) + (4 * 5)

A detailed list of all VTScada operators and their priority levels is given
in the List of VTScada Operators section. If there is any doubt as to
whether or not parentheses are required, you should include them. There
is no penalty to pay in terms of speed or memory requirements for pla-
cing redundant parentheses in an expression.

Note: When doing comparisons between two operands of different
types, the second operand is always cast to the type of the first. This
can cause differing comparison results depending on the order of the
operands.

List of VTScada Operators

The following is a list of all available operators and their order of exe-
cution in any statement (priority). Following the table of operators are
detailed descriptions of each operator, including their usage and
examples.

Note: When doing comparisons between two operands of different
types, the second operand is always cast to the type of the first. This
can cause differing comparison results depending on the order of the
operands.

Description Symbol Priority

Parentheses
Use to force operations to happen in a given order. Operations within
the parentheses will be done before operations outside.

X = 2 + 3 * 4; { x will be 14 }
X = (2 + 3) * 4; { x will be 20 }

() 1

Scope Resolution: dot and backslash
The dot scope resolution operator (.) allows access only to variables and
modules within the current scope. If there is no match within the cur-
rent scope, Invalid will be returned.
The backslash scope resolution operator (\), allows access to variables
and modules outside the current scope. This scope resolution operator
must be used with an object value, and a member name (either a vari-
able or module name).

\ 2

Array Index
Follows the array variable name, and specifies which element within the
array is to be used.

[] 3

Segment/Offset
This returns a number which is the real mode address with the segment
before the @ and the offset after the @. This value can be used in func-
tions such as MemIn and MemOut.

@ 4

Logical NOT, ~, !
This is the logical NOT operator. If the expression following the ~ is
true (non-0), then the function returns false (0). If the expression fol-
lowing the ~ is false, the function returns true (1).

~ or ! 5

Unary Minus
This operator returns the negative of the numeric expression to the
right of it. For example, -X takes the negative of the value of the X vari-
able. It uses the same symbol as the subtraction operator but does not
have an argument before it.

- 5

Pointer Dereference
This dereferences a pointer value (see Pointers; that is, it returns the
actual value pointed to by the pointer. For example, the following takes
the value in var, adds 1, and stores the result to x.

ptr = &var;
x = *ptr + 1;

The pointer dereference may also be used on the left side of an assign-
ment to change the value pointed at by the pointer, as follows:

*ptr = x + 1;

This takes the value in x, adds 1, and stores the result to the variable
pointed at by ptr.
This is a powerful tool. It enablesthe destination of an assignment to be
changed at runtime. For example, an application may need to set one of
500 variables, depending on some variable q. It would be impractical to
write 500 assignment statements inside of 500 separate actions. It
would be much simpler to create a 500 element array, with each ele-
ment pointing at a different variable. Then execute the statement:

*(ptrArray[q]) = order;

This assigns the value in order to the variable pointed at by element q

* 5

of the array of pointers ptrArray.
Pointers to new values may be created with the New function.

Address
This returns a pointer to the operand. For example,

y = 4;
ptr = &y;

This stores a pointer to y in variable ptr. If ptr is used in any situation
requiring a value other than a pointer value (such as a numeric value),
the result will be invalid, because ptr is a pointer to a value, not a value
itself. For example:

w = ptr + 1;

This will cause w to be set invalid; what should have been written was:

w = *ptr + 1;

This will set w to 5. Pointers to new values may be created with the New
function.

& 5

Pre-increment and Post-increment
This operator adds one to a number before it is used (pre-increment:
++x) or after it is used (post-increment: x++). For example:

x = 3;
y = ++x;

Both x and y will receive the value 4 after these statements execute.

x = 3;
y = x++;

Following these statements, y will have the value, 3 and x will have the
value, 4.

++ 5

Pre-decrement and Post-decrement
This operator subtracts one from a number before it is used (pre-decre-
ment: --x) or after it is used (post-decrement: x--). For example:

x = 3;
y = --x;

Both x and y will receive the value 2 after these statements execute.

x = 3;
y = x--;

Y will have the value 3, and x will have the value 2 after these state-
ments execute.

-- 5

Multiplication
This operator takes two arguments. The returned value is the result of
multiplying the numeric expression before the * by the numeric expres-
sion after it. If either expression is a valid 0, the result will be 0 regard-
less of whether or not the other expression is valid.

* 6

Division
This operator takes two arguments. The returned value is the result of
dividing the numeric expression before the / by the numeric expression
after it. If the expression after the / has a value of 0, the result is
invalid. It should be stressed that the result of this operation is not
necessarily of type integer, even if both arguments were integers.

/ 6

Modulus
This operator takes two arguments. The returned value is the remainder
when the first argument is divided by the second. For example:

a = 5 % 2;
b = 7.4 % 1.2;

The values of a and b will be 1 and 0.2 respectively.

% 6

Addition/Concatenation
This operator takes two arguments. If either argument is a number, Tag
or Normalize value, the return value will be the result of adding the two
arguments. Otherwise, the return value will be a string of the first argu-
ment concatenated with the second argument.

a = "Bob Smith";
b = "Operator " + a + " has logged on";

In the preceding examples, b will be equal to the string "Operator Bob
Smith has logged on".

+ 7

Subtraction
This operator takes two arguments. The returned value is the result of
subtracting the numeric expression after the minus sign from the
numeric expression before it.

- 7

Right Shift
This operator works on numeric values only and shifts the bits in the
first operand right by the number specified by the second operand; the
appropriate number of zeroes go into the bits vacated to the left side of
the value. For example:

>> 8

x = 0b01100111 >> 3;

The value of x will be 0b00001100.

Left Shift
This operator works on numeric values only and shifts the bits in the
first operand left by the number specified by the second operand; the
appropriate number of zeroes go into the bits vacated to the right side
of the value. For example:

x = 0b1100111 << 3;

The value of x will be 0b1100111000. (note: the value is stored in a 32
bit integer – by convention, zeroes to the left of the highest value 1 are
not shown)

<< 8

Less Than
This operator returns true (1) if the first argument is strictly less than
the second, otherwise it returns false (0). If both arguments are text val-
ues, the operator returns true if the first argument is alphabetically
lower than the second.

< 9

Less Than or Equal To
The same as Less Than, but will also return true (1) if the two operands
are equivalent.

<= or
=<

9

Greater Than
This operator returns true (1) if the first argument is strictly greater
than the second, otherwise it returns false (0). If both arguments are
text values, the operator returns true if the first argument is alpha-
betically higher than the second.

> 9

Greater Than or Equal To
The same as Greater Than, but will also return true (1) if the two oper-
ands are equivalent.

>= or
=>

9

Equal To
This operator returns true (1) if the two operands are equivalent.

== 10

Not Equal To
This operator returns true (1) if the two operands are not equivalent.

<> or
>< or
!=

10

Exclusive OR (XOR, ^) ^ 11

This returns the 32-bit, bitwise exclusive OR of the two operands. If
either operand (but not both) is true (non-0), the result is true(1); if
both are true or both false(0), the result is false.

p = 0 ^ 0;
q = 1 ^ 0;
r = 0 ^ 1;
s = 1 ^ 1;

The values of p, q, r, and s are 0, 1, 1, 0 respectively.

Logical and Bitwise and operations: AND, &, &&
Both the & and the && operators(*) take two arguments and perform the
logical AND function upon them. If both arguments are true (non-0),
the operator returns a true value; otherwise, a false value (0) is returned.
If either argument is a valid false, the function returns false regardless
of whether or not the other argument is valid.
The AND operator performs a bitwise comparison (32-bit).
VTScada does not use short-circuit evaluation. Both parts of the con-
dition will always be checked (and evaluated if required).

If a && b;
[
 c = d && Sqrt(e - 9);
]

In the above example, the script will be only be executed if both a and b
have non-zero values.
(*) In practice, the & operator is not used, avoiding confusion with the
C/C++ bitwise comparison operator.

& or && 12

Logical and bitwise or: OR, |, ||
The | and || operators(*) take two arguments and perform the logical OR
function upon them. If either argument is true (non-0), the operator
returns a true (1) value. If both arguments are false(0), the operator
returns a false value(0). If either argument is a valid true, the function
returns true regardless of whether or not the other argument is valid.
The OR operator performs a 32-bit, bitwise comparison.
VTScada does not use short-circuit evaluation. Both parts of the con-
dition will always be checked (and evaluated if required).
(*) In practice, the | operator is not used, avoiding confusion with the
C/C++ bitwise comparison operator.

| or || 13

If Else
Inline If-Else.

? : 14

This operator takes three arguments; if the first expression or condition
evaluates to true (1), the second argument's value is returned, otherwise
the third argument's value is returned. The second and third arguments
need not have return values, but can be statements with one or more
actions to perform. If no return value exists, invalid is returned.

ZBar(10, 200, 60, 10, Scope(\VTSDB, "ThePort\TheDriver-
\ReadVal")\value > 70 ? 12 { red } : 10 { green });

In this example, color of the bar drawn on the screen will be based on a
tag named ReadVal. (Child of "ThePort\TheDriver") When the value is
greater than 70, the bar will be red, when it is equal to or less than 70,
the bar will be green.
Note that the ? operator has a lower precedence than most other oper-
ators, and therefore expressions using it should be enclosed in par-
entheses when used in combination with other operators.
For example:

WhileLoop(A < B || SubroutineCall() ? Valid(x) :
Valid(y),
...
)

... would evaluate as:

WhileLoop((A < B || SubroutineCall()) ? Valid(x) :
Valid(y),
...
)

...whereas:

WhileLoop(A < B || (SubroutineCall() ? Valid(x) :
Valid(y)),
...
)

...is probably what was intended.

Assignment
Assigns the value of the following constant, variable or operand to the
variable name that precedes the operator.
X = 3; assigns the value 3 to X.

= 15

Add Equals
Adds the value of the following operand to the preceding variable. X+=
Y is equivalent to X = X + Y.

+= 15

Subtract Equals -= 15

Subtracts the value of the following operand from the preceding vari-
able. X-= Y is equivalent to X = X - Y.

Multiply Equal
Changes the value of the preceding variable by multiplying it by the fol-
lowing operand. X*= Y is equivalent to X = X * Y.

*= 15

Divide Equals
Changes the value of the preceding variable by dividing it by the fol-
lowing operand. X/= Y is equivalent to X = X / Y.

/= 15

Modulus Equals
Changes the value of the preceding variable by applying the following
operand as its modulus. X%= Y is equivalent to X = X % Y.

%= 15

Boolean Logic Operators

With regards to state logic and the VTScada scripting language, any
expression that contains an Invalid, whether it be in combination with
the "+", "-", "*", "/", "&&", or "||" operators (see List of VTScada Oper-
ators), is expected to return Invalid unless PickValid is used. There is one
exception to this rule; that is, if an expression contains an Invalid and a
"0", then the result will be a "0", as Boolean logic dictates that anything
anded with a "0" is always a "0". The underlying principle is to return a
valid result whenever possible.
For example:

Invalid && 0 = 0
Invalid && 1 = Invalid
Invalid || 1 = 1

Following are some of the common operators and the result when they
used in Boolean expressions.
&& (AND)
Two or more items must agree (i.e. must be evaluated to the same result)
in order for the expression to be true.

1 && 1 = TRUE
0 && 1 = FALSE
1 && 0 = FALSE
0 && 0 = FALSE
1 && 1 && 1 = TRUE
1 && 1 && 0 = FALSE

|| (OR)
One, both, or more items must agree. If both inputs are false, the result
is false.

1 || 1 = TRUE
0 || 1 = TRUE
0 || 0 = FALSE

! (NOT)
Reverses the input. If true is input, the result is false; if false is input, the
result is true.

!1 would evaluate to FALSE
!0 would evaluate to TRUE

^ (XOR - eXclusive OR)
Only one input may be true; if both inputs are true, the entire result is
false.

1 ^ 1 = FALSE
1 ^ 0 = TRUE
0 ^ 1 = TRUE
0 ^ 0 = FALSE

Value Types and Storage
VTScada uses many different types of value: integers, floats, text, dic-
tionaries, etc. VTScada is not a hard-typed language. All variables and
constants used in a module must be declared, but the intended value
type is not part of the declaration and different value types may be
assigned to a variable as the module runs.
Variables and constants are declared at the beginning of a module,
within one set of square brackets. This section will always be imme-
diately after the parameter list, which is within round parentheses.

CustomControl { module name }
(
 parm1 { a parameter to the module };
)
[{ start of variable and constant declar-
ation }
 TotalCount { variable declaration
};
 CurrentCount = 0 { variable declared with an

initial value };
 Constant #WarningMsg = "Danger" { constant declared
with a text value };
]

By convention, constants are declared with a leading "#", but this is only
for the sake of convention. The hash mark has no functional significance.

Default Values
Every instance of a variable starts with a value. This value may default to
invalid, or it may be declared to have a numeric or text value upon cre-
ation. Every time an instance of that variable is created, it will begin exist-
ence with its default value. A default value is specified by placing a =
after the variable name followed by the desired default value.
Persistent variables will only set their default value if there is no .VAL file
containing the persistent value.
The following table provides a list and short description of each of the
value types commonly used in code. Where more explanation is required,
there are links to relevant topics. From time to time, you may also need
to refer to the more technical, table of VTS Value Types.
Common Value Types for Coding

Num-
bers

Numbers are stored internally in the most efficient form for
the value provided. In all cases, VTScada is able to handle
double-precision, floating point numbers. All arithmetic is
done with the precision of 8-byte IEEE floating point num-
bers, regardless of the values provided. The legal value
range of values ±10^307, and a precision of approximately
15 decimal places.
Use a minus sign to indicate negative numbers. A plus sign
may not be used in a number. The following formats may be
used as needed:

Format Example Description

Scientific nota-
tion

23.5e5 Place the letter "e" or "E" after the number,
followed by the number to use for the
power of 10. For example, 1.23E3 is the

same as 1230.0 and 1.23E-3 is the same
as 0.00123.

Binary nota-
tion

0b1100 Binary integers may be specified using
the 0b or 0B prefix and up to 32 digits.
Each digit is either a 0 or a 1.

Octal notation 014 Octal integers may be specified using a
zero prefix and up to 11 digits. Each digit
must be in the range 0 to 7.

Hexadecimal
format

0xC Hexadecimal integers may be specified
using the 0x prefix and up to 8 digits.
Each digit must be a number or a letter in
the range A to F (upper or lower case).

Text /
String

Text values (also called "text buffers" or "strings") are a
series of ASCII characters. Text values can hold up to approx-
imately 65,500 characters (just less than 64k characters).
A text value may not hold the ASCII 0 value. To store quo-
tation marks in a text variable or constant, use double-
quotes:

Quote = """We lived for days on nothing but food and
water."" W.C. Fields";

The term, "null string" refers to a text value having zero char-
acters.

Logical
Values
(also,
"status
value"
or
"Boolea-
n")

A logical value is a "true" or "false" value. A false value is
indicated by the number "0" or the function, FALSE. A true
value is indicated by any valid number other than 0, (typically
a "1") or by the function, TRUE.
In general, it is better coding practice to use the functions
TRUE and FALSE than 1 and 0.

Pointers A pointer is a variable that holds a memory address. A

pointer references or "points to" a value in a specific memory
location.
A variable that points to an address does not have the prop-
erties of the value type in that address and cannot be con-
verted to another value type.
A pointer is made to reference the memory address of a vari-
able by using the address operator "&". For example:

y = 4;
ptr = &y;

Before the data referenced by a pointer can be used, the
pointer must be dereferenced.

Streams Stream values are a complex type, which refer to a
read/write stream. Streams are a very convenient way of per-
forming formatted input and output. Examples of streams
include buffer streams attached to text values, file streams
attached to disk files, and pipe streams attached to oper-
ating system pipes. There are a wide variety of functions
related to streams.
Most streams contain a position pointer that indicates where
in the stream the next read or write will take place. This
pointer is automatically positioned after a read or write to
the stream and may be positioned by the Seek function,
which also returns the current position in characters from
the beginning of the stream.
Streams also offer faster file access than FRead and FWrite,
which open and close the file after every access, because a
stream leaves a file open. The downside is that if the com-
puter is shut off or loses power before a CloseStream closes
the file stream, the opened file will be corrupted.

Object
Vari-
ables

The object type is used to access public members of a module
instance. Each object variable references exactly one module
instance. Programmers experienced with high level languages may

identify the object type roughly with a pointer type from Pascal or C
(the pointer points to a particular copy of a module). Every active
module call creates a new separate copy, or instance, of that module
and its member variables. Each module instance operates inde-
pendently of the other instances.

Graphic
Vari-
ables

VTScada uses a set of variable types for graphics that are
unique to VTScada. These value types are used by all layered
graphics functions, and by the functions which create them.
All of these values are valid only so long as the function that
created them is active.
This set of value types includes: Point, Vertex, Path, Normal-
ize, Rotate, and Trajectory Variables

Array
Vari-
ables

Arrays are a special type that enables a group of values to be
kept under one variable name. The individual elements of
the array are sequentially numbered. Each of the elements of
the array can be used as a completely separate variable with
its own independent value that may have its own type.
There are two types of array: static and dynamic, which refer
to how the array is declared, not the values within it.

Dic-
tion-
aries

A dictionary is flexible data structure, providing functionality very
much like a database. It is a named structure, holding a flexible set
of name-value pairs , which may have a value itself. Dictionaries
may hold other dictionaries.

Struc-
tures

Structures allow you to organize information to increase the overall
clarity of your code. Much like a structure in C, these are collections
of variables and their values, placed under one name.

Related Information:

...ASCII Constants

...Value Type Conversions

...Invalid Values

...Using Arrays

...Using Pointers

...Dictionaries

...Meta Data

...Structures

...Variable Storage, Retention, Access

...Variable Class Definitions

...VTScada Value Types - Numeric Reference

Value Type Conversions

Occasionally, data may be the wrong type. For example, an addition may
be performed on two variables, one containing a number, the other con-
taining a text value. VTScada handles this situation by performing a con-
version of the unexpected data to the type of data expectd.

A = 5;
B = "4";
C = A + B;

In this example, two numbers are expected. One variable is already a
number; the other variable containing text is converted by VTScada to a
number. This is done by reading an ASCII number from the text. If suc-
cessful, the converted number is used; if unsuccessful, an invalid value is
returned. This process is referred to as "type conversion".

Note: Note When two variables of different type are used in an expres-
sion, the second operand will always be cast to the type of the first.
This can cause radically differing results depending on the order of the
operands.

Table of VTS Value and Type Conversions

Convert
From

Convert
To

Condition of Original Value Returned Value

Code Pointer Module Valid value Valid value

Module
State

Valid value Valid value

Module State Statement Valid value Valid value

Object Valid value Valid value

Text Valid value Name of module

Double Long Valid value Valid value

Short Valid value Valid value

Status Valid value Valid value

Text Valid value String representing numeric
value

Edit Block Stream May only be used in SRead
with % option, or in StrLen

Valid value

Long Double Valid value Valid value

Short Valid value Valid value

Status Valid value Valid value

Text Valid value String representing numeric
value

Module Text Valid value Name of module

Module State Module Valid value Valid value

Text Valid value Name of module

Module State
Statement

Module Valid value Valid value

Module
State

Valid value Valid value

Text Valid value Name of module

Normalize Double Valid value The scaled value

Long In the range of -2 147 483
648 to 2 147 483 647

The value

Short In the range of -32 767 to
32 767

The value

Outside of range Invalid

Status 0 0 (false)

Non-0 1 (true)

Text Valid value String representing scaled value

Object Module
State

Valid value Module and state in which that
object exists

Statement Valid value Module state and statement
number that object is executing

Text Valid value Name of the module of which
that object is an instance

Short Double Valid value Valid value

Long Valid value Valid value

Status Valid value Valid value

Text Valid value String representing numeric
value

Status Double Unconnected socket 1

Connected socket Invalid

Long Unconnected socket 1

Connected socket Invalid

Short Unconnected socket 1

Connected socket Invalid

Status Unconnected socket 1

Connected socket Invalid

Text Unconnected socket "1"

Connected socket String of stream contents

Tag Double Valid value The scaled value

Long In the range of –2 147 483
648 to 2 147 483 647

The value

Outside the range Invalid

Short In the range of –32 767 to
32 767

The value

Outside the range Invalid

Status 0 0 (false)

Non-0 1 (true)

Text Valid value String representing scaled value

Text Double Number string Number in string

Long Number string Number in string

Short Number string Number in string

Status Non-0 number string 0 (false)

0 number string 1 (true)

Variable Module Module variable The module in which the module
variable resides

Text Valid value Name of variable

Invalid Values

In addition to having normal valid values, variables can also be invalid.
An invalid value is an unknown value that is distinct from all other val-
ues; they guard the system from performing control action based upon
erroneous or bad information. Any variable may have an invalid value.
Any calculation that uses an invalid value produces an invalid result (with
a few exceptions). Invalid results are not written to output devices. In
addition, any graphic statements that contain invalid variables will not
produce any output on the screen. In general, any function that uses an
invalid value will have no effect and behave as if it did not exist.
Invalid values may result from variables that are not set to any given
value - this is true when VTScada is first starting up. To avoid this situ-
ation, programmers use the PickValid() function to provide a default
value to expressions until the variable has a valid value.
Invalid values can also result from setting a variable's value in two or
more different statements at the same time; in this situation it is uncer-
tain which value is correct, so the variable will be invalid even if both val-
ues are the same. This is known as a "double set". An array reference that
has one of its subscripts out of range will have an invalid value. Some
programmable controllers flag inputs when they are out of range - when

these values are read by VTScada, they are declared to be invalid. Divi-
sion by 0, taking the square root or logarithm of a negative number, and
other illegal mathematical operations result in invalid results. An invalid
value can even be purposely set as such by using the Invalid function.
Because calculations using invalid values produce invalid results, invalid
values can propagate through the system. The setting of a variable to
invalid will cause all other variables that depend upon its value either dir-
ectly or indirectly to become invalid.

Using Arrays

An array is a value type used to group a set of values under one variable
name. The individual elements of the array are sequentially numbered.
Each of the elements of the array can be used as a completely separate
variable with its own independent value that may have its own type.

Note: Arrays may be declared either as static or dynamic. If a function
specifies one type or the other as a parameter, it is essential that you
use only that type.
In all cases where a static array is not specifically required, use a
dynamic array. In practice, this means that the use of a static array is
uncommon.

A dynamic array is created by first, declaring the name:

[
 NameArray { to be used as a one-dimensional array };
 AddressArray { to be a two-dimensional array };
]

A script block is then used to define the array size, using the New() func-
tion.

Init
[
 IF 1 Main;

[
 NameArray = New(10);

AddressArray = New(2, 10);
]
]

If you need to initialize the array after creating it, use an ArrayOp() func-
tion.
Static arrays are created, and optionally initialized when they are
declared:

[
 aStaticArray[10] = 0;
 AnotherStatic[2][10];
]

When referring to a particular element of an array, the number enclosed
in square brackets [] is called the "subscript". You may use a variable, an
expression or a function as the subscript in your code, in order to manip-
ulate an array or dynamically access different elements as operating con-
ditions change.

Related Information:

...Multidimensional Arrays

...Mismatched Array Dimensions

...Array Processing Functions

...Comparison of Static and Dynamic Arrays

...Array

Multidimensional Arrays

An array that contains arrays in its elements is defined as follows:

Data[5][10];

This declaration may be read as "Data is an array of 5 elements each of
which is an array of 10 values." This is a multi-dimensioned array. Each
dimension must appear as a number enclosed in square brackets [] that
follows the variable name, but you may also define starting and ending
elements. For example, the following declaration is for a two-dimen-
sional array whose valid elements range from Data[10][-1] to Data[20][6]:

Data[10, 20][-1, 6];

The left-most subscript is the "first" or "lowest" dimension of the array.
The right-most subscript is the "last" or "highest" dimension.

For functions and statements that take arrays as parameters, the second-
to-last subscript specifies the sub-array to use. For arrays with only one
dimension, there is no ambiguity. For example, consider the statement
that begins:

Plot(DataX[2][3], 10, ...

The values in the array DataX[2][3] to DataX[2][12] will be plotted. The
last subscript is the only subscript that varies. Any preceding subscripts
remain fixed for the function or statement. This rule means that it is not
possible to directly plot the 10 values contained in DataX[0][0] to DataX
[9][0], however, it is possible to plot DataX[0][0] to DataX[0][9]. This prin-
cipal applies for all functions and statements that require arrays as para-
meters, but only when there is more than one array dimension.
For functions that return multidimensional arrays, data may not be
stored in the manner that you would expect if you are familiar with other
programming languages. If unsure, use the Source Debugger to examine
the array structure. Consider the following example, where the third
mode of ListKeys() is used to obtain an array of keys and values from a
dictionary The stored data might be represented in some languages as
the following array:
Given the code:

IF Watch(1);
[
X = Dictionary(0, 5);
X["A"] = 42;
X["B"] = 86;
X["C"] = 99;
Buf = ListKeys(X, 1, 3);

]

Some programmers might expect the return array to contain 3 rows of 2
columns:
A 42
B 86
C 99
but in fact, Buff will contain two arrays of three values:

The reason for this behavior is efficiency. It is faster to build the return
array as shown than otherwise. If in doubt, always create a test case to
examine using the Source Debugger.

Related Information:

...Mismatched Array Dimensions

...Array Processing Functions

...Comparison of Static and Dynamic Arrays

Mismatched Array Dimensions

If the number of defined array dimensions does not match the number of
array dimensions specified in an array reference, the evaluation proceeds
anyway, following certain rules. Specified array dimensions are matched
to defined array dimensions starting from the right and working towards
the left. If more array dimensions were specified than were defined, that
array expression is called "over specified". If more array dimensions were
defined than were specified, that array expression is called "under spe-
cified".
Over-specified array expressions will return an invalid value with one
exception - if all leading over specified dimensions are zero, it will
return element 0 of the specified array. For example:

Data[2][3];
Q = 4 + 3 * Data[X][1][2];

This will work if X is zero. Otherwise, Q will be set invalid. For under-spe-
cified arrays, missing leading dimensions will default to zero. In the pre-
vious example, consider the statement:

V = 4 + 3 * Data[1];

This expression would use Data[1][0].

Related Information:

...Multidimensional Arrays

...Array Processing Functions

...Comparison of Static and Dynamic Arrays

...Array Processing Functions
In data processing, the WhileLoop() and DoLoop() functions certainly
have their place; however, when faster performance is required, the
VTScada array processing functions are recommended (see "Array Func-
tions").
For example:

WhileLoop(I < N;
Array[I] = 0;
I++

)

This can be replaced by the simpler:

ArrayOp1(Array[0], N, 0, 0)

If used in code that executes often, the second version will run sig-
nificantly faster than the first.
Another example involves pre-formatting the data received from an I/O
device in order to read that data into arrays. Whenever possible,
BuffToArray (and its sister BuffToParm) should be used for this task. In
many situations, the data in these return messages is not in the correct
format to use directly in the BuffToArray function, and it would appear at
first glance that a loop must be used. The data can instead be pre-pro-
cessed using an array function, and then passed to BuffToArray (an array
processing function itself).
If, for example, you are reading four-byte HEX ASCII numbers from a
device, but the bytes are received in high to low order (the opposite to
what the BuffToArray function expects). Further, all data bytes rep-
resenting 0 (0X30 HEX ASCII) have the highest order bit (b7) set to 1. The
following fragment of code will read these values into an array correctly
without requiring a loop.

{ Clear the high order bit of the 0 values element }

RcvBuff = Replace(RcvBuff, 0, N * 4, MakeBuff(1, 0x30 + 0x80),
MakeBuff(1,0x30));

{ Swap the byte order }

RcvBuff = BuffOrder(RcvBuff, 0, 1, 4, N);

{ Read the data values }

BuffToArray(Array[0], N, RcvBuff, 5, 5, 0);

Alternatively, to be even more compact:

BuffToArray(Array[0], N,
 BuffOrder(Replace(RcvBuff, 0, N * 4,
 MakeBuff(1, 0x30 + 0x80),
 MakeBuff(1, 0x30)), 0, 1, 4, N),
 5, 5, 0);

As a third, even faster option, you can remove the MakeBuff functions
and replace them with text constants that are set only once.

Note: You should always consult the array functions section whenever
you have a coding task that will require extensive looping. In many
cases, one or more array processing functions will exist to help to solve
the problem. The array functions are listed in "Array Functions".

Related Information:

...Multidimensional Arrays

...Mismatched Array Dimensions

...Comparison of Static and Dynamic Arrays

...Array

Comparison of Static and Dynamic Arrays

A static array variable holds a value of type, array. A dynamic array vari-
able holds a pointer to an array value. Thanks to automatic pointer
dereferencing and automatic index padding, there is very little difference
in the code that you write to use either type of array. What differences do
exist can be found in the following technical points.
It is important to note that use of a static array where a function expects
a dynamic array, will result in that function failing to work properly. Use

dynamically allocated arrays for all code unless a function reference
explicitly states that a static array is expected for one of the parameters.
Static arrays are created in the variable declaration [StaticArray[50]],
whereas dynamic arrays are created using the New() function within a
script block.

Automatic Pointer Dereferencing

Since dynamic array variables are pointers, one might expect to do a lot
of pointer dereferencing when using dynamic arrays. For example, to
access the fourth element of a dynamic array pointed to by Dynam-
icArray, one might expect to write the following code:

(*DynamicArray)[4] = 0;

While this syntax is correct, it is also redundant; whenever VTScada
encounters the [] index operator, it automatically dereferences the vari-
able being indexed. This makes the explicit dereferencing unnecessary,
so that the above code can simply be written as:

DynamicArray[4] = 0;

By automatically dereferencing an array pointer under these cir-
cumstances, VTScada makes accessing an element of a dynamic array
look and behave just like accessing an element of a static array.

StaticArray[4] = 0;

Note: VTScada only performs automatic dereferencing when an element
is accessed with the index operator. In no other cases is a dynamic array
automatically dereferenced.

Automatic Index Padding

Unlike its automatically dereferenced pointers, VTScada's automatically
padded indices makes for array-related code that looks the same, but
behaves differently, depending on whether a dynamic array or a static
array is used. This mismatch between appearance and workings can eas-
ily lead to developer confusion, and thus warrants special attention.
VTScada applies automatic index padding whenever an array reference is
under-specified. In turn, an array reference is considered under-spe-
cified if two criteria are met:

1. The array reference must involve an array value, as opposed to a pointer to
an array value. This is almost the same as saying the array reference must
involve a static array variable, as opposed to a dynamic array variable, with
two exceptions:

a. Whenever a dynamic array variable is explicitly dereferenced
(*DynamicArray), the result is an array value.

b. Similarly, whenever a dynamic array is referenced with the
[] operator, VTScada automatically dereferences the array
pointer, and the result is an array value.

2. An array reference must include fewer [] operators than the referenced array
has dimensions.

Given a two-dimensional dynamic array variable named, DynamicArray,
and a two-dimensional static array variable named, StaticArray, the fol-
lowing code shows under-specification:

1. *DynamicArray; { Under-specified }
2. DynamicArray; { Not under-specified, not an array value }
3. DynamicArray[2]; { Under-specified, automatic dereferencing }
4. DynamicArray[1][3]; { Not under-specified }

5. StaticArray; { Under-specified }
6. &StaticArray; { Not under-specified, not an array value }
7. StaticArray[2]; { Under-specified }
8. StaticArray[1][3]; { Not under-specified }

Lines 2 and 5 show the inconspicuous difference between dynamic and
static arrays: VTScada considers line 2 fully specified, but considers line
5 under-specified.
Whenever VTScada encounters an under-specified array reference, it
automatically pads the least significant, under-specified indices with
zero indices. Revisiting the example above, the array references are pad-
ded as described in the comments in the following code.

x = *DynamicArray; { x = DynamicArray[0][0] }
x = DynamicArray; { x = DynamicArray. See Variable Assignment }
x = DynamicArray[2]; { x = DynamicArray[2][0] }
x = DynamicArray[1][3]; { x = DynamicArray[1][3] }

x = StaticArray; { x = StaticArray[0][0] }
x = &StaticArray; { x = StaticArray. See Variable Assignment }
x = StaticArray[2]; { x = StaticArray[2][0] }
x = StaticArray[1][3]; { x = StaticArray[1][3] }

Value Assignment - Static versus Dynamic Arrays

It is not possible to assign a value directly to (or from) a static array vari-
able, and VTScada's automatic index padding ensures that this does not
happen. If it ever appears that a static array is participating in an assign-
ment, automatic index padding works to make sure that only an element
of the array is involved. The following code shows the automatic index
padding at work, with equivalent assignments in comments.

[
 AStaticArray[3] = 1;
 BStaticArray[5][10] = 2;
 SimpleVar;
]
Init [
 If 1 Main;

[
 SimpleVar = AStaticArray; { SimpleVar = AStaticArray[0] }
 SimpleVar = BStaticArray[4]; { SimpleVar = BStaticArray[4]
[0] }
 SimpleVar = BStaticArray[3][1]; { SimpleVar = BStaticArray[3]
[1] }
 SimpleVar = &AStaticArray; { SimpleVar = &AStaticArray }

 AStaticArray = "super"; { AStaticArray[0] = "super" }
 BStaticArray[4] = 3; { BStaticArray[4][0] = 3 }
 BStaticArray[3][1] = 4; { BStaticArray[3][1] = 4 }
 &AStaticArray = 0x00008000; { Error! Not an lvalue }
 AStaticArray = BStaticArray; {AStaticArray[0] = BStaticArray
[0][0] }
]
]

Dynamic-array variables are declared no differently than any other
VTScada variable. This similarity carries over to assignment, where
assigning a value to (or from) a dynamic-array variable is no different
than assigning a value to (or from) any other VTScada variable. Dynamic-
array variables can be assigned any scalar value, including another
dynamic-array variable (a pointer to an array). The following code shows
these assignments.

If 1 Main;
[
 ADynamicArray = 5; { a scalar assignment }
 ADynamicArray = New(3, 2); { a new dynamic array }
 BDynamicArray = ADynamicArray[1]; { under-specified. ADy-
namicArray[1][0] is assigned instead }
 BDynamicArray = "super"; { another scalar assignment }
 CDynamicArray = New(10); { a new dynamic array }

 DDynamicArray = CDynamicArray; { one dynamic array to another
}
 SimpleVar = DDynamicArray; { a dynamic array to a simple
variable }
]

When a dynamic-array variable is assigned to another variable, as in the
last two assignments of the previous example, only the pointer is
assigned, and no arrays are copied: in the previous example, CDy-
namicArray, DDynamicArray, and SimpleVar all point to the same dynam-
ically allocated ten-element array.
Note than during these assignments, neither of VTScada's automatic
array-related features was invoked: no [] index operators were present
and none of the array references were under-specified.

Passing an Array to a Module

Arguments to a Launched Module (or subroutine) are passed by value
(i.e. the value of the argument is copied, or assigned, to the module's
parameter). For this reason, passing arguments to a launched module is
very similar to assigning a value to a variable. It should be no surprise,
then, that the rules that govern passing arguments to launched modules
are identical to those that govern variable assignment: VTScada uses
automatic index padding to ensure that only an element of a static array
is passed to a launched module, while passing dynamic arrays to
launched modules is less restricted.
When arguments are passed to a Called Module, they are passed by ref-
erence (i.e. a called module's parameter is made to refer the argument,
and no copy is made). This is the only case when a static-array reference
is not index padded by VTScada. When a static array is passed to a called
module, the called module's parameter is made to refer to the entire
static array, and not just to one particular array element. Consequently, a
called module can change the elements of a static-array argument, and
any changes will appear outside of the module.
Similarly, when a dynamic array is passed to a called module, the array
pointer is not copied to the module parameter, but rather the called mod-
ule's parameter is made to refer to the array pointer (think of a pointer

to a pointer). In this way, a called module can change not only the ele-
ments in, but also the size and dimensions of, a dynamic-array argu-
ment, and any changes will appear outside of the module.

Related Information:

...Multidimensional Arrays

...Mismatched Array Dimensions

...Array Processing Functions

Using Pointers

Many VTScada functions require or return pointers. A pointer variable is
created by using the & notation in front of an existing variable name.
For example

Y = 7; { "Y" is a the name of a variable, within which is stored
the number "7" }
X = &Y; { X is the name of a variable, within which is stored a
pointer to the memory address of Y }

Pointers must be dereferenced before the data they point to can be used.
Dereferencing means accessing the value stored in the assigned memory
location. A pointer can be dereferenced by placing an asterisk before it.
For example:

*ptr

The value stored in the location referenced by "ptr" is now available for
use.
If you were to use the variable "Ptr" in an expression, you would have to
dereference it within the expression. For example:

x = *ptr + 1;

A dereferenced pointer can be used to store a new value into the location
or object at which it is pointing. For example:

ptr = &y;
*Ptr = 7;

This is equivalent to the expression "y = 7;".

If the pointer "ptr" is used in any expression requiring a value other than
a pointer value (for example, a numeric value), the result is invalid, as
"ptr" is a pointer to a value, not a value itself. For example:

w = ptr + 1

In this example, w is set to invalid, as the pointer "ptr" was not derefer-
enced. VTS will not take this to mean the next memory address. What
should have been written is:

w = *ptr + 1

Pointers and Arrays
Certain VTScada functions, such as New(), return pointers. The New() func-
tion is typically used to allocate a dynamic array. For example:

ArrayPtr = New(1 { Number of dimensions },
 0 { Starting index },
 10 { Number of elements });

Technically, in order to use an element from "ArrayPtr", you must derefer-
ence the element:

(*ArrayPtr)[0] = 5;

Fortunately, the array index operator [] automatically performs a pointer
dereference operation if the variable before the array index operator has
a pointer value. For example, the expression above can also be written
as follows to achieve the same result.

ArrayPtr[0] = 5;

The preferred method is to allow the array index operator to auto-
matically perform the dereferencing of the pointer, as it improves the
readability of the statement, requires less memory, and executes faster.

Dictionaries

A dictionary is flexible data structure, providing functionality very much
like a database. It is a named structure, holding a flexible set of name-
value pairs , which may have a value itself. Dictionaries may hold other
dictionaries.

In the following example, MyDictionary has a value of 43 and holds three
name-value pairs, one of which is a dictionary having the value, "Greet-
ings" and itself holding two name-value pairs.

MyDictionary = Dictionary(); { The dictionary is created }

RootValue(MyDictionary) = 43; { A root value is assigned }

MyDictionary["ValueA"] = 5; { The first stored value is created }
MyDictionary["ValueB"] = 10; { The second stored value }
MyDictionary["YourDictionary"] = Dictionary(); { The third stored
value }

{ Further definition of the third stored value }
RootValue(MyDictionary["YourDictionary"]) = "Greetings";
MyDictionary["YourDictionary"]["ValueA"] = "Good";
MyDictionary["YourDictionary"]["ValueB"] = "Morning";

Dictionaries have the following basic attributes:
l Information is stored in the form of key / value pairs.

l Information is automatically sorted by key, resulting in fast searching and
retrieval.

l Key / value pairs can be added and removed efficiently and without limit.

l Dictionaries can have root values: a value, tied to the dictionary itself rather
than to a key within the dictionary. This is optional, but it should be noted
that most operators and functions will treat dictionaries as if the dictionary
was simply its root value.

l The key will be stored as text. A number may be used, but note that this will
be cast to a text value.

l Any data type, including another dictionary, may be used in a value. You can
use this to build complex data structures.

Within a dictionary, all keys will always be unique by definition. Attempt-
ing to create a duplicate key by assigning a new value to a key with a
non-unique name will simply result in the original key being assigned
the new data value. Dictionaries may be defined such that their keys are
case sensitive (in which case "a" will come after "Z") or they may be non
case sensitive. Unless otherwise specified, they will not be case sensitive.

Related Information:

...Creating a Dictionary

... Dictionary Operations

Creating a Dictionary

Dictionaries can be created by either of the 2 following methods:

Method 1: the Dictionary() function

X = Dictionary ([case], [root]);

Both parameters are optional. The Case parameter will default to TRUE,
meaning that it is not case sensitive, and the Root parameter will default
to Invalid. The root can be any value, including another dictionary.
Examples:

X = Dictionary();

X becomes a reference to a blank, empty dictionary that is not case sens-
itive

X = Dictionary(1, "rate");

X becomes a reference to a dictionary having a root value of "rate", that
is not case sensitive.

X = Dictionary(0, 42);

X becomes a reference to a dictionary having a root value of 42, and that
is case sensitive.

Note: Whether or not a dictionary contains a root value has an impact
on the result that the ValueType() function will return from it.
If there is a root value then, in effect, the dictionary serves to attach
metadata to that existing variable and the ValueType() command will
return the value type of the root value.
If there is no root value, then the ValueType command will return type
47 from the dictionary.

Method 2: The MetaData command
The command MetaData can be used for two different purposes. If used
with a parameter that is not a dictionary, the result is to attach metadata
to that object (thereby turning it into a dictionary).

MetaData(Dictionary, Key, [case sensitive]);

Example:

MetaData(X, "Width", 1) = 5;

X becomes a non-case sensitive dictionary, having no root value and pos-
sessing one key named "Width" that has the associated value, 5.
More commonly, you would use this to attach extended information to
an existing variable as shown in the following example:

Y = 10;
MetaData(Y, "Area") = 20;

In this example, Y starts as an integer and then becomes a non-case
sensitive dictionary having a root value of 10 (the original value) and pos-
sessing one key named "Area" which initially has a value of 20.
You can even use this technique to turn an array into a dictionary – some-
thing that could not be done using method 2.

Z = New(5, 10);
MetaData(Z, "Rate", 0) = 42.7;

Z becomes a case sensitive dictionary having a root value which is the
array [5, 10] and possessing one key named "Rate" which has a value of
42.7.

Related Information:

... Dictionary Operations

Related Functions:

... Dictionary

... DictionaryCopy

... DictionaryRemove

... MetaData

Dictionary Operations

Operations involving dictionaries and other variables:

The result of any operation that uses a dictionary as one of the operands
and a non-dictionary as the other will always take the root value of the

dictionary as the value to be used for the operation.
Thus, if you use the dictionary from the preceding examples, having a
root value of 5, the following would be true:

X = Dictionary(0,5); {X is a dictionary with a root value of 5 }
X["A"] = 42; {add a keyed value to the dictionary }
Y = 2;
Z = X * Y; { the root value of X is used for the multiplication }

Z now holds the integer value, 10.

Accessing values in a dictionary:

Values within a dictionary can be accessed using an array-like syntax.
The root value is accessed using empty quotation marks.
Examples:
(Using the dictionary X from the preceding example)

Y = X[""]; { Y now holds the value 5 }
Y = X["A"]; { Y now holds the value 42 }

Retrieving an array of the keys from a dictionary:

The function, ListKeys will return a one dimensional array of the keys
stored in a dictionary

RVAL = ListKeys (dictionary);

Example:

X = Dictionary();
X["A"] = 15;
X["B"] = 24;
RVAL = ListKeys (X);

RVAL will now contain a two element array, containing the values "A" and
"B".

Retrieving the root value from a dictionary:

The root value of a dictionary can be obtained by either of two methods:

Directly: Y = X[""]; { where X is a dictionary }
Via a function:Y = RootValue(X);

In general, the result will be identical, except for the case where the root
value is another dictionary. In such a case, RootValue will traverse the dic-
tionaries until it finds the first root value that is not another dictionary.
(See example 1)

In the case where all the root values are other dictionaries (a circle) then
RootValue will return a dictionary, selecting the first root value after the
one indicated in the command that points to an earlier value. (See
example 2)

Advanced Situation 1 – Dictionaries containing dictionaries:
Given three nested dictionaries
The root of dictionary X is dictionary Y
 The root of dictionary Y is dictionary Z

The root of Z is the integer 42.
If you retrieve the root of x directly:

RVAL = X[""];

Then, RVAL is now dictionary Y
If you were to use the RootValue() function instead:

RVAL = RootValue(X);

RVAL is now the integer 42

Advanced Situation 2 – Dictionaries with circular links:
Given three dictionaries as follows:
The root of dictionary X is dictionary Y.
 The root of Y is dictionary Z.
 The root of dictionary Z is a link back to dictionary Y.
If you apply the RootValue() function to dictionary X...

RVAL = RootValue(X);

then RVAL is now dictionary Y, since that is the last root value found in
the chain before it looped back to an earlier dictionary.

Assignment operations involving dictionaries
When assigning a dictionary to a variable using the assignment operator
(=) , the result is a pass-by-reference, effectively creating an alias for the
dictionary rather than a copy.
Example:

X = Dictionary(); { create an empty dictionary }
Y = X; { assign it to Y }
X["A"] = 42; { create a node in X with key "A" & value 42 }
Y["A"] == 42; { TRUE because Y is an alias for X }

A function exists to do a pass by value, allowing you to create a copy of a
dictionary:

RVAL = DictionaryCopy(dictionary, [deep], [acyclic], [lock]);

The three optional parameters, deep, acyclic and lock are each Boolean
values with a default of FALSE.

l Deep If true, all contained dictionaries are copied as well as the dictionary
referred to by name. Note that if Deep is set to FALSE, the copied dictionary
will not be missing the contained dictionaries – the difference is that in one
case, the contained dictionaries are copied as well as the base dictionary,
and in the other, the copy of the base dictionary will also include the original,
contained dictionaries.

l Acyclic If true, cyclic links are removed

l Lock If true, all values in the copy will be locked as constants.

Adding and Removing Keys

Keys and values can be added to a dictionary by simply referencing them
like so:

X = Dictionary(); { creates a new, empty dictionary }
X["A"] = 42; { adds a new key-value pair to dictionary X }

Keys and their associated values can be removed from a dictionary using
the DictionaryRemove() function as follows:

DictionaryRemove(dictionary, key);

The given key, specified in the second parameter, and its associated data
will be removed from the given dictionary specified in parameter 1.

DictionaryRemove has no return value and no optional parameters.

Testing whether an object is a dictionary

Most operators and functions will treat a dictionary as if it were simply
the variable stored as the root value. Attempting to use the ValueType()
command on a dictionary will not work as expected for this reason, since
if the dictionary has a root value, then only the value type of the root will

be returned.
The function HasMetaData() will determine whether or not an object is a
dictionary:

Rval = HasMetaData(variable);

This function will return TRUE if the variable is a dictionary and FALSE
otherwise.

Meta Data

The Metadata() function provides a means of attaching extended inform-
ation to variables. The concept is inspired by XML and is based on dic-
tionaries.
For example, in XML one might see the following structure, which
attaches two attributes (name1 and name2 containing values "x" and "y"
respectively) to the object, 2.

<tag name1="x" name2="y">
2
</tag>

The equivalent in VTS is a dictionary with the root value, 2, and having
two name-value pairs, name1 and name2:

X = 2; { X starts as a simple numeric variable
with the value, 2 }
MetaData(X, "name1") = "x"; { X is now automatically made a dic-
tionary, with the root value of 2. }
MetaData(X, "name2") = "y"; { Each call to MetaData() adds another
name-value pair to X }

Structures

Structures allow you to organize information to increase the overall clar-
ity of your code. Much like a structure in C, these are collections of vari-
ables and their values, placed under one name.
The use of a structure is illustrated by the following example:

Mod()
[
Dims STRUCT[

LENGTH;
WIDTH;
HEIGHT;

];
]

Main
[

…
]

An instance of the structure Dims can now be assigned to a variable as
follows:

A = Dims();

You can also assign values to the various nodes in the same statement:

A = Dims(15, 30, 45);

In either, the variable A will now contain an array that is 3 items long and
that can be indexed using the keywords Length, Width and Height as
defined in the structure. In effect, Length is taken to mean "index 0 of
the array stored in A", Width will mean "index 1 of the array stored in A",
etc.
The values can now be used as shown in the following examples:

Example 1:

Rval = A\Width;

Rval now holds the value 30.

Example 2:

A\Length = 42;

42 is now the value stored in index position 0 of our structure.
You can also use array indexing notation to access the underlying data:

A[1] == 30;

Structures and Dictionaries
It is interesting to note that structures are based on the concepts of
VTScada dictionaries and metadata.
The example above will create a variable named Dims whose actual value
is INVALID and whose default is a locked dictionary. The underlying struc-
ture of Dims can be visualized as follows:

Dims = Invalid { dictionary with a root value of Invalid }
 Length = 0, { meta data elements of the dictionary }

 Width = 1,
 Height = 2

When Dims was instantiated as A in the examples above, A became a one
dimensional array containing within it a pointer to Dims. This enables us
to reference the contents of A using the keywords Length, Width and
Height and get the correct pointers into the array A.
Because of this, it is possible to store additional data of use to the struc-
ture within the defining dictionary. In particular, the name of the struc-
ture is stored in the dictionary’s root. Thus, to identify an unknown
structure, you can use the following expression:

RootValue(Cast(<struct>, 47);

Extending Structures
Structures may be extended as shown in the following example:

Y STRUCT [
 A;
 B;
]; { structure 1, named Y }

X:Y STRUCT [
 C;
 D;
]; { structure 2, named X extends Y }

A = X(); { variable A now holds a 4 element array,
where the elements of the array will be in the order A,

B, C, D }

Structures can also be compound data structures, containing other struc-
tures as well as more basic data types:

Z STRUCT [
 A STRUCT [
 Q;
 R;
];
 B;
 C STRUCT [
 S;
];
];

Variable Storage, Retention, Access

Variable scope through modules and submodules is discussed in the
chapter, Module Scope.
Within a VTScada application, you may need to share values between
module instances. You may require values to remain in memory while an
application re-starts, or you may want to control how values are shared
across the servers running an application. These are the topics of this
chapter.

Related Information:

...Module Scope

...Variable Class Definitions

...VTScada Value Types - Numeric Reference

...Persisted Variables

...Retained Variables

...Shared Variables

...Saved Variables

...Network Values

...Temporary Variables

...Protected Variables

Persisted Variables

Normally, variable values are kept in RAM, which means that their value
will be lost whenever VTScada is stopped such as in the event of a power
failure. This is usually not a problem for most values since they will be
read in automatically from the plant I/O devices when the program is
restarted. However, certain values such as process set points must be
maintained, regardless of any interruption. The use of persistent vari-
ables solves this problem.
Persistent variables (formerly known as "static" variables in some early
versions of VTS) function identically with any variables except that a copy

of their value is kept on disk. All of the persistent variables in a module
will be stored in a file with the same name as the module and a .VAL
extension. When VTScada is restarted, the persistent values will be read
from the .VAL file(s). This means that the value will always be maintained
regardless of whether or not the program has been stopped.
Any variable may be defined as being a persistent variable by prefixing
its definition with the keyword "Persistent". For arrays, all elements of
the array become persistent values if the array itself is defined to be per-
sistent.
The penalty to pay for making a variable persistent is that it requires a
substantial amount of time to change its value. It requires a noticeable
fraction of a second compared to a fraction of a millisecond for other
variables. Therefore, persistent variables should not be used carelessly.
They should only be used for values which are only updated occasionally
such as operator-entered set points.
It does not require any additional time to reference or use the value in a
persistent variable since a copy of its value is also kept in RAM.
Persistent numeric variables are always kept to their full precision on
disk, but there is a limit on the number of characters kept on disk for per-
sistent variables which hold text values; the default is 5 characters. This
limit may be increased when the variable is defined (up to 65500 char-
acters):
Persistent 15 UserName;
This will cause up to 15 characters of the variable UserName to be saved
on disk. Any characters beyond the 15th will simply be discarded. The
limit should be kept as small as practical since the use of large limits will
increase the file space required as well as the update time for the vari-
ables. Persistent text values are always kept with no characters lost while
in RAM, so it is only when VTScada is stopped and restarted that the (lim-
ited) persistent value is assigned to the variable.
The limit you specify on text values is rounded to the next largest space
that will hold that many characters. The space in the file is allocated in
chunks of five characters each. For example, if you chose a limit of 42

characters, space would be allowed for Ceil (42 / 5) * 5 = 9 * 5 = 45 char-
acters.
Persistent variables are automatically considered to be shared as well.
This cannot be changed by the system designer.
Persistent variables values on disk are erased if the module where they
are defined is compiled, or any part of that module is compiled. For this
reason, persistent values are less useful for holding setup information.
This role is usually filled by a disk file, or by using default values.
With the integration of Retained variables (see Retained Variables), the
behavior of Persistent variables has changed as follows:

l Any data values supported by Pack may now be saved to disk (e.g. arrays,
streams, link lists, etc.).

l The persistent size used for text string limits is no longer necessary. Any text
string can be persisted, regardless as to its length.

l Recompiling a module does not delete the persistent variables.
Note: If you have an array (e.g. "A=New[10];"), and one element changes
(e.g. "A[0] = 1;"), the modified value will not be known until the module
has been stopped, as "A" itself did not change (its element did).

Retained Variables

Retained variables enable separate instances of a module to retain its
value on disk between instantiations and VTScada executions. This is an
enhancement on the existing persistent variables (see Persistent Vari-
ables). One application for Retained variables is for loading user settings;
if the username changes, load all of the user's customized settings (i.e.
set the instance name equal to username). In this way, you may use
Retained variables like a database.

Note: With Retained variables, any parent instance name is inherited
by all child modules. In the event that the parent's name is not defined,
the application name will be used. Further, by default, all tags are
launched with their name as the instance name, so you do not have to
declare them.

The values for retained variables are stored in a special directory named,
"Retained" that exists within your application directory. The files con-
taining the retained variable values have the extension ".VAL".

Declaring Retained Variables
To declare a retained variable, you must use the "Retained" keyword
before the variable definition. For example:

Retained My_Retained_Var { Retained Variable };

Assigning Names to Module Instances
Each module instance must be assigned a name. This can be done in one
of the following ways:

l SetInstanceName() This function takes two parameters: Instance and Name.
Instance is the object value of the module to which the name is to be
assigned. Name is the text string name of the instance (please refer to SetIn-
stanceName for detailed information on SetInstanceName()).

Note: With the inception of retained variables, all tags are launched
with the tag name being the instance name of the tag.

l The name parameter in the Thread function also sets the name of an
instance. (All applications are launched in a separate thread with the applic-
ation name being the thread/instance name.)

l If an instance name is not explicitly set, an instance name is inherited from
the nearest parent's name. If none of the parents have an explicit name, the
name "Default" is used.

Setting the instance name will cause all the Retained variables to be
reloaded with the values for that instance. Instance names may be
changed dynamically.

Retained Variable Value Storage
Retained values are written to disk whenever they change. They are writ-
ten using the Pack scheme, allowing complex arrays and linked lists to
be persisted. Any modified values that are indirectly pointed to from the
retained value will not trigger a rewrite of the retained variable to disk;

however, when the instance terminates, either through an instance name
change or a stopping instance, the retained values will be written.
This implies that crashes, power failures, etc., can result in the most
recent retained values not being on disk if these values contain pointers
to values. As a result, retained values are stored in files with one file per
instance, and one file per variable. These files are stored in a directory
named, "Retained" within the same directory where the ultimate root
module's .RUN file or the module containing the retained variable defin-
ition is stored. These files are uniquely named; the file name is made up
of the names of parent modules concatenated with a dash (-) separator
between module names, while the variable name is appended to this
string by a plus symbol (+). The final '+' and instance name is not
present if the variable is Shared. These files all contain the extension
".VAL".

Retained Variables and Statically Declared Arrays
Retained variables enable you to specify a default value for a statically
declared array. If specified, all the elements of the array will be set to
this value when the array is instantiated. For example, an array declar-
ation such as:

[
 Data[10] = 0;
]

will result in all 10 elements of the data array to have the initial value of
"0".
If the array with the initial value specified has a default value, the default
value will only be used if there is no suitable retained value .VAL file.
Recompiling to change the number or size of dimensions of a retained
variable will cause any retained .VAL files previously saved with the old
variable format to be ignored.

Note: Retained variables are similar in behavior to persistent variables
(see Persistent Variables); in fact, persistent variables are equivalent to
"Shared Retained".

Shared Variables

When running multiple copies of modules, each will keep a separate copy
of its own variables. Prefixing a variable definition with the keyword
"Shared" makes that variable a shared variable. Now when multiple cop-
ies of a module are running, and use this shared variable, all copies use
the same value. For example, if one module writes the value 4 to a
shared variable, X, all other copies of that module will see the value 4 in
X. X is global to the module instances and only one memory location will
be used for all instances of X. Shared variables are deleted only when the
application stops running.

Saved Variables

Saved variables act like persistent variables without being shared. Pre-
fixing a variable definition with the keyword "Saved" makes that variable
a saved variable. Information on persistent variables can be found in Per-
sistent Variables.

Network Values

The purpose of the Network Values service is to update changes on all
PCs for remote applications when a change to a Network Value variable
has occurred. Network Value variables cannot be used in a steady state.

Note: If your client is isolated from the server, and changes have
occurred to Network Value variables, the client's changes will be over-
written when a reconnection to the server has been made.

Network Value variables are defined within the NetworkValue class, and
are updated whenever the value for these variables changes on a client
or server workstation. Network Value variables can store any value that
you can Pack. (see note) Unlike Retained variables, Network Value vari-
ables recognize array element changes, and will update such changes as
needed. It should be noted however that Network Value variables won't
see multidimensional arrays; therefore, a subroutine called, "Update" can
be called if you have changed a complex data structure like a

multidimensional array. During startup, only the Network Value variables
whose value changed since the last synchronization are obtained.

Note: If using a multidimensional array with NetworkValues, you
should note that the array must be dynamically allocated, rather than
static. Also; you can store dictionaries, but you must use Net-
workValues\Update to update them.

The values for Network Value variables are stored in a subdirectory
named, "NetworkValues" within your application's directory. The name
and format of these files is identical to that of the Retained variables (see
Retained Variables); however, the extension for NetworkValues files is
".NV", whereas the extension for the Retained variable files is ".VAL".

Note: It is not recommended that you use the Network Values service
for tag values, or other constantly changing values (e.g. mouse pos-
ition), as the memory cost will be in the vicinity of .5 Kbytes to 1.5 Kb
per Network Value variable. A better use for the Network Values service
is for updates to other services.

Network Value Service Subroutines and Modules

In order to make use of the Network Values service, you must first start
the service, and then call Register(). An example follows.

If \NetworkValues\Started Main;
[\NetworkValues\Register(Self, "MyModule");
 …
]

NetworkValues\Register

Register(Owner, InstanceName)

Where, Owner is the owner of the variables, and InstanceName is the
name of the instance.
The purpose of the Register module is to allow any module with class Net-
workValue variables to retain these variables across instantiations of a
module and to have values automatically propagated around the net-
work. If two instances of the same module register with the same

instance name, then each of these modules will be affected by the other's
changes in values.
Register is a subroutine. After returning, the owner's variables will be set
to the current server's version of the values. The caller must wait for Net-
workValues\Started to become true before calling the Register module.

NetworkValues\Update

Update(Owner, VarName)

Where, Owner is the owner instance of the variables and VarName is the
name of the variables, provided as a text string.
The Update subroutine should be called to force the value to be updated
by the configuration server of a remote application, and to set the value
in the NetworkValues file. This would be necessary if the value has
changed in a way that cannot be automatically detected, such as by chan-
ging elements in an array that has more than one dimension or whose
index does not start at "0".

NetworkValues\MonitorX

MonitorX(Owner, Ancestry, Head, Var1 [, Var2, Var3…])

Where...
l Owner is the owner instance of the variables.

l Ancestry is the list of parent modules, separated by a dash (-).

l Head is a pointer to the head of the list in the DBSystem.

l Var1 is the name of the variables (Var1, Var2, Var3, etc.)
Monitor modules are launched modules that watch variables to see if
they change. If the value of the variables change, then the Monitor mod-
ule checks to see if they differ from the server's version as represented in
our database. If there is a difference, Monitor RPCs the updated value to
the server. (The "X" implies that monitor modules can be named "Mon-
itor1", "Monitor2", and so forth.)

NetworkValues\GetValue

GetValue(Ancestry, InstanceName, VarName)

Where...

l Ancestry is a list of parent modules, separated by a dash (-).

l InstanceName is the module instance name.

l VarName is the name of the variables.
The GetValue subroutine returns the value for a given variable within a
given module specified with a specific instance name. The values are
stored in a directory named, "NetworkValues" within your application dir-
ectory. The name and format of the files is identical to that of the
Retained variables (see Retained Variables); however, the extension for
NetworkValues files is ".NV", whereas the extension for the Retained vari-
able files is ".VAL".

NetworkValues\SetValue

SetValue(Ancestry, InstanceName, VarName, Value, Revision)

Where...
l Ancestry is a list of parent modules, separated by a dash (-).

l InstanceName is the name of the module instance.

l VarName is the name of the variables.

l Value is the new value to assign.

l Revision is the revision number.
The SetValue module sets the value for a given variable within a given
module specified with a specific instance name. The values are stored in
a directory called, "NetworkValues" within your application directory. The
name and format of the files is identical to that of the Retained variables
(see Retained Variables); however, the extension for NetworkValues files
is ".NV", whereas the extension for the Retained variable files is ".VAL".
SetValue is called via RPC.

NetworkValues\TestValue

TestValue(Owner, Ancestry, VarName)

Where...
l Owner is the owner instance of the variables.

l Ancestry is the list of parent modules, separated by a dash (-).

l VarName is the name of the variables.

You may use the TestValue subroutine to return true if the value passed
in has a different value from the disk-based value.

Network Values Service Scheme

The Network Values service is designed to transfer values for any module
around the system, and retain those values between starts for the applic-
ation and instantiations of the module. The scheme used by the Network
Values service follows.

1. DBSystem is created, containing Registered names concatenated with vari-
able names, which are separated by a plus sign (+). The Registered names
are also stored in the same DBSystem. Their value is the head of the list of
Monitor modules. The values are saved in packed streams in files by the
same name as the concatenated name. The retained registered names array
also contains the version number for each value. The revision number is
always incremented, and is a retained value.

2. RPC Synchronization is done, and Started is set.

3. The host module must wait for NetworkValues\Started.

4. Register(Obj, Name) is a subroutine that launches Monitor. Register performs
a ListVars on Obj to get all class variables that will be distributed through
remote procedure calls. It then launches sufficient Monitor modules to
handle the number of variables. It also sets current values of variables from
DBSystem before returning.

5. Monitor links itself onto a list wherein the registered name is the name of a
variable in the RegisterNamesDB containing the object value of the head of
the list. The list is self-repairing, and not ordered.

6. Monitor watches for changes in simple values and 1 dimensional array of val-
ues for the variables and then checks if the current value is different from the
DBSystem value. If different, an RPC message to the server is sent to set the
new value.

7. The server sends the SetValues message to all clients and itself.

8. The persistent values are stored in a directory called NetworkValues. Each
value has its own file. Each file is a member of a linked list whose head is Net-
workHead, and is sorted by the Revision number. This enables the GetServer-
Changes to easily get the most recent values.

9. SetValues sets the value in the DBSystem, writes the value to the cor-
responding file for the name, walks through the list of Monitor modules for
the registered name, and sets the variable in each of the registering modules.

10. If a registering module stops, the Monitor automatically stops since it has
been called from the registering module.

Note: The RAM used for an actively monitored value ranges from about
550 bytes when 8 or more variables are in the module, to about 1500
when only one variable is in the module.

Temporary Variables

In cases where an application is being modified online, it may be useful
to create short-lived variables that will disappear when VTScada is shut-
down and restarted. These are known as temporary variables. Temporary
variables are kept in RAM while VTScada is running, so they will continue
to exist even though the application that uses them is stopped and restar-
ted. They are not written to the .RUN files of the application, though, so
once VTScada is stopped or the application is recompiled, they will cease
to exist. For the application to use them again, it must once more create
them using an AddVariable statement.
Temporary variables should not be referenced like other variables, but
should be accessed using one of the following functions to reduce poten-
tial problems in their use:

l FindVariable

l ListVars

l Scope

l VarAttributes

l Variable

Protected Variables

On occasion, it may be necessary to limit access to certain variables to
those objects lying within the variables' scope. This is done by prefacing
the variable declaration with the keyword "Protected".

Protected variables (and modules) are not accessible through scope res-
olution.

Variable Class Definitions

A variable may be of a defined class, if so designated by the user. Vari-
able classes are primarily used as a means of grouping associated vari-
ables together and may be defined as the user requires them. To set a
variable's class, the SetVariableClass function may be used, or the class
number may be added to the variable's declaration or to the declaration
of a group of variables of the same class:

[
FlowRate = 32 (0x0015);
PNum (0x0015);
X;
Y;

]

In this example, the first two variables have their class designated by the
hexadecimal number 15 (0x0015), although in the case of FlowRate, a
default value of 32 has also been set. Since these two variables have the
same class designation, they could have been grouped together as fol-
lows:

[
Constant PUMP 0x0015;
[(PUMP)

 FlowRate = 32;
PNum;

]
X;
Y;
]

Notice that in this case, the variable class for FlowRate and PNum is a
constant variable called PUMP whose value has been set at 0x0015 in a
previous declaration statement. No matter which method is used, the
class definition must be a constant or an expression that evaluates to a
constant, whose value is between 0 and 65 535.

Example:

Each tag type will have a class. This can be used to obtain a list of the
tags of a certain type. For example:

IF ! Valid(MyClass); [
{ Get the Alarm Tag's class }
MyClass = VariableClass(FindVariable("AlarmPriority", \Code, 0,

0));
{ Find the array of variables that are members of that class }
PriorityObjs = ListVars(ParentObject(\Code), "*", MyClass,

MyClass, 0, 0, 1, 0, 0);
]

Related Information:

...Variable Storage, Retention, Access

...VTScada Value Types - Numeric Reference

VTScada Value Types - Numeric Reference

The following table lists the value types used in VTScada. When referring
to these in code, you should use the predefined constants rather than the
type numbers. The general usage is:
Cast(Val, \#VtypeText)

Type Constant Name Name Description

0 #VTypeStatus Boolean Logical data type, stores two
states: "true" (0) or "false" (non-
zero).

1 #VTypeShort Short, 16-bit
signed

Integer data type storing values
from -32768 to 32767

2 #VTypeLong Long, 32-bit
signed

Integer data type storing values
from -2147483648 to
2147483647

3 #VTypeDouble Double pre-
cision floating
point

Values range from about -
10^308 through +10^308

4 #VTypeText Text Any string of bytes whose values
range from 0 to 255. Typically
used to hold text strings.

5 #VTypeVariable Variable A handle to the data represented
by a variable declaration, not to
any particular instantiation of
that declaration. Can be used to
access variable metadata (type
information, for example) or
default values.

6 #VTypeFunction Function A pointer to the code for a par-
ticular function within a VTScada
statement. Used by functions
such as GetOneParmText to
manipulate the code itself.
Used when compiling and edit-
ing script code, not for typical
VTScada programs.

7 #VTypeObject Object value An instance of a module

8 #VTypeStream Stream A handle to a stream (of which
there are several types). See
Streams.

9 #VTypeModTree Module tree A handle to the modules in a
state diagram

10 #VTypeStateDgrm State diagram A graphical depiction of
VTScada code

11 #VTypeModule Module The code and variables that
make up a unit of a VTScada pro-
gram. See Modules.

12 #VTypeModState Code Value (a)
Module and
state

A handle to a state within a mod-
ule. See States.

13 #VTypeModStateStmnt Code Value
(b)
Module, state,
and statement

A handle to a statement within a
state. Cannot refer to any arbit-
rary function, as type 6 can. See
Statements and Graphic Objects.

14 #VTypeRefParm Reference
parameter

When a steady-state call is made
to a module, each of the actual
parameters in the call is "bound"
to its corresponding formal para-
meter.

15 <undefined> Array Refers to an entire list of con-
secutive data values. Each data
value has a consecutively
numbered index address and
may be any VTScada value.
See Array Variables

16 #VTypePath Path A series of vertex values. See
Path Variables.

17 #VTypeTraj Trajectory A combination of a Normalize
value and a Path value. See Tra-
jectory Variables.

18 #VTypeRotate Rotate Specifies a rotation amount,
measured in degrees, around a
point. See Rotate Variables

19 #VTypeBrush Brush Brush values are used in layered
graphics statements that paint
areas of the screen with a uni-
form color or pattern. See the
Brush function.

20 #VTypePen Pen Pen values are used in layered
graphics statements that draw
lines. Defines the color, style
and thickness of a line. See the
Pen function.

21 #VTypeNormalize Normalize A graphical scaling value. See
Normalize.

22 #VTypePoint Point A location, stored as an (X, Y)
pair. See Point.

23 #VTypeVertex Vertex A group of three Point values.
See Vertex.

24 #VTypeTransform Transform A transformation matrix, used to
map coordinates from one area
of the screen to another.
Can only be obtained from the
GetTransform function. Used by
the GetPathBound function.

25 #VTypeCodePtr Code pointer A handle to an active graphics
statement in a particular module
or state. Similar to type 13, but
with the additional information
of the module instance as rep-
resented by value type 7.

26 #VTypePtr Pointer Stores data by reference instead
of by value, allowing, for
example, multiple values to ref-
erence the same piece of data as
opposed to multiple copies of
the data.

27 #VTypeEditor Editor A handle to an editor object, as
created by MakeEditor.

28 #VTypeParseStack Parser stack Used by the compiler to allow
the compilation to be suspended
in the middle of a statement to
handle specific code sections
such as I/O addresses.

29 #VTypeTag Tag (Unused) Intended to provide
engine-level support for scaled
variables that could be imple-
mented using a GUI.

30 #VTypeBitmap Bitmap A handle to an image object as
returned from MakeBitmap.

31 #VTypeFont Font A handle to a font object, as
returned by the Font function.

32 #VTypeVTSdb VTScada data-
base

A handle to the VTScada data-
base as returned by the DBSys-
tem function.

33 #VTypeODBCHndl ODBC Handle Provides a connection to an
ODBC database.

34 #VTypeSAPIStrm SAPI text-to-
speech stream

A type of stream for use with
Speech Application Pro-
gramming Interfaces

35 #VTypeComClient COM Client
Interface

An object that provides an inter-
face to a COM client application

36 #VTypeCryptoProv Cryptographic
Provider

A handle to the particular cryp-
tographic service provider that
includes the key specification to
use.

37 #VTypeCryptoKey Cryptographic
Key

May be either a Session Keys or
a Public/Private Key. See Cryp-
tographic Keys.

38 #VTypeDLLhandle DLL Handle A pointer to a structure returned
from the LoadDLL function.
Used to call functions within the
DLL that was loaded. See DLL.

39 #VTypeDeflateHandle ZLib Com-
pression
Handle

Used by the Deflate function

40 #VTypeThread Thread
Handle

A script-level hook to the data
structure used to represent a
thread in a dump

41 #VTypeBreakWatch Source Debug-
ger Break-
point Handle

References a set location in the
source debugger. See Working
with Breakpoints and Data Break-

points

42 #VTypeMiniDumpHandle Minidump
Data Handle

A pointer to a data structure that
holds information from a crash
dump

43 #VTypeTimeStamp Timestamp A numeric representation of
time, measured in seconds since
January 1, 1970

44 #VTypeXMLproc XML Pro-
cessor Handle

Serves as a conduit between an
XML document and an applic-
ation. See VTScada Engine XML
API

45 #VTypeTypeDefinition Dynamic Mod-
ule Definition

Deprecated. A handle to the
definition of a form of module
used as a data container.
Created by the MakeType func-
tion. This storage is used almost
exclusively for handling XML
and cannot contain script code
(unlike other forms of Module).

46 #VTypeTypeInstance Dynamic Mod-
ule Instance

Deprecated. An instance of a
dynamic module, created using
the MakeTypeInstance function.
This is an object value (type 7)
that can only be used to store
data - it cannot contain or
execute script. Typically these
are used when generating mod-
ule trees for delivery via XML. It
is a form of data container, how-
ever in general structures
(defined by the Struct function)
and Dictionaries (type 47) are
more efficient and convenient
for this role.

47 #VTypeDictionary Dictionary A key-based data container of
flexible size, used either on its
own to hold volatile data col-
lections or in the definition of
structures (see Structures).
ValueType will not return this
value unless the dictionary is a
"pure" dictionary. A pure dic-
tionary is one for which the root
value has not been set. Other-
wise, it returns the ValueType of
the dictionary's root instead. See
Dictionaries

48 #VTypeComProperty COM Property A value exposed by a COM Inter-
face "object". This may be
accessed similarly to a typical
VTScada value but is maintained
by the COM object, not the
VTScada engine.

49 <undefined> Module in Con-
text

Contains both a module value
and an instance of the context
module where scope should be
resolved.
Normally, scope will be the par-
ent module in which the Module
was declared. A Module in Con-
text is used for widgets and
plug-ins in VTScada where the
widget is declared in
AppRoot.SRC, but linked into a
tag type such that the widget
becomes a Module in Context in
the tag instance. References to
variables in the widget will then

refer to variables in the tag
rather than to variables in
AppRoot where the widget was
declared.
If a Module In Context value is
called in steady-state, the parent
instance will provide the asso-
ciated context.

50 #VTypeHistorianHandle Historian Con-
nection
Handle

For the VTScada proprietary data
store, this will be invalidated on
an "out of disk space" error, or
on loss of access to the file stor-
age. For other databases, this
will be invalidated on any con-
nection loss.

51 #VTypeXMLNode Dictionary
Structure

A WEB_XML_ADDRESS that
points to a WEB_XML_NODE.
When ValueType() runs against a
value and finds a WEB_XML_
ADDRESS it treats it the same as
a WEB_VALUE_ADDRESS, which
sits in front of an array or struc-
ture. It then searches through
the *_ADDRESS to find what it
points to and returns the type of
that item, in this case an USER_
XML_NODE

52 #VTypePPPHandle PPP Con-
nection
Handle.

May be passed into the function,
PPPStatus() to obtain an inform-
ation structure.
May be passed to the function,
CloseStream() to forcibly close
off a connection. Passing it into
CloseStream completely inval-

idates the handle and all data
associated with it.(see: PPPStatus
and CloseStream)

Style Guide for VTScada Code
Developers at Trihedral use this style guide in order to create consistent
and easy-to-read VTScada code. If you follow the recommendations in
this guide it easier for others to read your code and for you to read oth-
ers' code.

Comments
1. Start the VTScada file with a multi-line, 80 characters-per-line comment

describing the purpose of the module. The first line of the comment should
contain the name and ancestry of the module, centered between lines of
equal signs:

{====== PageManager\PageViewer ======}

Note that the number of equal signs varies - whatever is required to pad out
the comment to 80 characters. The last line of the comment should be
strictly equal signs, used to mark the end of the comment. A single space is
left between the equal signs and the text on either side.

2. Full line comments (on their own line) that are used to describe the action of
statements, etc. should have 5 asterisks after the opening curly brace and 5
before the closing curly brace of the comment:

{***** This statement blah blah blah *****}

3. Comments generally begin with a capital letter, however, single or few word
comments may or may not use capitalization, as appropriate.

4. Multi-line comments should use a single set of braces; if the comment is a
full line comment and will have asterisks, the text should be left aligned (i.e.
indented the width of the asterisks).

5. All variable and parameter comments should start in the same column
(preferably column 32) and end at the same column. This type of comment

is not a full line comment, so it should not use the asterisks described in item
2.

6. The closing angled brackets for a module should be preceded by a comment
indicating the end of the module. Although it is on its own line, it should not
have the asterisks mentioned in item 2:

...
{ End of PageManager\PageViewer }
>

7. Any code which is inserted for testing or for other temporary purposes must
have a comment which includes two consecutive question marks { ?? } which
can be rapidly located before code is shipped.

Variables and Parameters
1. Start parameters with an opening bracket in the leftmost column on the line

immediately following the module name.

2. Indent all variable and parameter definitions two spaces.

3. All variables and parameters must have some comment.

4. Use descriptive names for variables and parameters.

5. Variable and parameter names should begin with a capital letter.

6. Place the semi-colon for the variable or parameter declaration after the com-
ment on the same line - this makes it possible for the VTS application man-
ager to properly associate the comment with the correct variable.

7. Do not exceed column 132 so that it can be easily viewed in a DOS editor and
printed without loss of visible characters or wrapping.

8. For default values, align all = in the same column.

9. Blank lines may be placed between variable groups that have different pur-
poses. A comment identifying the purpose of the group should be provided.

10. Constants may be declared with all upper case names, as appropriate.

11. Constants used for indices should begin with the # character.

{=============================== CustomTag
=================================}
{ Custom tag definition. }
{==-
=======}
(
 Name <:TagField("SQL_VARCHAR(64)", "Name", 0):> { Name of
this tag };

Modules
1. With module declarations, align all "Module" keywords in the same column.

2. Module declarations with file names should align the file names in the same
column.

States
1. State declarations should be preceded by a blank line.

2. State name declarations should be in the first column.

3. State names should begin with a capital letter.

4. The square bracket beginning the state declaration should be on the same
line as the state name, separated from the name by one space.

Statements, Functions and Operators
1. Statements in a state should be indented by two spaces.

2. No spaces should be on either side of the brackets for a function.

3. All commas should be followed by a space

4. Assignment statements which do not consist of functions with long para-
meter lists which can be split on multiple lines can be split so that the text in
subsequent lines lines up with the first character after the =.

5. Where multiple = statements are listed together, align the = in the same
column.

6. Place a space before and after all two-parameter operators such as + and =,
with the possible exception of those found inside the square brackets of an
index of an array element.

7. The prefix operators * and & should not have a space after them; the prefix
operator ! should have a space between it and its variable.

8. Semicolons terminating a statement or declaration should follow imme-
diately at the end of the line without any preceding spaces.

9. Indent script statements a total of four spaces.

10. Write all functions with an upper case letter. Use a mixture of upper and
lower case where appropriate (CamelCase)

11. All functions should have a set of brackets, regardless of whether or not they
require parameters; this makes it easy to differentiate between a function
and a variable.

WhileLoop
DoLoop
IfElse

1. Place the conditions for the WhileLoop statement on the first line with the
body of the loop indented two spaces from the WhileLoop itself on the fol-
lowing lines. Terminate the WhileLoop with the) on a separate line aligning it
in the same column as the WhileLoop.

2. IfThen statements have their condition on the first line with the body of the
code and the termination the same as for the WhileLoop.

3. Start the DoLoop statement with no parameters on the first line. Indent the
body of the loop two spaces from the DoLoop. Terminate the loop with the
condition at the same column position as the DoLoop followed immediately
by the) on the same line without any spaces.

4. IfElse has its condition on the same line as the IfElse. If an Execute is required
for the TRUE case, it is placed on the first line as well, with its opening
bracket immediately following it (no space) and its closing bracket on its own
line in the same column as the IfElse. The "else" case is started with a com-
ment { Else }in the same column as the IfElse. If it requires and Execute, the
same guidelines are followed as described previously, except that the closing
brackets for the Execute and the IfElse are kept together on the last line with
no space in between.

 IfElse (Var1, Execute(
...

);
{ Else } Execute(
...

));

Example
(Comments do not extend the full 80 character width here due to space
limitations. This is not functional code.)

{=================== CustomManager\RemoteConfig
======================}
{ Dialog displayed when () button pressed
}
{==-
=}
(
Trigger { Flag - TRUE when dlg is displayed

};
)

[
Dialog Module "RBDlg.SRC" { The dialog

window };
DefaultThings Module "Def.SRC" { An alternate dialog

window };

Persistent XPos { The x-position of dialog
window };
Persistent YPos { The y-position of dialog

window };
Constant HT = 532 { The height of the dialog

box };
Constant WD = 480 { The width of the dialog

box };
InitVar { Initial value of var to be

changed };
MaxChars { Length in chars of longest

label };
Reset = 0 { Flag - TRUE to reset

vars };
ShowWindow = 0 { Flag - TRUE while window is

open };
Title { Title of the window

};
GIZMO { Pointer to the GIZMO module

};
]

Init [
If 1 Wait;
[
{***** Find the length of the longest label *****}
MaxChars = Max(StrLen(\FileLabel), StrLen(\PageLabel),

StrLen(\TagLabel)) + 1;

{***** Define the title based on the user settings *****}
IfElse (UseName, Execute(
GIZMO = Scope(Caller(Self()), "------");
Title = Concat(GIZMO\App, " - ", \RemoteConfigLabel);

);
{ Else }
Title = \RemoteConfigLabel;

);

{***** Perform initialization tasks *****}
DefaultThings(&InitVar);

]
]

Wait [
{***** Open the dialog when the user requests it *****}
 If Trigger OpenDlg;
[
ShowWindow = 1;
Reset = 0;

]
]

OpenDlg [
{***** The specified button was pressed or another dialog was

opened via the toolbar *****}
 If ! Trigger Wait;
[
ShowWindow = 0;

]
 If ! ShowWindow Wait;
[
ResetParm(Self(), 1);

]

 Window(PickValid(XPos, 100), PickValid(YPos, 100),
WD, HT, WD, HT,
Dialog(), \DialogWin,
Title, \DialogBGColor, ShowWindow);

]
{ End of CustomManager\RemoteConfig }

Basic Programming Tasks

While the range of what you can achieve with the VTS language is best
described by the word "anything," most projects will include several fun-
damental components such as opening a window and displaying graphic
elements, or gathering user input. Additionally, many people learn
VTS coding for similar ends, such as building a new type of report or cre-
ating a new type of tag.
This chapter is provided as a guide to these common and basic tasks. It
begins with instructions for creating a new script application, or adding a
new module to a VTScada application.

Related Information:

...Create a New Script Application

...Add a Module to a VTScada Application

...Working with Pages

...Create Windows & Use Graphics Functions

...Obtaining User Input

...Time and Date

...Build Custom Reports

...Working with Speech

...Interrupt the Shutdown Process

Create a New Script Application
A VTScada script application is one that is not based on the VTScada
layer, or on any other OEM layer, and therefore does not provide access
to the common VTScada development tools and services such as the Dis-
play Manager, Idea Studio, Alarm page, etc. A script application must be
programmed from start to finish.

Script applications are typically created for the purpose of analyzing data
or as utilities to perform custom tasks (such as converting databases).
To create a new script application:

1. Click the Add Application Wizard button (plus sign) that appears in the
VTScada Application Manager (VAM).
The wizard dialog opens.

2. Select the Advanced radio button, then click Next.

3. Select the Create new option, then click Next.

4. Enter a name for the application in the Name field and press Enter or Tab.
The Path field is automatically filled with the name of the application dir-
ectory for this new application based on the application name you've
entered minus the spaces. You have the option of changing the path if you
would like.

4. Choose Script Application from the Types drop-down list.

5. Click, Next.

6. Verify the options for the new application and click Finish.

VTScada generates the new script application, after which it will be listed in
the VAM.

A new application folder is added to your VTScada installation directory.
Within this new application directory, you will find the file, AppRoot.src.
This is the main application module file for your VTScada application, list-
ing all top-level variables and modules for the application.
For most script applications, AppRoot will have a single state containing
a single statement: a call to the Window() function, passing in the name
of a submodule (Graphics), which will run in the context of that window.
In most cases, you will add your code to the module, Graphics, or to sub-
modules of Graphics that you create.
Given the script application created using the preceding steps, you can
create a simple "Hello World" application as follows:

1. Using a text editor (Notepad or similar) open the file AppRoot.SRC in the new
application's directory.

2. Edit it to match the following example.

{================================= System
====================================}
{==-
=========}
(
System { Provides access to system library

functions };
Layer { Provides access to the application

layer };
)
[
Graphics Module { Contains user graphics

};
WinTitle = "Greetings!" { Window title

};
]
Main [
Window(0, 0 { Upper left corner },

800, 600 { View area },
800, 600 { Virtual area },
Graphics() { Start user graphics },
{65432109876543210}
0b00010000000110011, WinTitle, 0, 1);

]
<
{============================= System\Graphics
===============================}
{ This module handles all of the graphics for the application
}

{==-
=========}
Graphics
Main [
ZText(100, 100 { Lower left corner of text },

"Hello World" { Text to display },
15 { Text is white },
0 { Use default font });

]
{ End of System\Graphics }
>

3. In the VAM, click the Import File Changes button for the application.

4. Provide a comment and click OK.

5. Run the application.

Troubleshooting:

AppRoot.SRC looks nothing like the example here. There is no Graphics
submodule

l The application was not created as type, Script Application. You will need to
go back to the VAM and create a new application.

The window is blank.
l There are three possible reasons: 1) The coordinates given to ZText are out-

side the window area. 2) The text color provided matches the background
rather than being white (15) on black. 3) You skipped step 3 - import file
changes.

An error message is displayed when you click Import File Changes.
l There is a typographic error in your code. Check for spelling, commas,

semi-colons after every statement and a closing quotation mark and bracket
for every opening one. The message will give you a starting point to look for
the error, but you may need to scan up or down in the file to find the actual
source of the trouble.

Example:

...The Bonus Program

The Bonus Program

"Bonus" - a reward, usually financial, distributed to employees at the end
of a year.
The bonus program is a script application that is used in every
VTS programming course, to teach the basic concepts of the language.
Longer than a "Hello World!" program, it shows the workings of modules,
states, showing how to change graphics pages and how to interact with
an operator by monitoring the position of the mouse pointer. By studying
this example, line by line, you can learn a great deal about how VTScada
programs work. For example, why do the contents of screen 1 vanish
when screen 2 only contains code to add graphic elements, not remove
any? (* answer at bottom of page.)
The code for the bonus application is provided here for you to use in a
new application of your own. Once you have the application working, you
may wish to enhance it by adding new pages, graphic elements or user-
input elements.

1. Create a new script application, and name it "Bonus".
Follow the steps in the preceding topic, Create a New Script Application.

2. Using a text editor, open the file "AppRoot.SRC " found in your new applic-
ation's folder.

3. Replace the contents of AppRoot.SRC with the code following these steps.

4. Save the file. (It is recommended that you leave the editor open, so that you
can easily fix errors, or move on to experiment with new code.)

5. In the VAM, click the application's Import File Changes button. Provide a com-
ment when prompted.

6. Run the application. You can reset it to the first screen by pressing the "Esc"
key.

{================================= Bonus
====================================}
{==-
========}
[{ Primary module }
 Graphics Module { Sub-module declaration. Contains user graphics

};
 WinTitle = "The Bonus Program" { Window title };
 System { Provides access to system library functions};
]
Main [{ the only state contained in this module }

{ function call to create a window }
 Window(0, 0 { Upper left corner },
 800, 600 { View area },
 800, 600 { Virtual area },
 Graphics() { Start user graphics submodule, which provides
the window contents},

{65432109876543210}
 0b00010000000110011, WinTitle, 0, 1); { bit-wise control
the window appearance }
] { end of the state code }

< { Sub-module }
{============================= System\Graphics
==============================}
{ This module handles all of the graphics for the application }
{==-
========}
Graphics { module name }
(
{ Parameter section. Empty in this example. }
)
[{ Local variable declarations }
 X = 360 { X Position of Button };
 Y = 280 { Y Position of Button };
 FontValue { Variable for Font Value };
]
{ first of two states in this submodule }
Screen1 [
 ZText(230, 150, "Click here for an Important Announcement", 14,
0);
 If ZButton(340, 175, 420, 225, "Notice", 1) Screen2;
]
{ second of two states in this submodule }
Screen2 [
 FontValue = Font("ARIAL", 0, 30, 0, 5, 0, 0);
 ZText(150, 150, "Well, It's Bonus Time Again!", 14, FontValue);
 ZText(270, 230, "Click here for this Year's Bonus", 14, 0);
 ZBox(360, 280, 440, 330, 224);
 ZButton(X, Y, X + 80, Y + 50, "Bonus", 1);
 If Target(X, Y, X + 80, Y + 50);

[
 X = Cond(XLoc() < X + 40, X - 120, X + 120);
 Y = Cond(YLoc() < Y + 25, Y - 90, Y + 90);
]
 If MatchKeys(1, Makebuff(1, 0x1B {Esc})) Screen1;

[{ reset the x and y positions }
 X = 360 { X Position of Button };
 Y = 280 { Y Position of Button };
]
]
{ End of System\Graphics }
>

Troubleshooting:

l The application won't compile.
There is a typographic error in your code. Note the line number given in the
error dialog. This gives you a starting point for locating the error.

(*) Screen 1 vanishes because, upon leaving a state, all the code that was
running in that state stops running.

Related Functions:

... Cond

... Font

... MatchKeys

... Target

... Window

... ZBox

... ZButton

... ZText

Add a Module to a VTScada Application
In smaller script-based applications, you will write your code directly in
the AppRoot.SRC file, as shown in the bonus application example. (The
Bonus Program)
This will not be the case with a VTScada application. There,
AppRoot.SRC will contain only declarations of constants and submodules;
not module code. If your goal is to enhance a VTScada application by
adding a new tag, driver, report, data-entry wizard, etc. then follow
these steps:

1. Using a text editor, create a new file in the application folder.
The new file should be given a name that matches what you intend to call
your module, and must have the extension, ".SRC".

2. Write your VTS code in that new file.

3. Using a text editor, open AppRoot.SRC in the application's folder.

4. Add a line to declare your new module and give it a name.
This line must be in a section of AppRoot.SRC that is appropriate for the type
of module you are adding. For example, new tags must go into the (POINTS)
section. New reports are declared in the (PLUGINS) section.

Examples:

...A 15-Minute Snapshot Report

...Hide the VAM from Operators, but not Managers

Related Information:

...Working with Pages - code can be changed in or added to pages and
user widgets within an application

A 15-Minute Snapshot Report

This example shows how to create a new type of report, and how to add
a new module to an existing VTS program. The result will be a snapshot
report that works on a fifteen-minute basis rather than hourly or daily.

1. Select an existing application, or create a new one.
Do not select or create a script application.
Do not risk disaster by experimenting within a running production applic-
ation.

2. Using a text editor, create a new file in that application's folder.

3. Name the file "15MinSnap.SRC".

4. Copy the code following step 10 into that file and save it.

5. Using a text editor, open the application's AppRoot.SRC file.

6. Declare the module within the (PLUGINS) section.
The result should appear as follows. Note that the filename is case sensitive
- you must enter upper and lower case letters in the declaration, exactly as
you named the file.

[(PLUGINS) {===== Modules added to other base system modules =====}
15MinSnap Module "15MinSnap.SRC";

]

(There will already be a (PLUGINS) section - do not add a second one.

7. Save the file and click the application's Import File Changes button.

8. Click OK to import the new module.

9. Start the application if it is not already running. (It was not necessary to stop
it to do the preceding steps.)

10. Open the Reports page. Your new report should be available in the list of
report types.

{================================= 15MinReport
===============================}
{ This plugin modifies the hourly snapshot report to be every 15
minutes }
{ Groups : Loggers

}
{ Areas : All

}

{==-
=========}
(

Reporter { Object value for call-backs };
Start { Starting time };
End { Ending time };
Tags { List of tag names to report on };
Vars { List of vars within tags };

)
[
{ Set up this module to become a plug-in for the reports }
[(POINTS)

Shared Report;
]

Constant TypeFilter = "Loggers" {type of tags to use in the
report};

Constant ReportName = "15 Minute Snap" {title for the report };
TimeStamp { Time of last value returned };

Obj { Instance of report };
]

Init [
If 1 Wait;
[{ 15 minutes = 900

seconds }
Obj = \SnapshotReport(Reporter, Start, End, Tags, Vars, 900,

ReportName, 4);
]

]
Wait [

TimeStamp = Obj\TimeStamp; {ensures that the report object was cre-
ated before this module ends }

If !Valid(Obj);
[

Slay(Self, 0);
]

]

Troubleshooting:

l The application won't compile.
There is a typographic error in your code. Note the line number given in the
error dialog. This gives you a starting point for locating the error.

l The report is not available.
Ensure that you typed the code exactly as shown.
Ensure that the declaration was placed in the existing (PLUGINS) section of
AppRoot.SRC, and was placed before the closing square bracket of that sec-
tion.
Ensure that the Load File Changes button was pressed and no error dialogs
opened as a result.

Related Information:

...Build Custom Reports - Discussion and instructions for creating cus-
tom reports

Hide the VAM from Operators, but not Managers

The HideVAM application property can be set true to hide the VTScada
Application Manager (VAM) from view. While useful, this is not especially
convenient since it depends on having an application set to auto-start,
and at least one user account in that application granted the privilege of
seeing the VAM.

You can create a service module for any application that, while the applic-
ation is running, will control the value of HideVAM on a workstation
based on privilege or other property of a logged-in user.
The complete text of the module is as follows. It uses the SecurityCheck
function to inquire as to whether the logged-in user possesses the Man-
ager privilege (PrivBitManager). HideVAM is then set to the opposite of
the test for this privilege (thus the VAM is not hidden if the privilege is
set).

Note: You must use HideVAM rather than the older version, HideWAM.
HideWAM is now checked only on startup, and is only used to set the ini-
tial value of HideVAM.

{========================== HideVAM ==============================}
{ Hides the VTScada Application Manager based on security level }
{===}
[
CanConfigure { Set if we can view VAM };

]

Run [

CanConfigure = PickValid(\SecurityManager\SecurityCheck(
\SecurityManager\PrivBitManager, 1), 1);

If Watch(1, CanConfigure);
[

{ Set the WAM's visibility based on security manager check }
\SysLib\HideVAM = !CanConfigure;

]
]
{ End of HideVAM }

You may choose any security privilege you wish – see: System Privilege
Reference for the complete list.
The module should be declared in the [Services] section of the applic-
ation's AppRoot.SRC file.

Related Information:
See: "Hide the VAM" in the VTScada Developer's Guide

Working with Pages
You can change the appearance and behavior of the pages in your applic-
ation. There are two levels of access to the characteristics of pages: at
the developer's level, page characteristics are set using the Idea Studio
and its associated tools. At the programmer's level, page characteristics
can be set within a page's source file. Developer tools are described else-
where in this guide.

Note: The code for user-created widgets is very similar to that of page
modules, and therefore much the following information also applies to
them.

Caution: In general, it is not recommended that custom code be layered
on top of existing page object code. For example, by attempting to make
a Page Close button perform extra tasks before executing its own page-
closing code. This may easily result in a race condition. Create dedicated
code for each task instead.

Where to find the code for your pages:
For each page, there are three resource files,stored within your applic-
ation in a folder named, "Pages". These are user-editable copies - any
change must be imported into the application by an authorized user
before it will become part of the running application.

l PageName.SRC The .SRC file contains the source code for the page.

l PageName.RUN The .RUN file is the last compiled version of the page.

l PageName.BAK The .BAK file is a backup of the source code for the page.

The code of a page is a standard VTScada module1, following all the
rules of the VTScada language. It may begin with an optional set of para-
meters

(
 parmName <:"description text":> data_type;
)

Following the parameters (if any) will be the variable declarations.

[
 Title = "Overview";
 Color = 89;
 ...
]

Most pages will have one state, named "Main" by default when the page
is created within the VTS development tools. This is a subroutine, and
therefore will contain the statement, Return(Self);
All graphic entities added to a page within the development environment
will use the GUI- functions (GUIPipe, GUITransform, etc.), but you are
free to use Z- functions if you are adding objects using code.
The order of the graphical statements within the page's state determines
their display order (later statements have a higher z-order than earlier
statements) and also the tab-order for user-input elements.
Tags are drawn using drawing-method code, placed within GUITrans-
forms. The drawing-method code controls the appearance (meter, top-
bar, slider, etc.). The GUITransform controls the scaling and location.
Within the page code, each tag is referred to by its unique ID. This
enables developers to rename tags at will without losing the associated
graphic. If you copy the graphic, then paste it into an editor, VTS will
automatically look up the current name of the tag, and use that instead.

1A collection of states, scripts, variables, parameters, comments and pos-
sibly other modules, all of which make up a VTS program. Modules are
separate tasks that run simultaneously in an application. Behind every
page is a module and behind every tag on that page is an instance of
another module (usually with submodules controlling separate tasks).

(The absolute name will be used, rather than the relative name, as indic-
ated by the angle brackets.)

Variables within a Page’s Source File
All of the page elements that are accessible from the page editing dia-
logs are stored in the page's source code file and can be modified there.

DrawLabel The DrawLabel variable enables you to specify a
title for the page. When used within a page's
source code, the DrawLabel variable identifies
not the text to use, but the name of a con-
figuration variable whose value specifies the
text to be used as the page's title. For example,
when DrawLabel is declared in the page's source
code file as follows:

CONSTANT DrawLabel = "MyPageTitle";

VTScada will search the application's con-
figuration for a variable named "MyPageTitle"
and will use that variable's setting.

MyPageTitle = Master Control Page
; entry in Settings.Dynamic

By using DrawLabel, you can modify the title of
the page through the configuration variables
without needing to access the application's
code. This is particularly useful in situations
where standard page names must be translated
into another language, or otherwise customized
for a particular application. Note that many of
VTScada's labels are configured in the same
way; a variable in the code points to a con-
figuration variable that in turn provides the text
for the label.
If the DrawLabel variable is absent from the
page's source code file, or if DrawLabel is
declared in the page's source code file, but the
corresponding configuration variable is absent
from the application, the value of the Title vari-
able is used as the default. In the event that the
Title variable is absent from the page's source
code, then the module name is used as the text
for the page's title.

Title The display title for the page.
May also be set as an expression within the
body of the page's main state.

PageToolTipLabel Text to display as a tool-tip when the page has been
added to the navigation bar.

Bitmap Name of the image to use for the page background.

NoStretch The NoStretch variable is associated with the
ScaleDisplayContent configuration variable,
both of which enable you to control scaling for
the pages comprising your application. When set
to a non-zero value, ScaleDisplayContent causes

the graphics on all system pages to scale to fit
the dimensions of each page. ScaleDis-
playContent affects all pages in an application;
however, there may be selected pages to which
you do not wish the scaling to apply. The
NoStretch variable enables you to inhibit scaling
for such pages. If NoStretch has a non-zero
value, then the page will not be scaled regard-
less of the setting of the ScaleDisplayContent
configuration variable.

Note: Automated display scaling works reas-
onably well when enlarging the page. It cannot
do as good a job when shrinking a display for
a smaller screen. In particular, labels embed-
ded within buttons or widgets are more likely
to be truncated than scaled down.
Always design for the smallest screen that the
application will be displayed upon.

PageWinOpt The PageWinOpt variable overrides the normal options
used for windowed pages (see the Window function for
details). The default value for PageWinOpt is
0b1010000100110011.

PageX The PageX variable enables you to set the X coordinate
for the top left corner of a windowed page. If PageX is
not set for a windowed page, a default value is used.

PageY The PageY variable enables you to set the Y coordinate
for the top left corner of a windowed page. If PageY is
not set for a windowed page, a default value is used.

PageHeight The PageHeight variable overrides the normal
PageHeight calculation for a windowed page (see the
Window function for details). If not specified, the
height is calculated from the page components.

PageWidth As above, but for width.

PageMinHeight Minimum number of pixels to use for the height when
the page is displayed in its own window

PageMinWidth Minimum number of pixels to use for the width when
the page is displayed in its own window

PageVWidth Maximum width, in pixels, of a windowed page

PageVHeigh Maximum height, in pixels, of a windowed page

PageBMPMarginsWin A Boolean value (1 or 0) controlling whether a
margin should be used when a windowed page
displays an image.

PageBMPMarginLeft Left margin to use when PageBMPMarginsWin is
enabled.

PageBMPMarginBottom Bottom margin to use when PageBMPMarginsWin is
enabled.

PageBMPMarginRight Right margin to use when PageBMPMarginsWin is
enabled.

PageBMPMarginTop Top margin to use when PageBMPMarginsWin is
enabled.

Display Manager Bit Flags for Page Display
In addition to the modifiable variables within a page’s source file, the Dis-
play Manager defines and uses a set of bit flags that determine how a
VTScada page is displayed.

Constant PSTTB = 0x0001 { Page Style - Show Title Bar };
Constant PSBMP = 0x0002 { Page Style - Show Title Bar Bitmap };
Constant PSLGN = 0x0004 { Page Style - Show Title Bar Logon Button };
Constant PSCFG = 0x0008 { Page Style - Show Title Bar Configure But-
ton };
Constant PSDTE = 0x0010 { Page Style - Show Title Bar Date & Time };
Constant PSIND = 0x0020 { Page Style - Show Title Bar Alarm indic-
ators };
Constant PSTTT = 0x00FF { Page Style - Show all Title Bar decorations
};
Constant PSMBR = 0x0100 { Page Style - Show Task Bar };
Constant PSMNU = 0x0200 { Page Style - Show Menu Button and Menu };

Constant PSMPB = 0x0400 { Page Style - Show Task bar Page buttons };
Constant PSMFB = 0x0800 { Page Style - Show Task bar "<" and ">" but-
tons};
Constant PSMPM = 0x1000 { Page Style - Show Task bar "+" and "-" but-
tons};
Constant PSMHD = 0x2000 { Page Style - Hold page btn changes target
};
Constant PSMMM = 0xFF00 { Page Style - Show all Menu Bar decorations
};

There is a public variable, PageStyle, defined in the Graphics module in
each session, which is an OR of the style bits that apply to a page. The ini-
tial setting is PSMMM + PSTTT, which is all decorations.
The address of the PageStyle variable is passed as a parameter to the
MenuBar and TitleBar plug-ins.
Although PageStyle is public (because the MenuBar and TitleBar plug-ins
need to see it) setting its value directly is ineffective because it is reset
with each page change.
Whenever a new page is displayed, PageStyle is set as follows (in priority
order)…
Normal page:

1. Default value of a PageStyle variable in the page.

2. The value of DefaultPageStyle.
Windowed page:

1. Default value of a PageWStyle variable in the page.

2. The values supplied in parameter 4 of the Display Manager method,
ShowStyledPage.

3. The value of DefaultPageStyle.
DefaultPageStyle defaults to the value that shows all decorations. This
can be overridden by the configuration settings \DispMgrWPageStyle and
\DispMgrPageStyle, or by parameter three of the DisplayManager method
ShowStyledPage.
For example, to disable in all pages, the feature whereby a navigation
bar button changes if you hold it down for more than 1.5 seconds, you
have to set the configuration variable \DispMgrPageStyle to the value
0xFDFF (you cannot use the constant values defined in DisplayManager).
Application properties for pages

l DispMgrPageStyle - For all normal pages

l DispMgrWPageStyle - For windowed pages
(Please refer to Application Properties for the Display Manager " for fur-
ther information on these and other modifiable variables.)
For Custom pages you can use code similar to the following example to
offset the top and bottom of the page in the Display Manager:

TopOffset = PickValid(And(Caller(Self())\PageStyle, \Dis-
playManager\PSTTB), 0) ? \DisplayManager\Task_Height : 0;

BottomOffset = PickValid(And(Caller(Self())\PageStyle, \Dis-
playManager\PSMBR), 0) ? \DisplayManager\Menu_Height : 0;

Related Functions:

...Window

...Graphics

...Display Manager Properties - Refer to the VTScada Developer's Guide

Create Windows & Use Graphics Functions
You can create user-interface windows using the Window function. An
example of a call to the window function can be found in the AppRoot.src
file of every new script application.

Window(0, 0 { Upper left corner },
800, 600 { View area },
800, 600 { Virtual area },
Graphics() { Start user graphics },
{65432109876543210}
0b00010000000110011, WinTitle, 0, 1);

The Window() function specifies the size, location, and attributes of the
window when it is created. The seventh parameter (Graphics() in this
example) is a call to start another module. Any graphic statements that
appear in the called module or in any of its child modules are drawn on
the screen created by the Window function.
If the close icon is enabled on the window (via the Style parameter – 8th

parameter), care must be taken to ensure that when the user selects it,
the action you desire occurs, as by default, clicking the close button

stops your application; you may prefer to close the window but keep the
application running. To help you specify the action you wish to occur
when the close button is clicked, the WindowClose() function is provided.
For example, you may wish to define a "Cancel" button that will close the
window, as well as having the close button enabled:

If ZButton(10, 220, 110, 200, "Cancel", 2) || WindowClose(Self())
Done;
[
 ...
 winOpen = 0 { Assuming winOpen was used as the 11th parameter of
Window function };
]

When either this cancel button or the close button is selected, the script
above will execute, causing the variable that is in the Window function's
Enable parameter to become "0", thereby closing the window. Notice that
the WindowClose function (as used above), does not actually close the
window; rather it checks to see if the user is trying to close the window
with the window close button. It returns a true value when this is the
case, and the resulting execution of the script closes the window.

Related Information:

...Owned Windows versus Child Windows

...Native Windows Tooltip Support

...Working with Pages

...Focus ID

...Placing Focus on an Object vs. Selecting an Object

...Reference Boxes for Graphics Modules

...Use Scaling to Position Graphic Objects

Related Functions:

... Window

... WindowClose

... WindowOptions

Best Practices for Graphics

When writing a module that will be used to display graphics, there are
several things you should be aware of:

The Focus ID
Every function for drawing graphics includes a FocusID parameter.
VTScada does not force you to set a unique value for each ID since there
are situations where it is desirable to use one value for several objects.
(For example, disabling several AddressEntry fields by setting their
FocusID values to 0.)
Aside from a few special cases, it is strongly advised that you do set a
unique FocusID value for each graphic object in a window. Doing so will
help ensure that user interface controls function smoothly.

Note: Tab order between user input controls follows their z-order (that
is, the order of the statements within the state), rather than their Focus
ID value.

The Reference Box
If a particular module is to be used to draw graphics, and this module
will be used inside of a transform at any point, it may be helpful to fix
the module's reference box size. In doing so, all scaling done by the
transform will be predictable. This can be done by using the SetMod-
uleRefBox statement, or (more commonly) by following the module's
name in its definition with a group of constants that define the reference
box for the module. For example:

<
{===================== System\MyModule ========================}
MyModule
(10, 160, 210, 10)
(
 parm1;
 parm2;
)
MainState[
 ...
]

{ End of System\MyModule }
>

The constants define the left, bottom, right, and top coordinates of the
module's reference box respectively.
Reference Boxes in Graphic Modules

Switching Pages Within a Window
Most applications have multiple graphics. A common example is the mul-
tiple tabs of a configuration dialog.
If you want one window to contain several images, the Graphics module
should have multiple states, each containing the graphic statements for a
given display set. Action-triggers are used to switch from one state to
another. This is how tag configuration panels are built.
Another option is to open a separate window for individual pages or dia-
logs. This can be done by launching a module for each new window using
the Launch() function.

Use Scaling to Position GUI Objects
You may want to position an object such as a GUIButton, based on the
value of some variable or parameter.
Since the first four parameters of all GUI functions (Left, Bottom, Right,
Top) must be constants, the scaling parameters must be used to dynam-
ically change the position and size. This is easier to achieve if the first
four parameters define a unit box, and the side-scaling parameters (five
through eight) are used to position and size the object being drawn.
Since the scaling parameters do not have to be constants, variables may
be used to set the object's position.
The first four parameters are always in the order Left, Bottom, Right,
Top. The unit bounding box must therefore be defined as 0, 1, 1, 0. Do
not change the order.
The scaling parameters are also in the order of Left, Bottom, Right and
Top. The scale values to apply will always follow the formula, (1 – Left),
Bottom, Right, (1 – Top).

For example, to position a GUIRectangle using the side scaling para-
meters:

left = 10;
bottom = 80;
right = 100;
top = 10;
...
GUIRectangle(0, 1, 1, 0 { Unit bounding box },
 1 - (left) { Left scaling },
 bottom { Bottom },
 right { Right scaling },
 1 - (top) { Top scaling },
 1 { No scaling as a whole },
 0, 0 { No movement },
 1, 0, 0, 0, 0 { Visible, not selectable },
 14, 12 { Yellow interior, red outline });

This rectangle will be identical to one drawn using the following con-
stants for the initial bounding box.

GUIRectangle(10, 80, 100, 10 { Unit bounding box },
 1, 1, 1, 1, 1 { No scaling },
 0, 0 { No movement },
 1, 0, 0, 0, 0 { Visible, not selectable },
 14, 12 { Yellow interior, red outline });

As a final example, suppose that you have created the rectangle depicted
in the first case above, and that you now want to draw another rectangle,
smaller by 3 pixels in all directions, and perfectly centered within the
first rectangle

GUIRectangle(0, 1, 1, 0 { Unit bounding box },
 1 - (left + 3) { Left scaling },
 bottom - 3 { Bottom },
 right - 3 { Right scaling },
 1 - (top + 3) { Top scaling },

 1 { No scaling as a whole },
 0, 0 { No movement },
 1, 0, 0, 0, 0 { Visible, not selectable },
 10, 0 { Green interior, black outline });

Again, simply substitute the appropriate scaling coordinates into the for-
mula in the positions held by left, bottom, right and top.

Transparent and Alpha-blended Windows
VTScada supports transparent windows and alpha-blended (also referred
to as translucent) windows.

Transparent Windows
A transparent window is one that has a transparent or invisible frame
and background. The intended use for this feature is to allow the display
of non-rectangular windows by rendering the background as trans-
parent, while allowing mouse messages, such as movement and clicks, to
"drill-through" the transparent area to the window below. Objects (such
as graphics) placed on the transparent window remain opaque and
mouse messages do not drill-through these opaque objects.
The simplest way to create a transparent window is to specify a back-
ground color less than zero (e.g. –1). The underlying implementation,
however, requires that a specific color be used as the "key" color. All
pixels of that color in the otherwise rectangular screen area that the win-
dow occupies are rendered as transparent. Using a background color of
<0 results in the key color being black (i.e. RGB(0,0,0)), and the window
background being set to that color. It may well be that you wish to have
black as a color in your window, however. Therefore, setting bit 18 in the
Window statement also announces that this window is to be rendered as
transparent, with whatever color is specified as the background color
being the transparent color.

Alpha-blended or Translucent Windows
An alpha-blended or translucent window is one that has an alpha chan-
nel set up in the final renderer, resulting in a translucent effect to the
window (i.e. it behaves like a normal window, except that you can see

through the window to some degree). The degree of translucency ranges
from 0 (invisible) to 255 (completely opaque, like a normal window). Set-
ting bit 17 on your Window statement invokes "automatic" alpha blend-
ing, where the window is set to be 50% translucent when inactive, and
opaque when active. This is useful for dialogs that are non-modal and
always on-top, so that when another window is active, you can see
through the underlying windows. If you need a finer degree of control,
do not set bit 17; rather use a new value for the Option parameter of Win-
dowOptions (9) and set the WindowOptions "OptValue" parameter to the
degree of alpha-blending that you wish (0 to 255).

Note: Neither the transparent nor the alpha-blended/translucent
effects work with child windows. These effects are not designed for
animation purposes, and are not sufficiently efficient for this purpose.
The amount of processing power required to redraw one of these win-
dows depends on the rating of the graphics card in your machine – the
newer and faster the better.

Owned Windows versus Child Windows

Child windows (those with bit 9 set in their Window call) are not recog-
nized as separate entities. Clicking on a child window returns the object
value of the root module in its parent window.
A child window is embedded in a parent window and cannot leave that
draw area. It is automatically moved when the parent is moved. The child
window's X,Y position is relative to the parent's, rather than to the
screen. Typically a child window has no frame or title (ie; caption) bar,
although you can configure them.
This is not true for owned windows (those with bit 15 set in their Window
call), which return the object value of the root module instance in the win-
dow.
An owned window is similar to a full, resizable, normal window, however
it is owned by another window. Owned windows have no icon on the MS
Taskbar. An example of an owned window is the Add Application Wizard.

Owned, caption-less windows are a common way to create pop-up
(right-click) menus.
Note that, the mouse-wheel system will treat owned windows the same
as child windows only if the former are caption-less.

Native Windows Tooltip Support

The statement, WinTooltipCtrl, supports Windows tooltips.
A Windows tooltip is a pop-up text window that provides an operational
hint to a user based on the object on which the mouse pointer is
focused. As a VTScada developer, you may choose to present the text
box-style tooltips to users, or use the balloon-style tooltips (default).
The default behavior is to display balloon-style tooltips for "drawn"
objects (for example, an analog input represented as a number on a
page), and to display rectangular tooltips for other objects, such as but-
tons in a tool bar (rectangular tooltips appear for each of the buttons in
the tool bar on the Historical Data Viewer page). This behavior can be
changed to always display rectangular tooltips by setting the application
property "NoBalloonTips" to a non-zero value.
Tooltips in a VTScada application will use a font tag named TipFont if
you have defined one (you may select any font when defining TipFont). If
not defined, the default system font will be used.
The names of the related application properties start with "Tip" (e.g.
TipOn & TipFont). The default (Invalid) for all of these settings results in
the default operating system settings being used. Please refer to "Applic-
ation Properties for Tooltips".
The WindowOptions statement allows for setting the text color, back-
ground color, and timings associated with all tooltips for a given win-
dow. These settings are inheritable, so that Windows that are children of
a window that already has these settings modified uses the parent win-
dow's settings, unless explicitly overridden by subsequent Win-
dowOptions statements.

Related functions:

... WinTooltipCtrl

... WindowOptions

Working with Pages

Every page in an application will have a matching source file in the Pages
sub-folder.

Note: Developers may choose to remove all source code files before dis-
tributing an application to a client.

A page file is a module1. Using the information in this reference, you can
change the appearance and behavior of the pages in your application.
There are two levels of access to the characteristics of pages. At the
developer's level, page characteristics are set using the Pages library and
its associated Add Page and Page Properties dialogs. At the pro-
grammer's level, page characteristics can be set within a page's source
file.

Note: Use care if layering custom code on top of existing page
objects. (For example, taking a Page Close button and adding your own
extra tasks before it executes its own page-closing code.) This may eas-
ily result in a race condition. It is better practice to create dedicated
code for each task instead.

Page Module / File Characteristics

Page Resources
When a page is created, its resource files are stored within your applic-
ation directory in a directory named, "Pages". There are three resource
files for a page, each with a different extension:

1A collection of states, scripts, variables, parameters, comments and pos-
sibly other modules, all of which make up a VTS program. Modules are
separate tasks that run simultaneously in an application. Behind every
page is a module and behind every tag on that page is an instance of
another module (usually with submodules controlling separate tasks).

l .SRC The source code for the page.

l .RUN The last compiled version of the page.

l .BAK The backup of the source code for the page, after the last editing.

Variables within a Page’s Source File
The following variables can be used to modify the attributes and beha-
vior of a page.

l DrawLabel When used within a page's source code, the DrawLabel variable
identifies the name of a configuration variable whose value provides the text
to be used as the page's title. For example, when DrawLabel is declared in the
page's source code file as follows:

CONSTANT DrawLabel = "PageTitle";

Then VTScada will search the application's configuration for a property
named "MyPageTitle" and will use that property's value. This can be useful if
the title is to be translated since only a configuration file need be changed
rather than the page source code. Many of VTScada's labels are configured
in the same way; a variable in the code points to a configuration variable
that in turn provides the text for the label.

l Title If the DrawLabel variable is absent from the page's source code file, or
if DrawLabel is declared in the page's source code file, but the corresponding
configuration variable is absent from the application, the value of the Title
variable is used as the default. In the event that the Title variable is absent
from the page's source code, then the module name is used as the text for
the page's title.

l NoStretch The NoStretch variable is associated with the ScaleDisplayContent
configuration variable, both of which enable you to control scaling for the
pages comprising your application. When set to a non-zero value, ScaleDis-
playContent causes the graphics on all system pages to scale to fit the dimen-
sions of each page. ScaleDisplayContent affects all pages in an application;
however, there may be selected pages to which you do not wish the scaling
to apply. The NoStretch variable enables you to inhibit scaling for such
pages. If NoStretch has a non-zero value, then the page will not be scaled
regardless of the setting of the ScaleDisplayContent configuration variable.

Note: Automated display scaling works reasonably well when enlar-
ging the page. It cannot do as good a job when shrinking a display
for a smaller screen. In particular, labels embedded within buttons
or widgets are more likely to be truncated than scaled down.
Always design for the smallest screen that the application will be
displayed upon.

l PageX Used to set the X coordinate for the top left corner of a windowed
page. If PageX is not set for a windowed page, a default value is used.

l PageY Used to set the Y coordinate for the top left corner of a windowed
page. If PageY is not set for a windowed page, a default value is used.

l PageWinOpt Overrides the normal options used for windowed pages (see the
Window() function for details). The default value for PageWinOpt is
0b1010000100110011.

l PageHeight Overrides the normal PageHeight calculation for a windowed
page (see the Window() function for details). If not specified, the height is cal-
culated from the page components.

Display Manager Bit Flags for Page Display
In addition to the modifiable variables within a page’s source file, the Dis-
play Manager defines and uses a set of bit flags that determine how a
VTScada page is displayed.

l Constant PSTTB = 0x0001 { Page Style - Show Title Bar };

l Constant PSBMP = 0x0002 { Page Style - Show Title Bar Bitmap };

l Constant PSLGN = 0x0004 { Page Style - Show Title Bar Logon Button };

l Constant PSCFG = 0x0008 { Page Style - Show Title Bar Configure Button };

l Constant PSDTE = 0x0010 { Page Style - Show Title Bar Date & Time };

l Constant PSIND = 0x0020 { Page Style - Show Title Bar Alarm indicators };

l Constant PSTTT = 0x00FF { Page Style - Show all Title Bar decorations };

l Constant PSMBR = 0x0100 { Page Style - Show Task Bar };

l Constant PSMNU = 0x0200 { Page Style - Show Menu Button and Menu };

l Constant PSMPB = 0x0400 { Page Style - Show Task bar Page buttons };

l Constant PSMFB = 0x0800 { Page Style - Show Task bar "<" and ">" buttons};

l Constant PSMPM = 0x1000 { Page Style - Show Task bar "+" and "-" buttons};

l Constant PSMHD = 0x2000 { Page Style - Hold page btn changes target };

l Constant PSMMM = 0xFF00 { Page Style - Show all Menu Bar decorations };
There is a public variable, PageStyle, defined in the Graphics module in
each session, which is an OR of the style bits that apply to a page. The ini-
tial setting is PSMMM + PSTTT, which is all decorations.
The address of the PageStyle variable is passed as a parameter to the
MenuBar and TitleBar plug-ins.
Although PageStyle is public (because the MenuBar and TitleBar plug-ins
need to see it) setting its value directly is ineffective because it is reset
with each page change.
Whenever a new page is displayed, PageStyle is set as follows (in priority
order)…
Normal page:

1. Default value of a PageStyle variable in the page.

2. The value of DefaultPageStyle.
Windowed page:

1. Default value of a PageWStyle variable in the page.

2. The values supplied in parameter 4 of the Display Manager method,
ShowStyledPage.

3. The value of DefaultPageStyle.
DefaultPageStyle defaults to the value that shows all decorations. This
can be overridden by the configuration settings \DispMgrWPageStyle and
\DispMgrPageStyle, or by parameter three of the DisplayManager method
ShowStyledPage.
For example, to disable in all pages, the feature whereby a taskbar but-
ton changes if you hold it down for more than 1.5 seconds you have to
set the configuration variable \DispMgrPageStyle to the value 0xFDFF
(you cannot use the constant values defined in DisplayManager).

Note: You can incorporate the setting of these flags into the Dis-
playSession AppSessionVars plug-in module. Using this technique
enables the presentation to vary under different conditions. For
example, you may wish to present a welcome page which features no
taskbar and no alarm indicator in the title bar to users who are not

logged in. Once the users log in, you can then present the page with
menu/page navigation and alarm indicators enabled.

Application properties for pages
• DispMgrPageStyle - For all normal pages
• DispMgrWPageStyle - For windowed pages
(Please refer to Application Properties for the Display Manager " for fur-
ther information on these and other modifiable variables.)
For Custom pages you can use code similar to the following example to
offset the top and bottom of the page in the Display Manager:

TopOffset = PickValid(And(Caller(Self())\PageStyle, \Dis-
playManager\PSTTB), 0) ? \DisplayManager\Task_Height : 0;
BottomOffset = PickValid(And(Caller(Self())\PageStyle, \Dis-
playManager\PSMBR), 0) ? \DisplayManager\Menu_Height : 0;

Focus ID

Every function for drawing graphics includes a FocusID parameter.
VTScada does not force you to set a unique value for each ID since there
are situations where it is desirable to use one value for several objects.
(For example, you may want to disable several AddressEntry fields by set-
ting their FocusID values to 0.)
Aside from a few special cases, it is strongly advised that you do set a
unique FocusID value for each graphic object in a window. Doing so will
help ensure that user interface controls function smoothly.

Note: Tab order between user input controls follows their z-order (that
is, the order of the statements within the state), rather than their Focus
ID value.

Related functions:

... FocusID

... NextFocusID

...Graphics

Switching Graphics Pages

Most applications have multiple graphics. If you want one window to con-
tain several images, the Graphics module should have multiple states,
each containing the graphic statements for a given display set. Action-
triggers are used to switch from one state to another. This technique is
used by tag configuration panels.

The second alternative is to open a separate window for individual pages
or dialogs. This can be done by launching a module for each new window
using the Launch function.

Related functions:

... Launch

Placing Focus on an Object vs. Selecting an Object

There is a difference between an object being selected, and an object
that has the focus on a system page. It is very important to note that an
object that has the focus is not necessarily selected.
An object that has the focus is ready for input from the user. If the object
is an edit field for example, the cursor will blink within the field, indic-
ating that it is ready for input. If the object with the focus is a button, it
is highlighted when selected. In order for an object that has the focus to
be selected, it must be clicked by the mouse, or the <TAB> key, or the
<RETURN> or <ENTER> key must be pressed.
It is possible to force the input focus to a certain graphic object by
means of a NextFocusID statement. When dealing with statements that

combine an If function and a GUIButton function, it is important to keep
in mind that you may focus the button, but the script paired with the If
function will not be executed until the button is actually selected (either
by the keyboard or the mouse).
Focus movement (on a tab key) or reverse tab (i.e. Shift + Tab keys)) is
based on the order that statements appear in the source code. This
applies recursively to calling sequences in steady state. For example:

ZButton(...1...);
ChildMod();
ZButton(...2...);

In this example, ZButton(...1...) would be first in the focus order, fol-
lowed by any focusable statements in ChildMod, followed by ZButton
(...2...).
Launched modules will appear in the focus order after steady state focus-
able statements and steady-state calling sequences.
For example:

If Watch(1);
[
LaunchedMod();

]
ZButton(...1...);
ChildMod();
ZButton(...2...);

In the above sequence, the focus order will be the same as that of the pre-
vious example above, with the addition of any focusable statements in
LaunchedMod, after ZButton(...2...).

Reference Boxes for Graphics Modules

If a particular module is to be used to draw graphics, and this module
will be used inside of a transform at any point, it may be helpful to fix
the module's reference box size. In doing so, all scaling done by the
transform will be predictable. This can be done by using the SetMod-
uleRefBox statement, or (more commonly) by following the module's
name with a group of constants that define the reference box for the
module.
Example:

<
{===================== System\MyModule ========================}
MyModule
(0, 1, 1, 0)
(
 parm1;
 parm2;
)
MainState[
...
]
{ End of System\MyModule }
>

The constants define the left, bottom, right, and top coordinates of the
module's reference box respectively. The one-unit values shown in the
example are commonly used when the intention is to allow the transform
code to control the final size. By using unit values, you greatly simplify
calculations of scale.
The same technique is also used by all of the GUI... functions.
Note that these values must be constants; the use of variables for the
four values is not allowed by the compiler.

Related information that you may need:

...Use Scaling to Position Graphic Objects

...Reference Boxes in Graphic Modules

Related functions:

... GUIArc

... GUIBitmap

... GUIButton

... GUIChord

... GUIEllipse

... GUIPie

... GUIPipe

... GUIPolygon

... GUIRectangle

... GUIText

... GUITransform

Use Scaling to Position Graphic Objects

It is sometimes desirable to position an object, such as a GUIButton,
based on the value of some variable or parameter.
Since the first four parameters of all GUI functions must be constants,
the scaling parameters must be used to dynamically change the position
and size. This is easier to achieve if the first four parameters are used to
define a unit box, and the side-scaling parameters (five through eight)
are used to position and size the object being drawn. Since the scaling
parameters do not have to be constants, variables may be used to set the
object's position.
The first four parameters are always in the order Left, Bottom, Right,
Top. The unit bounding box must be defined as 0, 1, 1, 0. Do not change
the order.
The scaling parameters are also in the order of Left, Bottom, Right and
Top. The scale values to apply will always follow the formula, (1 – Left),
Bottom, Right, (1 – Top).
For example, to position a GUIRectangle using the side scaling para-
meters:

left = 10;
bottom = 80;
right = 100;
top = 10;
...
GUIRectangle(0, 1, 1, 0 { Unit bounding box },
 1 - (left) { Left scaling },
 bottom { Bottom },
 right { Right scaling },
 1 - (top) { Top scaling },
 1 { No scaling as a whole },
 0, 0 { No movement },
 1, 0, 0, 0, 0 { Visible, not selectable },
 14, 12 { Yellow interior, red outline });

This rectangle will be identical to one drawn using the following con-
stants for the initial bounding box.

GUIRectangle(10, 80, 100, 10 { Unit bounding box },
 1, 1, 1, 1, 1 { No scaling },
 0, 0 { No movement },

 1, 0, 0, 0, 0 { Visible, not selectable },
 14, 12 { Yellow interior, red outline });

As a second example, suppose that you have created the rectangle depic-
ted in the first case above, and that you now want to draw another rect-
angle, smaller by 3 pixels in all directions, and perfectly centered within
the first rectangle

GUIRectangle(0, 1, 1, 0 { Unit bounding box },
 1 - (left + 3) { Left scaling },
 bottom - 3 { Bottom },
 right - 3 { Right scaling },
 1 - (top + 3) { Top scaling },
 1 { No scaling as a whole },
 0, 0 { No movement },
 1, 0, 0, 0, 0 { Visible, not selectable },
 10, 0 { Green interior, black outline });

Again, simply substitute the appropriate scaling coordinates into the for-
mula in the positions held by left, bottom, right and top.

Related Information:

...Reference Boxes for Graphics Modules - General overview

...Reference Boxes in Graphic Modules - Specific details

Related functions:

... GUIArc

... GUIBitmap

... GUIButton

... GUIChord

... GUIEllipse

... GUIPie

... GUIPipe

... GUIPolygon

... GUIRectangle

... GUIText

... GUITransform

Drag & Drop to a Window

Any window can be used as a drag and drop target. An example can be
seen in the Idea Studio, where you can drag an image from any Windows
folder directly to your editing canvas to both import the image and draw
it on the canvas.
Not all object types can be imported.
To add this functionality, you must include two call-back modules in the
module that controls the window. These are OLEDrag and OLEDrop.
OLEDrag is not strictly necessary, but without it users will have no visual
reference that a drag and drop operation is under way.
In the following example, the parameters shown are required to make
the call-backs work. The content of the modules is entirely up to you.
It is a requirement that these modules operate as subroutines.

Example:
{=========================== System
=================================}
{===-
===}
(System { Provides access to system library func-
tions };
Layer { Provides access to the application layer
};
)
[
 Graphics Module { Contains user graphics
};
WinTitle = "IDropTarget Test" { Window title
};
]

Main [
Window(0, 0 { Upper left corner },

800, 600 { View area },
1600, 1200 { Virtual area },
Graphics() { Start user graphics },
{65432109876543210}
0b00010000000110011, WinTitle, 0, 1);

]

<
{======================== System\Graphics
=============================}
{ This module handles all of the graphics for the application

}
{===-
=====}
Graphics
[
OLEDrag MODULE { Called when a droppable object passes

over };
OLEDrop MODULE { Called when a droppable object is dropped

here};
PlaceImage MODULE { Draws an image in the position it was

dropped };
PROTECTED PlacedImages { Dictionary of dropped image objects
};

PROTECTED CurrentDragItem { Storage for current droppable obj if
any };
PROTECTED CurrentDragImage { Image being dragged if applicable
};

PROTECTED DragX { Current drag X position
};

PROTECTED DragY { Current drag Y position
};

PROTECTED ImgSzX { Current image width
};

PROTECTED ImgSzY { Current image height
};

PROTECTED Base { This object
};

CONSTANT #CF_TEXT = 1 { Text clipboard format
};

CONSTANT #CF_HDROP = 15 { File drop clipboard format
};

]

Init [
If 1 Main;
[
PlacedImages = Dictionary();
Base = Self();

]
]

Main [
ZText(10, 30,

 "Click and drag MSDN_Butterfly.jpg from the app folder", 0,
0);
ZText(10, 45,

 "onto this window.", 0, 0);
ZText(10, 60,

 "Does the image appear and track to the cursor (roughly)",
0, 0);
ZText(10, 75,

 "when the mouse is over this window?", 0, 0);
ZText(10, 90,

 "Release the mouse button, dropping the image.", 0, 0);
ZText(10, 105,

 "Does a copy of the image appear in the dropped position?",
0, 0);
ZText(10, 120,

 "If the answer to both questions above is yes then this",
0, 0);
ZText(10, 135,

 "test is a success, otherwise it fails. Feel free to try",
0, 0);
ZText(10, 150,

 "other files. Only images should be processed by this
test.", 0, 0);
{ The following code draws a copy of the image on the page posi-

tioned
to match the last reported drag position. The image is drawn

extending
up and left from the position.

}
ImgSzX = BitmapInfo(CurrentDragImage, 0);
ImgSzY = BitmapInfo(CurrentDragImage, 1);
GUIBitmap(0, 1, 1, 0,

1 - (DragX - ImgSzX),
DragY,
DragX,
1 - (DragY - ImgSzY),
1, 0, 0 { No overall scaling, trajectory, or rotation

},
1, 0 { visibility, reserved },
0, 0, 0 { No activation or focus },
CurrentDragImage);

]

<
{============================== OLEDrag
==============================}
{ Called in response to an IDropTarget drag notification.
}

{===-
====}
OLEDrag
(
Type { The clipboard format of the data partameter

};
Data { The data passed, data type varies (see

above) };
KeyState { Keyboard key press enumeration
};
X { X-coordinate of the cursor
};
Y { Y-coordinate of the cursor
};
Mode { Op code: 0=drop, 1=enter, 2=over, 3=exit
};

)

Main [
If 1;
[
{ When a drag enters a window it reports the data, but does not

during drag over or exit operations. Grab a copy of the image dur-
ing the enter and

remove it upon exit.
}

IfElse(Mode == 1 && Type == #CF_HDROP, Execute({ Only try to
make a bitmap if given a file name }

CurrentDragItem = Data;
CurrentDragImage = MakeBitmap(CurrentDragItem);

);
{ Else } IfThen(Mode == 3,
CurrentDragItem = CurrentDragImage = Invalid;

));
{ Update the drag position, technically this is only necessary
because
XLoc etc. don't report mouse position during a drag.
}
DragX = X;
DragY = Y;
Return(Invalid);

]
]
{ End of System\Graphics\OLEDrag }
>

<
{============================== OLEDrop
===============================}
{ Called in response to an IDropTarget drop notification.

}
{===-
=====}
OLEDrop
(
Type { The clipboard format of the data par-

tameter };
Data { The data passed, data type varies (see

above) };
KeyState { Keyboard key press enumeration

};
X { X-coordinate of the cursor
};
Y { Y-coordinate of the cursor
};
Mode { Op code: 0=drop, 1=enter, 2=over, 3=exit
};

)
[
PROTECTED Image { Image loaded from the file
};

]

Main [
If 1;
[{ The imae is being dropped, cease to draw the drag-tracking

image }
CurrentDragItem = CurrentDragImage = Invalid;
{ Add a copy of the image to the window at the current coordin-

ates. }
IfThen(Type == #CF_HDROP { Only do this if we were passed a

file name },
Image = MakeBitmap(Data);

IfThen(Valid(Image),
PlacedImages[GetGUID(1)] = Launch(\PlaceImage, Base, Base,

Image, X, Y);
);
);
Return(Invalid;);

]
]
{ End of System\Graphics\OLEDrop }
>

<
{=========================== PlaceImage
===============================}
{ Draws an image on the window at with a lower right corner at the
given pos. }
{===-
=====}
PlaceImage
(
Image { Image to be placed
};
X { Right side of the placement
};
Y { Left side of the placement
};

)
[
PROTECTED ImgSzX { Current image width
};
PROTECTED ImgSzY { Current image height
};

]

Main [
{ Draw an image extending up and left from the given position. This
just
makes things easy given the way that the image is being traced

during the
drag.

}
ImgSzX = BitmapInfo(Image, 0);
ImgSzY = BitmapInfo(Image, 1);
GUIBitmap(0, 1, 1, 0,

1 - (X - ImgSzX),
Y,
X,
1 - (Y - ImgSzY),
1, 0, 0 { No overall scaling, trajectory, or rotation

},
1, 0 { visibility, reserved },
0, 0, 0 { No activation or focus },
Image);

]
{ End of System\Graphics\PlaceImage }
>
{ End of System\Graphics }
>

TreeControl Module

The tree control is a system-level tool in VTScada. The TreeControl mod-
ule implements a tree control similar to that used by the Microsoft Win-
dows Explorer folder panel.
The format for the TreeControl module is:

TreeControl(&Tree)

where &Tree is a reference to the tree to be displayed.
TreeControl makes the following constants available to any module that
calls the ImportAPI function:

{***** Indices into the Tree array nodes *****}
[(API)
Constant #TI_KEY = 0 { "Key" value...see heading comment };
Constant #TI_TEXT = 1 { Text value to be displayed };
Constant #TI_SUBTREE = 2 { Subordinate tree below this node };
Constant #TI_MAPARRAYIDX = 3 { MapArray entry index };
Constant #TI_FLAGS = 4 { Various flags...see definitions };
Constant #TI_ICON = 5 { ICON graphic for node..folder is

default };
Constant #TI_TOOLTIP = 6 { In-place tooltip text - #TI_TEXT

default };
Constant #TREE_MINNODESIZE = 7 { Minimum compulsory node size };
Constant #TIF_EXPANDED = 1 { Flag - true if expanded };
Constant #TIF_CANEXPAND = 2 { Flag - true if able to expand };

Constant #TIF_NOFOLDER = 4 { Flag - true if not display folder
bmp };

Constant #TIF_GREYTEXT = 8 { Flag - true if grey this option };
Constant #TIF_HIDDENROOT = 16 { Flag - true if root is a hidden

root };
Constant #TIF_TITLEDTIP = 32 { Flag true to use titled tooltips };
Constant #TIF_POPUPTIP = 64 { Flag - true to NOT use in-place

tooltips };
]

The caller (not the parent) can provide the following subroutine modules
that will be called by TreeControl in response to specific events:

OnLeftClick(Node, X, Y)

Called when the left mouse button is released over a tree node. Node is
the tree node, while X and Y are the coordinates of the mouse.

OnRightClick(Node, X, Y)

Called when the right mouse button is released over a tree node. Node is
the tree node, while X and Y are the coordinates of the mouse.

OnDoubleClick(Node, X, Y)

Called when the left mouse button is double-clicked over a tree node.
Node is the tree node, while X and Y are the coordinates of the mouse.
This callback is always proceeded by OnLeftClick() and any node expan-
sion is done prior to calling OnDoubleClick(), but after OnLeftClick().

CreateSubtree(Node)

Called when a tree node has its #TIF_CANEXPAND flag set, but the #TI_
SUBTREE member of the node has not yet been constructed. The callee is
expected to construct an array of nodes and store them in the node sup-
plied to CreateSubtree.

ExpandTreeToNode(Key)

A sort of superset of CreateSubtree. It is called in response to a call to
SetSelected() to command the caller of TreeControl to make all the tree
nodes necessary to allow the node containing the Key to be expanded.
The caller of TreeControl should call ExpandNode as needed for each
node. When this callback returns, the tree will be positioned at the node
that contains Key.
 The (rough) logic of ExpandTreeToNode is:

 Recursively walk up the tree by recursing this subroutine until you get to
the tree root. The reverse recursion path is the shortest route from the
root back to the node. Unwind the recursion, creating sub-trees as neces-
sary and calling ExpandNode() for any that are not expanded.
 Clicking on the junction is handled internally, and no callback is made.
The array that is passed in describes the tree structure. The array must
be a 2-dimensional array, with each row (first subscript) describing a
node at the same level in the tree. Each field in the row describes the
node further:

[n][#TI_KEY]

The Key value is user-defined, and must be a value for which the ==
operator is meaningful. The Key value is used to identify which node the
caller is talking about when calling helper subroutines.

[n][#TI_TEXT]

This is the text value displayed. It can be any VTScada value that has a
valid textual representation.

[n][#TI_SUBTREE]

This is a reference to an array of subordinate nodes that are of the same
format as this node.

[n][#TI_FLAGS]

Flag values are used internally.

[n][#TI_ICON]

ICON graphic for the node (a folder graphic by default).

[n][#TI_TOOLTIP]

Additional tooltip for the node (none by default).
You can have each row with as many elements as you wish, but the above
indices are reserved and must be present in all nodes. The "structured"
Tree array provided can be modified at any time, and the TreeControl
will faithfully follow it. You can call Refresh at any time to invoke a full
rebuild of the tree.

Related Functions:

... GridList

... ImportAPI

Time and Date
Within VTScada, the time and date are kept as two separate numbers.
The time of day is represented as the number of seconds since midnight,
while the date is represented as the number of days since January 1,
1970.

Units for Time:
The Seconds function returns the time, the Today function returns the
date, and the CurrentTime function returns a combination of the two in
the form of the number of seconds since January 1, 1970.
Seconds returns a double value slightly more accurate than 1 micro-
second; however, when that value is assigned to a float type variable, it is
rounded to about 7 significant digits. This can reduce the accuracy, espe-
cially later in the day when the seconds count becomes large. To obtain a
reasonably accurate time stamp, the expression Seconds % 1 can be used
to return fractions of a second since the last second mark.
These date and time numbers may be manipulated to determine elapsed
time between two events simply by taking the difference between the
time and date of the two events. One of the more effective ways to accom-
plish this is by using the CurrentTime function. You can use the single
date and time number that is returned by this function to easily calculate
the elapsed time between events or to calculate the date and time at a
fixed offset.
The date and time numbers can be converted into text values for display
purposes using the Date and Time functions. The values returned from
these functions may have a variety of formats and may be displayed on
the screen using a GUIText statement. The Now function can be used in a

statement to give the time suitable for a Time function, or to display a
simple clock.
Numeric values of the day, month, and year may be extracted from a
VTScada date value (number of days since January 1, 1970) using the
Day, Month, and Year functions. The reverse process of combining the
day, month, and year may be done using DateNum.

Related information you may need:

...VTScada Time Zones

...Timers and Timing

Related Functions:

...Time And Date

VTScada Time Zones

VTScada provides three time zone functions:
l TimeZoneList(): The TimeZoneList() function provides a list of time zones.

l ConvertTimestamp(): The ConvertTimestamp() function converts a
timestamp between different time zones.

l TimeZone(): The TimeZone() function returns information on the current
time zone, such as the time zone name.

Unfortunately, TimeZoneList() and ConvertTimestamp() use information
in the registry that is not localized on non-English versions of Windows
operating systems; however, TimeZone() does. This causes problems
when you need to convert a timestamp to or from the local time zone, as
the result of TimeZone(2) is not suitable as a parameter to Con-
vertTimestamp() on non-English systems.
To overcome this issue, a time zone of "0" (local time zone) may be spe-
cified to ConvertTimestamp() as either the source or destination time
zone.

Timers and Timing

There are three timer functions that can be used to indicate when a spe-
cified time period has elapsed.

l AbsTime is used to check when a certain time occurs (relative to the real
time clock). For example, AbsTime can test when the next time a shift
change will occur. Since this function is tied into the real time clock, it is not
subject to drift as is the TimeOut function. It is useful when you want to tie an
event to a particular time of day rather than to a fixed time delay. If the abso-
lute time of the event is important, AbsTime should be used; however, if the
time of the event is meant to be relative to a randomly occurring event,
TimeOut would be the most appropriate function to use.

l RTimeOut is similar to TimeOut, except that it remembers the elapsed time
accumulated so far, even when the enable parameter is false. For example, it
can be used to test when a certain piece of equipment reaches a specific total
cumulative running time.

l TimeArrived indicates whether a given time, provided as a timestamp, has
occurred.

l TimeOut returns a value of "true" only after a fixed period of time has
elapsed. This function is often used in action triggers to cause an event to
occur after a time delay.

Related Functions:

...AbsTime

... RTimeOut

... TimeArrived

... TimeOut

Build Custom Reports
You can build your own custom report-types that integrate into the
VTScada report page or report tag, and therefore make use of the
VTScada Report Page's features (selection of tags, start and end dates,
output formats). Your module can then control the data retrieval process,
defining what is retrieved and what further calculations are done on the
returned values.

Related information you may need:

...How Reports Collect Data

...Report Formatting

...Common Features of a Report Module

...Type Filters - Limiting the List of Available Tags

...Parameters in a Custom Report

How Reports Collect Data

All reports make use of the GetTagHistory(1) function to query logged
data. This function returns an array of values from each tag, according to
the query parameters. These values are then formatted for display in the
report.
The features that make one report differ from another include:

l The title.

l The selection of tags.
Each report provides its own filter to the report page to limit the type of
tags available for selection.

l The data to return from a tag.
In almost all cases, this is "Value" – the logged values from a tag. But, cus-
tom tags can contain fields other than Value that can be logged and
therefore reported on.

l The start and end dates.

l The time range per data point retrieved.
For example, you might query the set of maximum daily values during a
month. The start and end dates mark the beginning and end of the
month, while the time range per retrieved data point will be one day.

l A function to be applied to the data in each time range.
Eleven functions are available including time-weighted average, min-
imum in range, maximum in range, sum of zero to non-zero transitions
during the range, etc.

(1)GetTagHistory replaces the older function GetLog. GetLog is still sup-
ported. Legacy applications that made use of GetLog can continue to do
so.

Report Formatting

VTScada reports are designed so that they can be sent to a range of out-
put formats including a text document, the system printer, an email or
an Excel spreadsheet. For this reason, they are designed with a minimum
of complicated formatting. Each report will contain a title (usually includ-
ing the date range), rows and columns of data, and very little else.
Writing VTScada code for more complex formatting is not recommended.
If a fancier report appearance is required, you can copy the default out-
put into a document or spreadsheet and apply fonts, colors, cell borders,
sub-total breaks, and other features there. Macros in programs such as
Excel can help automate this process if it needs to be done on a repeat-
ing basis.
By following this approach, you ensure that your reports remain flexible
for use with a variety of output formats.

Common Features of a Report Module

All report modules must contain the following features:
l Module structure follows VTScada coding rules.

l Parameter list enables the Report Page to pass user selections in.
Shared reference to Report so that the module becomes a plug-in of the
Report Page.

l Variables include:

l TypeFilter – limits tag selection in the Report Page

l ReportName – displayed Report Type in the Report Page

l The initialization state sets the query parameters and calls GetLog for each
user-selected tag.

l A second state processes the data, sending the rows to the VTScada report
generator, then slays the module when finished.

These features can be seen in the following example. This module cre-
ates a snap-shot type report. Instead of collecting an hourly or daily
snapshot, it retrieves the value at the start of each 15-minute data
range.
You can add this report to any VTScada application by copying the code
into a text file and declaring it in the AppRoot.SRC of the application. For
example, if you named the file containing this module, "QuarterHour.src"
declare it in the (PLUGINS) section of the AppRoot.SRC file as follows:

[(PLUGINS)
QuarterHour Module "QuarterHour.src";

]

Remember that file changes must always be imported before they come
into effect.
The code for the example follows:

{============================ QuarterHour
================================}
{ This generates a snapshort report given the time interval
}
{==-
=====}
(
Reporter { Object value for call-backs

};
Start { Starting time (local, not UTC!)

};
End { Ending time

};
Tags { List of tag names to report on

};
)

[
Titles { Array of ODBC database field names

};
Types { Array of ODBC column type names

};
Data { Actual data for the body of the report

};
Format { Array of format strings which will be

used
in successive SWrites to write Data

};
TitleStrm { Stream to build title line in

};
i { Loop counter

};
j { Loop counter

};
NTags { Number of tags

};
NRows { Number of periods (rows) in the report

};
TagData { Array of tag data

};
TZBias { Only Valid if Called from Report Page

};

Constant NUMFMT = "%13.2f";
Constant COLFMT = "%13s";

{ Set up this module to become a plug-in for the reports }
[(POINTS)
Shared Report;

]

Constant TypeFilter = "Loggers" { type of tags to use in the
report };
Constant ReportName = "Quarter Hour Snapshot" { title for the

report };
Constant TPP = 900 { 900 sec = 15 minutes

};
Constant Mode = 4 { Mode 4 == Value at start of

TPP };
{ The mode value of 4 is what makes this

a
Snapshot-type report. }

]

Init [

If 1 Loop;
[

{ Initialize the arrays for the tags }
TZBias = \IsTimeZoneAware ? TimeZone(0) : Invalid;
NTags = ArraySize(Tags, 0);
TagData = New(NTags);

{ Remaining arrays include Date and Time as well as NTags }
Titles = New(NTags + 2);
Types = New(NTags + 2);
Data = New(NTags + 2);
Format = New(NTags + 2);

{ Build the title lines }
TitleStrm = BuffStream(0);
SWrite(TitleStrm, "%s from %s %s to %s %s\r\n\r\n",

ReportName { Title for the report },
Date(Start / 86400, 4), Time(Start % 86400, 2),
Date((End - TPP) / 86400, 4),
Time((End - TPP) % 86400, 2));

{ Set the value, type and format of the first two title columns
}

Titles[0] = "Date";
Titles[1] = "Time";
Types [0] = "TEXT";
Types [1] = "TEXT";
Format[0] = "%-13s";
Format[1] = "%-9s";

{ write the first 2 columns of the title line }
SWrite(TitleStrm, Format[0], Titles[0]);
SWrite(TitleStrm, Format[1], Titles[1]);

{ Reset the loop counter }
i = 0;
{ For each selected tag... }
WhileLoop(i < NTags;

{ Add the tag name to the title line }
Titles[i + 2] = PickValid(Scope(\Code, Tags[i])\Name,

"Unknown");
Types [i + 2] = "TEXT";
Format[i + 2] = COLFMT;
SWrite(TitleStrm, COLFMT, Titles[i + 2]);

{ and, query data for the tag }
\GetLog(&TagData[i],

Scope(\Code, Tags[i]) { Point object value },
"Value" { Read data },
Start { Start time },
End { End time },
TPP { Time per point },
Invalid { No max number of points },
Mode { Calculation mode },
Invalid { N/A },
Invalid { Stale time },
TZBias { Time Zone Bias });

i++;
);

{ Add CR, LF to title line and reset the stream }
SWrite(TitleStrm, "\r\n");
Seek(TitleStrm, 0, 0);

{ Let the VTScada Reporter module set up the ODBC columns }
Reporter\ODBCColumns(Titles, Types);
{ And, the title line }

Reporter\TitleLine(TitleStrm);
]

]

Loop [
{ ensure that GetLog has finished }
If AValid(TagData[0], NTags) == NTags;
[

{ Calculate the correct number of rows to avoid off-by-one
errors }

NRows = Ceil((End - Start) / TPP);

{ Reset the row counter }
j = 0;
{ Loop through retrieved data, creating each report row }
WhileLoop(j < NRows;

{ First two columns of the row will be date and time }
Data[0] = Date((Start + j * TPP) / 86400, 7); { Date at start

of TPP }
Data[1] = Time((Start + j * TPP) % 86400, 2); { Time at start

of TPP }
{ Loop through TagData array to get the data }
i = 0;
WhileLoop(i < NTags;

{ Fill in data array }
Data[i + 2] = Valid(Cast(TagData[i][j], 3)) ?

TagData[i][j] : Invalid;
{ Fill in format array }
Format[i + 2] = NUMFMT;
{ Increment loop counter }
i++;

); { End WhileLoop }

{ Pass the report line to the VTScada Reporter module }
Reporter\DataLine(Format, Data);
{ Increment the data time index }
j++;

); { End WhileLoop }
Slay(Self, 0);

]
]

In this example, each call to GetLog returned a 1-dimensional array. If
you had passed it an array of modes, or an array of fields to return (per-
haps TimeStamp and Value), then the result from each call would be an
array of corresponding dimensions.

Type Filters - Limiting the List of Available Tags

By declaring a constant named "TypeFilter" you can limit the range of
tags available to the user for selection in the VTScada Reports Page. Poss-
ible values include any tag name or group. Since only logged data is avail-
able to be reported on, it is common to set this to "Loggers" but for your

report it may be appropriate to limit the selection to "Pump Status" or
"Digitals".

Example:

Constant TypeFilter = "Loggers";

Parameters in a Custom Report

Five parameters should be declared in your module. In addition to the
VTScada Reporter object, these allow user-selected parameters from the
VTScada Report Page to be passed to your custom report. The standard
parameters are as follows:

l Reporter
Object value for call-backs.

l Start
User-selected starting time.

l End
User-selected ending time.

l Tags
User-selected list of tag names to report on

In addition to these, you may decide to create a generic report that can
be used for a number of variations. The VTScada Snapshot report is an
example: That report module takes several extra parameters, which may
be overridden by a calling module, thereby creating different types of
Snapshot report. As a suggestion, extra parameters may include:

l Vars
List of logged variables within tags. This will always be "Value" when report-
ing on VTScada tags, but if your application contains custom tags with other
logged variables, you may override this parameter to provide the variable
name, or an array of logged variable names.

l TimeRange
Time range in seconds for each data point retrieved by the query. Passed to
the GetLog function as the TPP parameter. Appropriate choices for this value
will depend on the selected mode.

l ReportName

For customized report naming.

l Mode
The Mode to run GetLog in, thereby changing how data is queried. Please
see the following topic, Query Modes and Time Ranges.

l StaleTime
Optional: used in Mode 11 (Rollover Totals). See GetLog in the function ref-
erence for more details.

Query Modes and Time Ranges

When combined, these two parameters determine what report will be gen-
erated from a given set of tags. The choice of Mode determines how the
raw data will be retrieved. The choice of time range selects the amount
of data included in each of Mode's calculations. Each works with the
other.
The VTScada Function Reference has the following to say about GetLog's
Mode parameter:
Mode: Required. Indicates the mode of data collection.
Note that the mode is useful only when the TPP(*) parameter is valid and
greater than 0. Mode may be one of:

Mode Data Collection

0 Time-weighted average

1 Minimum in range

2 Maximum in range

3 Change in value over the range

4 Value at start of range

5 Time of minimum in range

6 Time of maximum in range

7 Sum of zero to non-zero transitions

8 Sum of non-zero time

9 Totalizer

10 Interpolated

11 Difference between the start and end values of a range (see com-
ments in GetLog)

It is possible to retrieve more than one mode in a single GetLog state-
ment. To do this, pass an array of values in as the Mode parameter.
(*) "TPP" in the above description, is the TimeRange parameter. In the
QuarterHour Snapshot example, this was set to 900 seconds (15 minutes)
and used with a mode of 4 (value at start of range).
By adjusting these two parameters, and using the example code shown in
the topic "Common Features of a Report Module," you can create a wide
variety of reports. The following table provides a few suggestions:

Mode
Time Range

(TPP)
Report

7 3600 (1 hour) Pump starts per hour

8 86400 (1 day) Daily total running time

9 3600 Hourly totals

1 & 2 in an
array

900 Minimum and Maximum values each
quarter hour

Related Functions:

... GetLog

A 15-Minute Snapshot Report

This example shows how to create a new type of report, and how to add
a new module to an existing VTS program. The result will be a snapshot
report that works on a fifteen-minute basis rather than hourly or daily.

1. Select an existing application, or create a new one.
Do not select or create a script application.
Do not risk disaster by experimenting within a running production applic-
ation.

2. Using a text editor, create a new file in that application's folder.

3. Name the file "15MinSnap.SRC".

4. Copy the code following step 10 into that file and save it.

5. Using a text editor, open the application's AppRoot.SRC file.

6. Declare the module within the (PLUGINS) section.
The result should appear as follows. Note that the filename is case sensitive
- you must enter upper and lower case letters in the declaration, exactly as
you named the file.

[(PLUGINS) {===== Modules added to other base system modules =====}
15MinSnap Module "15MinSnap.SRC";

]

(There will already be a (PLUGINS) section - do not add a second one.

7. Save the file and click the application's Import File Changes button.

8. Click OK to import the new module.

9. Start the application if it is not already running. (It was not necessary to stop
it to do the preceding steps.)

10. Open the Reports page. Your new report should be available in the list of
report types.

{================================= 15MinReport
===============================}
{ This plugin modifies the hourly snapshot report to be every 15
minutes }
{ Groups : Loggers

}
{ Areas : All

}

{==-
=========}

(
Reporter { Object value for call-backs };
Start { Starting time };
End { Ending time };
Tags { List of tag names to report on };
Vars { List of vars within tags };

)
[
{ Set up this module to become a plug-in for the reports }
[(POINTS)

Shared Report;
]

Constant TypeFilter = "Loggers" {type of tags to use in the
report};

Constant ReportName = "15 Minute Snap" {title for the report };
TimeStamp { Time of last value returned };
Obj { Instance of report };

]

Init [
If 1 Wait;
[{ 15 minutes = 900

seconds }
Obj = \SnapshotReport(Reporter, Start, End, Tags, Vars, 900,

ReportName, 4);
]

]
Wait [

TimeStamp = Obj\TimeStamp; {ensures that the report object was cre-
ated before this module ends }

If !Valid(Obj);
[

Slay(Self, 0);
]

]

Troubleshooting:

l The application won't compile.
There is a typographic error in your code. Note the line number given in the
error dialog. This gives you a starting point for locating the error.

l The report is not available.
Ensure that you typed the code exactly as shown.
Ensure that the declaration was placed in the existing (PLUGINS) section of
AppRoot.SRC, and was placed before the closing square bracket of that sec-
tion.
Ensure that the Load File Changes button was pressed and no error dialogs
opened as a result.

Related Information:

...Build Custom Reports - Discussion and instructions for creating cus-
tom reports

Diagnostic Files
In some VTScada applications, you may decided that there is a require-
ment for diagnostic files (as an example, a SQL data logger diagnostic
file in which all queries to the SQL server are written for later analysis).
The following list contains guidelines and tips on diagnostic files and
their storage.

l Do not create diagnostic files in your application directories. The size lim-
itation for synchronization of files by the RPC Manager is 32 MB. If a dia-
gnostic file should grow beyond 32 MB in size (which can easily occur) your
application will hang as it attempts to synchronize it. Additionally, once a dia-
gnostic file has been locked by VTScada (when an "Update All" remote con-
figuration action is performed), it can no longer be written to by VTScada.

l The file synchronization dialog shows the name of the file that it has just com-
pleted, rather than the name of the file that it is attempting to transfer.

l When file synchronization locks up for an apparently unknown reason, look
at the files in your application directory and sort them by size. Any files
greater than 32 MB are likely the culprit.

l As a minimum, always add a "\" character to the names of the files created
for diagnostics (or for any other purpose) to prevent them from being cre-
ated in your application directory. A better way to do this is to define a dia-
gnostics directory somewhere to dump these files. (The configuration
variables is a good place for creating path variables for this purpose.)
Another way is to create the diagnostics file with a .LOG or .DAT extension
(rather than with a .txt extension), as VTScada will not automatically add
these files to the application during synchronization.

Related information that you may need:

...File I/O

...RPC Manager Functions

Working with Speech
The following VTScada modules allow you to provide speech features in
your applications:

l Configure: Enables you to define how a speech stream will sound, and
where it will be heard.

l GetDevices: Runs in the VoiceTalk thread and returns a list of devices avail-
able on a SAPI text-to-speech stream.

l GetVoices: Runs in the VoiceTalk thread and returns a list of voices avail-
able on a SAPI text-to-speech stream.

l Reset: Stops a speech stream and cancels any buffered speech.

l ShowLexicon: Displays a SAPI text-to-speech engine lexicon dialog to permit
modification of pronunciation.

l Speak: Executes on the speech thread to speak supplied text through
a specified SAPI text-to-speech stream.

l VoiceTalk: Opens and returns a handle to a SAPI text-to-speech stream.
Note that the following modules have been obsolete for some time, but
are still provided for backward compatibility:
SpeechStream, SpeechEnum, SpeechLexiconDlg, SpeechReset,
SpeechSpeak, and SpeechSelect.

Related Functions:

... Configure

... GetDevices

... GetVoices

... Reset

... ShowLexicon

... Speak

... VoiceTalk

Interrupt the Shutdown Process
There are two methods to interrupt the shutdown process. Note that
neither can be used to delay a shutdown caused by time-limited trial
license by more than ten minutes.

Method 1:
Any module declared in AppRoot.SRC as a member of the class
(SHUTDOWN_HOOK) will run automatically during the shutdown process.
Such a module may be used to write extra information to disk or perform
any other task before the shutdown process completes.

Method 2:
If you add a module named "VAMStopAppCheck" to your application, you
can interrupt the shutdown process to prompt for confirmation or to give
the operator time to perform some task before proceeding with the shut-
down. For example, when the TraceViewer is shut down, it will check
whether logging is still enabled and if so, ask the operator whether to
continue logging.

Note: This does not apply to shutdowns initiated by a low UPS. Those
are considered to be both time-sensitive and critical and therefore will
not be delayed by a VAMStopAppCheck module.

If adding this module to a script application, define it in the AppRoot.src
file of the application. If adding it to a VTScada application, the module
must be in it's own file, which is declared in the AppRoot.SRC file. (Note –
it should be declared on its own, not within any of the module classes.)
It is sufficient that the module be declared in the AppRoot.SRC file in
order for the VAM to call it upon shut-down. This will happen when the
user tries to stop the application by using the stop button in the VAM or
by stopping the VAM itself. The VAM will not automatically call
VAMStopAppCheck when the user closes the application by clicking the X
in the corner of the title bar. Script applications are able to trap for this
method of closing the application, but VTScada applications are not.

VAMStopAppCheck should be declared with two parameters:
l OKStopPtr – a pointer to be set. When *OKStopPtr is set to 1, the application

may stop.

l VTSExit – a Boolean. If TRUE, VTScada is being shutdown. If FALSE, only the
application is being stopped.

The general structure of the module will display a dialog to the operator,
and wait for a response before continuing.
Example:

<
{============================== VAMStopAppCheck
========================}
{ Module called by VAM when Stop button is pressed. Setting OKStopPtr
}
{ to 0 tells the VAM not to stop the app. Setting it to 1 allows it
to }
{ stop. }
{==-
===}
VAMStopAppCheck
(
OKStopPtr { Pointer to set: 1 if ok to stop, 0 if not

ok };
VTSExit { Flag - TRUE if VTScada wants to exit; false

if app
is just being stopped. Default is false. };

)
[
Close { TRUE if user chooses to stop the app

};
CloseDialog Module { Presents dialog to user getting con-

firmation
for app stop. };

]

Check [
If 1 Wait;
[

{ User has attempted to stop the application. Show the close dia-
log. }

CloseDialog(&Close);
]

]

Wait [
If Valid(Close);
[
IfElse(Close,
*OkStopPtr = 1;

{ Else }
*OkStopPtr = 0;

);

Slay(); { In either case, this module is finished. }
]

]

>

<
{=============================== CloseDialog
==========================}
{ Launched module presents a dialog to the user when the application
}
{ is stopped
}
{==-
==}
CloseDialog
(
AskExitResultPtr { Pointer to set the result

};
)
[
AskExitResult { The user's choice

};
]

CloseDialog [
AskExitResult = \System\4BtnDialog(\System\Question_Icon,

"Yes", "No", Invalid, Invalid,
"Continue shutdown?", Invalid,

Invalid,
1, 0, 1, "Continue with shut-

down?",
Invalid, Invalid, Invalid, 2,
Invalid, Invalid);

If Valid(AskExitResult);
[

*AskExitResultPtr = AskExitResult == 1 ? 1 : 0;
Slay();

]
]
>

Alarm Manager

The Alarm Manager maintains a record of alarm activity, and keeps track
of the current status of all alarms in the system, whether they are active,
acknowledged, shelved, etc. This information is stored as records in an
alarm database.
To record and store information, the Alarm Manager uses a VTScada His-
torian. By default, the System Alarm Historian is used, but others may be
created and selected as part of application development.

Note: Alarm data and process I/O data should always be stored with sep-
arate Historians.

Alarms are linked to Historians via Alarm Database tags. Two Alarm DB
tags are standard with every VTScada installation: System Alarm DB is the
default for all user-created alarms and events. System Event DB is used
for all built-in VTScada events including security logs and operator-con-
trol actions. If you create new Alarm Database tags, only (and all) those
alarms that are children of a database tag will be stored in that database.
In all other cases, the default is the System Alarm DB.
Note that the alarm files, Alarms.DB and Alarms.LOG are obsolete as of
VTScada version 11.2. For legacy applications that are upgraded to 11.2
or later, all alarm history will be transferred to Historians as a one-time
process. In the event that you intend to add extra Alarm Database tags to
your application and store certain alarm information with those custom
databases, do so before transferring the alarm history.

Programmers can use the Alarm Manager API described in this chapter
for the following tasks.

l Add alarm features to tags that they code from scratch.

l Customize the columns and other display characteristics of alarm lists.

l Query alarm status information for use in modules such as custom reports.

l Query or modify alarm properties to view or change the Alarm Manager con-
figuration.

Related Information:

...Adding Alarms to Custom Tags

...Alarm Functions

...Alarm API Structure Definitions

...Alarm Manager Function Constants

...VTScada Event Logging

...Alarm Message Templates
See the VTScada Admin Guide for:

...Application Properties for Alarms

...Properties for the Alarm Notification System

Alarm API Structure Definitions
The alarm manager defines several data structures.

l The configuration structure is obtained and populated when commissioning
an alarm. Alarm Configuration Structure

l The status structure may be obtained and monitored to watch for changes to
an alarm's state. Alarm Status Structure

l The transaction structure contains information about an alarm event that is
stored to from the database including what changed (active state on or
off...), the logged-on user, which workstation, etc. Alarm Transaction Struc-
ture

l The record structure is the complete set of information for each entry in the
alarm database. This includes both configuration and transaction inform-
ation. Alarm Record Structure

Alarm Configuration Structure

Every alarm can be described using a known configuration structure.
When configuring a new alarm, this structure should be created via a call

to \AlarmManager\GetAlarmConfiguration, then populated with the
appropriate values before a call is made to \AlarmManager\Commission.

ConfigurationStruct { All Boolean flags default to FALSE }

Name Unique name for the alarm

FriendlyName Display name of the alarm's source

Area Area

Description Description. Was "Message" prior to 11.2

Priority Priority. Must be valid to be commissioned. Must be an integer cor-
responding to the Alarm Priority tag values.

Reserved

Disable TRUE to disable the alarm

DisableParmName Name of the tag's disable parm. Allows us to get the operator name
who made the config change.

OnDelay Seconds to delay before activating

OffDelay Seconds to delay before clearing

RearmDelay Seconds to delay before rearming after ack

Setpoint Setpoint of alarm evaluation

ValueLabels Array of labels to display instead of Value or Setpoint. Rarely used by
tags other than digitals.

Units Setpoint units

Function Enumerated function for alarm evaluation (1)

AlarmType String identifying the type of alarm

Trip TRUE if alarm only becomes unacked not active

NormalTrip TRUE if alarm becomes unacked when it clears

OffNormal TRUE if alarm only becomes active not unacked

Deadband Setpoint deadband

PopupEnable TRUE to enable popup display of active alarm

SoundFile Filename relative to app path of custom sound

Custom Array/Dictionary/Structure of custom fields

AdHoc TRUE if alarm is ad hoc

GetAlarmConfiguration returns only a copy of the alarm's structure, not
a reference. To update any property within the structure:

1. Obtain a copy using GetAlarmConfiguration.

2. Change values within that copy as required.

3. Include the copy in a new call to the Commission function.

Related Functions:

...GetAlarmConfiguration

...Commission

Alarm Status Structure

AlarmStatus Struct

IsActive TRUE if alarm is on the Active list };

IsUnacked TRUE if alarm is on the Unacked list };

IsShelved TRUE if alarm is on the Shelved list };

IsDisabled TRUE if alarm is on the Disabled list };

This structure should be used in all new code, replacing the older func-
tions IsActive, IsUnacked, IsShelved and IsDisabled.

Related Functions:

...GetAlarmStatus

Alarm Transaction Structure

[

TransactionInfo Struct

Name Alarm name

Cfg Alarm's configuration. Only required to bypass the alarm's commissioned
configuration.

Action Alarm Action code

Transaction Alarm transaction string

Timestamp Alarm timestamp (UTC)

TransactionInfo Struct

Value Tag value

Custom Custom fields; overrides Cfg\Custom

Reserved

MachineID Workstation's MachineID. Defaults to local.

AccountID AccountID of operator

Device Name of client device

ExpiryTime Time the record is to be removed (UTC)

RemovalGUID Reference GUID for targeted removals

NoteInfo Structure containing information about a note that has been attached to
this transaction. It provides the Timestamp and GUID of this transaction.

The transaction string takes the form, "ListName+" or "ListName-".
Several transactions can be combined in one string. The following
example sets both the unacknowledged status and the active status off:
“Unacked-Active-”.
List names include the following: Active, Unacked, Shelved, Disabled, Con-
figured.

Alarm Record Structure

AlarmRecord Struct

TimeStamp UTC time for the event

GenTimestamp UTC time when the record was written

GUID 16 byte unique ID for the event

ReferenceGUID GUID of original event that this cancels

ReferenceTime Time when original canceled event occurred

Name Alarm name, typically the tag name

Area Alarm area

Transaction List additions and deletions

Action Alarm action to display for history event

Priority Alarm priority (integer)

AlarmRecord Struct

IsShelved TRUE if this alarm is shelved

Database UniqueID of the alarm database tag

Custom Field to be used by OEM & app code

MachineID Workstation where record originated

Device Name of originating client computer

UserID User associated with the event

Description Alarm description/message

Reserved

ExpiryTime Time shelved record is to be removed

OnDelay Time to wait (seconds) before activating

OffDelay Time to wait (seconds) before clearing

Value Tag value at time of alarm event

Setpoint Alarm setpoint

Units Setpoint units

Function Setpoint function

AlarmType Type of alarm

SetpointLabel Label to display instead of Setpoint

ValueLabel Label to display instead of Value

RearmDelay Rearm delay (seconds)

Deadband Analog deadband

SeqNum Sequence Number (for history sort)

Trip TRUE if alarm was tripped

AdHoc TRUE if alarm was ad hoc

NoteAttached TRUE if one of more notes attached to record

IsConfig TRUE if the alarm configuration is changed

Alarm Manager Function Constants
The Alarm Manager defines the following constants. Use these in custom
code that enables the user to choose the trigger for an alarm condition.

ALM_FUNC_ON_CHANGE upon change of value

ALM_FUNC_EQUAL ==

ALM_FUNC_NOT_EQUAL !=

ALM_FUNC_LESS_THAN <

ALM_FUNC_LESS_EQUAL <=

ALM_FUNC_GREATER_THAN >

ALM_FUNC_GREATER_EQUAL >=

ALM_FUNC_AND_WITH &&

ALM_FUNC_OR_WITH ||

ALM_FUNC_XOR_WITH ^

ALM_FUNC_NOT_AND_WITH !(&&)

ALM_FUNC_NOT_OR_WITH !(||)

VTScada Event Logging
An alarm may be described as "A situation to which an operator must
respond", while an event is "an action that is recorded, but requires no
response." Events differ from alarms only in purpose and notification.
For both, a triggering action occurs, and a transaction is recorded of that
occurrence.
Many events are built into VTScada. Each change to security con-
figuration is logged as an event recording who, what, when and where
(workstation). Operator logons and log-outs are similarly recorded. Each
operator-control action is recorded as is each VTScada action such as
sending an alarm notification, generating a scheduled report from a

Report tag, and more. All of these VTScada-generated events are logged
in the Alarm Event DB tag.
All events can be viewed in the History page of any Alarm List.

Logging of Operator Control Actions
Each time an operator performs a control action in an application, such
as starting a pump, that action is logged. The record includes the oper-
ator name, the workstation used, a timestamp, the name of the output
tag, the area of the output tag, the current value, and the value written. If
no tag area property is defined or available, then the value defined in the
property, OperatorLogArea will be used.
The content of the logged message is controlled by the application prop-
erty OperatorLogTemplate. Prior to version 11.2, messages longer than
80 characters were trimmed, but this is no longer the case. Other prop-
erties (see list of related information) control whether operator logging
is enabled and provide default values to be used when none are oth-
erwise available.

Logging of Security Events
Each time a user logs on or logs off, or a manager performs a security-
related action such as adding a new user account, details about that
action are added to the alarm log.
For each security entry in the History list, the following information is dis-
played:

l The name of the workstation on which the security event occurred,

l The account name of the person who performed the action

l A time and date stamp,

l Details about the action performed

Related Information:
Refer to the VTScada Admin Guide for:

...OperatorLogArea

...OperatorLogging

...OperatorLogName

...OperatorLogTemplate

Query the Alarm History
The History tab of the Alarm Page (or any Alarm List) offers the easiest
way to query alarm history with its various filters. Note that you can use
the keyboard combination CTRL+C to copy the information from a report
(or any alarm list), then paste it into a spreadsheet for further pro-
cessing.

In custom code, you can build your own alarm lists by using the function
GetAlarmList. This is the function used by the Alarm Page and every
Alarm List widget.

You can also query historical alarm data using code via the SQL Interface
command, "SQLQuery". You may use this function to build SQL state-
ments that can select data directly from the list of active alarms or the
alarm history.
Two tables are available for you to query. :Alarms for current alarms and
:AlarmHistory for past events. Note the leading colon in both table
names.
For example, to query the names and priorities of all active alarms:

SQL_Query = "SELECT Name, Priority FROM :Alarms WHERE Active = 1";
\VTSSQLInterface\SQLQuery(SQL_Query, &Result, &FieldNames,
&FieldTypes,

&RetCode, &ErrorMessage);

Upon success, the resulting two-dimensional array will be stored in the
variable Result. The size of the first dimension is controlled by the num-
ber of fields you query for. The size of the second dimension matches
the number of rows returned.
In the event of an unsuccessful query, Invalids will be returned in the
SQLQuery parameters.

To retrieve all events associated with the operator Bob on April 10, 2008
:

SQL_Query = Concat("SELECT Timestamp, Name, SubName, Event ",
"FROM :AlarmHistory ",
"WHERE Timestamp >= '2008-04-10 0:00:00' ",
"AND Timestamp < '2008-04-11 0:00:00' ",
"AND Operator = 'Bob'");

\VTSSQLInterface\SQLQuery(SQL_Query, &Result, &FieldNames,
&FieldTypes,

&RetCode, &ErrorMessage);

To know when the query has finished, watch for RetCode becoming valid.
Available column names to use in your query include:

Timestamp Name SubName

Event Message Priority

Type HookPointValue Area

HookPointUnits Operator

Related Information:

...Alarm Reports - Using the built-in alarm reports

...GetAlarmList - VTScada function reference

...SQLQuery - VTScada function reference

...SQL Queries of VTScada Data: The ODBC Server - VTScada Developer's
Guide - Configuration and examples.

Alarm Message Templates
Templates can be used to define the alarm that is delivered via the Alarm
Notification System (voice, email or pager) or via the text-to-speech fea-
ture. These templates can use a combination of words and replaceable
symbols to define the content of the alarm message. Templates may be
up to 128 characters in length.

Related Information:

Referring to the VTScada Admin Guide, separate templates are available
for each of:

l Spoken alarms

l AlarmSpeechTemplate

l Dialed voice messages

l AlarmDialerTemplate

l AlarmDialerStatusTemplate

l Emailed alarms

l AlarmEmailTemplate

l AlarmEmailAckSubjectTemplate

l AlarmEmailAckTemplate

l AlarmEmailStatusTemplate

l AlarmEmailSubjectTemplate

l Paged alarm messages

l AlarmPagerTemplate

l AlarmPagerStatusTemplate

l SMS messages

l AlarmSMSTemplate

l AlarmSMSStatusTemplate

l AlarmSMSAckTemplate
There are also two template configuration options that set the format
used for the date and time if these parameters are used as part of the
template.

l Date Format see: AlarmTemplateDateFmt

l Time Format see: AlarmTemplateTimeFmt

The complete list of replaceable parameters:

Parameter Meaning

%A Area of the Alarm tag.

%D Date of the alarm

%F Full tag name

%H Short tag name

%M Alarm description

%N New sentence for email and pager messages.

%O Name of the operator logged on at the time the alarm was triggered.

%P Priority of the alarm.

%S Status of the alarm

%T Time of the alarm

%U Units of the Triggering tag.

%V Alarm value (this is the value of the alarm trigger at the time that it triggered
the alarm)

%W Pause for ¼ second. Has no effect on email or pager messages.

Custom Alarm Hook API
In versions of VTScada prior to release 11.2, developers who wanted to
add custom functionality to an alarm event would override a module of
the Alarm Manager to add their code. That technique is now obsolete.
Many existing overrides will continue to work, but should be tested
before being put into production use with version 11.2 or later.
To add extra functionality to an alarm transaction, create an alarm hook
module. A set of hook names has been defined within the Alarm Man-
ager. If your application contains a module with a matching name, it will
be called just before the transaction is logged, allowing you to perform
extra work.
An alarm hook should return TRUE or Invalid to allow the transaction to
proceed and be logged. Alarm hooks that return FALSE will stop the
transaction from proceeding.
The module may be defined with one parameter, which VTScada will use
to pass in the fully-populated transaction structure.

Defined alarm hooks:

l AlarmAckHook

l AlarmActiveHook

l AlarmCommissionHook

l AlarmDecommissionHook

l AlarmDisableHook

l AlarmEnableHook

l AlarmEventHook

l AlarmModifyHook

l AlarmNormalHook

l AlarmNormalTripHook

l AlarmOffNormalHook

l AlarmPurgeHook

l AlarmRearmHook

l AlarmShelveHook

l AlarmTripHook

l AlarmUnshelveHook

Example 1 Do something extra when the alarm closes:

<
AlarmNormalHook
(
{ parameter not required }
)
[
{ ... local variables ... }
]
Main
[
 If 1;
[

{ Do something like write out a value to a PLC }
 DoSomething();

{ Returning Invalid or TRUE allows the AlarmManager to log the
Transaction when we’re done }
 Return(TRUE);
]
]
>

Example 2: Clear the alarm when it is acknowledged:

<
AlarmAckHook
(
TransactionStruct { transaction structure };

)
Main
[
 If 1;
[

{ Acknowledge and Clear the alarm }
 TransactionStruct\Transaction = Concat(Trans-
actionStruct\Transaction, "Active-");

{ The additional transaction text is added to any that already
exist. }
 Return(TRUE);
]
]
>

Related Information:

...Alarm API Structure Definitions - Includes the transaction structure.

Customize Columns in Alarm Displays
The structure of lists in the Alarm Page and in Alarm List Widgets is con-
trolled by the XML file, C:\VTScada\VTS\AlarmListFormats.XML. You may
decide to customize the structure for any of the following reasons:

l Add or remove columns in a list.

l Set the default width of columns.

l Add customized columns to a list.

l Add a customized list format.

Note: Do not edit C:\VTScada\VTS\AlarmListFormats.XML. Your
changes will be lost with your next VTScada update.
Do not copy this file to your application folder. Local definitions of
column formats and list formats that you have not customized will pre-
vent updates from taking effect.

To make the customizations described in this topic, create a file named
AlarmListFormats.XML in your application folder. The structure must be
as described in this topic. You may copy sections of

\VTScada\VTS\AlarmListFormats.XML to use as a template, but do not
save any definition that you do not intend to customize. Your custom
definitions will override or be added to those from the VTScada file.
The structure of the file is as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
 <AlarmList>
 <ColumnFormats>
 <Format name="SingleSet1">
 <Column width="160">AlarmCellTimestamp</Column>
 ... more column definitions ...
 </Format>
 ... more format definitions ...
 </ColumnFormats>

 <ListFormats>
 <Format name="AlarmStandard" label="AL_StandardFormatLabel">
 <list name="History" label="AL_HistoryListLabel">
 <Single>SingleSet1</Single>
 <Double>DoubleSet1</Double>
 </list>
 ... more list definitions...
 </Format>
 ... more format definitions...
 </ListFormats>
</AlarmList>

XML Format Hierarchy:
l ListFormat definitions are linked to user-interface tools, and are selected

according to rules coded into that tool. Examples follow.

l Within each ListFormat will be one or more lists such as Active, Current, etc.

l Each list definition within each ListFormat will contain two versions, Single
and Double. This selection is controlled by the operator by toggling the Row
Height option.

l The single version and the double version each specify a ColumnFormat.

l Two ListsFormats may each contain a list with the same name such as "His-
tory", but these are separate definitions. Different column formats can be spe-
cified for History (and any other list) in different ListFormats.

l ColumnFormats specify the display modules to be shown in the column cells,
the order of the columns from left to right and the default width of each
column.

For example, an alarm popup uses the "PopupStandard" list format,
which contains only one list: "Unacked". In the Alarm Page, the default is

to show the AlarmStandard format, containing History, Active, Unacked,
etc, but if an operator chooses to view only the System Event DB, then the
"EventStandard" list format will be selected automatically limiting the
selection to just the History list.
Application properties are used to set the text used for the labels of lists
and columns in the user interface. For example:
AL_HistoryListLabel = History

Column Format Definitions:
The set of lists shown in the Alarm Page is predefined, but you may alter
the appearance of any list.
For each list, History, Active, etc. two sets of column formats are defined.
Two are required so that the operator may use the Row Height button to
switch between a list with one item per column and a list with (in some
cases) two.

In the ColumnFormats section of the XML file, these are given generic
names. The display name is set in the second section of the file. An
example of the format follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<AlarmList>
 <ColumnFormats>
 <Format name="SingleSet1">
 <Column width="160">AlarmCellX</Column>

 <Column width="26">AlarmCellY</Column>
 ...
 </Format>
 <Format name="DoubleSet1">
 <Column width="26">AlarmCellX</Column>
 ...

Each "<Format" section sets the columns to be included. Columns are dis-
played in the list from left to right in the order found in the Format sec-
tion.
The width sets the default size to be used by that column. Changes to
column widths by the operator are stored on a per-operator, per-session
basis, overriding your defaults. There are three ways to specify the width
of a column:

l Column width = "30". Sets the specific number of pixels to be used by the
column.

l Column width = 30%. This column will occupy 30% of the area remaining
after the columns with specific width settings have been accounted for. The
total of percentages should be 100 or less. See next option.

l No width specification. All columns with no width specification will share
equally the space remaining after columns with a specific or percentage
width have been accounted for.

The example text, "AlarmCellX", "AlarmCellY", etc. must be replaced,
either by one of the VTScada modules provided to format and display the
contents of each cell in an alarm list, or by a module of your own cre-
ation. See link under Related Information.

Example:
For the standard alarm page display of unacknowledged alarms, move
the name and description to the first column.
This will require a change of the ColumnFormat ordering, but the first
step is to discover which ColumnFormat is used by the Unacked list in a
standard display. Fortunately, the names in the XML file make this easy
to find:
Under <ListFormats> find <Format name="AlarmStandard" ...> You can
safely assume that this is the standard format. Within that section, find
the list named "Unacked":

<list name="Unacked" label="AL_UnackedListLabel">
 <Single>SingleSet2</Single>
 <Double>DoubleSet2</Double>
</list>

From the above, it is clear that ColumnFormats SingleSet2 and
DoubleSet2 are used. These can be copied from the original file,
together with enclosing XML specifiers and reordered. The file you save
to your application as "AlarmListFormats.XML" should look like the fol-
lowing. Only the two column formats are being overridden in your applic-
ation; all others will continue to use the default XML file. Don't forget to
import file changes to add your version of the XML file to the application.

<?xml version="1.0" encoding="ISO-8859-1"?>
<AlarmList>
 <ColumnFormats>
 <Format name="SingleSet2">
 <Column>AlarmCellName</Column>
 <Column>AlarmCellDescription</Column>
 <Column width="26">AlarmCellPriority</Column>
 <Column width="160">AlarmCellTimestamp</Column>
 <Column width="50">AlarmCellAck</Column>
 <Column width="18">AlarmCellIcon</Column>
 <Column width="80">AlarmCellAction</Column>
 <Column width="140">AlarmCellArea</Column>
 <Column width="90" extra="1">AlarmCellValue</Column>
 <Column width="90" extra="1">AlarmCellSetpoint</Column>
 <Column width="70" extra="1">AlarmCellUnits</Column>
 <Column width="18">AlarmCellNote</Column>
 </Format>
 <Format name="DoubleSet2">
 <Column>AlarmCellDoubleNameDescription</Column>
 <Column width="26">AlarmCellDoublePriority</Column>
 <Column width="83">AlarmCellDoubleTimestamp</Column>
 <Column width="18">AlarmCellIcon</Column>
 <Column width="80">AlarmCellDoubleActionAck</Column>
 <Column width="140">AlarmCellArea</Column>
 <Column width="90" extra="1">AlarmCellDoubleValue</Column>
 <Column width="90" extra="1">AlarmCellDoubleSetpoint</Column>
 <Column width="18">AlarmCellNote</Column>
 </Format>
 </ColumnFormats>
</AlarmList>

The "extra" attribute, when present and set to 1, enables the visibility of
the column to be toggled by the Show/Hide Extra Columns tool.
There is also an “alwaysShowShelved” attribute. For example:

<list name="Shelved" label="AL_ShelvedListLabel" alwaysShowShelved-
d="1">

This attribute, when true, enables records that are marked as “shelved”
to appear in the list even when the “Show Shelved Alarms” tool is not
toggled.

Related Information:
Alarm Column Graphics Modules

Alarm Column Graphics Modules

The following are the names of graphics modules provided by VTScada to
display information in Alarm Lists. The file, AlarmListFormats.XML con-
trols which module is used by each column of each alarm display list.
"Double" in a module name signifies that it is designed for use when
operators click the Row Height button to switch columns from a single
item to doubled items.
AlarmCellAck
AlarmCellAction
AlarmCellAlarmType
AlarmCellArea
AlarmCellDeadband
AlarmCellDescription
AlarmCellDevice
AlarmCellDisabledIcon
AlarmCellDoubleActionAck
AlarmCellDoubleDeadband
AlarmCellDoubleDescription
AlarmCellDoubleExpiryTime
AlarmCellDoubleIconPriority
AlarmCellDoubleNameDescription
AlarmCellDoublePriority
AlarmCellDoubleSetpoint
AlarmCellDoubleTimestamp
AlarmCellDoubleValue
AlarmCellDoubleWorkstationDevice
AlarmCellExpiryTime
AlarmCellIcon

AlarmCellName
AlarmCellNote
AlarmCellOffDelay
AlarmCellOnDelay
AlarmCellOperator
AlarmCellPriority
AlarmCellPriorityColor
AlarmCellPriorityText
AlarmCellRearmDelay
AlarmCellSetpoint
AlarmCellShelvedIcon
AlarmCellTimestamp
AlarmCellUnits
AlarmCellValue
AlarmCellWorkstation

You can override any of these modules with your own versions. The over-
all structure should be similar to the following example. The content is
up to you.

AlarmCellArea(Parms)
[
 Title = "AL_AreaColumnLabel";
 SortKey = "Area";
]
Main [
 GUIText(…, Parms\TextColor, Parms\Font, Parms\Area);
 WinTooltipCtrl(…);
]

The Parms parameter is a VTSCada-supplied structure containing the ele-
ments shown in the following table. Information about each alarm that is
displayed in the cell, and the defaults for how it is to be displayed are
both passed to the module using this structure.
AckedIcon
AckedIconWd
ActiveIcon
ActiveIconWd
Action

AlarmType
Area
ConfiguredIcon
ConfiguredIconWd
Custom
Deadband
Description
Device
DisabledIcon
DisabledIconWd
DrawAlarmList
ExpiryTime
Font
FriendlyName
Function
GreyTextColor
GUID
HasNote
HistoryIcon
HistoryIconWd
IsActive
IsDisabled
IsHistory
IsShelved
IsUnacked
MessageID
Name
NoteIcon
NoteIconWd
OffDelay
OnDelay
Popup
PriorityColor
PriorityEvent

Priority
PriorityText
PriorityTextColor
RearmDelay
Record
RecNum
RelativeName
Root
RowColor
Session
Setpoint
SetpointLabel
ShelvedIcon
ShelvedIconWd
SmallFont
TagDescription
TextColor
Timestamp
Units
UserID
UserName
ValueLabel
Value
Workstation

Configuration Management

Configuration Management is a term that describes VTScada features
related to all configuration changes.
This includes ChangeSet files, the ability to read and write configuration
files, the ability to make inquiries about the current Layer object (applic-
ation) and the Version Control system.
Features of the Configuration Management System:

l Does not depend on a configuration server.

l Collaboration not limited by file locking.

l Not bound to the RPC network

l Provides a complete audit trail.

l Easy to detect off-line changes since these must be merged into the system
by an authorized user.

For any application, you can discover who has the working copy lock by
selecting that application in the VAM and pressing the keyboard com-
bination, "Ctrl-L".

Related Information:

...Configuration Management API - Reference for functions that make up
the Configuration Management system.

Configuration Management API
The functions that make up the Configuration Management API are as fol-
lows.

Note: These functions should be used only by advanced VTScada pro-
grammers. Errors in the use of these functions can cause irreparable
damage to your application.

Related Functions:

Most of the following functions are called against a Layer object(e.g. Lay-
erRoot\Function()). The Layer object can be acquired using GetAp-
pInstance, GetLoadedAppInstance or GetOEMLayer.

...AcquireLock - Subroutine to acquire an exclusive lock on read-
ing/writing working copy files across all applications.

...AppIsRunning - Reports whether the application has been started and
the start-up process is complete.

...AppIsStarted - Returns TRUE if the application has been started.

...AppIsStarting - Returns TRUE if the application is in the process of
starting.

...ApplyChangeSetFile - Apply a named ChangeSet to an application
layer.

...CaptureSettings - Gathers a single property value or an accumulated
section and returns the result in a tabular format.

...Combine - Performs a Merge2 operation with automated conflict res-
olution and change priority.

...CommitEditedFiles - This function compiles and commits edited files if
the compile succeeds.

...DirectApply - Applies a set of changes directly to the repository,
without disturbing existing (non-conflicting) changes already on either
branch.

...EditFile - Informs the configuration management system that a file has
been modified in the working copy, typically before making a call to Com-
mitEditedFiles.

...GetAppInstance - Asynchronously, retrieves the Layer object (Lay-
erRoot) for a particular application specified by its GUID.

...GetCodeObj - Retrieves the "Code" object associated with the layer.

... GetINIProperty - Given an array of INIProperty structures, returns the
value of a given property from that array.

...GetLoadedAppInstance - Synchronously, retrieves the Layer object (Lay-
erRoot) for a particular application specified by its GUID.

...GetOEMLayer - Retrieves the layer root module of the OEM layer
(should one exist) of the layer this is called against.

...GetPlatformInfo - Gathers information about the current application
and the workstation it is running on.

...GetWCPath- Returns the full working copy path for an application.

...GetWCRevision - Returns the revision structure for the repository revi-
sion in use by the working copy.

...HasCompilationErrors - Reports if the working copy presently has unre-
solved compilation errors

...HasUndeployedChanges - Finds whether the local machine is main-
taining changes that have not been deployed, including changes that
have been recorded by EditFile but have yet to be committed.

...IsAppEditable - Returns TRUE if the application can accept changes
without being re-started.

...IsOnLocalBranch - Returns TRUE if the local machine is maintaining
changes that have not been deployed within the repository.

...IsRunOnly - Returns TRUE if the application is a run-file-only app,
according to the WC contents.

...LayerInUse - Returns true if the application is running, or if there are
any applications that depend on this layer, running or not.

...Merge - Applies a set of changes (the output of a Diff operation) to a
buffer.

...Merge2 - Attempts to apply two different Diff buffers to a single origin
buffer.

...ReleaseLock - Releases a working copy semaphore that was acquired
by AcquireLock.

...ReadINIProperties - Gathers the sum of all of the properties files in
this layer and all of its parents including the local workstation files.

... ReadPropertiesFile - Reads a single Settings file and returns an INIFile
Structure.

...RecordProperty - Helper function used to record settings without need-
ing to explicitly interact with the settings files.

...RepoSubscribe - Enables the caller to specify a callback which will be
triggered whenever the application’s repository changes.

... SetINIProperty - Given an INIFiles structure, this function sets the prop-
erty with the specified name and section to the specified value

...Start - Start an application.

...LayerRoot\Stop - Stop an application.

...WriteINIProperties - Writes properties to the local layer's various set-
tings files in one operation.

... WritePropertiesFile - Write a single Settings file according to the prop-
erties in an INIFile structure.

Communication Drivers

Communication drivers tend to become large blocks of code. This is due
to the complexity of the protocols developed for many hardware devices.
The VTScada side of the equation is usually quite straight-forward, but it
often happens that a large number of subroutines will be required to
handle all the details of a driver’s protocol.
This chapter describes the software design process as it applies to the
creation of communication drivers in VTScada. It is organized as follows:

l The fundamental concepts of how VTScada implements a communication
driver are covered in the first few topics. If you have not written a driver
before, start with Communication Driver Fundamentals.

l The information you should gather before beginning to write code is listed in
the topic, Communication Driver Design.

l A step-by-step description of how to create a communication driver is
provided, followed by detailed information on the mandatory and optional
components of a driver. See: Writing a Communication Driver.

l A template for a simple driver is presented as an example. All hardware-spe-
cific code has been removed from this example, leaving only the VTScada
components. See: Communication Driver Template.

l A reference section is provided, starting at The VTSDriver API, and including:

l The API of the built-in module, VTSDriver.

l Details on how driver information is distributed through a networked applic-
ation.

l Rules for writing a driver.

l Information about tools for driver diagnostics and statistics gathering. See:
Driver Diagnostic Tools.

l Instructions for installing and using a driver are given at the end of this
chapter. If you have been given the code for a new driver, and are simply
looking for the steps to add it to your application, you can skip ahead to the
section: Install a New Driver (Example: GE 9030 SNP Driver).

Related Information:

...Communication Driver Fundamentals

...Communication Driver Design

...Communication Driver Template

...The VTSDriver API

...Driver Diagnostic tools

... Rules for Writing a Communications Driver

...Add a New Driver to Your Application

...You may also be interested in: Programming Other Modes of Com-
munication

Communication Driver Fundamentals
Summary:

l Communication drivers are tags. All the rules of tag structure must be fol-
lowed when creating a driver.

l VTScada includes a standardized driver module, VTSDriver that provides a
consistent interface to all I/O tags.

l VTSDriver relies on the communication driver tag to handle read/write
requests according to the hardware’s protocol.

VTScada collects information from industrial equipment through hard-
ware input devices, displays the information graphically on a computer,
and sends control signals back to hardware output devices to control the
operation of the equipment. Computers and hardware input/output
devices do not use the same protocol to communicate; therefore a data
translator is required to provide communication between the devices.
This is the role of a communication driver.
In VTScada, communication drivers are in the form of a specialized tag
type. Because each type, make, and model of I/O device uses a different
communication protocol, many different communication driver tag types
are required to provide the interface from these different I/O devices to
the VTScada software.

VTScada ships with communication drivers for the following I/O devices:
Allen-Bradley, CalAmp, CIP, Data Flow RTUs
DNP3, MDS Diagnostic, Modicon, Omron Host Link
OPC Client and Server, Siemens S7, SNMP

… and more.
Tag types can have unlimited instances, therefore many copies of the
same or different drivers may run at the same time, providing com-
munication between your PC and multiple I/O device drivers.

Related Information:

...Data Exchange between VTScada and a Driver

...What Happens Within the VTScada Code?

...Communication Driver Tags - See the VTScada Developer's Guide

Data Exchange between VTScada and a Driver

VTScada uses I/O tags that are assigned to read from or write to specific
address in the PLC or RTU. These include analog input and output tags,
digital input and output tags, status tags, control tags, etc.
All I/O tags have the following two properties in common:

l I/O Device: The "I/O Device" property tells the tag which driver tag it should
use in order to communicate with the correct PLC or RTU.

l Address: The "Address" property tells the tag which memory location at the
PLC or RTU to read from or write to.

All communication drivers have a common property:
l Port: The "Port" property indicates to the device driver tag the correct serial

port or TCP/IP socket that it should use to transmit and receive data from the
PLC or RTU.

In summary, port tags provide communication over a physical connection
between remote equipment and the PC. Communication drivers read and
write data over that connection using the protocol required by the
remote device. I/O tags within VTScada read data from or send data to
the communication drivers in order to complete the link between the spe-
cific addresses in the remote equipment and the widgets on the screen of
a VTScada application.

What Happens Within the VTScada Code?

The VTScada software module, "VTSDriver" (the source code for which is
stored in a file named, "VTSDrvr.web"), provides the link between the
communication driver and the VTScada application. A unique instance of
VTSDriver is automatically created for every instance of every driver
within an application.

Briefly, the role of VTSDriver is to:
l Distribute data to I/O tags

l Trigger polling

l Distribute data to client workstations via RPC.

l Synchronize data on startup.

Reading Data
VTSDriver contains a module called, "AddRead" that is called by an input
tag to create a request to read a specific range of memory. AddRead
expects the following parameters:

l The address from the input tag.

l The number of elements (size of the block) to read.

l A pointer to a place to put the retrieved values.

l The rate at which to perform the read.
AddRead calls VTSGetAddr and VTSMaxBlock in the communication
driver to get the information it needs to coalesce the addresses into
appropriate blocks. A ReadBlock module is then launched, which determ-
ines the best organization of blocks and launches a separate VTSRead
module for each actual block of data to be read.
VTSRead, VTSGetAddr and VTSMaxBlock all reside in the communication
driver, not in the VTSDriver module. This is an important detail to note if
you are planning to write your own communication driver.

Writing Data
Whenever a value is changed in an output tag, a Write module in VTSDr-
vr.web is called. This module expects the following parameters:

l The address from the I/O tag.

l The number of elements to write.

l A pointer to the source of the written data.

l The data type.

l The name of the I/O tag that called this module to request a write.
The Write module launches WriteData, which in turn calls VTSGetAddr in
order to obtain the information it needs to call VTSWrite. VTSWrite, a
module in the communication driver, is then launched.

To emphasize, note that VTSWrite is a module that you create in the com-
munication driver, not in VTSDrvr.web.

Rewriting Data
VTSDriver provides the ability to store and rewrite the last set of output
values if requested or required. This feature is controlled by the fol-
lowing code that you may add to your custom driver:

Data Storage
Your custom driver must contain a variable named, StoreOutputs. When
set to TRUE (1), VTSDrvr stores the last output value sent to each
address. If later changed to FALSE (0), the stored values are erased so
that they cannot be written accidentally.
Each VTScada Driver instance stores its own information on what value
was written to what address in a retained dictionary. The dictionary is
keyed on address and stores both the value and the tag name.
The information is populated only after a successful write has been car-
ried out. It is stored via the module RememberOutputs().

Data Rewrite
A rewrite may be triggered either automatically, or manually.

A module in VTSDrvr named ForceRewrites carries out the rewrite. This
module is launched by MonitorRewrites, which determines when the
rewrite should execute.
ForceRewrites may be triggered by a user pressing the widget button,
Rewrite Outputs. It may also be triggered automatically as follows:
Your custom driver must contain a module named CheckCommLossErr().
An example is provided later in this chapter. This module is called
whenever SaveCommStats in VTSDrvr detects an error. Check-
CommLossErr() returns a true or false to indicate whether that error qual-
ifies as a loss of communications.
Your custom driver must also contain a Boolean variable named AutoRe-
write. If set to TRUE, and if CheckCommLossErr() returns a TRUE value,
the trigger is armed.
Upon restoration of communications, as indicated by CheckCommLossErr
() returning a FALSE, MonitorRewrites will then execute as follows:
MonitorRewrites monitors the state of the trigger variable, verifies that
the server machine's IO instance is in a position to do the writes and veri-
fies that it is the server. Because of the server clause, there will only ever
be one instance of this MonitorRewrites through all machines.
The trigger will not be disarmed until ForceRewrite has completed at
least one good write.

Read Block Value Coalescing
VTScada combines individual PLC/RTU addresses into a single group or
block that is intended to be executed as a single communication mes-
sage. This is known as "coalescing" and is an attempt to increase through-
put by allowing the reading and writing of large blocks of data, where
possible.
There are a number of VTScada modules and variables that control how
coalescing will be performed:

l VTSGetAddr: Gets the addresses for the blocks of data and parses them. The
Info1, Info2, and Info3 parameters provided to this module must be either
invalid or the same type in order for coalescing to occur.

l VTSMaxBlock: The value of the VTSMaxBlock variable sets the maximum
number of values that can be coalesced into a single read. As an alternative,
there may be a VTSMaxBlock subroutine defined, which returns the size of
the maximum block for a given address.

The result of coalescing depends on the data type of the MemAddr para-
meter in VTSGetAddr:

l If MemAddr is numeric, VTScada will coalesce the message blocks into a con-
tinuous address range, even if that range includes addresses that are not
identified or needed. For example, if the system is configured to read
addresses 15 and 50, and the VTSMaxBlock variable is set to 100, then
VTSRead is called such that addresses 15 to 50 will be read as a single read
message, even though address 16 to 49 inclusive are not needed.

l If the data type of MemAddr is a string, then the result of the coalescing
algorithm includes the configured addresses. Using the same example as
above, VTSRead is passed an array of strings (in the MemAddr parameter)
with two elements 15 and 50.

Communication Driver Design
VTScada was created using an object-oriented, layered approach to soft-
ware design, and it is highly recommended that VTScada communication
drivers follow suit. One advantage to this approach is modularity; com-
ponents may easily be added or removed without affecting critical com-
ponents. Layers are designed to build on the functions and services of
the lower layers. The communication driver software should be self-con-
tained, and have only a few well-defined entry points. This makes it less
reliant on other code so that changes to one part will have a limited
effect on other parts of VTScada.
The error state of Communication drivers can be represented on a page
by a Status Color Indicator Widget. For the widget to use the error colors
defined in an associated Style Settings tag, the driver must contain a flag
named ValueIsErrorStatus, set to TRUE. If this flag does not exist, or is

not set TRUE, then the widget will use the colors defined for state 0 and
state 1 in the Style Settings tag.
By default, zero is defined as "no error" and all other values as "error".
You can expand the range of "no error" values by using the following two
parameters:
ValueIsErrorAbove as a numeric. This is the value above which the tag
will be treated as being in error. Defaults to 0.
ValueIsErrorBelow as a numeric. This is the value below which the tag will
be treated as being in error. Defaults to 0.

Related Information:

...Steps to Write a Communication Driver

...Researching a Communication Driver Protocol

...Designing an Addressing Scheme

...Providing an AddressAssist Module

...Controlling Access to Shared Resources

...Modem Support

...Writing a Communication Driver

...Mandatory Communication Driver Components

...Optional Communication Driver Components

...Data Propagation

Related Functions:

...VTSGetAddr

...VTSRead

...VTSWrite

...VTSMaxBlock

Steps to Write a Communication Driver

1. Gather the details of the hardware protocol.

2. Create a new source file using a text editor (such as UltraEdit). Ensure that
this source file is named logically, and is given the extension ".src" (e.g.

"MyDriver.src"). Save this source file on your hard drive where you can easily
locate it when it is time to move it to your application directory.

3. Structure your source file according to the rules for a tag template.

4. Referring to the topic, Mandatory Communication Driver Components, add
the modules and variables required for a driver. The code you write in the
mandatory modules will depend on the driver protocol.

5. According to the details of the driver protocol and your interest in logging
statistics, add Optional Communication Driver Components.

Researching a Communication Driver Protocol

A communication driver cannot be written without a full understanding
of the protocol that the I/O device uses to communicate. A document
that completely describes the protocol must be located, or the device
must be reverse-engineered by monitoring communications and exper-
imenting with the inputs and outputs. At a minimum, you will need to
know:

l The structure of the messages the I/O device sends and receives.

l The valid values for each component of the message.

l The format that the device expects the data to be in.

l Error detection and correction procedures, if used.

l If a checksum or cyclic redundancy check (CRC) is included in the message,
the algorithm that is used to calculate it must be known.

Also, some protocols will define an "end of message" character to indic-
ate the end of the packet. In other protocols, the messages are fixed
length, and the length of the packet is either a constant or is indicated as
part of the header. You cannot proceed without knowing this structure.

Designing an Addressing Scheme

An addressing scheme is a logical means of organization whereby
memory locations in the I/O device are labeled (often, according to the
data type stored) for access by external devices. Some protocols specify
an addressing structure, and it usually makes sense to use this address-
ing scheme instead of redesigning it.

Whatever addressing scheme is used, it must be broken down into
information that is stored in a series of 3 parameters (Info1, Info2, and
Info3) by a module in the communication driver named, "VTSGetAddr".
This information may be the type of data, byte number, record or file
number, or something else that is protocol specific. These parameters
should contain whatever information is necessary to build and decode
the packet that is sent to and received from the correct location in the
I/O device.
This information is also used to coalesce the addresses into blocks so
that a single communication message can send or receive a large amount
of data. Although single address reads and writes are permitted, block
reads and writes increase the throughput and overall performance of the
software. Addresses are combined into blocks that are as efficient as pos-
sible. For example, if the file number is one of the info parameters, the
VTSDriver module waits for a series of read or write requests, looks at
the file numbers for each request, and then attempts to combine as
many sequential file numbers as possible into a single block.
It may be that an address structure is not defined in the device protocol.
In such cases, one will have to be designed. An addressing scheme may
divide common addresses into groups, but each address must be unique.

Providing an AddressAssist Module

A driver may provide a custom AddressAssist module to assist the user in
building addresses when configuring I/O tags. An example may be seen
in any I/O tag that is using an SNMP or OPC Client driver.

The module is commonly stored in its own file, with a unique name
matching the driver it is meant for, but within the driver itself it must be
declared using the name "AddressAssist". The PAddressEntry function
(used in the I/O tag's configuration) will check for the existence of an
AddressAssist module and (if found) display your code instead of the
usual edit field.
The AddressAssist must provide the code for the user interface elements
that will be displayed in the I/O tag's configuration panel as well as
whatever user-interface tools will be provided to help the developer to
select the address. For the configuration panel element, you may:

l draw an edit field with a browse button (as shown in the preceding example),

l create a drop-list or drop-tree with possible addresses,

l create any other address selector that fits within the space of the usual edit-
field for address entry.

A simplified example of an AddressAssist module follows.

{======================= AddressAssist
===================================}
{ A custom address selection module for a driver. It consists of
}
{ the usual edit field, along with a button that launches an }
{ address browser.
}
{==-
=====}
(
Left { The left coordinate of the address

assist };
Bottom { The bottom coordinate of the address

assist };
Right { The right coordinate of the address

assist };
Top { The top coordinate of the address assist

};
Var { The variable that we're going to set

};
SupportedData { Digital, Analog, or Text

};
FunctionType { Read/Write

};
ID { Focus ID of the editfield

};
Trigger { Set when var changed

};
BGColor { Background colour to use in the edit

field };
FGColor { Foreground colour to use in the edit

field };
)

Main [
{ Display the edit field with a Browse button }
\System\Edit(Left, Top, Right - SmlBtnWd - Space,

Bottom + EditHt { Coordinates },
Invalid, Var, ID, Trigger, Invalid, 4 {Text},
0 { no bevel }, Invalid, Invalid, Invalid, Invalid,
Invalid, Invalid, Invalid, BGColor, FGColor);

If GUIButton(0, 1, 1, 0 { Unit box },
1 - (Right - SmlBtnWd) { 1 - Left },
Top + BtnHt { Bottom },
Right { Right },
1 - (Top) { 1 - Top },
1 { Scaling },
0, 0 { Movement },
1, 0 { Visibility, Reserved },
PickValid(ID, 1) != 0 ? 68 : 0, PickValid(ID, 1),
0 { Selectability },
ButtonFace,
ButtonShadow,
ButtonHighlight,
ButtonTextColor { Colors },
0, 0 { Sides, Reserved },
"...", "..." { UpLabel, DownLabel },
_DialogFont, 0, 1, 2 { Font, DownValue, UpValue, Vari-

able},
SmallButtonImgs);

[
{ Implement custom code here to display your address browser }

]

Return(TRUE);
]

Controlling Access to Shared Resources

In many cases, an application must communicate with multiple pieces of
equipment over a common medium, such as a serial port. In order to pre-
vent multiple driver tags from accessing the same communications
medium simultaneously, semaphores (Queued modules) are used. The
driver tag is responsible for calling the Sem() module within the VTScada
port tag. This module will return true indicating the port is ready to be
accessed. It is recommended that driver tags be created with separate
read and write semaphore modules. This ensures that queued write
requests (such as emergency shut-down instructions) will be processed
in a timely fashion by alternating between read and write requests.

Modem Support

Communication drivers are responsible for triggering outgoing modem
connections if required. Regardless of whether the driver will be con-
necting to the device using a modem or not, this mechanism should be
implemented as it is required in order to support TCP/IP connections.
Also, regardless of whether the hardware supports a TCP connection or
not, TCP support should be implemented so that devices such as Lan-
tronix, which provide TCP/IP to serial conversion, can be used.
In order to connect to hardware using a modem, the driver must call the
port tag’s Port\Connect() module. Before calling the connect module, the
driver should check the Port\Modem variable to make sure a connection
must be established before communications can begin. The variable
Port\IsConnected() can be checked to determine if the connection has
been made.
In order for the driver to accept an incoming modem connection ("hard-
ware dialed in"), a discriminator must be written. This module will inform
the modem manager which calls should be handed to the driver. This is
required since many different units and types of hardware may be dialing
in. Details on creating discriminators and registering them with the
modem manager are covered in the Modem Manager Service document.

Writing a Communication Driver

Writing a VTScada communication driver involves developing all com-
ponents that are essential to the software including common driver wid-
gets, error checking, and collection of statistics.
Since VTScada communication drivers are tags, their code must meet all
of VTScada's requirements for a tag, as well as the requirements for a
driver. The rules for all custom tag types are included elsewhere in the
Programmer’s Guide. See: Creating Custom Tag Types.
Older drivers often used two module files: one for the high level tasks
that interfaced between the I/O tag and the VTSDriver module and one
for the lower level tasks that were specific to the driver protocol. This

model is obsolete. It is recommended that communication drivers be cre-
ated within a single file.

Mandatory Communication Driver Components

Within your driver source file, you will need to create the following mod-
ules. These modules are well-defined entry points that are called by
VTSDriver in VTSDrvr.web.

l VTSRead - reads VTScada variables from an input device.

l VTSWrite - writes VTScada variables to an output device.

l VTSGetAddr - gets the VTScada addresses and parses them.
You must also define the following variables:

l Driver – This is used internally by the VTScada engine and should not be set
by the driver tag code being created. It will automatically be linked to the
instance of VTSDriver that will be created for this driver instance.

l Ready – This variable should be set to 1 by the driver tag code when it is safe
to start reading or writing I/O.

l Value – This typically defines the error state of the driver where "0" indicates
"no error". Value should be set to the Error from VTSRead/VTSWrite, and
must be set on the current primary I/O server.

l Root - Set to some object value, usually Self().

Related Information:

...Optional Communication Driver Components

Optional Communication Driver Components

The following variables and modules, while often found in com-
munication drivers, are defined as optional. Of particular note in this list
is VTSMaxBlock. While used by nearly every communication driver, it is
defined as an optional component.

l Hold - Set to 1 to hold data on error. Otherwise, all data is invalidated when
an error occurs.

l VTSMaxBlock - defines the maximum size for block reads and writes

l ByteOrder - reverse byte order if data is not being provided in the Intel,
little-endian format. By default, VTScada assumes that the 1st byte is the
low-order byte.

l RPCService - necessary for networked applications. Set to a string that is the
name of the RPC service that will handle the driver. Usually, the service name
will be the same as the tag name. There is also a configuration setting for this
value.

l GetClientRevision - RPC service

l GetClientChanges - RPC service

l CommStatsUpdateRate - For this and the next two items, see: Driver Dia-
gnostic Tools.

l CommStatsQualityFactor - see: Driver Diagnostic Tools.

l DisableCommStats - see: Driver Diagnostic Tools.

l StoreOutputs - A variable used to indicate that the driver should store the
last set of values written to each output address.

l AutoRewrite – A variable used to indicate that this driver should automatically
rewrite stored values upon recovery from a communications error.

l CheckCommsLossErr – A module that determines if the current ErrorVal
value indicates a loss of communications. Used if providing AutoRewrite cab-
abilities.

Related Information:

...Mandatory Communication Driver Components

...Driver Diagnostic tools

VTSGetAddr

The purpose of the VTSGetAddr module is to convert the Address para-
meter (specified in the "Address" field for tags such as analog and digital
inputs and outputs) to a value that uniquely classifies the address into a
block that can be coalesced by VTScada.
The VTSGetAddr module must be a subroutine. If the given address is
invalid, the return value should be an error code.
Format:

VTSGetAddr(Address, MemAddr, BitNum, Info1, Info2, Info3, DataType,
Read, Rate);
Parameters:

Address

The raw address from the I/O tag's Address field. This
is often a text string, but may be a numeric value. The
contents of this parameter are driver-specific. It is the
job of this module to interpret the address.
The data type to read from or write to is usually

Suffix Meaning

/ABFloat Allen-Bradley PLC/3 Floating Point
(4 bytes) (Used for Allen-Bradley
exclusively)

/AB5Float Allen-Bradley PLC/5 Floating Point
(4 bytes) (Used for Allen-Bradley
exclusively)

/BCD2 2-digit (1 byte) Binary Coded
Decimal

/BCD3 3-digit (2 bytes – lowest 12 bits) Bin-
ary Coded Decimal

/BCD4 4-digit (2 bytes) Binary Coded
Decimal

/Bit A bit number

/Double IEEE Double Precision Floating Point
(8 bytes)

/Float IEEE Single Precision Floating Point
(4 bytes)

/SByte Signed Byte

/SDWord Signed 32-bit Integer

/Sword Signed 16-bit Integer

/UByte Unsigned Byte

/UDWord Unsigned 32-bit Integer

/UWord Unsigned 16-bit Integer

If you intend the address to be numeric, you should
ensure this by casting it to a numeric value.

Suffix Meaning

/ABFloat Allen-Bradley PLC/3 Floating Point
(4 bytes) (Used for Allen-Bradley
exclusively)

/AB5Float Allen-Bradley PLC/5 Floating Point
(4 bytes) (Used for Allen-Bradley
exclusively)

/BCD2 2-digit (1 byte) Binary Coded
Decimal

/BCD3 3-digit (2 bytes – lowest 12 bits) Bin-
ary Coded Decimal

/BCD4 4-digit (2 bytes) Binary Coded
Decimal

/Bit A bit number

/Double IEEE Double Precision Floating Point
(8 bytes)

/Float IEEE Single Precision Floating Point
(4 bytes)

/SByte Signed Byte

/SDWord Signed 32-bit Integer

/Sword Signed 16-bit Integer

/UByte Unsigned Byte

/UDWord Unsigned 32-bit Integer

/UWord Unsigned 16-bit Integer

MemAddr

Assists the VTScada code in creating efficient

driver read and write calls. PLC I/O locations
with different MemAddr values and the same val-
ues for the Info1, Info2, and Info3 parameters
are coalesced into the same read block,
provided they are within VTSMaxBlock, or the
return of VTSMaxBlock(Info1, Info2, Info3,
DataType) values of each other.
It is the responsibility of the VTSGetAddr mod-
ule to set this variable to the correct data type
and value.
The MemAddr variable should be one of two
data types:

l A pointer to an integer value. If so, it must be set
by dereferencing (using a * before the variable
name) before being assigned a value.

l A pointer to a string.
VTScada driver code behaves differently, depend-
ing on the data type of the variable's contents.
This variable is usually a pointer to an integer. If
the value is to be a number, make sure a text
string is not returned if the value was extracted
from the Address string.
If a driver does not use integers to denote an
address, return the text string in the MemAddr
parameter. The VTSRead module and the
VTSWrite module are passed an array of strings
rather than a memory starting address. This
means, if you set MemAddr to a text value, such
as "100" the VTScada code interprets this as a
text address rather than a numeric one. This
means that the coalescing will not pay any heed
to the actual value of the address, but will
simply pass an array of text strings to the

VTSRead or VTSWrite in the MemAddr para-
meter.

BitNumber

A pointer to the integer bit number within the memory
address specified by MemAddr. This value may be set
to invalid if there is no bit value.

Info1, Info2, Info3

Pointers to values that are used by the VTScada code
to determine which addresses can be coalesced into a
larger read block. These parameters are also passed to
the VTSRead and VTSWrite subroutines. Any values
that are not required should be set to "0" (i.e. they
must be a valid value). These values are typically set to
such things as file type or data area. Any differences
between the values of the three Info parameters and
those of another Address will prevent those addresses
from being coalesced (i.e. grouped into the same read
request).

Note: Info1 must be a number; a string value
will not work. If your code sets Info1 to a
string value, the SetData module in VTSDr-
vr.web will not work correctly, and client com-
puters will not display the results of the driver
server computer's read commands. For
example, an analog input that is drawn on the
screen will always have invalid contents if the
Info parameters are set to strings (such as
"abc"), rather than a number.

DataType

A pointer to a list of values that holds the data types
preferred for the specified address. This data type may
be left invalid if the VTSRead and VTSWrite subroutines

ignore it. If left invalid the default data type will be 2
(16-bit unsigned integer). This value will be overridden
by the explicit data type specified as an appended
string to the address. The DataType is what is passed
to the VTSRead and VTSWrite subroutines. The appen-
ded data type (refer to the table in the Address para-
meter section above) specifies how the data is to be
interpreted after it is read from the I/O device if this is
to be different from the DataType returned by
VTSGetAddr. The VTSRead and VTSWrite modules do
not see the value of the appended data type string.

Note: The MemAddr, BitNum, Info1, Info2,
Info3, and DataType parameters are pointer
values, and must be set by dereferencing them
before assigning the values (i.e. using an aster-
isk "*" before the variable name (please refer
to "Pointers" for further details on pointers
and dereferencing).

Read

Specifies whether the address will be used for a Read
or a Write command. If true, the address is used for
reading data, otherwise it is used for writing data. Most
drivers ignore this parameter since there is usually no
difference in the returned values for reads and writes.

Rate

A pointer to the scan rate of the I/O device. This may
be an Invalid pointer.

Comments:
The VTSGetAddr subroutine must return an error code. If the return
value is not 0, the VTScada code assumes that there is an error in the
address and it will not include that tag when coalescing the block.

VTSRead

The VTSRead module is run continuously to read data from the I/O
device. It is called from the VTSDriver code.
A VTSRead should return data for one or more addresses as contained in
the array parameter, MemAddress. Data is returned by calling CallBack-
Obj\RefreshData as described in the topic, Data Propagation. An example
is provided at the end of the parameter description.
Format:
VTSRead(Trigger, Data, N, MemAddr, BitNumber, Info1, Info2, Info3,
DataType[, CallBackObj]);
Parameters:

Trigger

A logical value that, when true, requests that the
VTSRead module scan the I/O device for data.

Data

An array into which the read data is to be placed.

N

The number of values to read from the I/O device. If
MemAddr is an array of strings, then N is set to the
size of the array.

MemAddr

Assists VTScada in creating more efficient driver read
and write calls. PLC I/O locations with different
MemAddr values and the same values for the Info1,
Info2, and Info3 parameters are coalesced into the
same read block, provided they are within VTSMaxB-
lock, or the return of VTSMaxBlock(Info1, Info2, Info3,
DataType) values of each other.
It is the responsibility of the VTSGetAddr module to set
this variable to the correct data type and value. Note
that the data type of the MemAddr parameter in
VTSGetAddr affects the data type of this parameter. If

the data type is a string in VTSGetAddr, then this para-
meter will be an array of strings.

BitNumber

A pointer to the integer bit number within the memory
address specified by MemAddr. This value may be set
to invalid if there is no bit value.

Info1, Info2, Info3

Are variables (not pointers), that are used by the
VTScada code to determine which addresses can be
coalesced into a larger read block. These parameters
are also passed to the VTSGetAddr and VTSWrite sub-
routines. Any values that are not required should be
set to "0" (i.e. they must be a valid value). These values
are typically set to such things as file type or data area.
Any differences between the values of the three Info
parameters and those of another Address will prevent
those addresses from being coalesced (i.e. grouped
into the same read request).

Note that Info1 must be a number: a string value will
not work. If your code sets Info1 to a string value then
the SetData module in VTSDrvr.WEB will not work cor-
rectly and client computers will not display the results
of the driver server computer's read commands. For
example, an analog input that is drawn on the screen
will always have invalid contents if the Info parameters
are set to strings rather than a number.

DataType

A pointer to a value that holds the data type preferred
for the specified address. This data type may be left
invalid if the VTSRead and VTSWrite subroutines ignore
it. If left invalid the default data type will be 2 (16-bit
unsigned integer).
This value will be overridden by the explicit data type

specified as an appended string to the address. The
DataType is what is passed to the VTSRead and
VTSWrite subroutines from VTSGetAddr. The appen-
ded data type (refer to the table in the "Address" para-
meter section above) specifies how the data is to be
interpreted after it is read from the I/O device if this is
to be different from the DataType returned by
VTSGetAddr. The VTSRead and VTSWrite modules do
not see the value of the appended data type string.

CallBackObj

Optional, but recommended. An object value whose
scope is used to call RefreshData. (see: Data Propaga-
tion) RefreshData is the recommended method for
propagating data.
If using RefreshData to propagate data, then VTSRead
should not also update the Data Array parameter on its
own.
VTSRead must return an object (usually Self()) that
includes the three mandatory variables: Counts,
ErrorCounts and Error.

Note: VTSRead must increment either Counts or Error Counts before
processing new data.

A typical example of the code for the VTSRead subroutine:

<
VTSRead
(
Trigger{ Will do read on positive edge };
Data{ Array to put the result into };
N{ The number of values to read };
MemAddress{ Address to read };
BitNum{ Bit to read / not used here };
Info1{ Info1 };
Info2{ Info2 };
Info3{ Info3 };
DType{ Data type used for read };
CallBackObj{ Object value where RefreshData is located };

)
[
Error = 0;
Counts = 0;
ErrorCounts = 0;

StartTime { Request start time };
ElapsedTime { Request elapsed time };
Tries = 0 { Number of attempts on modem };

]
Main [

If Trigger;
[
ResetParm(Self(), 1) { Reset the trigger since does not feed back

from the driver };

{ Process data according to the protocol }
. . .

{ error in data, increment ErrorCounts },
IfElse((AValid(TimeArray[0], ArraySize(TimeArray, 0) != ArraySize

(TimeArray, 0)) ||
(AValid(DataArray[0], ArraySize(ValueArray, 0) != ArrayS-

ize(ValueArray, 0)),
++ErrorCounts,

{Else - no errors in data, increment Counts and send data}
Execute(
++Counts,
{ Send data and timestamps }

CallBackObj\RefreshData(TimeArray,ValueArray,Invalid,Invalid)
) {End Execute},

) {End IfElse};

Return(Self);
]

]
>

Data Propagation

The VTSRead module is responsible for delivering the data it read from
the I/O device. This is best done by using the RefreshData module within
the scope of the CallBackObj parameter of the VTSRead module.
The data type and structure can vary for the three parameters, NewData,
TimeStamp and Attribute. Read the following notes carefully. If the driver
will read blocks of history data, please refer to the discussion of Block
History in the Comments section of this topic.
RefreshData is provided for you as part of the VTSDriver module.
Format:CallBackObj\RefreshData(TimeStamp, NewData, Attribute,
QueueObj, PropagateOnlyOnDataChange)
Parameters:
TimeStamp Optional. If invalid, the system uses current time in UTC to
timestamp the data. Otherwise, may be either of the following:

l A single timestamp value, expressed in number of seconds since January 1st
1970 UTC. This value will be applied to each element of NewDta.

l An array, having the same structure as NewData. Each data point will be
assigned its corresponding timestamp from the timestamp array.

For event driven reads, you may wish to process only the data from a
single address, rather than from a full read block. You can achieve this
by setting all the TimeStamp array elements to invalid except for the one
matching the element of NewData which you want to process.
Note that invalid timestamps in a timestamp array have special meaning.
An invalid timestamp element indicates that the corresponding data has
not changed. This enables drivers to pass back partial updates. This fea-
ture is independent of the PropagateOnlyOnDataChange option.
NewData This is the value read from the I/O device. It may be either a
simple array, or an array of arrays having the same size as the MemAd-
dress array used in the VTSRead function.
If a simple array, there will be one element for each address. The array of
arrays option is generally used for returning historical data for a given
address.
Calling Refresh data with the NewData parameter specified as an array of
arrays will work only with Analog Status, Digital Status and Pump Status.
It will not work with Analog Input, Digital Input, and any tag not spe-
cifically coded to handle an array of results being passed into newData().
Attribute Optional. No default. May be a single value, which will be
applied to all elements of NewData if that is an array, or may be an array
of attributes that gets assigned to the corresponding array of data.
If an array, the size and arrangement of the array must be the same as
NewData.
QueueObj Obsolete. Should be set to Invalid.
PropagateOnlyOnDataChange Flag that when set true, will prevent data
from being propagated through RPC or to tag\NewData() unless the value
of NewData or Attributes has changed since the last time RefreshData
was called. Defaults to TRUE.

Historical reads, whether by array or array-of-array, are expected to set
PropagateOnlyOnDataChange to FALSE in order to disable the automatic
filtering. One can interpret this option as 'automatically detect and
ignore data which has not changed'.
Comments:
Invalid data is accompanied by a valid timestamp:

TimeStamp[i] = Some Valid Time;
Data[i] = Invalid;

Missing Data is indicated by an invalid timestamp:

TimeStamp[i] = Invalid;

Block history
When reading historical data, an array of arrays may optionally be used,
where each element of the NewData array will contain another array
which must be sized for the number of data points that are being
returned for the matching MemAddress. This holds true even if there is
only one value to return for each I/O address.
This a special mode used only for input tags that can support the dif-
ferent read result. These are, the AnalogStatus, DigitalStatus and the
PumpStatus, all of which have a 'History Address' parameter. The reading
of block history has little to do with VTSDriver itself since VTSDriver
simply passes through whatever the driver provides. The contract that
standard status tags expect is that a block of history will be passed to
NewData() as an array, and that the Timestamp parameter will be a match-
ing array with corresponding timestamps. If Attributes are present, then
attributes for block history should be in an array corresponding to the
Data/Timestamp arrays. It is important that drivers pass block history
data in the form that VTScada status tags support.
If the block of history records is being passed in an array, then the oldest
timestamp must be at index 0. The restriction that the block history be in
a certain order is due to the Historian, which logs exactly what it is given
without modification (by design). Having timestamps reversed means
that out-of-order history is written, which will slow performance. If the

driver’s protocol requires block history with the newest item first, then
that driver should swap the order before passing it along.

Example 1:
Given MemAddress with two addresses, "Addr1" and "Addr2" and data for
Addr1 = 1.23 and data for Addr2 = 2.34, you might do something like:

{ Make a data array }
Data = New(2);
{ Add first element }
Data[0] = New(1);
Data[0][0] = 1.23;
{ Add second element }
Data[1] = New(1);
Data[1][0] = 2.234;

{ Make it So }
CallBackObj\RefreshData(Invalid, Data, Invalid);

Example 2:
Multiple Data/Timestamp Value Pairs for each item in MemAddress, no
Attributes
Given MemAddress with two addresses, "Addr1" and "Addr2" and data/-
timestamps for
Addr1 = 1.23/2009-08-01 11:23, 1.24/2009-08-01 11:24 and data for
Addr2 = 2.34/2009-08-01 11:21, 2.35/2009-08-01 11:22
you might do something like:

{ Make a data array }
Data = New(2);
TimeStamp = New(2);

{ Add first element}
TimeStamp[0] = New(2);
Data[0] = New(2);
TimeStamp[0][0] = ConvertTimestamp(

\ODBCManager\ConvertToVTSTimeStamp(
"2009-08-01 11:23"),
"US Eastern Standard Time", 0,
"GMT Standard Time");

Data[0][1] = 1.24;
TimeStamp[0][1] = ConvertTimestamp(

\ODBCManager\ConvertToVTSTimeStamp(
"2009-08-01 11:24"),

 "US Eastern Standard Time," 0,
"GMT Standard Time");

{ Add second element}

Data[1] = New(2);
TimeStamp[1] = New(2);

Data[1][0] = 2.34;
TimeStamp[1][0] = ConvertTimestamp(

\ODBCManager\ConvertToVTSTimeStamp(
"2009-08-01 11:21"),
"US Eastern Standard Time," 0,
"GMT Standard Time");

Data[1][1] = 2.35;
TimeStamp[1][1] = ConvertTimestamp(

\ODBCManager\ConvertToVTSTimeStamp(
"2009-08-01 11:22"),
"US Eastern Standard Time," 0,
"GMT Standard Time");

{ Make it So }
CallBackObj\RefreshData(TimeStamp, Data, Invalid);

VTSWrite

The VTSWrite module is launched by the VTSDriver code to write a block
of values to the I/O device. Its code is very similar to that of the VTSRead
module with the same number of parameters.
The VTSWrite module will usually be slain immediately after the write is
completed.
Format:
VTSWrite(Trigger, Data, N, MemAddr, BitNumber, Info1, Info2, Info3,
DataType);

Parameters:
Trigger

A logical value that, when true, will request that the
VTSWrite module send the data to the I/O device.

Data

An array where the written data will be read.

N

The number of values to write to the I/O device. If
MemAddr is an array of strings, then N indicates the
size of the array.

MemAddr

Assists VTScada in creating more efficient driver read
and write calls. PLC I/O locations with different
MemAddr values and the same values for the Info1,
Info2, and Info3 parameters are coalesced into the
same write block, provided that they are within
VTSMaxBlock, or the return of VTSMaxBlock(Info1,
Info2, Info3, DataType) values of each other.
It is the responsibility of the VTSGetAddr module to set
this variable to the correct data type and value. The
data type of the MemAddr parameter in VTSGetAddr
affects the data type of this MemAddr parameter. If the
DataType is a string in VTSGetAddr, then this para-
meter will be an array of strings.

BitNumber

A pointer to the integer bit number within the memory
address specified by MemAddr. This value may be set
to invalid if there is no bit value.

Info1, Info2, Info3

Are variables (not pointers) that are used by the
VTScada code to determine which addresses can be
coalesced into a larger read block. These parameters
are also passed to the VTSRead and VTSWrite sub-
routines. Any values that are not required should be
set to "0" (i.e. they must be a valid value). These values
are typically set to such things as file type or data area.
Any differences between the values of the three Info
parameters and those of another Address will prevent
those addresses from being coalesced (i.e. grouped
into the same read request).

Note that Info1 must be a number: a string value will
not work. If your code sets Info1 to a string value, the
SetData module in VTSDrvr.WEB will not work cor-
rectly, and client computers will not display the results

of the driver server computer's read commands. For
example, an analog input that is drawn on the screen
will always have invalid contents if the Info parameters
are set to strings rather than a number.

DataType

A pointer to a value that holds the data type preferred
for the specified address. This data type may be left
invalid if the VTSRead and VTSWrite subroutines ignore
it. If left invalid the default data type will be 2 (16-bit
unsigned integer). This value will be overridden by the
explicit data type specified as an appended string to
the address. The DataType is what is passed to the
VTSRead and VTSWrite subroutines from VTSGetAddr.
The appended data type (refer to the table in the
Address parameter section above) specifies how the
data is to be interpreted after it is read from the I/O
device if this is to be different from the DataType
returned by VTSGetAddr. The VTSRead and VTSWrite
modules do not see the value of the appended data
type string.

VTSWrite must increment one of two mandatory internal variables each
time it is called. Either "Counts" if the write was successful or
"ErrorCounts" otherwise.
The code for VTSWrite might look like:

<
VTSWrite
(
TriggerParm{ Will do read on positive edge };
Array{ Array to put the result into };
N{ The number of values to read };
MemAddress{ Address to read };
BitNum{ Bit to read };
Info1{ Info1 - not used };
Info2{ Info2 - not used };
Info3{ Info3 - not used };
DataType{ Data type used for read - uses standard types };

)
[

{ Trigger is PUBLIC and is referenced by VTSDriver }
Trigger= 1{ TRUE when initial trigger set };
Error = 0;

Counts = 0;
ErrorCounts = 0;
StartTime { Request start time };
ElapsedTime { Request elapsed time };
Tries = 0 { Number of attempts on modem };
WriteActive = 0 { TRUE when the write has been triggered };

]

Main [

If Trigger || TriggerParm;
[

{ Process the data according to the protocol }
. . .

{ Reset the triggers }
ResetParm(Self(), 1);
Trigger = 0;

]
]
>

VTSMaxBlock

VTSMaxBlock determines the maximum block size that is coalesced into
a VTScada read or write. This can be either a subroutine or a variable.

l If the maximum block size is a constant, regardless of the data type or
address, then VTSMaxBlock can be declared as a variable and set to a
numeric value.

l If supplied as a subroutine then, based on the address and data type inform-
ation, this module should return the maximum amount of data that can be
handled in a single read or write. It is your job to write this subroutine as part
of your driver, using the following format:

Format:
VTSMaxBlock(Info1, Info2, Info3, DataType);
Parameters:

Info1, Info2, Info3

are pointers to values that are used by the
VTScada code to determine which addresses can
be coalesced into a larger read block. These
parameters are also passed to the VTSRead and
VTSWrite subroutines. Valid values must be sup-
plied for all three, therefore any values that are

not required should be set to "0".
These values are typically set to such things as
file type or data area. Any differences between
the values of the three Info parameters and
those of another Address will prevent those
addresses from being coalesced into the same
read request.

Note: The value of Info1 must be numeric. If
your code sets Info1 to a string value, the
SetData module in VTSDrvr.WEB will not work
correctly and client computers will not display
the results of the read commands.

DataType

A pointer to a value that holds the data type preferred
for the specified address. This data type may be left
invalid if the VTSRead and VTSWrite subroutines ignore
it. If left invalid the default data type will be 2 (16-bit
unsigned integer). This value will be overridden by the
explicit data type specified as an appended string to
the address. The DataType is what is passed to the
VTSRead and VTSWrite subroutines from VTSGetAddr.
The appended data type (refer to the table in the
Address parameter section above) specifies how the
data is to be interpreted after it is read from the I/O
device if this is to be different from the DataType
returned by VTSGetAddr. The VTSRead and VTSWrite
modules do not see the value of the appended data
type string.

Communication Driver Template
A sample communication driver is displayed in part here. Code that is
useful only for the particular hardware this driver was designed to com-
municate with is not included. This particular driver was designed to be
read-only. It does not contain a VTSWrite module. The tag’s con-
figuration and common modules are not shown here.
The driver starts with standard tag definitions:

{===}
(
Name <:TagField("SQL_VARCHAR(64)", "Name"):>;
Area <:TagField("SQL_VARCHAR(255)", "Area"):>;
Description <:TagField("SQL_VARCHAR(255)", "Description"):>;
RespTimeOut <:TagField("SQL_VARCHAR(255)", "RespTimeout"):>;
SiteID <:TagField("SQL_VARCHAR(255)", "SiteID"):>;
UTCOffset <:TagField("SQL_VARCHAR(255)", "UTCOffset"):>;
HelpKey <:TagField("SQL_VARCHAR(255)", "HelpKey"):>;

… StoreOutputs <:TagField("SQL_VARCHAR(255)"):>
{ When TRUE permits storing of output values };

AutoRewrite <:TagField("SQL_VARCHAR(255)"):>
{ When TRUE permits the automatic Rewriting of Outputs };

)
[{Variables}
{==================Version Control Information =================}
{ V 0.0.01 - Original issue - 9 December, 2008 }
{===}
Constant DriverVersion = "0.10.0 6 January, 2009";
Constant DrawLabel = "USGSDriver";
Constant #Name = 0;
Constant #Area = 1;
Constant #Description = 2;
Constant #ResponseTimeOut = 3;

…

In the variable declaration modules and error constants are also defined:

{ Module Numbers }
Constant #VTSGetAddr = 0;
Constant #VTSRead = 1;

{ Error Constants }
Constant #NoError = 0;
Constant #ConnectionError = 1;

…

As well as the required modules and variables (plus a few extra shown
here):

{***** Required for all VTScada drivers *****}
DriverNameLabel = "DemoDriver";

Driver { The generic driver module instance };
Ready { Indicates to VTScada driver the module is

ready };
RPCService { Name of the RPC service for this tag };
Value { Driver status };

{ Modules }
ShowComm Module "DemoShowComm.SRC" { Show communication };
ShowStats Module "DemoShowStats.SRC" { Show comm statistics };
VTSMaxBlock Module { Returns Maximum record size };
VTSRead Module { The Read module };
VTSGetAddr Module { Subroutine to parse address };
Refresh Module { Refresh module };
ErrMessage Module { Converts error codes to test strings };
ReportTraffic Module { Translator for the traffic monitor };
SetStats Module { Updates driver statistics };
TransmitReceiveData Module { Transmit/Receive Module };
ProcessReturnedData Module { Processes ret data into arrays };
SiteTime_2_UTCTS Module { Converts Site time to VTScada time };
HistPoll Module { Sets the history poll values };
ReadLineStatus Module { Reads a line and returns status };
CheckCommsLossErr Module { Checks the comms fail errors };

{ Variables }
Root { Root object value };
DriverObj { Object value of driver };
CommPortObj { Communication port tag object };
ErrorMessages { Array of Error Messages };
Counts = 0 { # of successful transactions };
TimeStamp { Time of last successful transaction };
Error = 0 { Global Error code };
ErrorCounts = 0 { # of errors since starting };
ConsecErrCount = 0 { Consecutive time out error counts };
ErrorMemAddr { Memory address of last error };
ErrorTime { Time of last error };
LastError { Error code for last error };
Shared Message[100] { List of error messages };
CommDisplay { Object communications display module };
ErrorModule { Module number generating error };
ErrorDate { Date of last unsuccessful com attempt};
ErrorOwner { Object value of module last error };
dt { Time since last transaction };
DateStamp { Date of last successful comm. };
LastURL { Last URL generated };
ResponseTO { Response Time Out variable };
DataFilePath { Path for data file to write/read };
Status { Status of file directory creation };

Finally, the standard groups memberships are defined:

{ Parameter Constants }
[(GROUPS)
Shared Numeric;
Shared Drivers { This is a driver point };
]

[(GRAPHICS)
Shared CommIndicator;

Shared CommStatistics;
Shared CommMessages;
Shared ReWriteOutputsBtn; { Used if implementing Rewrite Outputs }
]

[(PLUGINS)
Shared ConfigFolder = "DemoDriverConfig";
Shared Common = "DemoDriverCommon";

]

The module opens with an initialization state:

DemoDriverInit [

If \NetworkValues\Started WaitServer;
[

{ Set the RPC service for this instance depending on the }
{ Configuration parameter }
RPCService = PickValid(\USGSSharedRPC, 0) ? "USGSDriver" : Name;
{ Return object value }
Root = Self();
DriverObj = Root;
Refresh();

IfThen(!Valid(Message[#NoError]);
{ Set up of driver statistics display labels }
CountsLabel = PickValid(\CountsLabel, "Counts");
{ … etc … }

{ Driver internal errors }
Message[#NoError] = "No Error";
{ … etc … }

) { IfThen };

{ Register with the network values service }
\NetworkValues\Register(Self(), Name);

]
]

Rather than one main state, the driver has three: Wait, Client and Server.
Most of the time it will be in the Wait state, waiting to send or receive
data.

Wait [
{ If this PC is a data server for this PLC, }
{ go to the Server state }

If PickValid(Driver\Started, 1) &&
PickValid(*(Driver\RPCStatus), \#RPCServer { Server }) ==

\#RPCServer Server;
{ If this PC is a client for this PLC, go to the Client state }

If PickValid(Driver\Started, 1) &&
*(Driver\RPCStatus) == \#RPCClient Client;

]

Server [
{ If no longer server go to wait state }

If *(Driver\RPCStatus) != \#RPCServer Wait;
{ Get object values in steady state }

CommPortObj = USGSTCPIPPort;
Ready = 1;
{ Reset if there is a switch from a server to a client }

If *(Driver\RPCStatus) != \#RPCServer Wait;
]

Client [
{ Get object values in steady state }

Ready = 1;

If PickValid(*(Driver\RPCStatus),\#RPCServer) != \#RPCClient Wait;
]

The last tag-specific part of the driver is the Refresh module. If imple-
menting Auto-Rewrites, include code to ensure that the StoreOutputs
value is always true if AutoRewrite is true.

<
{=========================== Refresh =============================}
{ Refresh subroutine. }
{===}
Refresh
(
Parm { Array parameters prior to their change }

)

Refresh [
If Watch(1);
[
RPCService = Name { Set RPCService };
UTCOffset = PickValid(Cast(UTCOffset, 2) , TimeZone(0));
ResponseTO = PickValid(ResponseTimeOut, 10);

StoreOutputs = PickValid(Cast(StoreOutputs, \#VTypeShort), 0);
AutoRewrite = PickValid(Cast(AutoRewrite, \#VTypeShort), 0);

{ Sort the parms, when AutoRewrite is true, StoreOutputs must be true
}

IfThen(AutoRewrite && !StoreOutputs,
StoreOutputs = 1;

);

IfThen(!StoreOutputs &&
PickValid(*(Driver\RPCStatus) == \#RPCServer, 0),

Driver\ResetOutputDict();
);

Return(0);
]

]
{ Refresh }
>

Refresh is followed by the standard modules of a communication driver:
VTSGetAddr, VTSMaxBlock, VTSRead and VTSWrite. In the following
examples, any code that is not general in purpose has been removed.

<
{================ USGSDriver\VTSGetAddr ========================}
{ }
{===}
VTSGetAddr
(
Address { Raw address specified by point parameters};
RetAddress { Returned address };
BitNum { Pointer to bit number variable to set };
TableName { Table name };
Info2 { };
Info3 { };
DType { Pointer to data type to return };
Read { TRUE if a READ address, otherwise write };
Rate { Rate for read coalescing };

)
[
NRead { Number of Values not read };
SiteNumber { Station Number Field };
ParameterField { Parameter Field };
AddressError { Set on error };

]

Main [

If Watch(1);
[
AddressError = 0;
{ Need an valid non-null value address }
IfElse(Valid(Address) && StrLen(Address) > 0;

{ Set to incoming address - }
{ sends array of addresses to VTSRead }
*RetAddress = Address;
*AddressError = 1;

); { IfElse }
{ Return error }
Return(AddressError);

]
]
{ End of VTSGetAddr }
>

<
{======================= VTSMaxBlock =========================}
{ Returns the Maximum size for block reads and writes. In }
{ example, VTSMaxBlock will simply return a constant. }
{===}
VTSMaxBlock
(
Info1 { Not used };
Info2 { Not used };
Info3 { Not used };

DType { Pointer to data type };
)
[
Constant #VTSMaxBlock = 100;
]

VTSMaxBlock [
Return(#VTSMaxBlock);

]
{ VTSMaxBlock }
>

Here comes the VTSRead module. Again – only the most general purpose
of statements have been included.

<
{================= USGSDriver\VTSRead =======================}
{ This module performs the I/O reads. }
{==}
VTSRead
(
Trigger { Will do read on positive edge };
Array { Array to put the result into };
N { The number of values to read };
MemAddr { Field Name Parameter };
BitNum { Pointer to bit number variable (not used)};
Info1 { Site Number to read };
Info2 { };
Info3 { };
DType { Data type };
RefreshContext { Where to call the RefreshData() module };

)

[
Name = "VTSRead" { Module name for stats };
LocErr { Local Error };
Counts = 0 { # of successful transactions };
TimeStamp { Time of last successful transaction };
Error = 0 { Global Error code };
ErrorCounts = 0 { # of errors since starting };
ErrorMemAddr { Memory address of last error };
ErrorTime { Time of last error };
LastError { Error code for last error };
ModNumber { Module number for VTScada read };
SiteData { Data array to pass to refresh context};
SiteTimeStamp { Timestamp array to pass to refresh context};

…
]

Init [
If 1 VTSWaitTrigger;
[
Return(Self);

]
]

VTSWaitTrigger [

If Trigger GetSiteData;
[
ResetParm(Self(), 1) { Reset the trigger };
LocErr = Invalid();
SiteData = New(N);
SiteTimeStamp = New(N);

{ Type of poll - default to data since last poll }
PollType = PickValid(HistPollType, #HistPollSinceLast);

]
]

GetSiteData [
LocErr = TransmitReceiveData(SiteID, MemAddr, StartDateTS,

EndDateTS);
If !LocErr ProcessData;
[
LocErr = Invalid();

]
If LocErr SetStats;

]

ProcessData [
LocErr = ProcessReturnedData(&SiteData, &SiteTimeStamp,

LastTSRead);
If !LocErr SetStats;
[

{ Send the new data and timestamps }
RefreshContext\RefreshData(SiteTimeStamp, SiteData);
{ Update the network variable }
LastReadingTS = Max(PickValid(LastReadingTS, 0), LastTSRead);

]
If LocErr SetStats;

]

SetStats [
If 1 VTSWaitTrigger;
[
SetStats(Error = LocErr, Self(), ModNumber, 0, 0)

{ Set driver stats };
IfElse(LocErr;
++ErrorCounts;
{ Else no error }
++Counts { Increment counts };

) { IfElse };
]

]
{ USGSDriver\VTSRead }
>

If implementing automatic rewrites of saved data, you must have Check-
CommsLossErr() module similar to the following. The specific error
codes will depend on your driver – those used in the example are for the
Allen Bradley driver only.

<
{================== ABDriver\CheckCommsLossErr ====================}
{==}
CheckCommsLossErr
(
ErrorVal;

)
Main [
If 1;
[
{***** Comms Loss errors noted for the AB driver *****}
IfThen(ErrorVal == 4 ||

ErrorVal == 32 || ErrorVal == 48 ||
ErrorVal == 64 || ErrorVal == 0x200 ||
ErrorVal == 0x202 || ErrorVal == 0x213 ||
(ErrorVal >= 0x300 && ErrorVal <= 0x309),

Return(1);
);
Return(0);

]
]
{ End of ABDriver\CheckCommsLossErr }
>

In the code for your driver's configuration panel, if you are implementing
output rewrites, you must also provide a check box for AutoRewrite and
StoreOutputs. Include the following code to ensure that if AutoRewrite is
true, StoreOutputs can't be false:

If Watch(0, Parms[\#StoreOutputs]);
[
IfThen(!Parms[\#StoreOutputs],

{ Ensures if StoreOutputs is false then AutoRewrite can't be true }
Parms[\#AutoRewrite] = 0;

);
]

If Watch(0, Parms[\#AutoRewrite]);
[
IfThen(Parms[\#AutoRewrite],

{ Ensures if AutoRewrite is true then StoreOutputs can't be false }
Parms[\#StoreOutputs] = 1;

);
]

The VTSDriver API
The VTSDriver module is supplied with VTScada. It includes the generic
driver interface for VTScada and is used in combination with each

device-specific communication driver.

Several of the functions in VTSDriver are called directly from I/O tags.
For example, AddRead is called by an input or status tag to request that
data be sent from the driver. AddRead will call VTSRead in the device-spe-
cific communication driver to do the actual work according to the par-
ticular device’s requirements.
Note that you cannot call VTSDriver\PollAll() directly after calling
AddReads(). AddReads takes a non-zero time to start, but PollAll syn-
chronously triggers all current reads. The solution is to wait for
VTSDriver\RefreshReady to become TRUE after calling AddRead.
VTSDriver\RefreshReady is FALSE when read modules are being changed
(in flux), and TRUE once they have stabilized on their new state. AddRead
and DelRead set it FALSE, and it is then set TRUE again once the Read
modules are up and running.

Started A flag to let you know that RPC is ready.

RPCSta-
tus

Provides the client/server state.

AddRe-
ad

A subroutine called by I/O tags to request a read from the com-
munication driver. Does not force a read to occur immediately.
Parameters:

Address

The address from which to get the data.

N

The number of elements to get

Value

Either a pointer to the destination for the
data or an object value if VTSDriver will call
Value\NewData when data changes.

Rate

The data update period, measured in
seconds.

NewD-
ata

Typically called from within an I/O tag when RefreshData is called and
before the data is returned. NewData will only be called when there is
new data available – including invalids.
Parameters:

Address

From the original AddRead

Time

StampIn seconds, UTC

Data

The new data – either a single value or an
array of values.

Attribute

Data attributes. Single value or array, match-
ing Data.

DelRead A module that must be called when the address changes.

Read A module that performs a one-shot read, the data from
which will be sent only to the calling server.

Write The main subroutine used to request a write to the com-
munication driver.

AddWrite Obsolete. Was once used to request a write to the com-
munication driver.

PollAll Forces all pending reads to occur immediately. This sub-
routine, which includes feedback, is especially useful with
radio links where reads must occur when the link is estab-
lished.

CoalesceRPC Obsolete. Do not use in new code. Remove from
code being upgraded to the current version of
VTScada.

Related Information:

...VTSDriver and Remote Applications

Related Functions:

...VTSGetAddr

...VTSRead

...VTSWrite

...VTSMaxBlock

VTSDriver and Remote Applications

If you are running a remote application, you should be aware of the fol-
lowing details:

l The subroutines VTSRead and Write will not run on client workstations.

l I/O addresses that are configured only on a client workstation will not be
read. They must be committed to the server before they will be used.

l Data blocks are synchronized on startup.

l Switching can occur on RecommendAlternate in order to provide for soft
fail-overs.

l Drivers sharing the same serial port must be in the same RPC service. The
RPCService variable sets the service name for a driver instance.

Driver Diagnostic tools
The VTScada driver module contains a traffic monitor API, ReportTraffic,
allowing the driver communications stream to be viewed or logged by
viewer applications. The interface is accessed through the TMObj variable
within the scope of the "Driver" Object value. Traffic must be manually
reported by the driver tag using:
Format: Driver\TMObj\ReportTraffic(PortName, Direction, TrafficData);
Parameters:

PortName

This should be set to a text string identifying the port
tag used by the driver.

Direction

Specifies the direction of the traffic (0 = Receive, 1 =
Transmit).

Traffic

Data Text string used to display the actual contents of
the communications data. This string will be displayed
as is and should be formatted into a legible string
before being passed to the ReportTraffic Module.

The "Active" flag located within the scope of TMObj indicates whether any
listener applications are monitoring the driver. ReportTraffic should only
be executed if the "Active" flag is set.

IfThen(Driver\TMObj\Active,
Driver\TMObj\ReportTraffic(ExternalPort\Name, Direction, Data);

);

Related Information:

...Statistics Logging

...Error Checking

...Debugging and Testing Communications Drivers

Statistics Logging

The VTScada driver module contains an API that is used to log statistics
regarding the status of the communications driver. The SaveCommStats
subroutine is located in the scope of the "Driver" variable. The com-
munications driver is responsible for calling this subroutine whenever a
successful or a failed communications attempt has been detected. In
other words, anytime the error value of the driver is set.
Format:
Driver\SaveCommStats(ErrorValueParm, ErrorAddressParm, ErrorAfter-
RetryParm, ResponseTimeParm, CommStatsCallerInfoParm);
Parameters:

ErrorValueParm

This parameter should be set to the current numerical
error value of the communications driver. A value of 0

indicates success.

ErrorAddressParm

This should be set to the memory address which
caused the error to occur.

ErrorAfterRetryParm

This is a flag indicating whether or not the error, or the
success, occurred on a retry. A value of 1 indicates
this was a retry attempt, a value of 0 indicates this was
the initial attempt.

ResponseTimeParm

Expressed in seconds, this parameter specifies the
amount of time it took the I/O device to receive a com-
mand, process it, and send a response. This should
only be valid if the ErrorValueParm is 0, meaning a suc-
cessful communication.

CommStatsCallerInfoParm

An optional parameters allowing the I/O driver to pass
a string which can be displayed in a real time Statistics
viewer. This value is not logged, and will fault to the
module name of the SaveCommStats caller.

The ResponseTime is defined as the time it took the I/O device to
receiver a command, process it, and return a response. The I/O driver is
responsible for calculating the response time. It should be calculated
using the following formula:

ResponseTime = EndTime - StartTime - XmitTime - RcvTime

Where XmitTime is the time it took to transmit any data and RcvTime is
the time it took to receive the data based on the number of bytes sent,
the baud rate, parity, stop bits, whether there is an echo expected and
whether RTS key delays are used. It is the responsibility of the com-
munications driver to calculate the ResponseTime.
Communications driver (driver tag) statistics variables are automatically
synchronized between clients and servers of the I/O Driver service by the

VTScada driver module. The communications driver is not responsible
for this task.

Rules for Writing a Communications Driver
l Communication drivers are tags and must follow the rules for such.

l For communication driver tags, a variable named "Driver" must be present.
This variable must not be set in the module. The VTScada loader sets it
before the module starts.

l Communication driver tags must include a variable named "Ready".
The driver tag code must set this to true when the driver tag is ready to
be used.
This variable must not be set to true before:

l The variable Root is set to some object value (usually Self())

l The variable RPCService is set.

l Before Driver\Started becomes true.

l Before Driver\RPCStatus is 2 (server) or 1 (client)
This could be summarized by:

Ready = Valid(Root) && Valid(RPCService) && Driver\Started && (Driver-
\RPCStatus == 2 || Driver\RPCStatus == 1)

If the driver tag being developed has other constraints they must also be
added.

l For tags that do I/O using a communication driver, the driver tag passed in
as a parameter must first be converted to an object value.

This object value must be used to launch a copy of any read requests
required. This is done with the script code like:

If Watch(1, IODevice, Address, ScanRate) &&
(ValueType(IODevice) == 4 { Text } ||
Valid(IODevice\Driver) { Driver has started });

[
IfThen (ValueType(IODevice) == 4 { Text string },

{ Convert text driver name to the object value of }
{ that driver }
IODevice = Scope(\Code, IODevice)

);
{ Save a copy of the driver instance for next change }

Driver = IODevice\Driver;

{ Delete any previous read requests }
Driver\DelRead(&RawValue);
{ Start new request for the data }

Driver\AddRead(Address,
1 { # of Elements/Bytes },
&RawValue,
ScanRate);

]

The Address and ScanRate are typically parameters to the tag template
module. The Driver variable must be defined in the module.

l Writes to the I/O Device are done by executing a call to the Write module in
the driver within a script. The code might look like:

Driver\Write(Address, Length { # of elements/bytes }, Data);

l A Value variable is common for most tags. For drivers, this value is an error
code where 0 indicates no error. Value should be set to the Error from
VTSRead/VTSWrite, and must be set on the current primary I/O server.

l All driver tag points must have a variable called Drivers with a class of
GROUPS. (not to be confused with "Driver" in point 1).

This should also be a shared variable to conserve RAM. This makes the
tag a part of the Drivers group and is necessary to permit the tag to
show up in driver tag selection lists and to allow it to set its "Driver" vari-
able before the tags use it.

l Any driver tag that should share the same RPC service for all instances,
should define a constant named "RPCService" with the default value being the
name of the service.

This name should typically be the name of the driver tag. This will force
all instances of the driver tag to share the same server. It will dra-
matically improve the startup performance of systems that have a large
number of instances of the same driver tag type, such as SCADA systems
with a large number of RTU’s.
An alternative option is possible if the RPCService variable does not have
a default value. The driver tag may elect to set this variable based upon
some run-time condition (such as a configuration file setting). If the vari-
able exists, it must be set prior to the Driver\Started variable being set
in the VTSDriver code.

l If the driver tag uses a serial port, it is a good idea to flush the input buffer
before any data is sent. The mechanism that VTScada uses to add and delete
read/write commands is such that a read or write that is in progress could be
removed from the "queue" in the middle of processing. This means that it is
possible that a read or write command could send its data but then be
removed from the communications loop before the response comes back.
The next read or write command would then pick up the data, if the serial
buffer was not emptied. (Refer to the function, SerRcv, for one mechanism to
empty the input buffer).

l Do not create a separate module to serve as a low level driver

l Don’t declare the variables that are added by diagnostics.

l Add the driver tag to the groups: Trenders, Loggers and Numeric, Drivers.

Related Information:

...Driver Module Instance Object Value

...Error Checking

...Maintaining Statistics

...Common Driver Widgets

...Debugging and Testing Communications Drivers

Driver Module Instance Object Value

The object value of a driver module instance can be used to provide
information about how that particular driver is running. This is done by
accessing the public variables described in the following table.

Counts The number of successful communications since starting. Counts is a Long
variable.

ErrorCounts The number of errors encountered since starting. ErrorCounts is a Long
variable.

SilentEr-
rorCounts

Used only on reads and only by drivers that can have managed sessions or
poll for exception, unsolicited data, etc. Indicates that the read could not
happen, but this is not necessarily an error. Used to suppress VTSDriver
from changing the driver's Value parameter.

Error The error code number of the current communication attempt. Error is

reset to "0" when the error clears. Error codes follow:

Error Description

0 No error

1 Not executable in RUN mode

2 Not executable in MONITOR mode

3 Not executable with PROM mounted

4 Address over (data overflow)

B Not executable in PROGRAM mode

C Not executable with PROM mounted

D Not executable in LOCAL mode

10 Parity error

11 Framing error

12 Overrun

13 FCS error (checksum)

14 Format error (parameter length error)

15 Entry number data error (parameter error, data
code error, data length error)

16 Instruction not found

18 Frame length error

19 Not executable (due to unexecutable error clear,
non-registration of I/O table, etc.)

20 I/O table generation impossible (unrecognized
Remote I/O unit, word over, duplication of
Optical Transmitting I/O unit)

80 Incomplete response to WRITE

81 Bad serial port parameters

82 Serial port already used

83 FCS error (checksum)

84 No response from PLC (timed-out)

85 Wrong PLC station address responded

86 TYPE parameter out-of-range

87 Garbled/incomplete message

A0 Aborted due to parity error in transmit data

A1 Aborted due to framing error in transmit data

A2 Aborted due to overrun in transmit data

A4 Aborted due to format error in transmit data

A5 Aborted due to entry number data error in trans-
mit data

A8 Aborted due to frame length error in transmit
data

B0 Not executable because the program area is not
16K

LastError The error code number of the last error encountered by any com-
munications attempt. LastError is not reset to zero when the error clears.

TimeStamp The time (in seconds) of the last successful communication since mid-
night. TimeStamp is a floating-point variable.

DateStamp The date of the last successful communication since January 1, 1970.
DateStamp is a long variable.

ErrorTime The time of the last error encountered in any communication attempt in
seconds since midnight. ErrorTime is a floating-point variable.

ErrorDate The date of the last error encountered in any communication attempt in
days since January 1, 1970. ErrorDate is a Long variable.

ErrorOwner An object variable that holds the object value of the read or write statement
that encountered the most recent error.

SCounts
[255]

An array of Counts values, one for each Omron PLC.

SDateStamp
[255]

An array of DateStamp values, one for each Omron PLC.

SError[255] An array of Error values, one for each Omron PLC.

SErrorCount
[255]

An array of ErrorCounts values, one for each Omron PLC.

SErrorDate
[255]

An array of ErrorDate values, one for each Omron PLC.

SErrorTime
[255]

An array of ErrorTime values, one for each Omron PLC.

STimeStamp
[255]

An array of TimeStamp values, one for each Omron PLC.

Version A text variable that is set to the version number of the driver when the
driver is started.

For example, if the object value of the driver module was assigned to an
object variable called, "Driver" then to display any errors generated by
any reads or writes using this driver, use an expression similar to the fol-
lowing example:

Output(0,0,1,0,0, Driver\Error,15,0,0,0,0) { Show the current error
code }

Error Checking

Error checking is an important part of the programming process, as are
the testing and debugging processes. There are many possible error situ-
ations that must be considered. Error statistics should be examined, and
errors recovered from, if possible.
Communication failures are an important issue. They may occur as a res-
ult of human error (such as an unplugged cable) or hardware error (such
as a power failure or noise in the communication channel). A com-
munication link may not occur on the first attempt, but if the problem is
something like distortion in the channel, perhaps after a few retries, a
connection may be established. On the other hand, if the problem is a dis-
connected cable, no number retries will fix the problem. In cases like
this, the error should be reported so that the operator can fix it.
When reliable communications are being used, it will be necessary to
wait for some type of acknowledgment from the receiver to ensure the
message sent was received. In RS-232 serial communications, an echo of
data that was received may be sent back, or in Ethernet communications,
an acknowledgment (ACK) or a negative acknowledgment (NACK) packet

may be sent to indicate whether or not the packet was received. Similarly,
when receiving a packet, it may be necessary to let the transmitter know
a message has been received.
The protocol for the packet may use built-in error checking, such as a
checksum. If this is the case, the validity of the message can be verified
upon receipt, and the message discarded if an error occurred on the com-
munication channel distorting the data.
Another potential issue exists if the driver uses a serial port. The mech-
anism that VTScada uses to add and delete read/write commands is such
that a read or write that is in progress could be removed from the queue
in the middle of processing. This means that it is possible that a read or
write command could send its data, but then be removed from the com-
munications loop before the response is received. The next read or write
command would then pick up the data if the serial buffer was not emp-
tied. Therefore, it is a good idea to flush the input buffer before any data
is sent.

Maintaining Statistics

VTScada communication drivers keep at least the following statistics:

LastError The error code number of the last error encountered by a
communications attempt. Unlike the Value variable, LastEr-
ror is not reset to zero when the error clears.

TimeStamp The time of the last successful communication, measured
in the number of seconds since midnight.

DateStamp The date of the last successful communication measured
in days since January 1, 1970.

ErrorTime The time the last error occurred, measured in seconds
since midnight.

ErrorDate The date of the last error, measured in days since January
1, 1970.

ErrorOwner An object variable that holds the object value of the read
or write statement that encountered the most recent error.

SCounts,
SDateStamp,
SError,
SErrorCounts,
SErrorDate,
SErrorTime,
STimeStamp

Are arrays of 255 elements, with one element for each pos-
sible driver instance. The elements contained in the array
correspond to the name of the array.

Version A text variable that is set to the version number of the
driver when the driver is started.

In addition to the statistics that the driver maintains, the VTSRead mod-
ule maintains statistics for each read attempt that is returned to the
VTSDriver module (in VTSDrvr.web). The three statistics that must be
returned when VTSRead is finished are:

l Counts: The number of successful communications since the driver started.

l ErrorCounts: The number of errors since the driver started.

l Error: The error code number of the current communication attempt. Error is
set to zero when the error clears.

Common Driver Widgets

In order for operators with little or no programming knowledge to see if
problems may be occurring with a driver, and acquire some insight into
what the problems are, graphics are required for VTScada com-
munication drivers. These graphics can be drawn anywhere on the pages
of the VTScada application.
The ShowStats, ShowComm, CommIndicator, SetStats, and ErrorMsg mod-
ules are used for graphical display. ShowStats, ShowComm, and Com-
mIndicator are actual graphics modules, while SetStats and ErrorMsg are
support modules that provide the statistics and error messages that are
displayed. All of these modules can be customized to suit each individual
type of I/O device. For example, additional statistics and information can
be included in the ShowStats and ShowComm windows; however, the
standard displays are generally sufficient.

The ShowStats and ShowComm graphics are buttons labeled with
whatever text labels the user specifies, or the defaults: "Show Stats" and
"Show Comm". The CommIndicator is a box whose color indicates the
status of the communications. The normal color and error color may be
chosen when the box is drawn. These buttons can be drawn anywhere on
the screen in the VTScada application. All three graphic objects are
described in: Drawing Tags).

Debugging and Testing Communications Drivers

There are several tools that may be used for debugging and testing a
communication driver, including snooping software, the VTScada Source
Debugger (see "Source Debugger"), and simulators. These tools are
described briefly here.

Snooping Software
One useful tool for debugging is serial port or TCP/IP port snooping soft-
ware, such as Stream Team or Ethereal. This software enables the pro-
grammer to view all traffic across the computer's serial or TCP/IP port.
The programmer may then verify if the information being sent and
received meets expectations.

VTScada Source Debugger
VTScada comes with a Source Debugger that is very useful in debugging
VTScada code. It enables programmers to watch variables for value
changes, insert breakpoints, and view module content and code. Inform-
ation on the VTScada Source Debugger is provided in "Source Debugger".

I/O Device Simulators
Sometimes the actual I/O device hardware is not available to test with the
communication software. On such occasions, it is helpful to write a sim-
ulator to emulate the I/O device with which communication is desired. A
script application written to use the I/O device's protocol and imitate the
I/O device's actions can be run in VTScada at the same time as the driver

tag. This enables testing of the communication driver without having the
I/O device prior to installation on site.

Add a New Driver to Your Application
I/O drivers are supplied as separate items in script applications. The
drivers for VTScada script applications are delivered as a series of .src
files that contain the source code for each driver (see Communication
Driver Template for details on driver source files). To use an I/O driver in
your script application, you must perform the following steps:

1. Copy the source file (with the .src extension) containing your driver into your
application's directory.

2. Modify the application's AppRoot.src file by adding a line of text in the
POINTS section similar to the following, where "AmazingDrive" is a fictional
device driver:

[(POINTS) {================ Modules that are point templates
=========}

AmazingDrive Module "AmazeDrv.src" { driver for all existent
PLCs};
]

3. Declare the Config and Common modules in the Plugins section of the
AppRoot.src file as follows:

[(PLUGINS) {===== Modules added to other base system modules =====}
 AmazeConfig Module "AmazeCnf.src" { Config };
 AmazeCommon Module "AmazeCmn.src" { Common };
]

4. Recompile your application by clicking the Compile button in the VAM.
The driver will now be available for use in the application's tag browser.

Cryptography in VTS

This section provides architectural, programming, and other information
on the implementation and use of cryptography in VTScada. It is aimed at
both VTScada programmers and advanced engineers performing system
configuration, and assumes knowledge of cryptography concepts.

Related Information:

...Cryptography Terms and Abbreviations

...Cryptography Architecture

...Cryptographic Service Providers

...Cryptographic Keys

...Data Encryption and Decryption

...Cryptography Example

Related Functions:

 Decrypt DeriveKey Encrypt

 ExportKey GetCryptoProvider GenerateKey

 GetKeyParam ImportKey SetKeyParam

Cryptography Terms and Abbreviations

BLOB A generic sequence of bits that contain one or more
fixed-length header structures plus context-specific data.

Ciphertext A message that has been encrypted.

CryptoAPI An application programming interface that provides ser-
vices that enable application developers to add cryp-
tography-based security to applications.

Cryptographic key The session (symmetric) key used during the encryption
and decryption processes, and the public and private keys
used during the authentication process. Of these three

keys, the session key and private key must always remain
secret.

Cryptography The art and science of information security. It includes
information confidentiality, data integrity, entity authen-
tication, and data origin authentication.

CSP Cryptographic
Service Provider

An independent software module that actually performs
cryptography algorithms for authentication, encoding,
and encryption.

Decryption The process in which ciphertext is converted to plaintext.

Encryption The process in which data (plaintext) is translated into
something that appears to be random and meaningless
(ciphertext). Ciphertext is difficult to unscramble without
a secret key.

Key BLOB BLOB containing an encrypted private key. Key BLOBs
provide a way to store keys outside the CSP.

Key container A part of the key database that contains all the key pairs
(exchange and signature key pairs) belonging to a specific
user.
 Each container has a unique name that is used when call-
ing GetCryptoProvider to get a handle to the container.

Plaintext A message that is not encrypted. Plaintext messages are
also referred to as cleartext messages.

Public/private key
pair

 A set of cryptographic keys used for public-key cryp-
tography.

Public-key
algorithm

 An asymmetric cipher that uses two keys, one for encryp-
tion, the public key, and the other for decryption, the
private key.
 As implied by the key names, the public key used to
encode plaintext can be made available to anyone.
However, the private key must remain secret. Only the
private key can decrypt the ciphertext.
 The public-key algorithm used in this process is slow (on

the order of 1,000 times slower than symmetric
algorithms), and is typically used to encrypt session keys
or digitally sign a message.

Session key A key used primarily for data encryption and decryption.
Session keys are typically used with symmetric encryption
algorithms where the same key is used for both encryp-
tion and decryption. For this reason, session and sym-
metric keys usually refer to the same type of key.
 A session key consists of a random number of approx-
imately 40 to 2000 bits.

Symmetric encryp-
tion

 Encryption that uses a single key for both encryption and
decryption. Symmetric encryption is preferred when
encrypting large amounts of data. Some of the more com-
mon symmetric encryption algorithms are RC2, RC4, and
Data Encryption Standard (DES).

Symmetric key A single key, typically a session key, used for both encryp-
tion and decryption.

Block cipher A cipher algorithm that encrypts data in discrete units
(called blocks), rather than as a continuous stream of bits.
The most common block size is 64 bits. For example, DES
is a block cipher.
 Block ciphers are considered more secure than stream
ciphers; however, block ciphers tend to execute much
slower.

Stream cipher A cipher that serially encrypts data, one bit at a time.

Initialization
vector (IV)

A sequence of random bytes appended to the front of the
plaintext before encryption by a block cipher. Adding the
initialization vector to the beginning of the plaintext
avoids the chance of having the initial ciphertext block
the same for any two messages.
 For example, if messages always start with a common
header (a letterhead or "From" line) their initial ciphertext
would always be the same, assuming that the same cryp-

tographic algorithm and symmetric key was used. Adding
a random initialization vector keeps this from happening.

Related Information:

...Cryptography Terms and Abbreviations

...Cryptography Architecture

...Cryptographic Service Providers

...Cryptographic Keys

...Data Encryption and Decryption

...Cryptography Example

Related Functions:

 Decrypt DeriveKey Encrypt

 ExportKey GetCryptoProvider GenerateKey

 GetKeyParam ImportKey SetKeyParam

Cryptography Architecture
VTScada supports cryptography by means of the Microsoft CryptoAPI (fur-
ther details on the CryptoAPI may be found with MSDN).
At present VTScada only provides access to a limited portion of the
CryptoAPI, but this is sufficient to generate keys to encrypt and decrypt
data.
Application developers can use the VTScada cryptography functions
without knowing details of the underlying implementation, in much the
same way as they can use a graphics library without knowing anything
about the particular graphics hardware configuration. The MS CryptoAPI
works with a number of cryptographic service providers (CSP) that per-
form the actual cryptographic functions.
Data encryption transforms a message written in plain text (called "plain-
text" in the cryptography community) so that it appears as random gib-
berish. A good data encryption system makes it difficult to transform

encrypted data back to plaintext without a secret key. The data to be
encrypted can be ASCII text, a database file, or any other data you want
to store or transmit securely. In this documentation, the term "message"
is used to refer to any piece of data; "plaintext" refers to data that has
not been encrypted; and, "ciphertext" refers to data that has been encryp-
ted.
Encrypted data can be stored on non-secure media or transmitted over a
non-secure network and still remain private. Later, the data can be
decrypted into its original form.
Data encryption and decryption are simple processes. When data is
encrypted, an encryption key is used. This key is comparable to a phys-
ical key that is used to lock a padlock. To decrypt the data, a decryption
key is be used. The decryption key is comparable to using a key to unlock
a padlock. Encryption and decryption are often done using the same key,
but unlike working with physical keys, sometimes encryption and decryp-
tion can use different keys from a public/private key pair.
Encryption keys must be kept secret and safe, and must be transmitted
securely to other users. This is discussed further in Data Encryption and
Decryption. The main challenge is properly restricting access to the
decryption key because anyone who possesses it will be able to decrypt
all messages that were encrypted with its corresponding encryption key.

Related Information:

...Cryptographic Service Providers

...Cryptographic Keys

...Cryptography Example

Cryptographic Service Providers
The first CryptoAPI function called by an application that uses any cryp-
tographic APIs is the GetCryptoProvider function. This function returns a
handle to a particular cryptographic service provider (CSP) that includes

the specification of a particular key container within the CSP. This key
container is either a specifically requested key container or it is the
default key container for the logged-on user. GetCryptoProvider can also
create a new key container.
A cryptographic service provider (CSP) has both a name and a type. For
example, the name of one of the CSPs shipped with the operating system
is Microsoft Base Cryptographic Provider. It is a PROV_RSA_FULL type pro-
vider. The name of each provider is unique; the provider type is not.
When an application calls GetCryptoProvider to obtain a CSP handle, it
specifies a provider type and, optionally, a provider name. If both a type
and a name are specified, the function loads the CSP with the matching
provider type and provider name. The function returns the CSP's handle
that provides access to both the CSP and to a key container within the
CSP.
When an application calls GetCryptoProvider and specifies a provider
type but no provider name, the function looks for a named provider, first
checking a list of default named providers associated with the logged-on
user and, if that fails, from a list of default named providers associated
with the computer. After the provider name has been determined, the
GetCryptoProvider function searches for the CSP for that provider, loads
it, and returns its handle.

Related Information:

...Cryptography Example

Related Functions:

... GetCryptoProvider

Cryptographic Keys
Cryptographic keys are central to cryptographic operations. They must
be kept secret because whoever possesses a given key has access to any

data with which the key is associated. For example, if a key is used to
encrypt a file, anyone with a copy of that key can decrypt the file.
There are two types of cryptographic keys: Session Keys and Public/Priv-
ate Key Pairs.

Session Keys
Session keys, also called symmetric keys, are used with symmetric encryp-
tion algorithms. Symmetric algorithms are the most common type of
encryption algorithm. They are called symmetric because they use the
same key for both encryption and decryption. Session keys are often
changed, usually using a different session key for each message encryp-
ted.
Symmetric algorithms are faster than public-key algorithms. Thus, they
are preferred when encrypting large amounts of data. Some of the more
common symmetric algorithms are RC2, RC4, and the Data Encryption
Standard (DES).
Session keys are created by applications using the GenerateKey function.
Since a good deal of the activity involving session keys relates to keeping
them secret, it is important to keep the number of people who possess a
particular session key as small as possible (one or two people is recom-
mended.) These keys are kept internal to the CSP for safekeeping.
Unlike public/private key pairs, session keys are volatile. Applications
can save these keys for later use or for transmission to other users by
using the ExportKey function to export them from the CSP into applic-
ation space in the form of an encrypted "key BLOB". The key BLOB may
then be imported by another application using the ImportKey function.

Public/Private Key Pairs
Public/private key pairs are used for a more secure method of encryption
called asymmetric encryption. Asymmetric encryption is used mainly to
encrypt and decrypt session keys and digital signatures. Asymmetric
encryption uses public-key encryption algorithms.

Public-key algorithms use two different keys: a public key and a private
key. The private key member of the pair must be kept private and secure.
The public key, however, can be distributed to anyone who requests it.
When one key of a key pair is used to encrypt a message, the other key
from that pair is required to decrypt the message. Thus if user A's public
key is used to encrypt data, only user A (or someone who has access to
user A's private key) can decrypt the data. If user A's private key is used
to encrypt a piece of data, only user A's public key will decrypt the data,
thus indicating that user A (or someone with access to user A's private
key) did the encryption.
Unfortunately, public-key algorithms are very slow, — roughly 1,000
times slower than symmetric algorithms. It is impractical to use them to
encrypt large amounts of data. In practice, public-key algorithms are
used to encrypt session keys. Symmetric algorithms are used for encryp-
tion/decryption of most data.
All keys in CryptoAPI are stored within CSPs. CSPs are also responsible
for creating the keys, destroying them, and using them to perform a vari-
ety of cryptographic operations.

Related Information:

...Storage and Exchange of Cryptographic Keys

Storage and Exchange of Cryptographic Keys

There are situations where keys must be exported from the secure envir-
onment of the cryptographic service provider (CSP) into an application's
data space. Keys that have been exported are stored in encrypted key
BLOB structures.
There are two specific situations where it is necessary to export keys:

l To save a session key for later use by an application, if, for example, an
application has just encrypted a database file to be decrypted at a later time.
The application is responsible for storing the encryption key. This is neces-
sary because CSPs do not preserve symmetric keys from session to session.

l To send a key to someone else. This would be easier if the respective CSPs
could communicate directly, but they cannot. Because CSPs can't

communicate, the key has to be exported from one CSP, transmitted to the
destination application, and then imported into the destination CSP. This pro-
cess can become more complicated if the communication path is not trus-
ted.

Data Encryption and Decryption
Encryption is the process of translating plain text data (plaintext) into
something that appears to be random and meaningless (ciphertext).
Decryption is the process of converting ciphertext back to plaintext.
To encrypt more than a small amount of data, symmetric encryption is
used. The symmetric key or session key is used during both the encryp-
tion and decryption processes. To decrypt a particular piece of cipher-
text, the key that was used to encrypt the data must be used. Essentially,
a session key consists of a random number, from 40 to 2,000 bits in
length. The longer the key, the more difficult it is to decrypt a piece of
ciphertext without possessing the key.
The goal of every encryption algorithm is to make it as difficult as pos-
sible to decrypt the generated ciphertext without using the key. If a really
good encryption algorithm is used, there is no technique significantly bet-
ter than methodically trying every possible key. Even a key size of just 40
bits works out to just over one trillion possible keys.
It is difficult to determine the quality of an encryption algorithm.
Algorithms that look promising sometimes turn out to be very easy to
break, given the proper attack. When selecting an encryption algorithm,
it is often a good idea to choose one that has been around for a while,
and has successfully resisted all attacks.
Data is encrypted using the Encrypt function and decrypted using the
Decrypt function. If the data is too big to fit into memory, and can be pro-
cessed using multiple calls to Encrypt and Decrypt.

Related Information:

...Cryptography Example

Related Functions:

... Encrypt

... Decrypt

Cryptography Example
A handle to a cryptographic service provider (CSP) is obtained using the
GetCryptoProvider function. This returns a variable that contains a small
wrapper for the CSP handle. The wrapper is necessary to ensure the CSP
handle is correctly released when it is no longer referenced.
Calling the GenerateKey function creates a variable that contains a
handle to a key. The variable may be copied which generates a duplicate
of the key.
Properties of the key may be read and set using the GetKeyParam and
SetKeyParam functions respectively.
To transfer secret session keys, the ExportKey and ImportKey functions
are used.
Data is encrypted and decrypted using the Encrypt and Decrypt functions.
Example:

[
{ Variables and Constants for CSP }
 CSP;
 CSPFail;
 Constant CRYPT_EXPORTABLE = 0x00000001;
 Container = "VTS";
 Constant PROV_DSS_DH = 13;
 Constant CRYPT_NEWKEYSET = 8;
 Constant NTE_BAD_KEYSET = 0x80090016;
{ Items for key generation }
 Key1;
 Key2;
 Constant CALG_DH_EPHEM = 0xAA02;
 Constant KEY_SIZE = 512;
 Constant CRYPT_PREGEN = 0x00000040;
{ Items for key parameter set }
 Constant KP_PERMISSIONS = 6;
{ Items for key parameter get/set }
 KeyP;
 KeyG;
 Constant KP_P = 11 { DSS/Diffie-Hellman P value };
 Constant KP_G = 12 { DSS/Diffie-Hellman G value };

 Constant KP_Q = 13 { DSS Q value };
 Constant KP_X = 14 { Diffie-Hellman X value };
 Constant KP_Y = 15 { Y value };
{ Items for export/import }
 PubKey1;
 PubKey2;
 Constant PUBLICKEYBLOB = 0x6;
 Key3;
 Key4;
{ Algorithm conversion }
 Constant KP_ALGID = 7;
 Constant CALG_RC4 = 0x6801;
{ Variables for encryption / decryption }
 PlainText1 = "abcdefghijklmnopqrstuvwxyz0123456789";
 CipherText1;
 PlainText2;
]
Init [
 If 1 Main;

[
{ Get the CSP }

 CSP = GetCryptoProvider(PROV_DSS_DH, Invalid, Container,
Invalid, CSPFail);
 IfThen(CSPFail == NTE_BAD_KEYSET,

{ Not used this container before, make a new one }
 CSP = GetCryptoProvider(PROV_DSS_DH, Invalid, Container,
CRYPT_NEWKEYSET, CSPFail);
);

{ Make a key }
 Key1 = GenerateKey(CSP, CALG_DH_EPHEM, KEY_SIZE << 16 || CRYPT_
EXPORTABLE);

{ Get the key parameters }
 KeyG = GetKeyParam(Key1, KP_G);
 KeyP = GetKeyParam(Key1, KP_P);

{ Make another key using the parameters }
 Key2 = GenerateKey(CSP, CALG_DH_EPHEM, (KEY_SIZE << 16) ||
CRYPT_PREGEN);
 SetKeyParam(Key2, KP_G, KeyG);
 SetKeyParam(Key2, KP_P, KeyP);
 SetKeyParam(Key2, KP_X);

{ Export the public keys from both keys, and import to each
other }
 PubKey1 = ExportKey(Key1, PUBLICKEYBLOB);
 PubKey2 = ExportKey(Key2, PUBLICKEYBLOB);
 Key3 = ImportKey(CSP, PUBLICKEYBLOB, PubKey1, Key2);
 Key4 = ImportKey(CSP, PUBLICKEYBLOB, PubKey2, Key1);

{ Now convert the shared secret key to the bulk encryption key
}
 SetKeyParam(Key3, KP_ALGID, CALG_RC4);
 SetKeyParam(Key4, KP_ALGID, CALG_RC4);

{ Now use the keys to encrypt and decrypt some data }

 CipherText1 = Encrypt(Key3, PlainText1, 1, 0, 0);
 PlainText2 = Decrypt(Key4, CipherText1, 1, 0, 0);
]
]

The sample code demonstrates instantiating a CSP, generating two pub-
lic / private key pairs, exporting the public parts of the keys, importing
the public keys to create two new keys that have a shared secret, con-
verting the resulting keys to a symmetric key and encrypting and decrypt-
ing data. For the sake of clarity, error handling is not shown.
Some points to note are:

l Many parameters to the Cryptography functions and statements are con-
stants that are defined in WinCrypt. The functions and statements do not
interpret these values, but pass them directly to the CryptoAPI. This enables
all the current and any new features of the CryptoAPI to be used without hav-
ing to modify engine code if the parameters were directly interpreted.

l The GetCryptoProvider function returns a value that represents a handle to
the required CSP.

l As the CSP isn't named, the actual CSP returned will depend on the OS and
version of Internet Explorer. For this reason it's recommended that key sizes
and other variable parameters are explicitly set.

l GenerateKey is a function that returns a value holds a handle to the gen-
erated Key.

l GetKeyParam and SetKeyParam are used to read and write to parameters of a
Key.

l The public part of Key1 is exported to a text variable that is returned by
ExportKey, which is then imported into Key2 producing Key3 using
ImportKey. A similar operation is performed to produce Key4. Key3 and
Key4 now contain a shared secret.

l The keys containing the shared secret are converted to a symmetric key
using SetKeyParam.

l Encrypt returns a text string that is the ciphertext of the plaintext string
passed as a parameter. Decrypt returns a text string that is the plaintext of
the ciphertext string passed as a parameter.

l A variable containing a CSP handle has a type of 36 and if printed will display
the textual name of the CSP.

l A variable containing a Key handle has a type of 37 and if printed will display
the hexadecimal value of the algorithm ID of the key.

Related Information:

...Cryptography Terms and Abbreviations

...Cryptography Architecture

...Cryptographic Service Providers

...Cryptographic Keys

...Data Encryption and Decryption

Related Functions:

 Decrypt DeriveKey Encrypt

 ExportKey GetCryptoProvider GenerateKey

 GetKeyParam ImportKey SetKeyParam

Custom Tag Types

The cornerstone of every VTScada application is a group of components
called "tags" (sometimes referred to as "points"). These represent the vari-
ous equipment processes that make up your system, and enable you to
create a chain of communications from VTScada to your physical equip-
ment. A typical application based on the VTScada layer will include a set
of tag types, with which you can create as many tag instances as your
license allows.
You can extend VTScada's feature set by creating new kinds of tag. Some
examples include:

l A tag that collects data from several inputs, generating a combined value.

l A driver tag for a new I/O device.

l A controller that starts each motor in a group several seconds apart, thereby
avoiding load spikes.

There are three ways to create new types of tag:
l Create a Context type, adding properties and child tags that fully describe a

machine, a site, an object or process.

l Write a new type entirely from scratch using the information within this
chapter.

l Do both of the above, starting with a Context tag to define the fundamental
structure, then extending its source code to add completely new features.

It is rare for anyone to write a new type entirely from scratch. If a Con-
text-based structure does not fulfill the need, then it makes an excellent
starting point for further development using custom code.
This chapter focuses only on standard tags. If your intent is to create a
Communication Driver, you should first learn the material here before
attempting to extend the tag with the features required for a driver.

Note: Every tag has three names: "Shortname" is the name of just that
tag, alone. "Name" is the full name including all parents in the hier-
archy. "UniqueID" is the guaranteed unique identifier, belonging to that
one tag instance alone.
For any purpose that requires a lasting connection to a tag, such as

alarm state & history, network values, communication with other
machines, you should always use the unique ID rather than the name.
TagObj.UniqueID (or just UniqueID from within a tag module) can be
used to get the UniqueID for a tag.

Guide to This Chapter
The first topics of this chapter introduce the most basic possible tag
structure. Enhancements such as data logging, alarms, etc. will be
described and added to the sample code individually.
At the end of each main topic, a list of rules is provided. These will sum-
marize the information presented in that topic and may be used as a
checklist when creating your tags.
The topics are as follows:

l Tag Basics

l Module structure including parameters, required and common variables.

l Standard submodule declarations.

l State code for tags.

l The Refresh module.

l Tag Configuration Folders

l Declaring the module.

l State code for configuration modules.

l How to switch tabs.

l How to display the data input fields.

l Adding expression support for parameters.

l Drawing Tags

l Selecting the VTScada widgets that will be available to your tag.

l Creating your own widgets.

l Detecting run mode versus edit mode and responding accordingly.

l Creating a properties dialog panel for configuring your drawing object.

l Indicating questionable and manual data.

l Responding to user actions

l The Common module.

l Display a tool tip.

l Display a right-click context menu.

l Display a trend window.

l Linking to driver I/O

l Reading from an I/O driver.

l Writing to an I/O driver.

l Logging tag data

l Configuring so that a logger can be attached.

l Build logging into your tag.

l Alarms

l Configuring so that an alarm tag can be attached.

l Build alarm features into your tag.

l Containers and Contributors

l Contribute information from your tag to a container.

l Collect information from contributors.

Terms for Tag Types
The following terms and abbreviations are used throughout this chapter.

Tag Tem-
plate Mod-
ule

A module that defines the structure of a tag. An example of a typical tag mod-
ule is "AnalogInput". The tag module has formal parameters that correspond
one-for-one with the fields in the tag properties database.

Tag For the purposes of this section, a tag is defined as a named instance of a Tag
Template Module. For example, an instance of the DigitalInput template is a
digital input tag.
Another definition to describe a tag is, "A software component that can com-
municate with objects in the outside world. A tag can be used to accept input
or generate output.

Database The Database module is at the highest scope in a VTScada application, and is
the location where all instances of the tags for the application are defined.

Library The Library module is the location in a VTScada application where most of the
modules and non-tag related variables are defined. The Library module is at
the scope level just under the Database module. This module's instance goes
by the name of "\VTSDB" when referenced within a VTScada application.

Point An older term for what is now called a "tag".

Tag Prop-
erties
Folder

Also referred to as a "tag configuration folder" or a "config folder". A dialog
with a series of tabs, each of which contains a set of tag properties of a spe-
cific category and is appropriately labeled according to the property fields it
contains (e.g. the ID tab contains properties that identify the tag.) The tag
properties folder is a convenient tool that enables users to enter data into the
Tag Properties Database.

Tag Template Modules
Tag template modules contain the code that defines the tag types avail-
able to your application. Tag template modules define not only what data
types are available, but also how those data types can be displayed, their
logic, their control actions, their alarm behavior, and all other char-
acteristics native to tags of that tag type.
The modules for a tag template will typically be stored in three separate
files. This makes it easier to maintain and update the tag's code and
makes it easier to find the various parts of the complete tag template. In
the following example "Cnf" (appended to the tag name) indicates "Con-
figuration modules" and "Cmn" indicates "Common modules"

All of the custom tags that you add to an application must be declared in
the [POINTS] class of the application’s AppRoot.SRC file. The con-
figuration module and common module may be submodules in the tag's
source file, but it is better to keep them as separate files and declare
these in the [PLUGINS] class of AppRoot.SRC.

The Basic Tag - TagName.SRC
A tag is built using VTScada module1 and state2 code, just like any other
piece of VTScada code. If you are not familiar with the VTScada language,
please study the chapter, The VTScada API, before continuing in this
chapter.
Like all modules, the tag template will include:

l A parameter section

l Declaration of variables and submodules used by the tag template module.

l An initialization state, where start-up tasks are performed and the tag's
Refresh module is launched.

l The tag's main state.

Related information that you may need:

...Tag Configuration Parameters

...The Tag Variables Section

...Rules for Tag Variables, Constants and Modules

1A collection of states, scripts, variables, parameters, comments and pos-
sibly other modules, all of which make up a VTS program. Modules are
separate tasks that run simultaneously in an application. Behind every
page is a module and behind every tag on that page is an instance of
another module (usually with submodules controlling separate tasks).
2A collection of statements, grouped together within square brackets
and given a name. A state is the part of the module that performs a task.
Modules can have many states, but only one may be active at a time.

Tag Configuration Parameters

A tag template module must be configured with a set of formal para-
meters that will correspond one-for-one to the fields of a table in the
tag properties database. Each tag module begins by defining the tag's
parameters, within round parenthesis. For example, the Analog Status
tag begins as follows:

{========================= AnalogStatus
================================}
(
Name <:TagField("SQL_VARCHAR(255)", "Name", 0):>

{ Point Name
};
Area <:TagField("SQL_VARCHAR(255)", "Area", 1):>

{ Point area
};
Description <:TagField("SQL_VARCHAR(255)", "Description", 2):>

{ Point Description
};

Many more parameters follow those shown here.
For each parameter, a parameter constant definition must also be
assigned. This will be discussed in The Tag Variables Section.
The first three parameters, Name, Area and Description are mandatory
and must be as shown in this example. The parameter, Name, must be
the first parameter in the list. The others may be entered in either order,
but it is recommended that the standard order of Name, Area and
Description be maintained.
You may define more parameters as needed, using the following format:

DeviceTag <:TagField("SQL_VARCHAR(255)", "I/O Device Name", 3, FALSE
{ Encrypt }, "SitePoint", "IODeviceLabel"):>

where
"DeviceTag" is a parameter definition.
<: :> is the MetaData operator (This marks the mandatory Tag Para-
meter Metadata section)
TagField is a structure with the following data:

l The SQL data type in the database. The data type should match a list of stand-
ard names (see list in the following topic). The configuration settings contain
a block translating the standard data type names to the actual data type

names used by your ODBC compliant database program. This field is man-
datory.
Note that the data type can be defaulted to SQL_VARCHAR(255). This type
must be used for the 'Name' parameter. All other fields can use SQL_
VARCHAR(255) or SQL_LONGVARCHAR. SQL_LONGVARCHAR is preferred
since all other fields can be expressions

l The name of the field to be created in the database. This is required only if
the field name will differ from the parameter name. If not provided, then the
field name in the database will be the same as the parameter definition.

l The column number of the field if required for a legacy application. This para-
meter is only required if the application is to be used in versions of VTS prior
to 8.0. Defaults to the first unused index number, starting from 0.

l (Optional) A Boolean that if TRUE, specifies that any value stored in this para-
meter should be encrypted.

l (Optional) Avatar. If the parameter resolves to an object, this names the vari-
able where that object is stored.
In practice, this is used only in I/O tags for the I/O device parameter, and
then only if that type will be used to trigger alarms. In this specific case, the
avatar should be set to "SitePoint".

l (Optional) Moniker. Label for the Avatar parameter, used for the graphical
user interface. Typically, "IODeviceLabel", when the avatar is "SitePoint".

Note that Field Names may have spaces, but Parameter Names cannot.
You may also assign a default value for any parameter by adding " =
SomeValue" after the closing angle bracket. For example, the declar-
ations for the Analog Status tag's Unscaled Max and the Units para-
meters are declared as follows:

UnscaledMax <:TagField("SQL_DOUBLE", "Unscaled Max", 7):> =
4095;
Units <:TagField("SQL_VARCHAR(50)", "Units", 10):> =
"%";

In some cases, the default value should be a particular type of parent tag
or a defined VTScada tag. For example:

DeviceTag <:TagField("SQL_VARCHAR(255)", "I/O Device Name", 3,
FALSE, "SitePoint", "IODeviceLabel"):> = "*Driver";
HistorianName <:TagField("SQL_VARCHAR(255)"):> = #SYSTEM_HISTORIAN

Related information that you may need:

...SQL Data Types for Tag Parameters

...Adding New Parameters to Existing Tags

...Example - The Analog Status Tag's Parameters

...Rules for Tag Variables, Constants and Modules

SQL Data Types for Tag Parameters

In practice, only a few SQL data types are used. The most common are:
SQL_VARCHAR(255) – for most text. In this example, 255 characters are
being allocated. Must be used for the Name parameter. May be used for
all other parameters, although SQL_LONGVARCHAR is preferred.
SQL_LONGVARCHAR – Preferred for all fields other than Name, since this
allows space for expressions.
The full list of available SQL data types. Note that SQL_LONGVARCHAR is
preferred in all cases except the Name parameter.

l SQL_BIT

l SQL_TINYINT

l SQL_BIGINT

l SQL_LONGVARBINARY

l SQL_VARBINARY

l SQL_BINARY

l SQL_LONGVARCHAR

l SQL_UNKNOWN_TYPE

l SQL_CHAR

l SQL_NUMERIC

l SQL_DECIMAL

l SQL_INTEGER

l SQL_SMALLINT

l SQL_FLOAT

l SQL_REAL

l SQL_DOUBLE

l SQL_DATE

l SQL_TIME

l SQL_TIMESTAMP

l SQL_VARCHAR

Adding New Parameters to Existing Tags

You may add a new parameter to an existing tag by adding it to the end
of the parameters section. Upon compiling the application and creating
instances of the tag type, the new field will be added to the database.
Note that, to use the new parameter you must also assign a parameter
constant definition, as described in The Tag Variables Section.

Rules for Parameters
Summarizing the information in the preceding topics:

l The names of the first three parameters for all tag template modules must
always be: "Name," "Area," and "Description".

l An unlimited number of tag parameters may be defined. It should be noted
that child tags have a 256 parameter limit.

l Do not use the period character (.) in the names of any of the fields in the
table corresponding to your tag type template (in the tag properties data-
base). Periods are converted to a number hatch, and will prevent data from
being written to the database.

l Do not use SQL reserved words as parameter names.

Encrypted Parameters

You may designate that the value of a parameter, as stored in the tag
file, shall be encrypted. This does not encrypt the parameter in any
VTScada user interface element. The purpose is to block unauthorized
inquiries on the part of persons who do not have access to the applic-
ation, but do have access to your server.
Encrypted parameters can only be defined for your custom tags. They are
not used in any VTScada tag. Note that encryption is not applied ret-
roactively if you modify your tag template file. Only tags created after the
encryption flag has been set will have encrypted parameters.

In the parameter definition, the encryption flag is set as a Boolean in the
TagField definition. In the following example, the parameter, "Illegible,"
is set to be encrypted:

(
 Name <:TagField("SQL_VARCHAR(255)"):>;
 Area <:TagField("SQL_LONGVARCHAR"):>;
 Description <:TagField("SQL_LONGVARCHAR"):>;
 Illegible <:TagField("SQL_LONGVARCHAR", "", Invalid, TRUE):>;
 HelpKey <:TagField("SQL_LONGVARCHAR"):>;
)

Within VTS, the value of "Illegible" will be completely visible. But, in the
tag file, the it will not. For example, the value, "The quick brown fox...,"
will be stored as ":ò7½;j¢×É](Tù†".
The three parameters following the data type are:

l "" - the name to create in the database. Blank as this does not differ from the
first field.

l The column number of the field. Invalid as this is not required.

l The Boolean designating that any value stored in this parameter should be
encrypted.

Example - The Analog Status Tag's Parameters

As an example, the complete list of parameters for the Analog Status tag
is provided. If your tags will include similar parameters, it is recom-
mended that you use similar names and SQL data types. Note the lack of
column numbers for parameters added since the release of VTS 8.0.
Since older applications will not have these parameters, the column num-
ber was not required for backward compatibility.

(
Name <:TagField("SQL_VARCHAR(255)", "Name", 0):>

{ Point Name };
Area <:TagField("SQL_VARCHAR(255)", "Area", 1
):>

{ Point area };
Description <:TagField("SQL_VARCHAR(255)", "Description", 2
):>

{ Point Description };
DeviceTag <:TagField("SQL_VARCHAR(255)", "I/O Device Name",
3 , FALSE { Encrypt }, "IODevice" IODeviceLabel"):> = "*Driver"

{ Site Point driver };
Address <:TagField("SQL_VARCHAR(255)", "Address", 4

):>
{ Address for this input };

ScanRate <:TagField("SQL_DOUBLE", "Scan Rate", 5
):> = 1

{ Rate at which to scan (fastscan only) };
UnscaledMin <:TagField("SQL_DOUBLE", "Unscaled Min", 6
):> = 0

{ Minimum Unscaling counts };
UnscaledMax <:TagField("SQL_DOUBLE", "Unscaled Max", 7
):> = 4095

{ Maximum Unscaling counts };
ScaledMin <:TagField("SQL_DOUBLE", "Scaled Min", 8
):> = 0

{ Minimum scaling value };
ScaledMax <:TagField("SQL_DOUBLE", "Scaled Max", 9
):> = 100

{ Maximum scaling value };
Units <:TagField("SQL_VARCHAR(50)", "Units",
10):> = "%"

{ Engineering units };
AlarmLo <:TagField("SQL_LONGVARCHAR", "Alarm Lo",
11):> = 0

{ Low Alarm Setpoint };
AlarmHi <:TagField("SQL_LONGVARCHAR", "Alarm Hi",
12):> = 100

{ High Alarm Setpoint };
PriorityLo <:TagField("SQL_DOUBLE", "Priority Lo",
13):>

{ Low Alarm priority };
PriorityHi <:TagField("SQL_DOUBLE", "Priority Hi",
14):>

{ High Alarm priority };
InhibitLo <:TagField("SQL_LONGVARCHAR", "Inhibit Lo",
15):> = 1

{ Set to inhibit the low alarm };
InhibitHi <:TagField("SQL_LONGVARCHAR", "Inhibit Hi",
16):> = 1

{ Set to inhibit the High alarm };
AlarmSound <:TagField("SQL_VARCHAR(255)", "Sound",
17):>

{ Name of a .WAV file to play when alarm set };
ManualValue <:TagField("SQL_VARCHAR(255)", "Manual Value",
18):>

{ Manual value for Point };
Threshold <:TagField("SQL_DOUBLE", "Deadband",
19):>

{ Deadband value for logging changes };
Questionable <:TagField("SQL_DOUBLE", "Questionable Data",
20):> = 1

{ Set to true when data is questionable };
Quality <:TagField("SQL_VARCHAR(255)", "Data Quality",
21):>

{ Point/value to determine quality of this point };
DisplayOrder <:TagField("SQL_DOUBLE", "DisplayOrder",
22):> = 0

{ Order to Display this point };
HelpKey <:TagField("SQL_VARCHAR(255)", "Help Key",

23):>
{ Index into help system };

PopupLo <:TagField("SQL_DOUBLE", "Popup Lo"
):> = 0

{ Set to enable a popup for the low alarm };
PopupHi <:TagField("SQL_DOUBLE", "Popup Hi"
):> = 0

{ Set to enable a popup for the high alarm };
AlarmLoDeadband <:TagField("SQL_LONGVARCHAR"
):> = 0

{ Deadband for Lo Alarm };
AlarmHiDeadband <:TagField("SQL_LONGVARCHAR"
):> = 0

{ Deadband for Hi Alarm };
AlarmLoDelay <:TagField("SQL_LONGVARCHAR"
):> = 0

{ Delay for Lo Alarm };
AlarmHiDelay <:TagField("SQL_LONGVARCHAR"
):> = 0

{ Delay for Hi Alarm };
AlarmLoRearmTime <:TagField("SQL_LONGVARCHAR", "Lo Rearm Time"
):> = 3600

{ Time in seconds before acked alarm rearms };
AlarmHiRearmTime <:TagField("SQL_LONGVARCHAR", "High Rearm Time"
):> = 3600

{ Time in seconds before acked alarm rearms };
AlarmLoRearmEnable <:TagField("SQL_DOUBLE", "Lo Rearm Enable"
):> = 0

{ Flag, TRUE if acked alarms to be rearmed };
AlarmHiRearmEnable <:TagField("SQL_DOUBLE", "High Rearm Enable"
):> = 0

{ Flag, TRUE if acked alarms to be rearmed };
HistorianName <:TagField("SQL_VARCHAR(255)"
):> = #SYSTEM_HISTORIAN

{ Historian Tag name };
EnableOutput <:TagField("SQL_BIT"):> = 0

{ Set to enable data to be written to the IODevice as well as
read from the IO. };
SecurityBit <:TagField("SQL_VARCHAR(255)", "Security Bit",
):>

{ The bit number in the security manager which enables control.
};
StyleTag <:TagField("SQL_VARCHAR(255)"):> = "*Style Set-
tings"

{ Style settings for drawing methods};
EnableLogging <:TagField("SQL_LONGVARCHAR"):> = TRUE

{ Enables logging, default is TRUE, can be a constant, tag value
or expression };
RangeMin <:TagField("SQL_DOUBLE"):>

{ Minimum range value };
RangeMax <:TagField("SQL_DOUBLE"):>

{ Maximum range value };
)

The Tag Variables Section

The tag variables section follows the parameters and is enclosed in
square brackets [].
This section declares (and in some cases, initializes) local variables, con-
stants, and modules related to the tag. The following is a list of some of
the items that may be found here:

l Required variables, such as Root and Value

l Other local variables such as RawValue, RawTS, DisplayAddress, and
SitePoint

l Module declarations such as Refresh, NewData and Alarms

l Plugin declarations such as the ConfigFolder and Common modules

l Graphics declarations for VTScada widgets that will be available to this tag.

l Group membership declarations such as "Numeric" and "Loggers".

l Constant declarations including parameter constant definitions, HelpID val-
ues, and NumTagFiles.

These items will be described in later topics of this chapter.

Related information that you may need:

...Rules for Tag Variables, Constants and Modules

...Required Variables

...Constant Definitions

...Other Constants

...Submodule Declarations

Required Variables

If instances of your tag are to have value, whether for use in widgets or
logging, there must be a variable named "Value". The class type (indic-
ating the data type) of Value must also be declared. Note that this is a
type declaration, not a value initialization.

{ Variables }
[
Value (5) { Scaled value for this point. };

]

The possible classes for Value are:
l Class 1 – Bit

l Class 2 – Unsigned byte

l Class 3 – 16-bit integer

l Class 4 – 32-bit integer

l Class 5 – Double precision floating point

l Class 6 – Text

Note: The value of this variable must be set in a script, not in steady-
state.

If the tag template module provides for a manual value or an external
value then care must be taken to use that value whenever it is set. An
example of code showing a manual value being used can be seen in the
topic, The Refresh Module.
Another variable that must be part of every tag template is "Root". Root
will be used to identify the individual instances of the module. This is
required to allow the parameter editing tools to access the parameters of
the tag. It is not assigned a class type.

{ Variables }
[
Value (5) { Scaled value for this point. };
Root { Set to individual instance of this module

};
]

Optional Variables

In addition to the required variables, there are several others that will be
found in many tags. These include the Raw Value as read from I/O, a
local object value for the I/O device driver, etc.
Of note is "DisplayAddress". If present, the Tag Browser is able to display
the tag's configured I/O address. Since new types of tags have added to
VTScada over many years, there is some variation in the name used for
the I/O address field. By creating a variable with the name, Dis-
playAddress, and ensuring that it is always holds the current value of the
I/O address, from whatever parameter stores that value for your tag, you

can ensure that instances of your tag type display their I/O address in the
Tag Browser.
As an example, a partial list of variables from the Analog Status tag is
provided:

{ Variables }
 RawValue { Data value read from the IO
};
 RawTS { UTC Timestamp from NewData
};
Value (5) { Scaled value for this point.

};
 SitePoint { Object value of DeviceTag
};
 OldSitePoint { Previous value of SitePoint
};
Style { Object value of the StyleSettings tag

};
 Started = 0 { Let drawing methods know that Value has been
restored. };
 DisplayAddress { Address for display in the Tag Browser
};
 QualityIssue { TRUE if there is a data quality issue
};

The SitePoint variable is required only if an Avatar property was defined
in the DeviceTag parameter. If so, then in the Main state of the tag, this
property must be set to the object value of the device:

SitePoint = Scope(Root, DeviceTag);

More variables will be required for local calculations, logging, built-in
alarms, and other purposes.

Constant Definitions

A numbered constant must be assigned for each of the declared para-
meters. These will be in the same order that the parameters were
declared. For example, some of the parameter constants for the Analog
Status tag are as follows:

{ Parameter constant definitions }
Constant #Name = 0;
Constant #Area = 1;
Constant #Description = 2;
Constant #SitePoint = 3; { link to the I/O device }
Constant #Address = 4; { the I/O address }
Constant #ScanRate = 5;
Constant #UnscaledMin = 6;
Constant #UnscaledMax = 7;

Constant #ScaledMin = 8;
Constant #ScaledMax = 9;
Constant #Units = 10;
Constant #AlarmLo = 11;
Constant #AlarmHi = 12;

Other Constants

NumTagFiles: In addition to the constant definitions for the parameters,
you should also include one for NumTagFiles.

Constant NumTagFiles = 256;

This value determines the number of tag files that are used to store all of
the instances of this particular type. For example, the tag instances for
the Analog Status tag type are randomly distributed between 256 files.
There is a trade-off between application start-up performance (faster
with fewer tag files) and online tag editing performance (faster with
fewer tags per file, hence faster with more tag files). In general, you will
get good online-editing performance with up to 1000 tags/file. There-
fore, since NumTagFiles in the Analog Status tag is set at 256 files, an
application should have good online editing performance with up to
256,000 of these tags.

Note: After the first instance of a tag has been created, any and all
changes to NumTagFiles will be ignored.

The default if NumTagFiles is not defined for a tag, is 64. This will be
provide good performance for up to 64,000 instances of that tag type in
an application.
PriorityLoad: Tags may be given a constant named "PriorityLoad". Tags
that contain this constant, set to a value of 1, will be started before other
tag types.
PriorityReady: If a tag module has a PriorityLoad variable, it may option-
ally have a variable named PriorityReady as well. If PriorityReady is used,
the tag loading code will wait until its value is set TRUE (non-zero)
before starting any non-priority tag types.

Note: Use PriorityReady with caution. Failure to ensure that its value is
set TRUE will cause tag-loading to stop.

ContextType: Of particular note is the constant, ContextType. While not
required, this is extremely useful when your tag definition is used as part
of a parent-child tag structure. The context type declaration informs
child tags of what type this is. For example, Alarm tags will auto-
matically connect to the first *Numeric parent, Analog Input tags look for
a parent of context type *Driver.
By specifying the context type of your tag, you make it possible to link
your tag to the parent-child hierarchy, automatically. If your tag does
not specify its ContextType explicitly, one will be created automatically,
using the name of the tag.
Child tags are told what ContextType to use for a parameter by providing
that value in the parameter definition. For example, in the Deadband
tag's parameter list, you will find the following parameter declaration:

MonitoredValue <:TagField("SQL_LONGVARCHAR", "MonitoredValue",
3):> = "*Numeric";

In the list of constants for an Analog Status, Calculation, Digital Input, or
other tag, you will find:

Constant ContextType = "*Numeric";

BuiltInAlarm: Include and set true if the tag browser is to inform
developers that this tag includes one or more built-in alarms.

Constant BuiltInAlarm = TRUE { Flag - TRUE if this tag has a built in
alarm };

Assigning Tag Groups

Tag groups are collections of tag types that share some logical rela-
tionship. One example of a tag group is the Drivers group, which lists all
of the I/O drivers in the system.
A tag may be a member of multiple tag groups. For example, the analog
input tag type belongs both to the Analogs group (as it has an analog
value), as well as to the Numeric group (as it has a numeric value).
Groups declaration of the Analog Input tag:

[(GROUPS)
Shared Numeric;

 Shared Analogs;

 Shared Trenders;
]

Groups declaration of the Context tag:

[(GROUPS)
 Shared Container { We are a container tag };
]

One purpose of tag groups is to allow the PSelectObject module to dis-
play a drop-down list of all the tags that belong to a group, rather than
all of the tags of a particular tag type. Again, drivers are an excellent
example: the ConfigFolder module requires a list of all driver tags con-
figured for the application so that it can display them in the I/O device
drop-down list on the I/O tab for the end user to choose from.

Duplicate Tag Groups
You may create your own tag group module within an OEM layer, or
within an application directory. If doing so, be careful not to provide the
same name as an existing group module. If you do, then the tags belong-
ing to the existing group are merged with the tags belonging to the new
group, creating a combined list, rather than overwriting either list.

AppRoot.src GROUPS Section
To create a tag group, you must use the (GROUPS) section within the
application's AppRoot.src file (see AppRoot.src Root File for a Standard
Application). Any identified modules within this section will be searched

for any variables that are of class POINTS. These variable names are used
as the names of the tag modules to include in the group.
Additionally, the tag module itself can define a GROUPS class variable
that should be the name of the group in which this tag should be
included. If the group doesn't already exist, the VTScada code creates it
at load time. These variables should be declared as Shared to conserve
RAM (see "Shared Variables").

DrawLabel Variable
There should be a class 0 variable called "DrawLabel" in the tag group
module. The default value of this variable is used as the name of the vari-
able in the application's configuration that contains the text descriptor
for the group. This description is placed in the configuration variables so
it can easily be translated into different languages, or otherwise mod-
ified without requiring you to directly modify the application's code. If
the "DrawLabel" variable is not present, the tag group module's name is
used as its description. This description appears in the Tag Browser.

Submodule Declarations

Modules that the tag will use must be declared in the variables section.
This includes submodules of the tag and external modules that the tag
will call, such as the widgets, alarm methods, logging, etc. Two of par-
ticular note are "Refresh" and "Common" – modules that must be imple-
mented in every tag template.
The Refresh subroutine will be launched by the tag's initialization state
and will be called every time that the tag's data changes. The declaration
will appear as follows:

Refresh Module { Called when point changes
}

Referring to the following diagram, you may expect to see declarations
for TagNameCmn and TagNameCnf. In the Analog Status tag, these are
declared in the [Plugins] class as follows:

[(PLUGINS)
Shared ConfigFolder = "AnalogStatusConfig";

Shared Common = "AnalogStatusCommon";
]

(While it is common to declare these modules as Plugins, other tech-
niques are possible. In a smaller tag, it may make sense for these to be
submodules within the tag's source file.)
You might notice in this example, that the name "AnalogStatusConfig"
does not match "AnalogStatusCnf" and also that the source file for the
module is not provided. How then does the tag find the correct module?
The answer is that, in addition to the tag itself, both the Config and the
Common modules are declared in AppRoot.src. For your custom tags,
you will add the declarations to AppRoot.src in your application or OEM
layer. For example (taken from VTScada layer's AppRoot.src):

[(POINTS) {===== Modules which are point templates =====}
AnalogStatus Module "AnalogStatus.SRC";

]

[(PLUGINS)
AnalogStatusConfig Module "AnalogStatusCnf.SRC";
AnalogStatusCommon Module "AnalogStatusCmn.SRC";

]

Related Information:
The Refresh Module

Rules for Tag Variables, Constants and Modules

l A variable named, "Value" is required for most tags. It is usually declared to
be of Class 1 through Class 6.

l Any tag template that has a value (such as an input tag) must name this vari-
able "Value". This variable must be set in a script. The setting of the value
might use code similar to that shown here, as taken from a digital input tag:

If Watch(0, Bit1, Bit2) && ! ExternalValue;
[

Value = 2 * Bit1 + Bit0;
]

l The "ExternalValue" variable must be defined in a tag template module with a
default value of 0 for tags that have a value. The ExternalValue variable must
be used to prevent setting of the Value variable when true. This exists for spe-
cialized applications that might provide a value for the ExternalValue vari-
able.

l A variable named, "Root" must be defined in the tag template module, and
must be set to the instance of the module. The following displays the correct
syntax.

Root = Self();

The Root variable enables access to the instance value of the tag by the tag's
configuration modules.

Tag States
As with all VTScada modules, the work is done with state code. The first
state in a module will always run automatically. In the case of a tag, this
state has three tasks: Set the variable Root to "Self", launch the Refresh
module, and transfer control to the main module.
While it is common practice to name a module's initialization state, "Init"
and the main state "Main", you should instead use distinctive names for
these states in your tags. It will be easier to for you to debug your code if
the state names reflect the tag modules they are a part of.
Reducing the Analog Status tag's initialization state to its bare essentials,
it would look like the following:

AnalogInit [
If 1 AnalogInMain;
[

CriticalSection(

Root = Self { This value must be set to self for all
points. It is used by the parameter editing

code. };
{ Set up initial values }
Refresh();

);
]

]

Note that the declaration of Root = Self; and the call to Refresh(), must
be enclosed in a CriticalSection.
In the simple example, no checking is done to ensure that the expression
manager or the alarm manager has started. If you plan to allow expres-
sions for tag parameters (as is commonly done) then you must wait for
the Expression Manager. If you plan to include a built-in alarm then you
must wait for the Alarm Manager.
The actual initialization state for the Analog Status tag, which includes
both of those features, is as follows:

AnalogInit [
If \AlarmManager\Started && \ExpressionManager\Started Ana-

logInMain;
[

CriticalSection(
Root = Self { This value must be set to self for all

points. It is used by the parameter editing
code. };

{ Set up initial values. The refresh sub-module takes care of
I/O, updating the tag's value. }

Refresh();
);

 Started = 1; { Public variable, may be checked by other mod-
ules that depend on this one having started. }
]

]

A tag's Main state will be more complex, depending on the tag's func-
tion. Common tasks include updating the tag's value and other variables.
The following partial example is taken from the Analog Status tag.

AnalogInMain [
 SitePoint = Scope(Root, DeviceTag);
 Style = PickValid(Scope(Root, StyleTag), Variable(\#SYSTEM_
STYLE));

 LowScaleValue = PickValid(RangeMin, ScaledMin);
 HighScaleValue = PickValid(RangeMax, ScaledMax);

]

Other tasks include monitoring the tag's link to the I/O device driver, cal-
culating scale, updating the value in an OPC server, etc. In later topics
within this chapter, you will see code to develop this state further.

Related functions:

... CriticalSection

ValueSyncService
The role of the value synchronization service (i.e. ValueSyncService) is to
allow a tag to register a list of named variables to be kept in synch. The
following VTScada tags use this service:

l Totalizer

l Counter

l Selector Switch

l Historian

l History Statistics

l Rate of Change
This service is meaningful only for tags. ValueSyncService is an altern-
ative to the NetworkValues service, which at times can be undesirable for
speed, memory or synchronization reasons. For example, NetworkValues
do not allow you to control the RPC frequency or when to write to disk
but ValueSyncService does.
The service provides startup synchronization of all registered variables.
It also provides synchronization on new tag creation while the applic-
ation is running (online tag creation). In the case of online tags, the val-
ues are always synchronized with the primary server for the service. The
service supports clients of clients.
Note the following tasks:

l You must explicitly RPC (Remote Procedure Call) the value, unlike Net-
workValues.

l You must explicitly persist the value, again unlike NetworkValues.

There are two synchronization situations:

1) Start-up Synchronization:
When a Client comes online or re-syncs with a Server, it will
get the Primary server’s version of the variables.

2) Online Tag Synchronization:
A new tag is created on a machine, and an EditLockoutManager
update is performed. The convention for this is that all
machines will sync from the primary server's values, regardless
of who actually created the tag first. Thus, whatever happens
to be the value of the variable when the tag comes alive on the
primary server; that is what is synchronized.

API

\ValueSyncService\Register

Description: Called by a tag in order to create a list of variables
which are to be kept in sync.

Returns: Nothing (sets PtrRegisterDone when complete)

Usage: Script Only.

Format: \ValueSyncService\Register(TagObj, PtrRe-
gisterDone, TagVars)

Parameters:

TagObj

Required. The object value of the tag.

PtrRegisterDone

Required. A pointer to a variable. Used to return the
result of the operation. The value will be set to 1 to
indicate that the variables have been synchronized.

TagVars

Required. An array of the variable names to be syn-
chronized.

Example:
As used in the initialization state of the Selector Switch:

If \ValueSyncService\Started WaitRegister;
[

 Root = Self;
{ Register with the ValueSyncService - save processing by regis-

tering for the first instance only }
 IfThen(!Valid(SyncedVars),

{ SyncedVars is a SHARED array, we must be the first instance }
 SyncedVars = New(2);
 SyncedVars[0] = "SaveValue";
 SyncedVars[1] = "RequestedValue";
);
 \ValueSyncService\Register(Root, &RegisterDone, SyncedVars);

{ Set up initial values }
 Refresh();

{… }
]

WaitRegister [
 If RegisterDone Main;
]

The Refresh Module
Your tag's Refresh module is called by VTScada when the tag starts and
whenever any of the tag's parameters change. It is responsible for ensur-
ing that new values are of the correct type for each parameter. In the
case of tags that perform I/O, the Refresh module does not read from
equipment, but does send an AddRead() call to the driver. See Linking to
a Driver for more information on I/O.
It is extremely important that the Refresh module contain a Return state-
ment. The module will be called as a subroutine and must therefore have
a return statement, even if it does not actually return any value.
An example of the code used to update one of a tag's parameters fol-
lows. Here, the Analog Status tag's scan rate is being refreshed:

ScanRate = PickValid(Cast(ScanRate, 3), GetDefaultValue(&ScanRate));

If the parameter is set using a PTypeToggle in the user interface (Con-
stant / Expression / Tag), then it should be evaluated using the Expres-
sionManager's SafeRefresh method:

\ExpressionManager\SafeRefresh(&AlarmLo, Parms[#AlarmLo]);
\ExpressionManager\SafeRefresh(&EnableLogging, Parms[#En-
ableLogging]);

The module will always have one parameter, "Parms," which is a pointer
to an array of the tag's parameter values prior to being modified by the
user. The tag's actual parameters will have already changed by the time
"Refresh" is called. The "Parms" array can be used to test for changes in
the values, and take appropriate action based upon the changes
A portion of the Analog Status tag's refresh module is shown here as an
example. Note that, the portion of a Refresh module that relates to read-
ing or writing data to/from a PLC is covered in the topic, Linking to a
Driver.

<
{====================== AnalogStatus\Refresh
===========================}
{ This subroutine called at startup and whenever the point's para-
meters }
{ change
}
{==-
===}
Refresh
(
Parms { Array for parameters prior to their

change };
)

[
NeedValueUpdate = FALSE;

]

Refresh [
If 1;
[
ScanRate = PickValid(Cast(ScanRate, 3), GetDefaultValue

(&ScanRate));

{***}
{ Scaling

}

{***}
UnscaledMin = PickValid(Cast(UnscaledMin, 3 { Float }),

GetDefaultValue(&UnscaledMin));
UnscaledMax = PickValid(Cast(UnscaledMax, 3 { Float }),

GetDefaultValue(&UnscaledMax));
ScaledMin = PickValid(Cast(ScaledMin, 3 { Float }),

GetDefaultValue(&ScaledMin));
ScaledMax = PickValid(Cast(ScaledMax, 3 { Float }),

GetDefaultValue(&ScaledMax));

IsText = UnscaledMin == UnscaledMax;

{***}
{ Units

}

{***}
{ Provide default Units (%) for new points

}
Units = HookPointUnits = Cast(Units, 4 { Text });

{***}
{ ManualValue

}

{***}
ManualValue = Cast(ManualValue, 3 { Float });
IfThen(ManualValue != Parm[#ManualValue] ||

Valid(ManualValue) != Valid(Parm[#ManualValue]),
NeedValueUpdate = TRUE;

);

{***}
{ Questionable

}

{***}
Questionable = PickValid(Cast(Questionable, 0 { Boolean }),

GetDefaultValue(&Questionable));

Return(0);
]

]
{ End of AnalogStatus\Refresh }
>

Refresh is called prior to the tag's data being written to the tag prop-
erties database and is passed an array of the previous parameter values
for the tag. The current parameter values for the tag have already been
changed by the time the Refresh module has been called. Refresh

provides a way to reduce the memory requirements of the tag by redu-
cing the number of active variable references and code required in the
tag's main module, and thereby reduces the amount of memory required
for each instance of the tag.

TagShutdown Module
If you need certain tasks to run whenever the tag stops, whatever the
reason, then you may add the module, TagShutdown.
When any event causes a tag to stop, VTScada will look for a module
named TagShutdown in that tag and execute the code found there. No
parameters should be defined. This module must be used as a sub-
routine.

Examples:
{============================ TagShutdown
==============================}
{ Called when the tag is slain - due to either tag stop or app shut-
down.}
{ Makes note of the time when the shutdown occurred. This must be a
}
{ subroutine. }
{==-
===}
TagShutdown
Main [
 If 1;
[{ Save the time of shutdown }

 SavedTime = CurrentTime();
 Return(Invalid);
]
]
{ End of TagShutdown }
>

Related Information:

... The Refresh Module - Called by VTScada when the tag starts and
whenever any of the tag's parameters change

Tag Configuration Folders
Every tag instance will require a user-configured name, area and descrip-
tion at a minimum. I/O connection details and other configuration
details will usually be required as well, depending on your tag's purpose.

Configuration is done through a set of configuration folders as shown in
the image. VTScada provides the basic folder structure – you need only
program the data input fields for each tab and ensure that those are
linked to your tag. You will not call the configuration folder directly with
your tag code since VTScada handles that task when you click on the Prop-
erties button of the Tag Browser.
For most parameter-entry fields and selection-lists, there are helper
functions. These are collectively known as the "p-functions".

Related information that you may need:

...Declaring the Configuration Folder Module

...Switching Tabs

...Configuration Tab Contents

...Adding Expression Support for Parameters

...Rules for Config Folders

Declaring the Configuration Folder Module

The code for the configuration folder is typically stored in a TagNameCn-
f.src file. This is commonly declared by adding a line to the [PLUGINS]
class of your AppRoot.src file, assigning a variable name to the source
file.
For example, given a tag named "MyTag" stored in the file "MyTag.src"
and having a configuration folder in "MyTagCnf.src".
In the AppRoot.src file of the application, add the following to the
[PLUGINS] class:

[(PLUGINS)
MyTagConfig Module "MyTagCnf.SRC";

In the file MyTag.src, add the following to the Variables declaration sec-
tion of the module. Note that the assigned name must be "ConfigFolder".

[(PLUGINS)
Shared ConfigFolder = "MyTagConfig";

These two declarations provide VTScada with everything it needs to find
your tag's configuration folder. In the next few topics, you will see the
code for a sample configuration folder.

The Configuration Folder Module

The configuration folder module is responsible for drawing the contents
of the tabbed dialog box used to edit a tag instance's properties. It must
perform three tasks:

l Define the tab labels

l Respond to users requests to change from one tab to another

l Display the correct fields in each tab
Additionally, each configuration module must contain the following
states:

l An initialization state. Used to initialize variables and pass control to the
Switch state.

l A Switch state. Used to switch from one tab's state to another, thereby allow-
ing the user to switch tabs in the panel.

l One state for each tab. These states contain the GUI functions to display the
parameter fields.

The Parameters Section
Every configuration module will have the same parameters section:

(
Parms { Pointer to array of parameters

};
Current { Currently selected tab (starts at 0)

};
PtrWaitClose { Pointer to FLAG - TRUE when wait to close

};
OKPressed { OK Pressed from Properties Dialog

};
CancelPressed { Cancel Pressed from the properties Dialog

};
ParmsData { Parameter data

};
OldParms { Old parameters

};
OldParmsData { Old parameter data

};
ParmsReady { Pointer to the array of

parameter ready flags };
)

l The parameters array is used by VTScada to link your tag parameters to this
module.

l VTScada sets the value of Current when a user clicks on a tab in the con-
figuration panel. You will need to watch Current to know when to switch tabs.

l PtrWaitClose is used by the VTScada code that handles the dialog box's Close
button. It enables the code to finish all work before the dialog closes.

l OKPressed is similar, but ensures that the values are written to the parameter
array.

l CancelPressed is set if the user cancels the configuration session. This allows
you the chance to reset any values that may have been changed before can-
cel was pressed.

l OldParms stores the original values of the parameter fields, prior to the user
editing them in the configuration panel.

l ParmsReady is used in types derived from Context tags and tracks if each
parameter is ready (TRUE) or in the process of being edited (FALSE).

The Variables Declaration Section
The following are standard declared variables in a configuration folder:

l Width – Normally declared as a constant, VTScada programmers set this
value for their convenience when placing objects on the dialog. The height is
set automatically by VTScada to accommodate all of the fields in the tallest
tab of the dialog.

l Trigger – Used by VTScada. Will be required in the code for each input field.

l EditOK - Should be set according to whether the current user has tag modi-
fication privileges, then used in the FocusID field of every input control. (A
value of 0 for FocusID disables a p-control.)

l Tab Label Names – The text to display at the top of each tab.
The tab labels are declared in a Class 1 block. The text you provide for
each label name will be used as the default if not otherwise specified in
the application's Settings.Dynamic file. This system enables easy trans-
lation to other languages by changing application properties rather than
code.
The order in which the labels are provided will match the order of the
tabs from left to right. For example, here is the tab labels declaration
from the Analog Status tag:

[(1){ class declaration }
IDTabLabel = "ID";
IOTabLabel = "I/O";
ScalingTabLabel = "Scaling";
AlarmTabLabel = "Alarms";
ExtAlmTabLabel = "External Alarms";
QualityTabLabel = "Quality";
OrderTabLabel = "Order";
HistorianTabLabel = "Historian";

]

For each tab, you must provide a state containing the graphics state-
ments to be shown in that tab. See, Configuration Tab Contents.

Note: The first tab in every dialog box must be the ID tab.

Configuration Module Initialization
The initial state of the configuration module (commonly named, "Init")
will set initial values for variables where required and pass control to the

Switch state. If no initialization is required, the state will always be writ-
ten as follows:

Init [
If 1 Switch;
[
{***** Initialize the wait close flag to not wait *****}
*PtrWaitClose = 0;

]
]

Switching Tabs

A switching state must always be part of your configuration module. Com-
monly named "Switch" this state examines the value of "Current" (set by
the user clicking on a tab) and passes control to the appropriate tab's
state. The names that you assign to the states need not match the labels,
but should be close enough to make sense to anyone reading your code.

For example, here is the Switch state code from the Analog Status tag:

Switch [
If Current == 0 ID;
If Current == 1 IO;
If Current == 2 Scaling;
If Current == 3 Alarms;
If Current == 4 ExternalAlarms;
If Current == 5 Quality;
If Current == 6 Order;
If Current == 7 Historian;

]

Tabs are numbered by VTScada starting at the left with 0.

Configuration Tab Contents

The contents of each tab are provided by a state that will run when the
user clicks on the matching tab. Each tab's state code must include a
transfer to the Switch state when the value of Current changes.
The state should also update the value of PtrWaitClose based on the Trig-
ger variable. Both are required by the VTScada code that controls the
overall dialog box.
The general appearance of a tab state is as follows:

TabName [
If Current != 0 && !*PtrWaitClose Switch;

*PtrWaitClose = PickValid(Trigger, 1) == 0;

{***** GUITransforms for each field in the tab. *****}
GUITransform(…

]

A variety of parameter-setting functions have been created to simplify
the task of creating the data-entry fields for the parameters. By using
these functions in your GUITransforms, you will also standardize the
appearance of your tabbed dialog boxes.
As an example, ID tab of nearly every VTScada tag's configuration panel
will be similar to the following:

ID [
{ User selected a different tab to display }

 If Current != 0 && ! *PtrWaitClose Switch

{ Let the caller know when its ok to close }
 *PtrWaitClose = PickValid(Trigger, 1) == 0

{ Help topic to display when user presses F1 }
 SetHelp(Self(), \DevHelpFile, 00000 { HelpID 00000 })

{ Name of the tag }
 GUITransform(30, 90, Width - 30, 45 { Boundaries of transform },
 1, 1, 1, 1, 1 { No scaling },
 0, 0, 1, 0 { No movement; visible;
reserved },
 0, 0, 0 { Not selectable },
 \DialogLibrary\PEditName(Trigger));

{ Tag area }
 GUITransform(30, 300, Width - 30, 100 { Boundaries of transform
},
 1, 1, 1, 1, 1 { No scaling

},
 0, 0, 1, 0 { No movement; visible;
reserved },
 0, 0, 0 { Not selectable
},
 \DialogLibrary\PAreaSelect(1 { can edit }, 2 { ID },
Parms[1] { Init },
 1 { Bevel }, 0 { VertAlign
},
 1 { AlignTitle }, 1 {
ParmNum },
 Trigger { Trigger },
OKPressed))

{ Tag Description }
 GUITransform(30, 200, Width - 30, 155 { Boundaries of transform
},
 1, 1, 1, 1, 1 { No scaling
},
 0, 0, 1, 0 { No movement; visible;
reserved },
 0, 0, 0 { Not selectable
},
 \DialogLibrary\PEditField(2, \DescriptionLabel, 4 {
text }, 3 { ID }, Trigger { trigger }));

{ Help key }
 GUITransform(30, 255, Width - 30, 210 { Boundaries of transform
},
 1, 1, 1, 1, 1 { No scaling
},
 0, 0, 1, 0 { No movement; visible;
reserved },
 0, 0, 0 { Not selectable
},
 \DialogLibrary\PEditField(\#HelpKey, \HelpSearchKeyLa-
bel, 4 { text }, 4 { ID }, Trigger { trigger }))
]

Related functions:
For further information about the various parameter-setting functions,
see:

 PAddressEntry PAlmPriority PAreaSelect PCheckBox

 PColorSelect PColorEdit PContributor PDroplist

 PEditfield PEditName PHSliderBar PHueSelect

 PIPAddressList PMultiCheckBox POverride PPageSelect

 PRadioButtons PSecBit PSelectObject PSpinbox

 PTypeToggle

Alarm Tab Notes

If you intend to allow developers to set the comparison function used
when triggering the alarm (>, =, <=, etc) then you should create a dic-
tionary of the function codes. Declare it as a shared variable in the tag
module:

SHARED FunctionCodes { Function code strings };

Then populate the dictionary in the Init state, again in the tag module:

MyTagInit [

If \AlarmManager\Started && \ExpressionManager\Started MyTagMain;
[
{ If (and only if !) you are allowing the developer to choose

the comparison function, create list of function codes }
 IfThen(!Valid(FunctionCodes),
 FunctionCodes = Dictionary();
 FunctionCodes["<"] = \AlarmManager\ALM_FUNC_LESS_THAN;
 FunctionCodes["<="] = \AlarmManager\ALM_FUNC_LESS_EQUAL;
 FunctionCodes[">="] = \AlarmManager\ALM_FUNC_GREATER_EQUAL;
 FunctionCodes[">"] = \AlarmManager\ALM_FUNC_GREATER_THAN;
 FunctionCodes["="] = \AlarmManager\ALM_FUNC_EQUAL;
 FunctionCodes["=="] = \AlarmManager\ALM_FUNC_EQUAL;
 FunctionCodes["!="] = \AlarmManager\ALM_FUNC_NOT_EQUAL;
 FunctionCodes["<>"] = \AlarmManager\ALM_FUNC_NOT_EQUAL;
 FunctionCodes["&"] = \AlarmManager\ALM_FUNC_AND_WITH;
 FunctionCodes["&&"] = \AlarmManager\ALM_FUNC_AND_WITH;
 FunctionCodes["|"] = \AlarmManager\ALM_FUNC_OR_WITH;
 FunctionCodes["||"] = \AlarmManager\ALM_FUNC_OR_WITH;
 FunctionCodes["^"] = \AlarmManager\ALM_FUNC_XOR_WITH;
 FunctionCodes["NAND"] = \AlarmManager\ALM_FUNC_NOT_AND_WITH;
 FunctionCodes["NOR"] = \AlarmManager\ALM_FUNC_NOT_OR_WITH;
);

 CriticalSection(
Root = Self();
Refresh();

);
 Started = 1;
]

]

In the module for the configuration panel, create the following variables:

FindFunction Module "FindFunc.WEB" { Finds function in FuncList };
FuncList { List of valid functions };
FuncIndex { Index into the FuncList array };
FuncValues { Values of the function descriptions };
FuncType { The long text string version of Function };

Then in the panel's Init state, initialize the arrays:

Init [
 If 1 Switch;
[
{***** Set up the function list *****}

 FuncList = New(12);
 FuncList[0] = \NoFunctionLabel;
 FuncList[1] = Concat(\LessThanLabel, " <");
 FuncList[2] = Concat(\LessThanEqualLabel, " <=");
 FuncList[3] = Concat(\GreaterThanLabel, " >");
 FuncList[4] = Concat(\GreaterThanEqualLabel, " >=");
 FuncList[5] = Concat(\EqualToLabel, " = ", \OrLabel, " ==");
 FuncList[6] = Concat(\NotEqualToLabel, " != ", \OrLabel, " <>");
 FuncList[7] = Concat(\ANDedWithLabel, " & ", \OrLabel, " &&");
 FuncList[8] = Concat(\ORedWithLabel, " | ", \OrLabel, " ||");
 FuncList[9] = Concat(\XORedWithLabel, " ^");
 FuncList[10] = Concat(\NotANDedWithLabel, " ! (&&)");
 FuncList[11] = Concat(\NotORedWithLabel, " ! (||)");
 FuncValues = New(12);
 FuncValues[0] = "";
 FuncValues[1] = "<";
 FuncValues[2] = "<=";
 FuncValues[3] = ">";
 FuncValues[4] = ">=";
 FuncValues[5] = "=";
 FuncValues[6] = "!=";
 FuncValues[7] = "&";
 FuncValues[8] = "|";
 FuncValues[9] = "^";
 FuncValues[10] = "NAnd";
 FuncValues[11] = "NOr";

{***** Find the current function type *****}
 FuncType = FindFunction(Parms[\#Function]);
 FuncIndex = LookUp(FuncList[0], 12, FuncType);

{ ... }

Finally, in the state for the tab where the alarm function is to be selected,
display the list:

{***** Function *****}
GUITransform(30, 155, 470, 110,
 1, 1, 1, 1, 1,
 0, 0, 1, 0,
 0, 0, 0,
 \DialogLibrary\PDropList(\#Function, \FunctionLabel,
 FuncList, 0, FuncIndex {
Labels, CanEdit, Index },
 HasPriv ? 11 : 0, 0 { FocusID,
No Trigger },
 FuncIndex, 1, 0, 1 { Init,
DrawBevel, VertAlign, AlignTitle },
 FuncValues { Return Values }));

Related Information:

...Adding Alarms to Custom Tags

...Alarm Manager Function Constants

Adding Expression Support for Parameters

Support for the Expression Manager is what makes the difference
between this configuration field:

And the following:

If your tag includes support for expressions, you must ensure that the
ExpressionManager is started in the tag's initialization state before any
other actions take place. This is commonly done as follows (example
taken from the Analog Status tag).

AnalogInit [
If \AlarmManager\Started && \ExpressionManager\Started Ana-

logInMain;
[

CriticalSection(
Root = Self { This value must be set to self() for all

points. It is used by the parameter editing
code. };

{ Set up initial values }
Refresh();

);
]

]

This example shows a check for the Alarm Manager being started as well
as the Expression Manager. The process of adding custom alarms to your
tag is discussed later in this chapter.

In the tag's Refresh module, the \ExpressionManager\SafeRefresh func-
tion is used to handle changes to any parameters that may use a tag or
expression for their value.

\ExpressionManager\SafeRefresh(&AlarmLoDelay, Parm[#AlarmLoDelay]);

(see: Expressions as Tag Parameters for more details.)

Finally, in the configuration folder, the PTypeToggle statement is used to
display the input field with radio selection buttons.

{***** Low Delay *****}
GUITransform(30, 294, WIDTH/2 - 5, 236,

1, 1, 1, 1, 1 { No scaling
},

0, 0, 1, 0 { No movement; visible;
reserved },

0, 0, 0 { Not selectable
},

\DialogLibrary\PTypeToggle(\#AlarmLoDelay, "Numeric"
{ point type },

\LowAlarmDelayLabel,
EnableLo ? 15 : 0 { to 17 -

ID },
0 { top align }, 1 { align

title },
0, Invalid { limits }, Trig-

ger,
1 { Allow Expression }));

Rules for Config Folders

l A module must be defined to handle the drawing of the contents of the
tabbed tag properties folder that enables users to configure the properties of
tags belonging to this tag type while the application is running.

l The ConfigFolder module is configured with one state per tab on the tag prop-
erties dialog. The tabs contain sets of the tag type's parameters organized
into logically consistent groups. When the user clicks on a tab, the value of
the "Current" parameter (see above) changes to reflect the index of the selec-
ted tab, and the ConfigFolder module changes states to draw new data entry
fields on the active tab of the tag properties folder

l A "Switch" state must be provided to transfer control to the appropriate state
when the value of Current changes.

l The data entry fields on each tab of the tag properties folder are drawn
primarily with a set of tools that are contained in a module named, "Dia-
logLibrary". These tools enable you to draw text and numeric entry fields,
drop-down lists, and radio buttons.

l When defining the labels to appear on the tabs of the tag properties folder for
your custom tag type, first define a list of class 1 variables that refer to a set
of tab name variables to be found in the application's configuration. The
order of these variables should be the order in which the tabs are displayed

in the tag properties folder. Each class 1 variable should be provided with a
default value; therefore, if there is no corresponding value set in the applic-
ation's configuration, this default value can be used for the tab label. Note:
The class 1 variables do not directly represent the text label to be displayed
on each tab; rather, the configuration variables they reference contain the
text labels for the tabs. This organization enables you to later translate the
labels into another language, or otherwise modify their text without having
to change the application's code.

Create or Assign Tag Widgets
VTScada provides an extensive selection of widgets that you may use
with your tags. You can also write a custom widget for a tag if none of
the built-in methods meet your needs.
To use the tag widgets provided by VTScada, you need only declare the
ones you wish to use in the [(GRAPHICS)] class of your tag module's vari-
ables declaration section. A complete list of the available widgets can be
found in the chapter, Drawing Tags.
The following example is taken from the Analog Status tag: (list reduced
here to save space)

[(GRAPHICS)
Draw Module { Standard Draw Module for this point

};
Shared TopBar;
Shared RightBar;
Shared LeftBar;
Shared BottomBar;
Shared Number;
Shared DrawText;
Shared Meter1;
Shared Meter2;
Shared Meter3;
Shared Meter4;
Shared Compass1;
Shared AnimatedBitmap;
Shared TwoColorBar;
Shared ColorFill;

]

The top line in the list is a call to a local module that supplies a custom
widget (named Draw) for this tag.

Note for Style-Tag Aware Widgets
The Status Color Indicator widgets and Indicator Light widgets are typ-
ically used to display a tag's value using the colors defined in the Digitals
tab of the associated Style Settings tag. But, for tags in the ports group,
drivers group, the Modem tag and the SMS Appliance tag, these widgets
take the tag's value to represent an error state, and use the colors
defined in the Errors tab of the style tag.
To inform the widget that your tag's value should be interpreted as an
error indicator rather than a status value, you should add the following
three parameters to the tag.

l ValueIsErrorStatus as a Boolean. Set TRUE to treat the tag's value as an error
status condition and to use the No Error and Error colors of the Style Settings
tag.

l ValueIsErrorAbove as a numeric. This is the value above which the tag will be
treated as being in error. Defaults to 0.

l ValueIsErrorBelow as a numeric. This is the value below which the tag will be
treated as being in error. Defaults to 0.

Related information that you may need:

...Create a Custom Tag Widget

...Widget Parameters

...Example – Parameters for the Analog Status's Draw Widget

...Edit Mode versus Run Mode

...The Properties Panel

...Widget States

...Indicating Questionable and Manual Data

...Rules for Tag Widgets

Create a Custom Tag Widget

It is often the case that a custom tag will have one or more custom wid-
gets. You can build these using the information that follows.

To begin, declare the drawing module in the [(GRAPHICS) section of the
tag, as described in the preceding topic. (see: Create or Assign Tag Wid-
gets)
Each widget must have its own module, where there is one widget per
module. The name of the module will be taken as the name of the widget
unless you specify otherwise with a constant declaration named "DrawLa-
bel".

…
Constant DrawLabel = "MyDrawMethodName";

…

The following are common elements of a custom widget. Required ele-
ments are noted.

l Optional parameters for configuring the object.

l An optional initialization state that sets default values if required (colors,
fonts, sizes, etc.) and call's the module's main state.

l The main state should include the steady state graphics command that
define the drawing object.

l The main state must also launch a call to the tag's Common module.

l A submodule named "Panel" should be included if the widget has parameters.
This is used by the VTScada Graphics Editor when the drawing object is in
editing mode. If a Panel method is not supplied, VTScada will generate a
basic configuration box for the parameters when the object is placed on the
screen.

l Panel must be declared with one parameter, Parms. This will be a pointer to
an array that contains the initial values of the tag's parameters and that will
be modified to contain the values entered by the user while editing.

Each of these elements will be described in the following topics.

Note: You will need to create a MenuItem tag for your widget if you
want to see it in any of the Idea Studio palettes.

Related information that you may need:

...Widget Parameters

...Edit Mode versus Run Mode

...The Properties Panel

...Widget States
Refer to the VTScada Developer's Guide for:

...Right-Click - Editing the Palette MenuItem Tags - Create an entry for
your custom widget

...Menuitem Tag - Menu Item details and reference

Widget Parameters

The parameters for a drawing object are structured much like those of a
tag. They must be declared in a parameters section and they must be
assigned constants in the variables declaration section. The main dif-
ference is that widget parameters are not stored in a database and need
not be assigned
Three common parameters that you may want to include are Dis-
ableTrend, DisableNavigation and DisableTooltip. As their names imply,
these are used to disable user interface features of the Common module
when required.

Example – Parameters for the Analog Status's Draw Widget

As an example, the Analog Status tag has the following options in its
Draw widget:

The matching parameters are declared as follows. (Parameters and vari-
ables for features that have not yet been covered in this chapter are
excluded).
Note the presence of the word "Panel" in the menu. The contents of this
display are controlled by a submodule of the widget named "Panel". You
will need to create this module for your tag.
The four numeric values after the module name and before the para-
meter list are used to specify the size of the module reference box. When
VTScada calls a module within a GUITransform, it scopes in and gets the
bounds of largest of the GUI within that module. Setting the default
graphic size avoids problems when there may be non-GUI graphics or
you want the drawing area bigger to be than the GUI’s within it. See: Mod-
ule Reference Boxes.

<
{=============================== Draw
==================================}
{ Graphic module to display Text Description and Value of the Input
}
{==-
===}
Draw

(0, 30, 200, 0)
(
Digits { Digits after the decimal point

};
ShowUnits { TRUE if display the units

};
FontVal { Font to display text in

};
Border { Border options: 0 = no button, 1 = but-

ton };
BgndColor { Color for background inside the button

};
DisableTrend { Flag to disable trend windows

};
DisableNavigation { Flag to disable navigator menu

};
DisableTooltip { Flag to disable tool tips

};
)

[
Panel Module { Parameter editing module

};
Offset { Offset for graphics, based on Width

};
Color { Background color based on status of

point };
TextColor { Text color based on questionable data

};
Buff { Text buffer holding string to display

};
ChosenFont { The font value chosen by the user

};
DrawFontObj { Object value of font to draw with

};
Format { Format for the number

};

{ Parameter definitions }
Constant #Digits = 0;
Constant #ShowUnits = 1;
Constant #FontVal = 2;
Constant #Border = 3;
Constant #BgndColor = 4;
Constant #DisableTrend = 5;
Constant #DisableNavigation = 6;
Constant #DisableTooltip = 7;

{ Panel dimensions }
Constant #PanelWd = 320;
Constant #PanelHt = 6 * Space + TitleSpace + 3 * CheckHt + 242;

]

Edit Mode versus Run Mode

When the application is in edit mode (Idea Studio), widgets should
respond to user clicks differently than when the application is in run
mode.

You can determine which mode the application is in by querying, Par-
entWindow()\Editing. VTScada will return a value of TRUE or FALSE
depending on the mode. You can then code your method to examine the
\Editing value before responding to a user's action.
An example can be seen with Page Hotboxes. When in Edit mode, these
display as a yellow rectangle, but when in run mode, they are invisible
until the user hovers the mouse pointer over them. You can emulate this
behavior by adding a GUIRectangle to your widget and coding its Vis-
ibility parameter to examine the current value of ParentWindow()\Editing.

The Properties Panel

If the widget includes parameters, it is strongly recommended that you
supply a Panel module. The purpose of this module is to control the lay-
out of the parameter elements in the properties dialog when the widget
is being edited.
The Panel module takes two parameters: Parms, which is a pointer to an
array containing the widgets parameters and PtrWaitClose, which is used
by VTScada when the properties dialog is being closed.

The Panel module will normally also have one internal variable, Trigger.
This will be used by VTScada when each field in the panel is edited by the
user.
Like the tag configuration dialog, the P* functions are commonly used
for the data entry fields.
For example, the entirety of the Analog Status tag's widget panel, as
shown in the preceding topic, is as follows:

<
{=============================== Panel
===============================}
Panel
(0, #PanelHt, #PanelWd, 0)
(
 Parms;
 PtrWaitClose { Pointer to Flag - TRUE to wait to close dlg };
 ParmDefs { Array of page parameter definition structures };
 DialogRoot { The calling dialog window };
)
[
 Trigger { Edit fields trigger };
 SubWaitClose { WaitClose flag for the datasource editor };
 Height { Height of panel };
 PageInst { Page instance };
 ContPageInfo { Container page information };
 Modules { Array of modules to load in the ParameterEdit };
 Parameters { Array of parameters for ParameterEdit modules };
 ParmEditObj { Object value of the ParameterEdit control };
 PEBottom { Bottom of the ParameterEdit };
 FontParm; OldFontParm { Used for ParameterEdit };
]
Init [
 If 1 PanelMain;
[
{***** Set defaults *****}

 Parms[#Digits] = PickValid(Parms[#Digits], 1);
 Parms[#ShowUnits] = PickValid(Parms[#ShowUnits], 1);
 Parms[#Border] = PickValid(Parms[#Border], 0);
 Parms[#BgndColor] = PickValid(Parms[#BgndColor], \DialogBGColor);
 Parms[#DisableTrend] = PickValid(Parms[#DisableTrend], 0);
 Parms[#DisableNavigation] = PickValid(Parms[#DisableNavigation],
0);
 Parms[#DisableTooltip] = PickValid(Parms[#DisableTooltip], 0);

{ Initialize the wait close flag to not wait }
 *PtrWaitClose = FALSE;

{ Get info about the parms of the container page }
 PageInst = \GetUserSession()\GraphicEditor\GetSelectedTabItem();
 ContPageInfo = GetParamInfo(PageInst);

{ Set up variables for ParameterEdit }
 FontParm =
 OldFontParm = Parms[#FontParm];
 MetaData(FontParm, "Revision") = 0;

{ "Font" ParameterEdit }

 Modules = New(3);
 Parameters = New(3);

{ Tag option }
 Modules[0] = "ParmEditTag";
 Parameters[0] = New(1);
 Parameters[0][0] = "FontValue";

{ Parameter option }
 Modules[1] = "ParmEditParmValue";
 Parameters[1] = New(6);
 Parameters[1][0] = ContPageInfo;
 Parameters[1][1] = \#VTypeObject;
 Parameters[1][2] = Invalid;
 Parameters[1][3] = New(1);
 Parameters[1][3][0] = "FontValue";
 Parameters[1][4] = 0; { No Scaling }
 Parameters[1][5] = Invalid; { No default value }

{ Expression option }
 Modules[2] = "ParmEditExprNoNormalize";
 Parameters[2] = New(2);
 Parameters[2][0] = 1;
 Parameters[2][1] = ContPageInfo;
]
]
PanelMain [
{***** Let the caller know when its ok to close *****}

 *PtrWaitClose = PickValid(Trigger, 1) == 0 || PickValid
(SubWaitClose, 0) == 1;
 Height = 10*Space + 2*TitleSpace + PEBottom + SpinHt + BtnHt +
3*CheckHt + 65;
 If Watch(0, Height);
[

 SetPanelRefBox(Self, 0, Height, #PanelWd, 0);
]
{***** Font *****}

 GUITransform(0, 1, 1, 0,
 1 - 0,
 2 * (EditHt + Space),
 #PanelWd,
 1 - 0,
 1, 0, 0, 1, 0, 0, 0, 0,
 ParmEditObj = \ParameterEdit(FontParm { Parameter Value },
 ParmDefs[#FontParm] { Parameter Definition },
 1 { Enable Flag },
 \FontLabel { Title },
 Modules { Array of Parm Edit Modules },
 \Code { Contexts for Edit Modules },
 Parameters { Parameters for Edit Modules },
 TextAttribs(\FontLabel, _DialogFont, 0) { Title Width },
 Invalid { Index value },
 SubWaitClose { Wait to close },
 DialogRoot { Calling dialog window }));
 If FontParm != OldFontParm ||
 Valid(FontParm) != Valid(OldFontParm);

[
 OldFontParm =
 Parms[#FontParm] = RootValue(FontParm);
]

 PEBottom = PickValid(ParmEditObj\Height, 2 * (EditHt + Space));
{***** Digits *****}

 GUITransform(0, 1, 1, 0,
 1 - 0,
 Space + PEBottom + SpinHt,
 170,
 1 - (Space + PEBottom),
 1, 0, 0, 1, 0, 0, 0, 0,
 \DialogLibrary\PSpinBox(#Digits, \DigitsAfterDecLabel, 1 { box
on left },
 0, 9 { limits }, 3 { left, centered }, 0 { autosize },
 0 { no edit }, 3 { ID }, Invalid, Invalid, Trigger {Trigger}));

{***** Show units *****}
 GUITransform(0, 1, 1, 0,
 1 - 180,
 Space + PEBottom + CheckHt + 4,
 #PanelWd,
 1 - (Space + PEBottom + 4),
 1, 0, 0, 1, 0, 0, 0, 0,
 \DialogLibrary\PCheckBox(#ShowUnits, \ShowUnitsLabel, 1 { box
on left },
 3 { left, centered }, 4 { ID }));

{***** Type of border *****}
 GUITransform(0, 1, 1, 0,
 1 - 0,
 2*Space + PEBottom + SpinHt + 65,
 #PanelWd,

1 - (2*Space + PEBottom + SpinHt),
 1, 0, 0, 1, 0, 0, 0, 0,
 \DialogLibrary\PRadioButtons(#Border, 8 { to 10 - ID },
 1 { border }, \TypeOfBorderLabel, 1 { btns on left }, 1 { align
title },
 \NoButtonLabel, \ButtonLabel));

{***** Colors *****}
 \System\Bevel(0,
 5*Space + TitleSpace + PEBottom + SpinHt + BtnHt + 65,
 #PanelWd,
 3*Space + PEBottom + SpinHt + 65,
 \ColorsLabel);

{***** Background color *****}
 GUITransform(0, 1, 1, 0,
 1 - Space,
 4*Space + TitleSpace + PEBottom + SpinHt + BtnHt + 65,
 260,
 1 - (4*Space + TitleSpace + PEBottom + SpinHt + 65),
 1, 0, 0, 1, 0, 0, 0, 0,
 \DialogLibrary\PColorSelect(#BgndColor, \BackgroundLabel, 1 {
btn on left },
 1 { standard size }, 1 { centered }, 12 { ID }));

{***** Disable Options *****}
 \System\Bevel(0,
 10*Space + 2*TitleSpace + PEBottom + SpinHt + BtnHt + 3*CheckHt
+ 65,
 #PanelWd,
 6*Space + TitleSpace + PEBottom + SpinHt + BtnHt + 65,
 \DisableOptionsLabel);

{***** Disable Trends Check Box *****}

 GUITransform(0, 1, 1, 0,
 1 - Space,
 7*Space + 2*TitleSpace + PEBottom + SpinHt + BtnHt + CheckHt +
65,
 #PanelWd - Space,
 1 - (7*Space + 2*TitleSpace + PEBottom + SpinHt + BtnHt + 65),
 1, 0, 0, 1, 0, 0, 0, 0,
 \DialogLibrary\PCheckBox(#DisableTrend, \DisableTrendLabel,
 1 { box on left },
 3 { left, centered },
 13 { ID }));

{***** Disable Navigation Check Box *****}
 GUITransform(0, 1, 1, 0,
 1 - Space,
 8*Space + 2*TitleSpace + PEBottom + SpinHt + BtnHt + 2*CheckHt
+ 65,
 #PanelWd - Space,
 1 - (8*Space + 2*TitleSpace + PEBottom + SpinHt + BtnHt +
CheckHt + 65),
 1, 0, 0, 1, 0, 0, 0, 0,
 \DialogLibrary\PCheckBox(#DisableNavigation, \Dis-
ableNavigationLabel,
 1 { box on left },
 3 { left, centered },
 14 { ID }));

{***** Disable Tooltip Check Box *****}
 GUITransform(0, 1, 1, 0,
 1 - Space,
 9*Space + 2*TitleSpace + PEBottom + SpinHt + BtnHt + 3*CheckHt
+ 65,
 #PanelWd - Space,
 1 - (9*Space + 2*TitleSpace + PEBottom + SpinHt + BtnHt +
2*CheckHt + 65),
 1, 0, 0, 1, 0, 0, 0, 0,
 \DialogLibrary\PCheckBox(#DisableTooltip, \DisableTooltipLabel,
 1 { box on left },
 3 { left, centered },
 15 { ID }));
]
{ End of Draw\Panel }

Widget States

Most widget modules will contain two states: one used to initialize the
parameter values and one to display the tag's value and other graphics
on a page.
The display functions must monitor properties of the tag. If the tag's
units or scaling change, the widget will need to update its appearance to
match the new format. It should also be able to display the Questionable
or Manual Value markers if those exist and are set in the tag. (An

example of the code to do this can be seen in Create a Custom Tag Wid-
get.)
Finally, the tag's main state must launch a call to the tag's Common mod-
ule if it is to support tool tips, trend windows or right-click navigation
menus.
An abbreviated version of the states found in the Analog Status tag's
Draw widget is presented here as an example. Features such as the alarm
display have not yet been covered in this chapter and so are excluded
from the example.

Init [
If 1 Main;
[
{***** Set defaults for the parms *****}
Digits = PickValid(Digits, 0);
ShowUnits = PickValid(ShowUnits, 1);
Border = PickValid(Border, 1);
BgndColor = PickValid(BgndColor, \DialogBGColor);
DisableTrend = PickValid(DisableTrend, 0);
DisableNavigation = PickValid(DisableNavigation, 0);
DisableTooltip = PickValid(DisableTooltip, 0);

]
]

Main [

{***** Work format for display of value *****}
Format = Concat(Valid(\Value) ? Concat("%0.", PickValid(Digits, 1),

"f")
: Concat("*.", MakeBuff(PickValid

(Digits,
1), 0x2A { * character

})),
" ,"
PickValid(\Questionable, 0) ? "?" : "",
Valid(\ManualValue) ? "!" : "",
PickValid(\Questionable, 0) ||

Valid(\ManualValue) ? " " : "",
PickValid(ShowUnits, 0) ? "%s" : "",
);

{***** Figure out what the text looks like *****}
If Watch(1, Format, \ScaledMax, \Units);
[
{***** Get the full string - number, decimal, units and all

*****}
Buff = BuffStream("");
SWrite(Buff, Format,

PickValid(PickValid(\ScaledMax, \Value), \Units), \Units);
]

{***** Convert font point text name into an object and a font
*****}
If Watch(1, FontVal);
[
DrawFontObj = ValueType(FontVal) == 7 { Tag object } ?

FontVal : Scope(\Code, FontVal);
]
ChosenFont = Font(DrawFontObj\FontName, DrawFontObj\CharacterSet,

DrawFontObj\Height,
DrawFontObj\Rotation, DrawFontObj\Weight,
DrawFontObj\Italic, DrawFontObj\Fixed);

QualityIssue = PickValid(Scope(Root, Quality)\Value != 0, 0);

TextColor = PickValid(Questionable, 0) ? \ButtonShadow :
(Color == \ButtonTextColor ? 15 : \ButtonTextColor);

{ Background Button }
GUIButton(0, 30, 200, 0,

1, 1, 1, 1, 1,
0, 0, Border, 0, 0, 0, 0,
BgndColor, \ButtonHighlight , \ButtonShadow, -1,
4, 0, "", "", 0, 0, 1, 2);

{ Description }
GUIText(4, 30, 200, 0,

1, 1, 1, 1, 1,
0, 0, Border, 1,
0, 0, 0,
-1, \ButtonTextColor, PickValid(DrawFontObj\Value, _Dia-

logFont),
2, 4, { Alignment }
\Description);

{ The indented box }
GUIButton(130, 26, 196, 4,

1, 1, 1, 1, 1,
0, 0, Border, 0, 0, 0, 0,
-1, \ButtonShadow, \ButtonHighlight, -1,
4, 0, "", "", 0, 0, 1, 2);

{***** Display the number *****}
GUIText(0, 1, 1, 0,

1 - (Border ? 131 : 0), Border ? 25 : 30,
Border ? 195 : 200, 1 - (Border ? 5 : 0), 1,
0, 0, 1, 1,
0, 0, 0,
Color, TextColor,
PickValid(DrawFontObj\Value, _DialogFont),
4, 4, { Alignment }
Format, PickValid(\Value, \Units), \Units);

{***** Display common features *****}
\Common(0, 30, 200, 0, DisableTrend, DisableNavigation, Dis-

ableTooltip);
]

Indicating Questionable and Manual Data

The unlinked widget, question mark and exclamation mark graphics,
used to indicate any of these tag states in a widget, are created by the
module TagIconMarker.
This module places a set of icons on the screen centered over a given
rectangular region. The icon displayed is cycled with each passage of the
period, measured in seconds. The images are provided by the module,
but you are free to add your own symbols.
Centering the symbol within the user-defined drawing area requires
some calculation. For more information about this function and an
example taken from a VTScada tag widget, see IconMarker in the
VTScada Function List.
The following example places a set of icons on the screen centered over
a given rectangular region. The icon displayed is cycled with each pas-
sage of the period, measured in seconds.

{***** Signify when data is questionable *****}
GUITransform(0, 100, 100, 0,

 1, 1, 1, 1, 1 { Scaling },
 0, 0 { Movement },
 1, 0 { Visibility, Reserved },
 0, 0, 0 { Selectability },
 Variable("Code\Library")\TagIconMarker(\Root, FALSE));

Related functions:

...TagIconMarker

... IconMarker

Rules for Tag Widgets

l Drawing modules (modules within the tag that provide a method for dis-
playing the value of the tag on the system pages of your application) must
always be declared in the GRAPHICS class.

l Create a Panel module within any of the tag widget modules that have para-
meters. The Panel module performs a task similar to that of the ConfigFolder
module (see number 8 above), except that it is responsible for the editing of
the tag widget module's parameters, rather than the parameters for the tag
as a whole. A Panel module is not required if the tag's widget module has no

parameters. If a tag widget module doesn't have a Panel module, a default
parameter configuration dialog box is instantiated when the object is placed
on the screen.

l The Panel module takes two parameters: Parms – A pointer to an array that
contains the initial values of the tag's parameters, and that will be modified to
contain the values entered by the user while using the tag properties dialog.
PtrWaitClose – A pointer to a flag - TRUE to wait to close dialog.

l The Parms parameter is handled in the same manner as the first parameter
for the ConfigFolder module (please refer to the Dialog Library Tools section
for details on how to build this module to create the dialog box). This dialog
box differs from the ConfigFolder dialog in that it is not a tabbed dialog box,
but it does have a preview window at the bottom to allow users to view an
image of how the completed tag widget will appear when placed on the sys-
tem page. The size of the dialog box is automatically determined by calling
code in VTScada so that it is the minimum sized window that will contain all
of the GUI objects used.

l Use the "ParentWindow()\Editing" variable to prevent control actions within
the Idea Studio window. The \Editing variable is set to true within the context
of the editor window. Preventing control dialogs or other mouse actions from
being acted upon when this value is true will prevent unintended control
when an object is selected for editing.

l If a widget for an object is normally invisible, you should use the Par-
entWindow()\Editing variable in the visibility parameter of a GUIRectangle in
order to display a yellow box around the perimeter of the area so that it can
be seen during editing and can be selected.

l Inside the drawing module, you may define variables called DrawWidth and
DrawHeight that can be used to set the width and height of the object placed
on the screen during configuration. This is useful in setting the size of an
image that is different than the size given by the GUIBitmap reference box.
These variables are typically set in the "Main" module, according to the cur-
rent parameters set for the graphic object.

l Add a constant definition for "DrawLabel" with a default value to each draw-
ing module. This variable's default value specifies the name of a variable in
the configuration that defines the label to place on the drawing object's pre-

views during configuration. If this variable is not present, the drawing mod-
ule's name is used.

Common Module
Various user-interface features are common to the VTScada tag widgets.
The widgets will issue calls to the Common module of the associated tag
in order to provide the contents and functionality of the interface fea-
ture. These may include a call to the Navigator module, the ToolTip mod-
ule, and the PkTrend module. Any external graphic modules must make a
call to the Common module within the tag. The Common module takes
four parameters that define the area of the screen occupied by the draw-
ing object and three that allow an instance of a tag to disable the user
interface elements. The seven parameters of the Common module are:

l Left – Any numeric expression for the object's left side coordinate.

l Bottom – Any numeric expression for the object's bottom coordinate.

l Right – Any numeric expression for the object's right side coordinate.

l Top – Any numeric expression for the object's top coordinate.

l DisableTrend – Any Boolean expression for disabling the trend window

l DisableNavigation – Any Boolean for disabling the right-click menu

l DisableTooltip – Any Boolean expression to disable the tooltip display
For example, most widgets will display a pop-up menu in response to a
right-click.

The menu that appears is under your control via the Navigator module. It
is up to you to decide what to include in this module for your custom
tags and what each entry should do.

Related Information:

...Navigator Calls (Shortcut Menu)

...ToolTip Contents

...Opening an HDV (PKTrend) Window

...Common Module Example

...Rules for the Common Module

Navigator Calls (Shortcut Menu)

Calls to the Navigator result in a shortcut menu being associated with a
tag type. When the user right clicks on the graphic object representing
the value of a tag, the shortcut menu opens and enables the user to con-
figure the tag's properties. Tag properties modified using the shortcut
menu are automatically written to the tag properties database, following
a call to the "Refresh" module.
Access to the shortcut menu is controlled by the Security Manager, which
has a specific system bit set aside for this purpose (\Se-
curityManager\PrivBitConfigure). The Security Manager handles the priv-
ileges granted to the logged on user, and disables any shortcut menu
options or tag properties for which the logged on user is not authorized.
See: Security Features for Tags.

Related Information:

...Navigator Module Parameters

Navigator Module Parameters

The activation of the Navigator should not occur when a tag's widget is in
preview mode or when the Navigator module is called from a container's
drawing module.
The first parameter for the Navigator module (Enable), detects if the sys-
tem is in preview mode, or if the Navigator module is being called by a
container module.)
Parameters of the Navigator module:

l Enable – The Enable parameter is set to 1 (true) when the shortcut menu may
appear. The shortcut menu is disabled during the preview and placement pro-
cess.

l Left – The left coordinate of the object to click upon to open the shortcut
menu.

l Bottom – The bottom coordinate of the object to click upon to open the
shortcut menu.

l Right – The right coordinate of the object to click upon to open the shortcut
menu.

l Top – The top coordinate of the object to click upon to open the shortcut
menu.

The Navigator takes groups of four additional significant parameters that
describe the menu items and their actions. These parameters are appen-
ded to the end of the parameter list in groups of four. One group of four
defines one line in the shortcut menu.

l NavContents – The shortcut menu option's name. If the name is set equal to
"--", a beveled ruling line is placed in the menu, rather than a selectable text
option.

l NavToggles – A pointer to a value that is a toggle option (i.e. each time this
shortcut menu option is selected in the shortcut menu, it is toggled on or off
(i.e. is logically inverted)). When the value of the variable pointed to is true,
the shortcut menu option is toggled on, and a checkmark appears to its left.
When the value of the variable pointed to is false, the shortcut menu option is
toggled off, and no check mark appears to its left. Any element may be
invalid if not used. If the NavTabNums element is used to open the tag's prop-
erties folder, this value must be invalid. If the variable pointed to by this para-
meter is in a module other than the one pointed to by the "Root" parameter
(please see previous section), the NavTabNums parameter contains the
object value of that other tag.

The NavToggles parameter can also serve a very different purpose if it con-
tains an object value, in which case it will be the tag instance to use to launch
the TabNums parameter actions within. This can be used to allow direct
access to sub-tag parameter configuration folders, or to launch modules
within other contexts. This cannot be used in combination with the TabNums

parameter value being invalid, since the TabLabels will not correspond to the
correct tag properties folder.

l NavDisabled – A status value that enables you to disable any menu item. An
invalid entry in this parameter is treated as the item being enabled.

l NavTabNums – An index that indicates the tab number (of the tag properties
folder) to display if the shortcut menu option is selected (tag properties
folder tabs are labeled starting at 0). If this value is invalid, the entire tag
properties dialog is opened (i.e. rather than a single tab displayed as a win-
dow, the tag properties dialog will open to the ID tab, and will additionally
reveal its other tabs).

If this value is a text string, a module by that name is launched within
the scope of the calling tag. If the corresponding NavToggles entry has
an object value, the module is launched within the scope of that object
value.
If the variable pointed to by the NavToggles parameter is in a module
other than the one pointed to by the "Root" parameter, the NavTabNums
parameter contains the object value of that other tag.
If the NavToggles parameter is a pointer to a parameter of a tag that is
not in that current tag, this value must be the object value of the tag
where that toggled parameter exists.
To summarize, there are the following modes for these parameters:

Action NavToggles NavTabNums

Full tag properties folder Invalid Invalid

Single tab tag properties folder Invalid Tab number

Toggle parm in this tag Pointer to the parm Invalid

Toggle parm in another tag Pointer to the parm Object value of other tag

Launch module in tag scope Invalid Module name (text)

Launch module in other scope Scope in which to run Module name (text)

ToolTip Contents

When the user holds the mouse pointer over a widget, the normal
VTScada behavior is to display the associated tag's name and description.
You can control what text will be displayed for your tag by including a
call to WinToolTipCtrl in your tag's Common module.
If your Common module does not include a call to WinToolTipCtrl, then
there won't be a tool-tip.
The target for the tool-tip should be the same as the area parameters
passed to the Common module. If this point is contained within another
object and the container calls this Draw module, then you do not want
this tool tip note to display. This is typically indicated by the calling con-
tainer's drawing module adding one additional parameter to the list. By
detecting that the number of parameters that the Draw is called with is
not the same as the number of formal parameters, you can prevent the
tool tip note from appearing. This will also prevent the note from appear-
ing during preview and placement which is also desirable.
For example:

WinTooltipCtrl(Left, Bottom, Right, Top,
WTTS_FLAG_TRACKINACTIVE + (PickValid(\NoBalloonTips,

0) ?
0 : WTTS_FLAG_BALLOON),
\Description, \Name, Invalid,
\ShowTip && ! IsAPreview && ! \GetUserSession

()\NavActive
&& PickValid(! DisableTooltip, 1),

\TipFont\Value);

Opening an HDV (PKTrend) Window

If your tag contains a value that can be trended, then you may include a
call to PKTrend in the Common module. This will watch for a left-click
within the area of the widget and open a Historical Data Viewer window
in response.
This code is generally incompatible with the control dialog code which
uses the same mouse button. The first four parameters should match the
area as indicated by Left, Bottom, Right & Top because they specify the

target area for the mouse. The last parameter is the object value of this
point instance.
This function will automatically be disabled when the page is in editing
mode.
For example:

\PkTrend(Left, Bottom, Right, Top, \Root,
! IsAPreview && PickValid(! DisableTrend, 1)
{ Disable when called from a container's draw });

Common Module Example

The code to enable this menu for the Analog Status tag is as follows:

{======================== AnalogStatus\Common
=========================}
{ This module handles the common actions associated with all drawing
}
{ modules for this point. It will be called by all external drawing
}
{ modules.
}
{==-
==}
(
Left { Area occupied by the drawing object

};
Bottom;
Right;
Top;
DisableTrend { Flag to disable trend windows

};
DisableNavigation { Flag to disable navigator menu

};
DisableTooltip { Flag to disable tool tips

};
)

[
ManualDisabled { Manual Disabled flag

};
QuestionableDisabled { Questionable Disabled flag

};
AlarmDisabled { Low alarm Disabled flag

};
IsAPreview { Flag - TRUE if this is deemed a preview

};
]

Common [

{ This variable indicates if the widget calling this common
module is a preview. The value may be useful for disabling

certain
functionality. }

IsAPreview = IsDrawMethodPreview();

{**-
*}
{ "Post-it" note section

}

{**-
*}

WinTooltipCtrl(Left, Bottom, Right, Top,
WTTS_FLAG_TRACKINACTIVE +
(PickValid(\NoBalloonTips, 0) ? 0 : WTTS_FLAG_

BALLOON),
\Description, \Name, Invalid,
\ShowTip && ! IsAPreview &&
! \GetUserSession()\NavActive &&
PickValid(! DisableTooltip, 1),

\TipFont\Value);

{**-
*}
{ Navigator menu section

}

{**-
*}

ManualDisabled = ! PickValid(\SecurityManager\SecurityCheck
(\SecurityManager\PrivBitManualData, 1), 0);
QuestionableDisabled = ! PickValid(\SecurityManager\SecurityCheck

(\SecurityManager\PrivBitQuestionable, 1), 0);
AlarmDisabled = ! PickValid(\SecurityManager\SecurityCheck

(\SecurityManager\PrivBitAlarmInhibit, 1), 0);
\Navigator(! IsAPreview && PickValid(! DisableNavigation, 1)
{ Opening condition for the folder },

Left, Bottom, Right, Top { Target area for opening –
same as the GUI statement

area },
{ Menu line 1} \HelpLabel, Invalid, 0,

"HelpLaunch",
{ Menu line 2} "--", Invalid, 0,

Invalid,
{ Menu line 3} \InhibitLowAlarmLabel, &(\InhibitLo), AlarmDisabled,

Invalid,
{ Menu line 4} \InhibitHighAlarmLabel,&(\InhibitHi), AlarmDisabled,

Invalid,
{ Menu line 5} \AlarmSettingsLabel, Invalid, AlarmDisabled,

3,
{ Menu line 6} "--", Invalid, 0,

Invalid,
{ Menu line 7} \ManualDataLabel, Invalid, ManualDisabled,

1,
{ Menu line 8} \LoggingDeadbandLabel, Invalid, ManualDisabled,

1,
{ Menu line 9} \QuestionableLabel, &(\Questionable), Ques-

tionableDisabled,Invalid,
{ Menu line 10} "--", Invalid, 0,

Invalid,
{ Menu line 11} \PropertiesLabel, Invalid, 0,

Invalid);

{**-
*}
{ Trend window pop-up section

}

{**-
*}

\PkTrend(Left, Bottom, Right, Top, \Root,
! IsAPreview &&
PickValid(\AITrendEnable, 1) &&
PickValid(! DisableTrend, 1)
{ Disable when called from a container's draw });

]

{ End of AnalogStatus\Common }

Rules for the Common Module

l A module called "Common" must be defined within the tag. The Common
module handles all of the common drawing object functions that are imple-
mented in the graphic drawing modules. These functions typically include a
call to the Navigator module, the ToolTip module, and the PKTrend module,
as well as calls to code for control dialog boxes. Any external graphic mod-
ules must make a call to the Common module within the tag.

l The Common module takes parameters that define the area of the screen
occupied by the drawing object and that enable or disable user interface fea-
tures. The seven parameters of the Common module are:

l Left – Any numeric expression for the object's left side coordinate.

l Bottom – Any numeric expression for the object's bottom coordinate.

l Right – Any numeric expression for the object's right side coordinate.

l Top – Any numeric expression for the object's top coordinate.

l DisableTrend – Any Boolean expression for disabling the trend window

l DisableNavigation – Any Boolean for disabling the right-click menu

l DisableTooltip – Any Boolean expression to disable the tooltip display

l Add the call to the "\Navigator" in each of the drawing modules so that when
the user right clicks upon the object, the shortcut menu opens and enables
the end user to modify the parameters of the selected tag. (Information on
the Navigator can be found in Navigator Calls (Shortcut Menu)).

Linking to a Driver
One of the parameters shown in an example at the beginning of this
chapter was:

DeviceTag <:TagField("SQL_VARCHAR(255)", "I/O Device Name", 3,
FALSE, "SitePoint", "IODeviceLabel"):> = "*Driver";

When a user configures an instance of this tag, the name of the asso-
ciated I/O device driver will be stored in this parameter.
Rather than using this parameter directly within the tag code, it is com-
mon to use the tag's Variables section to specify a location where the
object value of the I/O device will be stored. Also, the raw value from the
I/O tag will not be used directly as the tag's value – rather, it will be
stored in a local variable. When the raw I/O value changes, scaling or
other operations can be applied to find the tag's new value.
Updating the example code, the Variables section will now look like the
following, where the last line refers to the driver:

{ Variables }
Value (5) { Scaled value for this point. };
RawValue { Data value read from the IO

};
Root { Set to individual instance of this module

};
SitePoint { Object value of IODevice parameter

};

The Main state will be responsible for linking the variable to the object
value of the I/O device tag:

AnalogInMain [
SitePoint = Scope(Root, DeviceTag);

]

The code examples just shown will suffice to link your tag to a I/O device
driver. It will be the job of your tag's Refresh module to add or remove
reads for the addresses in the device driver in response to any change in
parameters. Other modules will take care of handling data sent from the
driver.
You must also provide a way for the developer to specify the address to
use on the I/O device driver. The AddressEntry and PAddressEntry func-
tions both serve this purpose. These functions will display a standard
edit field, or if the driver includes an AddressAssist module, will display
the user-interface elements coded there. (see: Providing an AddressAss-
ist Window in the Communication Drivers chapter.)

Related Information:

...Triggering a Data Read

...The NewData Module

...Writing Data: The Set Module

Triggering a Data Read

Having established a link between your tag and a driver tag (previous
topic), your Refresh module must issue an AddRead request to the driver
in order to start receiving data. If any of the connection parameters
change, this request should be cleared and a fresh AddRead issued.
Once the AddRead has been issued to the driver instance, it is then up to
the driver code to poll the PLC at the ScanInterval rate and send new val-
ues back to the specified destination. Note: The Refresh module is not
used to handle new values from the driver. For details on how the driver
sends values to your tag, see The NewData Module.
The following example (taken from the Analog Input tag's Refresh mod-
ule) shows how the AddRead function should be called. The tag's
RawValue parameter is used as the destination for the value read from
the driver. You may then write code that scales this before using the res-
ult as the tag's value or, if the manual data flag is set, ignores the raw
data value in favor of the manual data value. Note that this example is

for analog data – digital values are read using the same technique, but
would not be scaled.

Refresh [
If 1;
[

{***** Scan Interval *****}
ScanInterval = PickValid(Cast(ScanInterval, 3),

GetDefaultValue(&ScanInterval));

{***** The connection parameters were set or changed *****}
IfThen (PickValid(Parm[#IODevice] != DeviceTag, 1) ||

PickValid(Parm[#ScanInterval] != ScanInterval, 1) ||
PickValid(Parm[#Address], "") != PickValid(Address, ""),

{***** Remove the previous read request (this will do nothing
if the parameters are invalid) *****}

Scope(Root, Parm[#IODevice])\Driver\DelRead(Parm[#Address],
&RawValue, Parm[#ScanIn-

terval]);

RawValue = Invalid { old value no longer valid };

{***** Add a new read request *****}
Scope(Root, DeviceTag)\Driver\AddRead(Address

{ Address in the PLC for the data },
1

{ Number of data elements to get },
&RawValue

{ Destination pointer for data read },
ScanInterval

{ Scan Interval });
);

{**}
{ ManualValue

}

{**}
ManualValue = Cast(ManualValue, 3 { Float });
IfElse (Valid(ManualValue),
Value = ManualValue;

{ Else } IfThen (!ExternalValue,
Value = IsText ? RawValue : Scale(RawValue, UnscaledMin,

UnscaledMax, ScaledMin,
ScaledMax);

));

The NewData Module

While it is true that there is more than one method for reading values
from an I/O driver, use of the NewData module is recommended for all
new tags.

If your tag includes a module named NewData, with the structure similar
to that shown in the following example, the I/O driver will use it to send
values from the device to the tag.
NewData should have the following five parameters where the last two,
Quality and ServiceSync, are optional.

NewData
(
Addr { Address we asked for };
TimeStamps { Single value or 1D array of UTC timestamps };
Data { Single value or 1D array of unscaled data

values };
Quality { Single value or 1D array of Quality data };
ServiceSync { used to denote that the NewData call was made

as a result of a
server synchronization (the server has just

started up and this
 data has been taken from a running server) };
)

For purposes of comparison, the body of the NewData Modules from
both the Analog Status tag and the Digital Status tag are reprinted here.
Items to note are:

l The RawValue is found in the first item of the Data array.

l The NeedValueUpdate variable scopes to the parent tag module. This is used
to alert the tag to the fact that a new value has been received and that the
tag's value should be updated.

l The largest portion of the module provides support for drivers that send his-
tory values. These are scaled and logged as required.

NewData() example for reading analog values:

<
{========================== NewData ===============================}
{ Subroutine that receives and processes incoming data from driver }
{ RefreshData in VTSDriver guarantees that TimeStamps is a valid }
{ time stamp or an array of valid time stamps regardless of the }
{ validity of Data }
{==}
NewData
(
Addr { Address we asked for };
TimeStamps { Single value or 1D array of UTC timestamps };
Data { Single value or 1D array of unscaled data

values };
)
[
I { General counting variable };
HistSizeRet { Size of history list returned };

MaxHistTS { Highest TS in history list };
LastHistPos { Index of newest data in history list };
HistoryValues { Scaled history array to pass to data logger };
HistImgTimeStamps { For history use, 1D array, image of

TimeStamps };
HistImgData { For history use, 1D array, image of

Data };
NeedValueUpdate = FALSE { TRUE if the tag needs to recalculate

Value };
]

Main [
If 1;
[
IfElse (PickValid(Addr == CurrValAddr, 0), Execute(

{ Current value data }
RawValue = Data[0];
RawTS = PickValid(TimeStamps[0], CurrentTime(1));
NeedValueUpdate = TRUE;

);
{ Else } IfThen (PickValid(Addr == HistoryAddr, 0),
{ History data might have been Recv'd as single value or as an

array }
{ Size of history array }

IfElse(Valid(HistSizeRet = ArraySize(Data, 0)), Execute(
{ Data is an array }
HistImgTimeStamps = TimeStamps;
HistImgData = Data;

);
{ Else } Execute(

{ Data is a single value so copy to a single-value array }
HistSizeRet = 1;
HistImgTimeStamps = New(HistSizeRet);
HistImgData = New(HistSizeRet);
HistImgTimeStamps[0] = TimeStamps;
HistImgData[0] = Data;

));

{ If the current tag value comes from history }
IfThen (ValueFromHist,

{ Extract RawValue & RawTS from history list if no
Current Value address defined }

{ Find the newest history TS }
MaxHistTS = AMax(HistImgTimeStamps[0], HistSizeRet);
{ Only use it if greater than current value TS }
IfThen (MaxHistTS > PickValid(TimeStamp, 0),

{ Where is this in the array ? }
LastHistPos = Lookup(HistImgTimeStamps[0],

HistSizeRet, MaxHistTS);
{ Set our values to the newest history value }
RawValue = HistImgData[LastHistPos];
{ Set the time as well }
RawTS = HistImgTimeStamps[LastHistPos];
NeedValueUpdate = TRUE;

);
);

{ Scale the data & log it }
HistoryValues = New(HistSizeRet);
I = 0;
WhileLoop(I < HistSizeRet,
HistoryValues[I] = Scale(HistImgData[I], UnscaledMin,

UnscaledMax, ScaledMin, ScaledMax);
I++;

);

{ Log history values }
\HistorianManager\WriteHistory(Root, HistImgTimeStamps,

HistoryValues);
));

IfThen(NeedValueUpdate && !Valid(ManualValue),
UpdateValue(ValueFromHist);

{ The parameter tells UpdateValue to not log Value if it came
from a history value; this has been logged already }

);

Return(0);
]

]

{ End of AnalogStatus\NewData }
>

NewData() example for reading digital values:

<
{========================= NewData
==================================}
{ Subroutine that receives and processes incoming channel data from
}
{ driver RefreshData in VTSDriver guarantees that TimeStamps is a
}
{ valid time stamp or an array of valid time stamps regardless of
}
{ the validity of Data
}
{===-
=}
NewData
(
Addr { Address we asked for (not used)

};
TimeStamps { Single value or 1D array of timestamps

};
Data { Single value or 1D array of unscaled data

values
};
Quality { Single value or 1D array of Quality data

};
)

[
HistSizeRet { Size of history list returned

};
MaxHistTS { Highest TS in history list

};
LastHistPos { Index of newest data in history list

};
HistoryValues { Scaled history array to pass to data logger

};
HistImgTimeStamps { For history use, 1D array, image of

TimeStamps
};
HistImgData { For history use, 1D array, image of

Data
};
]

Main [

If 1;
[
IfElse (PickValid(Addr == Bit0Address, 0), Execute(

{ If b0 address }
RawValue0 = Data[0];
RawTS = PickValid(TimeStamps[0] - TimeZone(0), CurrentTime

());
);
{ Else - b1 address } IfElse(PickValid(Addr == b1ValAddr, 0),

Execute(
RawValue1 = Data[0];
RawTS = PickValid(TimeStamps[0] - TimeZone(0), CurrentTime

());
);
{ Else } IfThen (PickValid(Addr == HistoryAddr, 0), { History

Address }
{ History data might have been Recvd as single value or as an

array }
{ Size of history array }
IfElse(Valid(HistSizeRet = ArraySize(Data, 0)), Execute(

{ Data is an array }
HistImgTimeStamps = TimeStamps;
HistImgData = Data;

);
{ Else } Execute(

{ Data is a single value so copy to a single-value array }
HistSizeRet = 1;
HistImgTimeStamps = New(HistSizeRet);
HistImgData = New(HistSizeRet);
HistImgTimeStamps[0] = TimeStamps;
HistImgData[0] = Data;

));

{ If the current tag value comes from history }
IfThen (ValueFromHist,

{ Extract RawValue & RawTS from history list if required }
{ Find the highest history TS }
MaxHistTS = AMax(HistImgTimeStamps[0], HistSizeRet);
{ Only use it if greater than current value TS }
IfThen (MaxHistTS - TimeZone(0) > PickValid(TimeStamp, 0),

{ Where is this in the array ? }
LastHistPos = Lookup(HistImgTimeStamps[0], HistSizeRet,

MaxHistTS);
{ Set our value to the newest history value }
RawValue0 = HistImgData[LastHistPos];
RawTS = HistImgTimeStamps[LastHistPos] - TimeZone(0);

);
);

{ Invert the data & log it }
HistoryValues = New(HistSizeRet);
{ Make a copy of the data array. }
ArrayOp2(HistoryValues[0], HistImgData[0], HistSizeRet, 0);

{ Some data massage required... }
{ Force all data to 0/1 values.

This first step actually returns the inverted data. }
ArrayOp1(HistoryValues[0], HistSizeRet, 0, 12 {==});
IfThen (!InvertInput,

{ Invert the data back to normal if not inverted }
ArrayOp1(HistoryValues[0], HistSizeRet, 0, 12 {==});

);

{ Log history values }
\HistorianManager\WriteHistory(Root, HistImgTimeStamps,

HistoryValues);
)));

Return(0);
]

]
{ End of NewData }
>

Writing Data: The Set Module

Tags that write data to a driver tag must have a subroutine module
named "Set". This module will perform 3 actions:

l Check that the value to be written is valid. Do not write an invalid value.

l Scale or invert the value for the PLC according to the tag's scaling para-
meters.

l Ensure that the value is sent to all workstations in the network with a call to
the RPCManager's Send function.

The return value from the Write() function will be the object value of the
write module launched. When this value becomes invalid, the caller can
assume that the write is complete. Note that, for a client machine on a
network, this value will always be invalid.
The following example is taken from the Analog Control tag:

<
{======================== AnalogOutput\Set
===========================}
{ This subroutine writes a value to SitePoint. The parameter is the
}
{ value to write, which may be inverted before writing. }
{
}
{==-
=}
Set
(
NewValue { Value to write to the SitePoint

};
)

[
WriteObj { Object value of launched write

};
WriteValue { Actual value written

};
]

Set [
If 1;
[
NewValue = PickValid(Limit(NewValue, ScaledMin, ScaledMax),

NewValue);
SaveValue = Value = NewValue;

{**** Don't bother to write to the PLC if the value is invalid
*****}

IfThen (Valid(Value),
WriteValue = PickValid(Scale(NewValue, ScaledMin, ScaledMax,

UnscaledMin, UnscaledMax),
NewValue);

WriteObj = SitePoint\Driver\Write(Address, 1, &WriteValue);
);

{***** Send the value to everybody *****}
\RPCManager\Send(SitePoint\Driver\RPCService { service },

\LocalGUID { GUID },\RPC_ACCEPT_FILTER {mode cut-
off },

1 { server }, Invalid { machine }, 1 { clients },
0 { locally }, 1 { recursive }, "SetValue" { mod-

ule },
"RPCManager" { scope }, Root { queue data },
Invalid { InputSessionID },
{ Parameters: } \LocalGUID, Concat("VTSDB\",

Name),
"Value", Value);

Return(WriteObj);
]

]
{ End of AnalogOutput\Set }
>

Make a Custom Tag Visible to OPC Clients
When running VTScada as an OPC server, the values of standard tags are
available to clients. This will not be true of your custom tags unless you
add modules that specify what will be made available.
The following modules may be added. Examples of these follow.

OPCGetTagAttributes This tells the VTScada OPC server whether this tag
can be read from or written to, as well as the data
type it is to return. Required for the tag to be visible
to an OPC client.

OPCGetTagProperties Optional. Returns a dictionary of all the items that
will be available from the tag.

OPCReadTagValue Must be included if the tag is to be readable.

OPCWriteTagValue Only required if the tag is writeable.

For any OPC constants that are not defined locally, you should be able to
add a backslash in order to obtain it from VTScada.
UpdateOPCData() is a VTScada module. As with the constants, if it is not
in the immediate scope, you can add the backslash operator.
example:

IfThen(Valid(\OPCServerHandle),
\UpdateOPCData(Self(), \OPC_PROP_RAW_VALUE, RawValue);

);

This will tell the server code to update the RawValue attribute, since it
has changed. OPCServerHandle is set higher up the scope tree when the
OPC server is enabled - this prevents that code from being called if it is
not present.
Make the tag's value available to OPC clients. If included, your tag's main
state should call \UpdateOPCData(Self()); whenever the value changes.

<
{=========================== OPCReadTagValue
===============================}
{ Subroutine that returns the current value, quality, and timestamp
of this }
{ tag for OPC purposes. }

{==-
=======}
OPCReadTagValue
(
pValue { (Output) The value of the tag, must be a Valid

value };
pQuality { (Output) The quality of the value

};
pTimestamp { (Output) The timestamp of the value

};
pTimestampIsUTC { (Output) Indicates whether the timestamp is in

UTC };
)

Main [
If 1;
[
*pValue = PickValid(Value, Valid(Cast(Value, \#VTypeText)) ?

"" : 0);
*pTimestamp = Timestamp - TimeZone(0);
*pQuality = Operational

? (Operable && Valid(ManValue))
? \OPC_QUALITY_GOOD_LOCAL_OVERRIDE
: Valid(Value)
? \OPC_QUALITY_GOOD
: \OPC_QUALITY_BAD

: \OPC_QUALITY_UNCERTAIN;
Return(Invalid);

]
]

{ End of OPCReadTagValue }
>

This will be called when an OPC client is requesting the values. The para-
meter, pValue, is what you want it to show, normally gained from Value
The following module example creates a dictionary of properties that will
be available to OPC clients. Remove any properties that you do not intent
to make available. For example, if you don’t need OPC_PROP_
DESCRIPTION declared then remove the line within this module. A com-
plete list of OPC values can be found in Properties of Tag OPC Items.

<
{======================== OPCGetTagProperties
==============================}
{ Subroutine that returns a dictionary of OPC properties and values
}
{ supported by this tag. The dictionary is keyed by property ID.
}
{==-
=======}
OPCGetTagProperties
[

PropDict;
]
Main [
If 1;
[
PropDict = Dictionary();
PropDict[OPC_PROP_EU_UNITS] = Units;
PropDict[OPC_PROP_DESCRIPTION] = Description;
PropDict[OPC_PROP_HIGH_EU] = ScaledMax;
PropDict[OPC_PROP_LOW_EU] = ScaledMin;
PropDict[OPC_PROP_HIGH_INSTRUMENT] = UnscaledMax;
PropDict[OPC_PROP_LOW_INSTRUMENT] = UnscaledMin;
PropDict[OPC_PROP_TIMEZONE_MINUTE_OFFSET] = TimeZone(0)/60;
PropDict[OPC_PROP_AREA] = Area;
PropDict[OPC_PROP_DEVICE_TAG] = DeviceTag;
PropDict[OPC_PROP_ADDRESS] = Address;
PropDict[OPC_PROP_RAW_VALUE] = RawValue;
PropDict[OPC_PROP_LOW_ALARM] = Cast(AlarmLo,3); {

In case AlarmLo is a tag or expression }
PropDict[OPC_PROP_HIGH_ALARM] = Cast(AlarmHi,3); {

In case AlarmHi is a tag or expression }
Return(PropDict);

]
]

{ End of OPCGetTagProperties }
>

Example to define whether the tag can be read from or written to by the
OPC client:

<
{======================= OPCGetTagAttributes
===============================}
{ Subroutine that returns the OPC attributes of this tag.
}
{==-
=======}
OPCGetTagAttributes
(
pAccessRights { (Output) The read/writeability of the tag

};
pDataType { (Output) The COM datatype of the value of the

tag };
)

Main [
If 1;
[
*pAccessRights = Output ? \OPC_ACCESS_READWRITEABLE : \OPC_

ACCESS_READABLE;
*pDataType = Valid(Value)

? Valid(Cast(Value, \#VTypeText))
? \VT_BSTR
: \VT_R8

: \VT_EMPTY;
Return(Invalid);

]
]

{ End of OPCGetTagAttributes }
>

pAccessRights defines whether the tag's value can be read or written to
according to the assignment of one of the following constants:
CONSTANT OPC_ACCESS_READABLE = 1;
CONSTANT OPC_ACCESS_WRITEABLE = 2;
CONSTANT OPC_ACCESS_READWRITEABLE = 3;

pDataType sets the data type of the tag to one of the following for com-
patibility with component object model standards:
 CONSTANT VT_EMPTY= 0;
CONSTANT VT_NULL= 1;
CONSTANT VT_I2= 2;
CONSTANT VT_I4= 3;
CONSTANT VT_R4= 4;
CONSTANT VT_R8= 5;
CONSTANT VT_CY= 6;
CONSTANT VT_DATE= 7;
CONSTANT VT_BSTR= 8;
CONSTANT VT_BOOL= 11;
CONSTANT VT_VARIANT= 12

If your tag will allow OPC Write access, you will need a module similar to
the following example. Note that this example does not provide for any
checking of the request - something may wish to add.

<
{=========================== OPCWriteTagValue
==============================}
{ Subroutine called when an OPC client wants to write a value to this
tag. }
{==-
=======}
OPCWriteTagValue
(
NewValue { (Input) The value to be written, must be a Valid

value };
)

Main [
If 1;

[
Set(NewValue);
Return(0);

]
]

{ End of AnalogOutput\OPCWriteTagValue }
>

For a description of the Set() module, see: Writing Data: The Set Module.

Logging Tag Data
A logger tag can be attached to any tag that:

l Is part of the group, Numerics (See: Tag Groups)

l Exposes a variable, "Value," which is numeric. (variable classes 1 – 6. See:
Required Variables for a list of class definitions.)

The simplest way to log your tag's data is to ensure that it satisfies the
above two conditions and then configure a Logger tag for it. For con-
figuration details, see: Configure a Tag for Logging.
Note that all variables in your tag module which are declared with a class
constant from 1 to 6 will be logged.
Some VTScada tags, such as the Analog Status, have logging functionality
built in. This requires extra work on your part, but the benefit is that you
can configure logging to work exactly the way you want, and can reduce
your application's tag count by not requiring an additional Logger tag.

Related Information:

...Configure a Tag for Logging

...Custom Logging for Tags

Configure a Tag for Logging

A tag need only be a member of the Numerics group and expose a
numeric variable in order to be used as the data source for a Logger tag.
It is common practice to include a Logger tab in a tag's configuration dia-
log.

To do this, include the variable "LogContributors" in your tag definition
module and add the following to your tag's configuration panel code:
Variable declarations:

LogContribs { List of log contributors
};
NumLogs { Number of log contributors

};

Logger panel:

Logger [
If Current != x Switch;

{***** Logger contributor list *****}
GUITransform(80, 203, 420, 96,

1, 1, 1, 1, 1 { No scaling
},

0, 0, 1, 0 { No movement; visible;
reserved },

0, 0, 0 { Not selectable
},

\DialogLibrary\PContributor("LogContributors" { holder
},

\Root,
Parms[\#ContributionType] { contrib type },
"LogPoint" { point type },
\LoggerContribLabel, 1 { & 2 - ID },
NumLogs ? 1 : 0 { no add if already 1 }));

{***** Keep track of the number of log contributors *****}
LogContribs = Scope(\Root, "LogContributors");
NumLogs = PickValid(ArraySize(*LogContribs, 1), 0);

]

Custom Logging for Tags

One reason to add logging code to your tag modules is to free the user
from doing any configuration work to enable data logging. It also
provides you with control over what is logged and when.
Three things are required in order for your tag to do its own logging:

l The tag must have a parameter or a variable named "HistorianName" which
will hold the name of the Historian tag (the Historian tag controls where the
data is stored).

l The variables to be logged must be declared using one of the class constants
1 through 6 (see following table).

Class Constant Value Type

Class 1 Bit

Class 2 Unsigned byte

Class 3 16-bit integer

Class 4 32-bit integer

Class 5 Double precision floating point

Class 6 Text

l You must call \HistorianManager\WriteHistory(Root) each time you want to
write log data.

In general, it is better to use a parameter than a variable for His-
torianName. This will provide greater flexibility in configuration. For
example, in the parameters declaration of the Analog Status tag, His-
torianName is declared as follows. Note that the System Historian is
provided as the default value.

HistorianName <:TagField("SQL_VARCHAR(255)"):> = #SYSTEM_
HISTORIAN

{ Historian Tag name
};

The call to write to the historian should be placed such that it is called
whenever the value changes sufficiently to merit a new record (a dead-
band parameter is commonly used to avoid logging of very small
changes). The call may also be placed in the tag's Refresh module (or a

submodule called from Refresh) for the case where the HistorianName
parameter changes, in order to log invalid to the old Historian and the
current value to the new one.
If your tag supports the reading of historical data that has been logged
on the PC, you will also need to loop through the arrays in NewData.
The basic form of the code will be as follows:

\HistorianManager\WriteHistory(Root, TimeStamp, Value);

Where:
l "Root" is the root value of the tag

l "TimeStamp" is a UTC timestamp that you should collect just before writing

l "Value" contains the data to be recorded.
For complete details about using WriteHistory, refer to the VTScada Func-
tion Reference, WriteHistory.
You may choose to record any calculated values you would like, and may
impose conditions on whether or not the write occurs with each refresh.
For example, the Analog Status tag will not perform a write until the
tag's value has changed from the previously written value by at least a
threshold amount (controlled by the parameter, Deadband, if set).

IfThen(PickValid(Abs(Value - LastLoggedValue) >= Threshold, 1),
\HistorianManager\WriteHistory(Root, TimeStamp, Value);
LastLoggedValue = Value;

);

Note that, any tag with a HistorianName parameter or variable will be
added to both the "Loggers" and the "Trenders" tag groups, auto-
matically.

Related Information:

...Data Logged or Trended Variables in Tag Modules

Upgrading Tags That Used LogManager or Logger

Prior to the release of VTS 10, logging was done using the LogManager
module. This is now obsolete, having been replaced by the His-
torianManager.

Any references to LogManager or Logger in older tags must be updated
to use the HistorianManager API instead. See: Historian Manager.

Adding Alarms to Custom Tags
The VTScada Alarm tag can monitor the value of any other tag that is a
member of the group Numerics and that has a Value variable. Provided
that your custom tag has these two features, it can be used to trigger an
alarm.
In addition to the tag features just mentioned, you should also ensure
that when the application starts, the VTScada AlarmManager has a
chance to start before your tag is initialized. This is commonly done in
the tag's initialization state, along with ensuring that the expression man-
ager has started:

MyTagInit [
If \AlarmManager\Started && \ExpressionManager\Started MyTagMain;
[
CriticalSection(
Root = Self
Refresh();

);
]

]

If you would like your custom tag to be aware of the Alarm tags that use
it as a set point, then it is necessary to configure Container variables in
your tag for those alarms. Reasons for doing so include:

l Custom widgets for your tag may need to display the current alarm state.

l Your tag may be a contributor to another tag and should therefore pass its
alarm state to that owner.

l You may choose to display a list of attached alarm tags in your custom tag's
configuration panel.

To configure alarm containers in your custom tag see: Alarm Con-
tainers. For more information about container variables in general, see:
Containers and Contributors.

You may decide to add alarm management functions directly to your cus-
tom tag, in addition to relying on Alarm tags. For example, both the Ana-
log Status and Digital Status tags have alarm functionality built in. This
will require somewhat more code in your custom tag, but you can reduce
the number of tags required in your application. For details, see: Adding
Built-in Alarms to a Tag.

Related Information:

...Alarm Containers

...Adding Built-in Alarms to a Tag

Alarm Containers

In order for attached Alarm tags to contribute their values and alarm
states to your custom tag, you must provide a variable to which they can
connect. For example, the Analog Status tag does this as follows.
In the (PLUGINS) section of the variables declaration, the Con-
tributorAdded and the ContributorDeleted modules are declared: (This
example shows the complete PLUGINS section from the Analog Status,
including the ConfigFolder and Common modules

[(PLUGINS)
Shared ConfigFolder = "AnalogStatusConfig";
Shared Common = "AnalogStatusCommon";
Shared ContributorAdded = "ContributorAdded";
Shared ContributorDeleted = "ContributorDeleted";

]

The following variables are then declared:

{ List of variables handling points contributing to this one }
AlarmActive { This is an array of alarm priorities for all
 active alarm contributors. Any alarm
 contributors which are not active will set
 their element to invalid. };
AlarmUnacked { This is an array of alarm priorities for all
 unacknowledged alarm contributors. Any
 acknowledged alarm will set its element to
 invalid. This array is a 1 to 1
 correspondence to the AlarmActive array. };
AlarmContributors { This is the "handle" used by the VTScada code
 to maintain a list of the alarm contributors };
AlmSetPointPtrs { This is an array of Pointers to the setpoints
 of each of the alarm contributors };
AlmPriorityPtrs { This is an array of Pointers to the
 Priorities of each of the alarm contributors };

The names must appear in your code exactly as shown in this example.
As noted in the comments, VTScada will look for and use these variables
for the alarm contributors.

Adding Built-in Alarms to a Tag

To add one or more built-in alarms to a custom tag, you will need the fol-
lowing parts:

l Configuration parameters for storing alarm properties. Your tag's con-
figuration panel should include a tab for the alarm properties.

l Local variables and constants for handling your alarms.

l A set of statements in the tag's Refresh module to commission the alarm, set-
ting or updating parameters as needed.
In the event that the tag is being deleted, decommission should be called.

l A call to \AlarmManager\EvaluateAlarm() to reevaluate the alarm's state with
the tag's current value each time that value changes.

Note: Prior to VTScada version 11.2, there was a requirement that sep-
arate submodules be created for each alarm if the tag included more
than one. This is no longer the case. The GetAlarmObjVal module is
now obsolete, but may be maintained for backward-compatibility.

Configuration Parameters and Variables
Alarm records have the configuration fields shown in the following table.
Not all need to be set, so select those that are relevant to your tag and
application. For example, trips should not be used with an analog tag.
Deadbands are not used with digital tags.
At a minimum for a properly functioning alarm, you will need Name, Pri-
ority, Function, and Setpoint.
FriendlyName, Area, Description and Disable may not be required, but
are highly recommended, and are usually set using properties of the tag.

ConfigurationStruct { All Boolean flags default to FALSE }

Name Unique name for the alarm

FriendlyName Display name of the alarm's source

ConfigurationStruct { All Boolean flags default to FALSE }

Area Area

Description Description. Was "Message" prior to 11.2

Priority Priority. Must be valid to be commissioned. Must be an integer cor-
responding to the Alarm Priority tag values.

Reserved

Disable TRUE to disable the alarm

DisableParmName Name of the tag's disable parm. Allows us to get the operator name
who made the config change.

OnDelay Seconds to delay before activating

OffDelay Seconds to delay before clearing

RearmDelay Seconds to delay before rearming after ack

Setpoint Setpoint of alarm evaluation

ValueLabels Array of labels to display instead of Value or Setpoint. Rarely used by
tags other than digitals.

Units Setpoint units

Function Enumerated function for alarm evaluation (1)

AlarmType String identifying the type of alarm

Trip TRUE if alarm only becomes unacked not active

NormalTrip TRUE if alarm becomes unacked when it clears

OffNormal TRUE if alarm only becomes active not unacked

Deadband Setpoint deadband

PopupEnable TRUE to enable popup display of active alarm

SoundFile Filename relative to app path of custom sound

Custom Array/Dictionary/Structure of custom fields

AdHoc TRUE if alarm is ad hoc

An example, showing how to configure these as tag properties:

SetPoint <:TagField("SQL_DOUBLE", "Set Point"):> = 0 { State or set-
point that triggers the alarm };
Function <:TagField("SQL_VARCHAR(255)", "Function Code"):> { Text
string defines the comparison between value and setpoint };
Priority <:TagField("SQL_DOUBLE", "Priority") :> { Numeric

Priority of this alarm };
Disable <:TagField("SQL_LONGVARCHAR", "Disable"):> = FALSE { TRUE
to Disable the alarm };
{ ... etc. ... }

If your alarm is to be used only for low levels or high levels, you can set
the Function field as a constant, otherwise, you will need to create a con-
figuration parameter for it and provide a selection in the user interface.
See: Alarm Manager Function Constants.
If creating more than one alarm, create a set of properties for each. For
example, SetPointLo and SetPointHi.
As with other tag parameters, a constant should be defined for each
alarm parameter. For example, if the parameter constant before SetPoint
was 7, then:

Constant #SetPoint = 8;
Constant #Function = 9;

... and so on.
An alarm configuration structure will be required in order to commission
your alarm(s). Declare each as a protected variable:

PROTECTED AlarmCfg { Structure of alarm configuration parameters
};

Your tag may also need variables to hold any alarm status information
that you care to examine during the normal running of the tag and any
configuration fields that are to be set but are not being exposed as user-
configurable tag properties. The AlarmStatus structure (any name may be
used) is typically set immediately after the alarm is commissioned. An
example is provided later in this topic.

{ Alarm variables }
PROTECTED AlarmStatus { Structure of alarm status information. };
{ ... other variables as required ... }

If the tag has a built-in alarm, that fact should be reflected as an icon in
the Tag Browser.

To achieve this, all that is required is to add the following constant
declaration. The Tag Browser will take care of the rest.

Constant BuiltInAlarm = TRUE { Flag - TRUE if this tag has a built in
alarm };

Tag Initialization
Your module should ensure that the Alarm Manager has started before
attempting to commission itself. Since it is also typical for a tag to
ensure that the Expression Manager has started, that is also shown in the
following example.

MyTagInit [
If \AlarmManager\Started && \ExpressionManager\Started MyTagMain;
[

 CriticalSection(
Root = Self();
Refresh();

);
]

]

Main State - Handle changes to the Disable parameter
Under the ISA18.2 standard, it is recommended that you provide a way
for the tag to be disabled and re-enabled dynamically. This can be done
with the tag's Common module (right-click menu), and by allowing the
Disable parameter to be configured via a constant, expression or tag (i.e.
via a PTypeToggle in the configuration panel).
Changes to this parameter outside the properties dialog are handled in
your tag's main state. The configuration object must be updated and the
Alarm Manager's Commission function called.

AlarmDisable = PickValid(Cast(ValueType(Disable) == \#VTypeObject
 ? Disable\Value
 : (Valid(Scope(Root, Disable)\Name)
 ? Scope(Root, Disable)\Value

 : Disable),
 \#VTypeStatus),
 AlarmDisable,
 FALSE);
{ Enable/Disable }
If Watch(1, AlarmDisable);
[
 AlarmCfg = \AlarmManager\GetAlarmConfiguration(Root\UniqueID);
 AlarmCfg\Disable = AlarmDisable;
 \AlarmManager\Commission(Root, AlarmCfg, Value);
]

Note: You might prefer to set the 5th parameter of Commission to TRUE
for these types of modification to the alarm so that the change is not
added to the history list.

Refresh Submodule: Configure, Commission and Update
Alarm parameters are handled much like others in the refresh module.
(Note: you are advised to use a PTypeToggle in your tag's configuration
panel for the disable parameter so that it can be tied to a tag or expres-
sion. Other parameters may be configured as you see fit. The following
example reflects this detail.)

\ExpressionManager\SafeRefresh(&Disable, Parms[#Disable]);

AlarmRearmEnable = PickValid(Cast(AlarmRearmEnable, \#VTypeStatus),
GetDefaultValue(&AlarmRearmEnable));

The Refresh module must call the Commission function of the Alarm Man-
ager, handing it all of the properties you are configuring in your alarm.
If the tag contains only one alarm, then the name will be the same as the
tag's unique ID value. If there are multiple alarms within the tag, then
each will be the UniqueID concatenated with the alarm separator string
(defaulting to :#:) followed by a digit starting with 0. Thus, when assign-
ing the alarm name for a single alarm, the code will be:

AlarmCfg\Name = Root\UniqueID;

When assigning the alarm name for the first of several alarms within a
tag, the code will become:

AlarmLoCfg\Name = Concat(Root\UniqueID, PickValid(\AlarmSe-
paratorString, ":#:"), "0");

Noting that the digit must be incremented for each subsequent alarm.

The name will be used several times, therefore it makes sense to store it
in a variable such as "AlarmName" or "AlarmLoName".
The following example shows slightly more than a minimal con-
figuration. Your code will likely set additional properties in the con-
figuration structure.

IfElse(Valid(Name), Execute(
 AlarmName = Root\UniqueID;
 AlarmCfg = \AlarmManager\GetAlarmConfiguration
(AlarmName);
 AlarmCfg\Name = AlarmName;
 AlarmCfg\FriendlyName = Name { The tag's short name };
 AlarmCfg\Area = Area { The tag's area };
 AlarmCfg\Description = Concat(PickValid(Concat(\Description, "
"), ""), "Low-level alarm");
 AlarmCfg\Priority = Priority;
 AlarmCfg\Function = \AlarmManager\ALM_FUNC_LESS_THAN; { a
low alarm, no user-selection }
 AlarmCfg\Setpoint = PickValid(Cast(Setpoint, \#VTypeDouble),
AlarmCfg\Setpoint);
 \AlarmManager\Commission(Root, AlarmCfg, Value);
{ ... repeat for more alarms ... }

);
{ Else, the tag is being deleted... }
 IfThen(Valid(Parms[#Name]),
 \AlarmManager\Decommission(AlarmName);
);
);

If your tag needs to know its current alarm state, you should follow this
by obtaining a reference to your alarm's entry in the master database.
Typically, this is required only for widgets that are able to indicate that
state. The reference to the database entry will allow quick access the
alarm's current state without having to make function calls.

AlarmStatus = \AlarmManager\GetAlarmStatus(Root\UniqueID);

Evaluate the Alarm
The preceding should result in a commissioned alarm record when you
compile your tag and generate an instance of it in your running applic-
ation, setting priority to an integer. But, that is not enough to trip or
activate an alarm event. You must also call the Alarm Manager's Evalu-
ateAlarm function whenever the value of your tag changes so that the
new value can be compared to the setpoint using the assigned com-
parison function.

If your tag links to a driver and has a NewData submodule, then place the
following code there. Otherwise, it might go into the main state, if that is
where new values are being calculated. Note that EvaluateAlarm cannot
be called in Steady State.

If Watch(1, Value);
[
 \AlarmManager\EvaluateAlarm(Root\UniqueID, Value);

If the time is being collected from remote equipment with the value, then
you should include that in the call as a UTC timestamp:

\AlarmManager\EvaluateAlarm(Root\UniqueID, Value, TimeOfValue);

Related Information:

...Alarm Manager Function Constants - Enumeration of function con-
stants.

...Alarm Status Structure - Fields in the alarm status structure.

...Alarm Functions - Function list

...Alarm Tab Notes - Displaying a selection of comparison functions in
the configuration panel

Security Features for Tags
All tags that allow operators to write to a device can be secured with an
application privilege.

This can be implemented as follows:
One of the tag's parameters will be named SecurityBit, as follows:

SecurityBit <:TagField("SQL_VARCHAR(255)", "Security Bit",
10):>

The refresh module ensures that this contains the correct data type:

SecurityBit = Cast(SecurityBit, 1 { Short });

And, the configuration panel uses the PSecBit function to display the
drop-down list and populate it with the existing application privileges.

{***** Security bit *****}
GUITransform(30, 180 { btm at 125 }, 470, 80,

1, 1, 1, 1, 1 { No scaling },
0, 0, 1, 0 { No movement; visible; reserved },
0, 0, 0 { Not selectable },
\DialogLibrary\PSecBit(\#SecurityBit, \SecurityBitLabel, 1 { ID

}));

Each output widget will test the SecurityBit of the attached tag against
the logged-in operator's privileges before performing a write. If you
have created your own output widgets for your custom tags, you should
also check the security privilege. An example of the code to do so fol-
lows:

IfThen (!Editing && \Code\OkToWrite(\SecurityBit, 1),

The value of \SecurityBit comes from the tag instance attached to the wid-
get. The call to \Code\OkayToWrite() compares the logged in user's
assigned security privileges with the SecurityBit and returns TRUE or

FALSE. It is then the job of the widget to either allow the write to pro-
ceed.

Containers, Contributors and Site Tags
To allow for a variable number of parameters for a tag, the concept of
containers and contributors is supported within VTScada. A "container" is
a tag that holds a collection of other tags known as "contributors". A tag
may be a container for multiple contributor types, and a tag may also
contribute to several different containers.
A site tag a type of container. It will commonly have the internal vari-
ables, LatitudeValue and LongitudeValue, although these are not
required. The most important detail is that the groups declaration have
at least the following line. Note that Site tags do not require the use of
AddContributer, DeleteContributer or GetContributers.

[(GROUPS)
 Shared Container { We are a container tag };
]

A tag that is a container may also be a contributor at the same time (a
container tag may accept values from its contributors, while in turn con-
tributing its value to another container).
For example, each station in a given area might contribute its value to a
container that calculates the value for that area, and each area container
might contribute its value to a container that calculates the value for the
province or region. These regional containers can also contribute their
values to a container that calculates a national value.
The container uses a "handle" variable that lists the contributors for a
given tag. There may be several handle variables defined, one for each
kind of contributor possible. There is no naming restriction on handle
variables, but both the contributor and container modules must know the
name. A handle variable is exclusively manipulated by three VTScada
functions:

l AddContributor

l DeleteContributor

l GetContributors

Related Information:

...Overview of the AddContributor Function

...Overview of the DeleteContributor Function

...Overview of the GetContributors Function

...Latitude and Longitude for Site Tags

Custom Filtering of the Sites List and Map

The Sites page shows a list of all configured site pages in your applic-
ation. For each of these, sub-sites and I/O are also listed. If you have a
mixture of sub-site types and want to control which ones are displayed,
or if you want to exclude the I/O, there are some ways in which you can
filter the contents of the list.
The list is built automatically. Developers can filter this list for their Con-
text-tag based sites by adding the parameter, CustomSiteListFilterType
and setting its value to the name of the type or type-group that they
want to filter for.
If you are writing a site tag from scratch, you can build-in filters for the
sites list and for the maps by adding subroutine modules to be used as
call-backs.

CustomSiteListGetSubTags
This must return an array of tag names. If this module exists in your cus-
tom tag, then GetSessionContainerTags will call it instead of GetTagList.
An example of such a module is provided:

<
{================== CustomSiteListGetSubTags =================}
{===}
CustomSiteListGetSubTags
[
 Tags;
]
CustomSiteListGetSubTags [
 If 1;

[
 Tags = \GetTagList(Root\Name, Invalid, Invalid, Invalid, "MultiS-
mart");
 Return(Tags);
]
]
>

After adding this code, you may want to consider setting your tag's
SiteListDisplay parameter. If your subroutine returns a list of I/O, you
may want to set the SiteListDisplay to 1 to treat it as a site. if it returns a
list of sub-sites or a mixture of sub-sites and I/O, you may want to set
SiteListDisplay to 2 in order to treat it as a folder. If the SiteListDisplay
value is not set explicitly, the default behavior may be other than what
you prefer.

CustomSiteMapGetSubTags
This module will be similar in structure to CustomSiteListGetSubTags.
Two parameters can be provided:
ShowAll is an optional Boolean.
NavigationPath is an optional array of the tag names that were followed
(clicked upon by the operator) to arrive at the list being viewed. This para-
meter can be used if you want to change the filter based on the path
taken through the site structure.

<
{================== CustomSiteMapGetSubTags ==================}
{===}
CustomSiteMapGetSubTags
(
 ShowAll;
NavigationPath;

)
Main[
{ Your filtering code, returning an array of tag names. }

]
>

Overview of the AddContributor Function

The "AddContributor" function adds a contributor to a container.
"AddContributor" is called from the contributor.
The parameters for the "AddContributor" function:

HandleName The name of the handle variable in the container module.

ArrayName The name of the variable in the ContainerObj parameter that holds an
array of values to which the contributor's value should be added. This
parameter may be invalid if there is no such array in the container.

CountName The name of the variable in the ContainerObj parameter that holds a
count of the current number of this type of contributor. "CountName"
may be invalid if no such variable exists in the ContainerObj. Not all
contributors need to be counted. The CountIncrement determines the
initial change in the count, and the contributor must maintain the
count.

ContainerObj The object value of the container tag module.

ContributorObj The object value of the new contributor to add.

IndexAddress The address of the variable holding the contributor index.

Value The current value to set in the container's ArrayName array. This value
may be invalid, and may be updated at any time by the contributor by
scoping into the ArrayName in the container and setting the array ele-
ment at the index that will be set in the variable pointed to by IndexAd-
dress (see above).

CountIncrement This value is added to the CountName variable in the container (see
above). This value is usually a "0" or a "1", indicating whether or not the
contributor is actively contributing its value now. The contributor incre-
ments or decrements the value of the CountName variable (see above)
as the corresponding state of the contributor changes.

Related Functions:

... AddContributor

Overview of the DeleteContributor Function

The DeleteContributor function removes a contributor from a container.
"DeleteContributor" is called from the contributor.
The parameters for the "DeleteContributor" function:

HandleName The name of the handle variable in the container module.

ArrayName The name of the variable in the ContainerObj parameter that holds an
array of values from which the contributor's value should be deleted.

This parameter may be invalid if there is no such array in the container.

CountName The name of the variable in the ContainerObj parameter that holds a
count of the current number of this type of contributor. "CountName"
may be invalid if no such variable exists in the ContainerObj. Not all
contributors need to be counted. The CountIncrement determines the
initial change in the count, and the contributor must maintain the
count.

ContainerObj The object value of the container tag module.

ContributorObj The object value of the contributor to remove.

CountIncrement This value is subtracted from the CountName variable in the container.
This value is usually a "0" or a "1", indicating whether or not the con-
tributor is actively contributing its value now. The contributor decre-
ments the value of the CountName variable (see above) as the
corresponding state of the contributor changes.

Related Functions:

... DeleteContributor

Overview of the GetContributors Function

The "GetContributors" function returns a copy of an array of object val-
ues of contributors for a given container.
The parameters for the "GetContributors" function:

HandleName The name of the handle variable in the container module.

ContainerObj The object value of the container tag module.

Related Functions:

... GetContributors

Latitude and Longitude for Site Tags
If users will place your container tag (site tag) on a map, it will need to
store latitude and longitude coordinates and have a way to refresh those
values.

The parameter list must include Latitude and Longitude, to provide a
means for users to locate the site on a map:

Latitude <:TagField("SQL_LONGVARCHAR"):> { The location of this
site };
Longitude <:TagField("SQL_LONGVARCHAR"):> { The location of this
site };

Matching constants must be created, as for all tag parameters.
In the tag's list of variables, you will create the following:

LatitudeValue { Evaluated location of this site };
LongitudeValue { Evaluated location of this site };

The main state for the tag must provide a way to set those internal vari-
ables:

TagMain [
{ Set the Latitude and Longitude }

 LatitudeValue = (Valid(Scope(Root, "Latitude", TRUE)) ? \Ex-
pressionManager : Invalid)\ToValue(Scope(Root, "Latitude", TRUE));
 LongitudeValue = (Valid(Scope(Root, "Longitude", TRUE)) ? \Ex-
pressionManager : Invalid)\ToValue(Scope(Root, "Longitude", TRUE));
]

And finally, the Refresh module must provide a way to update the vari-
ables:

...
\ExpressionManager\SafeRefresh(&Latitude, Parms[#Latitude]);
\ExpressionManager\SafeRefresh(&Longitude, Parms[#Longitude]);
...

Custom Help Systems
If properly configured, the tags in your VTScada application can be asso-
ciated with a custom help file topic that the end user can open in one of
two ways:

l From the shortcut menu's "Help" option;

l From the "Help" button that appears between the "OK" and "Cancel" buttons
on the tag's properties folder if the tag has had its Help Search Key property
configured with a valid topic ID.

In order to properly associate custom help file topics with the tags in
your application, it is necessary to do the following:

1. Save your custom help file in your application directory.

2. Specify the custom help file in your application's configuration "HelpFile"
variable (e.g. "HelpFile = MyCustomHelp.hlp" or "HelpFile = MyCus-
tomHelp.chm").

3. In the Help Search Key property (on the ID tab of the tag's properties folder),
enter the numeric map number that is associated with the help topic you
wish to open for this tag.

See also: Integrating Custom Help Files Into VTScada.
Internally, the VTScada help system is called using a module named,
"HelpLaunch". The HelpLaunch module spawns the help file identified in
the "HelpFile" variable in the application's configuration variables. The
only parameter passed to the HelpLaunch subroutine is the tag instance
(object value). This subroutine displays a warning dialog if the HelpFile
program is already open.
The parameter passed to the help file identified in the configuration vari-
ables is the tag's "HelpKey," which is the map ID identifying the topic to
display in the help file. If the "HelpFile" variable is not defined, the built-
in call to the VTScada "Help" function is used, ensuring that only one
copy of the help program is open.
The Help command should be built as follows when the HelpFile variable
defines a custom help file:

HelpFile HelpKey

The "HelpLaunch" module may be replaced with a custom version if
required. The tag's scope is searched first for the "HelpLaunch" module,
then the \Code, and the default. This enables a plug-in module to define
a help module for each tag type. To hook the help into a Navigator call
so that the help file appears when the Help option is selected in the short-
cut menu, set "HelpLaunch" as the name of the module to launch with
Invalid as the scope of where the module gets launched. It is called from
the "ConfigFolder" dialogs, as well as from user code.

Related Information:

Additional information on related subjects is available in this guide.
Please see:

l RPC Manager (see: RPC Manager).

l Adapting a Driver for VTScada (see: Communication Drivers).

l Alarm Manager (see: Alarm Manager Service).

Expressions as Tag Parameters
VTScada provides support to allow arbitrary expressions as tag inputs for
some tag types and widgets. The PTypeToggle widget (following image),
enables the user to choose between a tag, a constant value for a tag para-
meter, or a block of steady state VTScada code (i.e. an expression).

This chapter explains the modules that provide support for expressions
and describes how to add a PTypeToggle widget to your custom tags. See
also: Creating Expressions.
All tags and widgets in the VTScada layer that use a PTypeToggle have
been modified to support expressions. Supported tags include:

l Function and Calculation tags (all types)

l Alarm tags

l Any tag with a built-in alarm (Analog Status, etc.)

l Logger tags

l MultiWrite tags
All tag widgets include expression support for Scaling, Movement and
Visibility. Some, such as the Two Color Bar, Multi-color, Multi-text and
Plot Data also support expressions in the Panel.

Related Information:

...ExpressionManager Usage for VTScada Programmers

...Adding Expression Support to an Application

...The ExpressionEdit Widget

...Issues and Risks

ExpressionManager Usage for VTScada Programmers

The modules used by the ExpressionManager, are as follows:

\ExpressionManager\Start(Script, ExpressionParent, ExpressionCaller [,
ReturnErrors])
This method first attempts to cast Script to a number, then tries to scope
it to a tag, then attempts to compile it into an expression module. If
Script casts to a number or scopes to a tag, it is returned. If Script com-
piles successfully, it is returned. If Script compiles successfully, it is
launched with ExpressionParent and ExpressionCaller as parent and
caller respectively. If the cast, scope, and compile fail, it will return
Invalid unless the optional parameter ReturnErrors is set to true, in
which case a string describing the problem will be returned.
This interface is designed to behave in the same way as tag Refresh()
methods do when interpreting strings that may be constants, tags, or
expressions.

\ExpressionManager\IsExpression(ModuleRef)
This subroutine protects calling code from the design decision to mark
ownership of expressions using a signature. It returns 1 if ModuleRef
refers to a running module that the ExpressionManager launched, and 0
otherwise.

\ExpressionManager\ToString(Obj)
This subroutine will return a string representation of Obj. ToString()
handles constants, tags, and expressions. \ExpressionManager\Start
(ExpressionManager\ToString(Obj), …) will return a new instance of a
running expression, or a reference to the same tag, or the same con-
stant.

\ExpressionManager\SafeAssign(PTarget, Source)

This convenience routine checks to see if PTarget is a pointer to a run-
ning expression. If it is, the expression is slain. Then *PTarget is set to
Source (*PTarget is always set, regardless as to whether or not it points
to an expression).

\ExpressionManager\SafeCopy(Obj, ExpressionParent, ExpressionCaller)
The same as \ExpressionManager\Start(\ExpressionManager\ToString
(Obj), ExpressionParent, ExpressionCaller).

\ExpressionManager\SafeRefresh(PRefreshedVar, ParmVar[, NewValue])

PRefreshedVar{ Variable that is being refreshed. };
ParmVar{ Previous value of variable being refreshed. };
NewValue{ Optional initial value for expression };

If a tag parameter holds a running expression rather than a variable,
care must be taken in refreshing it. The SafeRefresh method provides a
convenient way for developers to ensure that all parameters are correctly
refreshed, and at the same time ensures that similar operations use the
same code path.
Using the Function tag as an example, its refresh module starts as fol-
lows:

Refresh [
If watch(1);
[
{***}
{ Parameters to the Function }
{***}
{***** Update variables *****}
\ExpressionManager\SafeRefresh(&P1, Parm[#P1]);
\ExpressionManager\SafeRefresh(&P2, Parm[#P2]);
\ExpressionManager\SafeRefresh(&P3, Parm[#P3]);
\ExpressionManager\SafeRefresh(&P4, Parm[#P4]);

Here, the variables P1 through P4 are all parameters to the tag. SafeRe-
fresh will instantiate the expression if necessary and will set the para-
meter to that expression. If the parameter is a tag reference or a simple
constant, those will be handled correctly as well.

\ExpressionManager\ToValue(Parm)

Takes the return value from SafeRefresh and returns the current value of
the expression, tag or constant. \ExpressionManager\ToValue should
always be called in order to safely use the value of a parameter in a mod-
ule.

Example:
The Function tag uses the
following to access the values of these four parameters:

RawValue = PickValid(Cast(\ExpressionManager\ToValue(P1), 3),
Valid(P1) ? Invalid : 0) +
PickValid(Cast(\ExpressionManager\ToValue(P2), 3),

Valid(P2) ? Invalid : 0) +
PickValid(Cast(\ExpressionManager\ToValue(P3), 3),

Valid(P3) ? Invalid : 0) +
PickValid(Cast(\ExpressionManager\ToValue(P4), 3),

Valid(P4) ? Invalid : 0);

If the parameter is a constant or expression, the scope resolution ref-
erences to the tag-Name and tag-Value variables would be undefined.
Any addition of variables, such as child tags starting or another applic-
ation starting would cause the code to re-trigger. This behavior is inten-
tional in order to catch the addition of child tags AFTER the instantiation
of the references to them.

Adding Expression Support to an Application

In the Refresh() method of the module, use SafeRefresh() to update any
parameters that may be assigned an expression. The generic form is as
follows:

\ExpressionManager\SafeRefresh(&P1, Parm[#P1])

For example, the low alarm setpoint of an Analog Status tag can be
defined by an expression. In the Analog Status tag’s Refresh() module,
the SafeRefresh statement for the low alarm setpoint is:

\ExpressionManager\SafeRefresh(&AlarmLo, Parm[#AlarmLo]);

Also, add a PTypeToggle to the config folder of the tag for each variable
that may be an expression.
For example, here is the code that draws the user input for the low alarm
setpoint of an Analog Status tag:

{***** Low Setpoint *****}
GUITransform(30, 103, WIDTH/2 - 5, 45,

1, 1, 1, 1, 1 { No scaling },
0, 0, 1, 0 { No movement; visible; reserved },
0, 0, 0 { Not selectable },

\DialogLibrary\PTypeToggle(\#AlarmLo, "Numeric" { point type },
\LowAlarmSetpointLabel, 1 { to 3 - ID },
0 { top align }, 1 { align title },
Invalid, Invalid { limits },
Trigger, 1 { Allow Expression }));

To add expression support to a tag widget:
Often a tag widget variable X that can be a tag or a constant will be set in
steady-state with PickValid(). Graphic calls then use X directly as an
input. This won't work if X is extended to allow expressions, as Start() is
a subroutine. Instead, introduce a new variable (for example, Xdata) and
base the graphics on that. Then add new code similar to the following:

If Watch(1, X);
[
\ExpressionManager\SafeAssign(&Xdata, ValueType(X) == 7 { Object } ?
X : ValueType(X) == 4 { Text } ? \ExpressionManager\Start(X, Self,
Self) : X);
]

Finally, make sure that there is a PTypeToggle in the Panel module for X,
and ensure that the PTypeToggle is called with the EnableExpressions
argument set to 1.

The ExpressionEdit Widget

The ExpressionEdit widget is used by the PTypeToggle to allow users to
type in expressions. It can also be used on its own in cases where screen
area is too limited for a PTypeToggle. It looks and acts similar to a
SelectObject, except that instead of bringing up the Tag Browser when
the user clicks the … button, an expression entry dialog is displayed.
ExpressionEdit uses Start() to resolve what the user types in, so it can be
used to select an expression, a tag, or a constant.
The generic form of the interface is as follows:

ExpressionEdit(X1, Y1, X2, Y2, ParmObjPtr, SetParm, ID, Root)

X1 Left or right side of graphic (*)

Y1 Bottom or top of graphic

X2 Right or left side of graphic

Y2 Top or bottom of graphic

ParmObjPtr The parameter being set

SetParm Set when the parameter has been set

ID Focus ID

Root Calling tag to which this will hook

Note: (*) Those not familiar with the VTScada graphic functions may
find it confusing that X1 can be either the left or right of the graphic.
Between X1 and X2, whichever is the smaller value is taken as the left
and the larger value becomes the right. Similarly for Y1 and Y2.

Issues and Risks

Care must be taken when assigning to and from variables that may hold
expression values.
The implementation of expressions assumes that only one variable at a
time holds a reference to a running expression.
A running expression must be slain before assigning to a variable that
refers to it. Failing to do this will result in an orphaned expression,
which is worse than creating a memory leak, because processor cycles
are additionally wasted.
A reference to a running expression should not be copied. Instead of
copying the reference, a new expression should be started with the same
source. Failing to do this consistently will result in expressions dying
unexpectedly.
The convenience methods \ExpressionManager\SafeAssign() and \Ex-
pressionManager\SafeCopy() are provided to make this easier for
developers.

Care must be taken not to rely on expressions running on different serv-
ers to return the same thing (example: Now(1))
It is possible, in theory, to create a situation where expressions are
returning different values from each PC in a remote application. For
example, suppose that a Logger is created that accepts input from a Cal-
culation tag, which in turn uses an expression that relies on the local
clock. If the local clock is slightly different on each PC, then this may res-
ult in odd log data when synchronizing between different PCs.

Programming Parent Tags

Note: The following information describes an older technology. With
rare exceptions, Parent-Child tag structures, created using the Tag
Browser, should be used instead of programmed parent tags.

Parent tags are a user-created tag type that will generate a set of related
tags (child tags) with each new instance. They are typically used in applic-
ations that have a series of devices such as generators or lift stations
where each instance will use a similar port, driver, I/O tag set, etc.
The tag that represents the generator or lift station as a whole is
referred to as the "parent tag," while the various dynamically-generated
tags are referred to as the "child tags". The child tags are created by way
of calls to the StartTag function. Their parameters do not exist within the
tag properties database, except in the case where the developer sub-
sequently overrides those properties.
Since the child tags are created automatically by each parent, it becomes
a simple task for developers to add new lift stations or other objects to
the application.

Parametrized pages can be created that accept an instance of a parent
tag as the parameter, then automatically link all of the monitoring and
control features within the page to the child tags. Parent tag structures
are most useful when there is a clear pattern to the child tag parameters
from one instance to the next. It should be possible to calculate each
child tag's parameters from its parent's configuration.
Child tags and their properties are not stored in the tag properties data-
base. The exception to this rule is that overrides to properties are stored
in the tag properties database. Parent tags and all of the child tags will
be listed in the Tag Browser and their properties may be edited there.

Note: Although child tags do not store their parameters in the tag prop-
erties database, they do count towards the tag limit as set by your
VTScada license.

Overrides to child tag values will remain in effect and be distributed to
all stations running the application. Overridden fields in the con-
figuration panel will turn orange instead of green (subject to the applic-
ation property, ParmOverrideColor). You can also right-click on a child
tag's configuration panel field and select "Add Override" from the pop-
up menu.
Right-clicking and selecting "Remove Override" is the only way to return
to the property value defined in code – simply deleting the value will set
it to an override value of Invalid, rather than removing the override.

Related Information:

...Building Parent Tags

...Widgets for Parent Tags

...Optimizations and Considerations When Using Child Tags

Building Parent Tags

The structure of a parent tag is the same as any other custom tag (see
Creating Custom Tag Types) with one exception: The parent tag contains
a number of calls to StartTag, thereby creating child tags automatically
with each new instance.
The parent tag's parameters should include all of the information that
will be required by the various child tags. There must be some pattern to
the child tag parameters from instance to the next for these structures to
be useful. For example, if all of the child tags that perform I/O functions
use addresses that can be calculated from a station number or a base
address value, then the parent tag will require very little configuration. If
each parameter of each child tag in each instance of the parent must be
provided individually, then few benefits remain.
For parent tags with very complex configurations, you should consider
creating a configuration wizard to help operators create each new
instance. See The VTScada Wizard Engine. If the configuration is not
overly complex, then a standard set of configuration panels should suf-
fice.
The concepts of parent tag structure are illustrated in the following
example. This shows the source code for a simple lift station with a port,

a Modbus Compatible Device , a polling driver. I/O addressing in this
example takes advantage of the Modbus virtual I/O feature.

{====================== Parent Tag Example ======================}
{ An sample Parent tag that creates several child tags. }
{==}
{ The parameters section of the module contains all of this }
{ tag's configuration parameters }
(
Name <:TagField("SQL_VARCHAR(64)", "Name"):>
{ Name of this tag };

Area <:TagField("SQL_VARCHAR(255)", "Area"):>
{ Group which this device belongs to };

Description <:TagField("SQL_VARCHAR(255)", "Description"):>
{ Description of device };

Station <:TagField("SQL_VARCHAR(255)", "Station"):> = 1
{ Modbus address of the PLC };

IOBaseAddr <:TagField("SQL_VARCHAR(255)", "IOBaseAddr"):>
{ I/O addressing offset for this instance };

Port <:TagField("SQL_VARCHAR(255)", "Port"):>
{ Port tag used to communicate with the device };

ScanInterval <:TagField("SQL_VARCHAR(255)", "ScanInterval"):>
{ Polling interval };

)
{ The variables section of the module contains the standard }
{ variables, constants and module declarations for a tag }
[
Root { Instance of this module };
Value(5) { Value of this tag };
Refresh Module { Standard module in all tags };
ConfigFolder Module { Configuration folder };
Common Module { right-click menu and tool tip };

[(GRAPHICS)
Shared Number; { the only widget that will be available }

]
{ Parameter Constants }

CONSTANT #Name = 0;
CONSTANT #Area = 1;
CONSTANT #Description = 2;
CONSTANT #Station = 3;
CONSTANT #IOBaseAddr = 4;
CONSTANT #Port = 5;
CONSTANT #ScanInterval = 6;

]

{ The initialization state of all tags will set Root to self and call
}
{ the Refresh module
}

Init [
If 1 Main;
[
Root = Self;

Refresh();
]

]

Main [
{ The value of the parent tag will be taken from the value of the }
{ Polling Driver child-tag }
Value = Variable("PollDriver\Value");

]

<
{========================== Refresh ========================}
{ This subroutine is called on startup and whenever the }
{ tag's parameters change }
{===}
Refresh
(
Parm { Array for parameters prior to their change };

)

Refresh [
If 1;
[
{ This section creates the instances of the child tags. Some

}
{ parameter values come directly from the parent (Area), some are

}
{ set in code and some are built here, based on information from

}
{ the parent's parameters. }
{ Since child tags are always named ParentName\ChildName, there

}
{ is no need here to create a unique name here for each child

}
{ instance. The drivers, for example, will be

Instance1\SiteDriver, }
{ Instance2\SiteDriver, etc. }

{ Create Driver tag }
\StartTag(Root,

Valid(Root\Name) { Conditional launch expression },
"ModiconDriver" { Tag type },
{ Name and value pairs }

"Name", "SiteDriver" ,
"Area", Area, { The child takes its area

from the parent }
"Description", Concat(Description, " Driver"),
"Station", Station, { from the parent con-

figuration }
"Channel", 0,
"PortTag", Port, { from the parent }
"TimeLimit", 1,
"Retries", 3,
"Hold", 0,
"KeyOffDelay", 0,
"Options", 0,
"TimeSquelch", 0.2,

"RetryTime", 1,
"Adapter", -1,
"TimeInc", 2,
"MBPRetries", 2,
"MBPDMPathCount", 8,
"MBPPollRate", 0.025,
"VPLCHoldingCoils", 9999, { Virtual I/O is used for

this example }
"VPLCInputCoils", 9999,
"VPLCInputRegs", 9999,
"VPLCHoldingRegs", 9999,
"HelpKey", Invalid);

{ Create Polling Driver tag }
\StartTag(Root,

Valid(Root\Name) { Conditional launch expression },
"PollDriver" { Tag type },
"Name", "SitePoller" { Parameter name & value

pairs },
"Area", Area,
"Description", Concat(Description, " Poll Driver"),
"DeviceTag", Concat(Name",\SiteDriver"),
"PollGroup", "DEFAULT",
"Sequence", 0,
"Interval", ScanInterval,
"Offset", 0,
"PollDisabled", 0,
"HelpKey", Invalid);

{ Create an Analog Status tag }
\StartTag(Root,

Valid(Root\Name) { Conditional Launch expression },
"AnalogStatus" { Name of tag type },
"Name", "AS1",
"Area", Area,
"Description", "Analog Status child 1",
"DeviceTag", Concat(Name",\SitePoller"),
"Address", Cast(40000 + Cast(IOBaseAddr, 2), 4),
"ScanRate", 1,
"UnscaledMin", 0,
"UnscaledMax", 4095,
"ScaledMin", 0,
"ScaledMax", 100,
"Units", "%",
"AlarmLo", Invalid,
"AlarmHi", Invalid,
"PriorityLo", Invalid,
"PriorityHi", Invalid,
"InhibitLo", Invalid,
"InhibitHi", Invalid,
"AlarmSound", Invalid,
"ManualValue", Invalid,
"Threshold", Invalid,
"Questionable", 0,
"Quality", Invalid,
"DisplayOrder", Invalid,
"HelpKey", Invalid,
"PopupLo", Invalid,
"PopupHi", Invalid,

"AlarmLoDeadband", Invalid,
"AlarmHiDeadband", Invalid,
"AlarmLoDelay", Invalid,
"AlarmHiDelay", Invalid);

{ Create an Analog Control tag }
\StartTag(Root,

Valid(Root\Name) { Conditional Launch expression },
"AnalogControl" { Name of tag type },
"Name", "AC1",
"Area", Area,
"Description", "Analog Control child 1",
"DeviceTag", Concat(Name",\SitePoller"),
"Address", Cast(40000 + Cast(IOBaseAddr, 2), 4),
"UnscaledMin", 0,
"UnscaledMax", 4095,
"ScaledMin", 0,
"ScaledMax", 100,
"Units", "%",
"SecurityBit", Invalid,
"DataSource", Invalid,
"Questionable", 0,
"DisplayOrder", Invalid,
"HelpKey", Invalid);

{ Create a Digital Status tag }
\StartTag(Root,

Valid(Root\Name) { Conditional Launch expression },
"DigitalStatus" { Name of tag type },
"Name", "DS1" { Name and value pairs },
"Area", Area,
"Description", "Digital Status child 1",
"DeviceTag", Concat(Name",\SitePoller"),
"Bit0Address", Concat(Cast(40100 + Cast(IOBaseAddr,

2), 4), "/0"),
"Bit1Address", Invalid,
"ScanRate", Invalid,
"InvertInput", 0,
"OffText", "Off",
"OnText", "On",
"AlarmState", Invalid,
"AlarmDelay", Invalid,
"TripOptions", 0,
"Priority", 0,
"Inhibit", 1,
"AlarmSound", Invalid,
"ManualValue", Invalid,
"Questionable", 0,
"Quality", Invalid,
"DisplayOrder", 1,
"HelpKey", Invalid,
"PopUp", 0);

{ Create a Digital Control tag }
\StartTag(Root,

Valid(Root\Name) { Conditional Launch expression },
"DigitalControl" { Name of tag type },
"Name", "DC1" { Name and value pairs },
"Area", Area,
"Description", "Digital Control child 1",

"DeviceTag", Concat(Name",\SitePoller"),
"Address", Concat(Cast(40100 + Cast

(IOBaseAddr, 2), 4), "/0"),
"InvertOutput", 0,
"PulseDuration", 0,
"FeedBackTag", Invalid,
"FeedBack1", Invalid,
"FeedBack0", Invalid,
"SecurityBit", Invalid,
"DataSourceTag", Invalid,
"InvertDataSource", 0,
"Questionable", 0,
"DisplayOrder", Invalid,
"HelpKey", Invalid);

Return(0);
]

]
{ End of Refresh }
>
{ As with all tags, the ConfigFolder module is called when the }
{ tag's properties are displayed. }

<
{==================== ConfigFolder ===========================}
{ This is the shell of an editable ConfigFolder for a tag }
{ where the ConfigFolder is created and maintained by the }
{ ConfigFolder Wizard. }
{ Manual editing of the code is allowed as long as the state }
{ structure is maintained. }
{===}
ConfigFolder
(
Parms { Pointer to array of parameters };
Current { Currently selected tab (starts at 0) };
PtrWaitClose { Pointer to FLAG - TRUE when wait to close.

Caller must default to 0. };
OKPressed { OKPressed from PropertiesDialog };

)
[
Constant #WIDTH = 500;
[(1)
IDTabLabel = "ID";
ConfigTabLabel = "Config";

]
]
Switch [
If Current == 0 ID;
If Current == 1 Config;

]
ID [
{**** If page changes, change states *****}|
If Current != 0 Switch;
{***** Name of the point *****}
GUITransform(30, 90, 470, 45,

1, 1, 1, 1, 1 { No scaling
},

0, 0, 1, 0 { No movement; visible;

reserved },
0, 0, 0 { Not selectable

},
\DialogLibrary\PEditName());

{***** Group (area) that the point belongs to *****}
GUITransform(30, 200 { btm at 145 }, 470, 100,

1, 1, 1, 1, 1 { No scaling
},

0, 0, 1, 0 { No movement; visible;
reserved },

0, 0, 0 { Not selectable
},

\DialogLibrary\PAreaSelect(1 {can edit}, 2 {ID}));
{***** Description of the point *****}
GUITransform(30, 200, 470, 155,

1, 1, 1, 1, 1 { No scaling
},

0, 0, 1, 0 { No movement; visible;
reserved },

0, 0, 0 { Not selectable
},

\DialogLibrary\PEditField(2, \DescriptionLabel, 4
{text},

3 {ID}));
]

Config [
{**** If page changes, change states *****}

If Current != 1 Switch;
{***** Communications Port *****}

GUITransform(30, 90, #Width - 30, 45,
1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\PSelectObject(#Port { Parm

},
"Ports" { Point type

},
"Communications Port" {

Title },
1 { Focus ID

},
0 { List at top

},
0 { Align top of

bevel)));
{***** Station Address *****}

GUITransform(30, 145, #Width / 2 - 10, 100,
1, 1, 1, 1, 1 { No scaling

},
0, 0, 1, 0 { No movement; visible;

reserved },
0, 0, 0 { Not selectable

},
\DialogLibrary\PEditField(#Station { Parm Num

},
"Station Address" { Title

},
1 { Short

},
2 { Focus ID

}));
{***** I/O Base Address *****}

GUITransform(30, 200, #Width / 2 - 10, 155,
1, 1, 1, 1, 1 { No scaling

},
0, 0, 1, 0 { No movement; visible;

reserved },
0, 0, 0 { Not selectable

},
\DialogLibrary\PEditField(#IOBaseAddr { Parm Num

},
"I/O Base Address" { Title

},
1 { Short

},
2 { Focus ID

}));
{***** Scan Interval *****}

GUITransform(#Width / 2 + 10, 145, #Width - 30, 100,
1, 1, 1, 1, 1 { No scaling

},
0, 0, 1, 0 { No movement; visible;

reserved },
0, 0, 0 { Not selectable

},
\DialogLibrary\PEditField(#ScanInterval { Parm Num

},
"Scan Interval" { Title

},
3 { Float

},
3 { Focus ID

}));
]
{ End of ConfigFolder }
>

<
{========================= Common ==============================}
{ This module handles the common actions associated with all }
{ drawing modules for this point. It will be called by all }
{ external drawing modules. }
{===}
Common
(
Left { Area occupied by the drawing object };
Bottom;
Right;
Top;

)

Common [
\PostIt(Left, Bottom, Right, Top, \Name, \Description,

! \GetUserSession()\NavActive);
\Navigator(1 { Opening condition for the folder },

Left, Bottom, Right, Top { Target area for opening –
same as the GUI statement
area. },

{ Menu line 1 } \PropertiesLabel, Invalid, 0, Invalid);
]
{ End of Common }
>

Widgets for Parent Tags

You can create a Draw method for a parent tag in the same way that you
would for any other tag (see: Drawing Tags). A simpler method is avail-
able, however, which is to configure a parametrized page or a User Draw
object.
Parametrized pages and user-created widgets are particularly well suited
for drawing your stations and are an efficient alternative to writing graph-
ics code in the template.
The process for adapting a parametrized page or widget to display all
the child tags for a parent tag instance is as follows:
Given a parent tag that has been added to an application and where at
least one instance of the tag has been created.

1. Create either a new parametrized page or a user widget.

2. Add a parameter to the parametrized page or widget. This will be a tag type
where the selected type is the parent tag structure.

3. Open the page for editing.

4. Select an instance of the parent tag for the parameter.

5. Draw the station using the child tags.

6. For each widget that makes up the station, change its source from tag to
parameter.

7. Select the parameter, then the child tag or grand-child tag from the parent
tag.

8. Save your work.

Optimizations and Considerations When Using Child Tags

The following optimizations and considerations should be heeded when
you are using parent and child tags in your application:

l When structuring a parent and child tags, it is good practice to configure the
parent with only those parameters that are necessary to define what is unique
for the station (i.e. the parent should have enough parameters to cover vari-
ants in the children). The child tags will then have the common parameters
defined.

l Don't launch tags that you do not need. If stations don't use all, launch only
the ones required. For example, some stations may have 3 pumps, but oth-
ers only 2.

l Child tags do count towards the tag limit as defined by your VTScada license.

Debugging and Analysis

VTScada provides you with a set of utilities to assist with debugging and
analysis. These tools can help take the guesswork out of solving prob-
lems that might occur while you are developing your applications.

Related Information:

...Coordinates Application - enables you to precisely determine the
coordinates of the mouse pointer.

...Debugger Utility - used to examine the contents of modules and their
properties.

...Instance Count Application - provides a count of the instances (or cop-
ies) of modules that are running.

...Memory Tracer Application - used to analyze VTS’s demand on com-
puter memory.

...Profiler Application - analyze your applications to discover statements
that are placing an excessive load on system resources.

...Source Debugger - the most powerful and comprehensive of the
VTScada debugging tools.

...Test Framework Application - enables VTScada programmers to test
VTScada applications.

...Thread List Application - provides a list of the separate threads of exe-
cution for which VTScada is responsible.

...Trace Viewer Application - monitor the content and parameters of
driver messages and VTS-related network traffic as it occurs.

...Trace VTScada Actions Application - select VTScada services and
actions and monitor by saving pertinent data to disk.

Coordinates Application
Included with VTScada is a simple, yet useful utility application named
"Coordinates". This utility is useful when you need to determine the hori-
zontal and vertical coordinates of the mouse pointer within any VTScada
window (page or dialog).

Note: If the Coordinates application is not referenced in the VAM, you
must manually add it. The Coordinates application's directory is named
"XY", and is stored within the VTScada installation directory.

When you run the Coordinates utility application, it appears as shown:

To use the Coordinates utility application to determine the X and Y
coordinates of a page or dialog, run your application, navigate to the
page or dialog whose coordinates you require, then position your mouse
at the place you are interested in. The X and Y coordinates of the mouse
pointer's position are displayed in the Coordinates application window.

Debugger Utility
The Debugger utility can be used to examine the contents of modules
and their properties and can be invaluable in helping you to locate prob-
lems that happen only while your application is running. The information
displayed in the Debugger is updated in real-time as the scripting code
runs. This is an older technology than the Source Debugger, but it is still
useful.

Note: If the Debugger application is not referenced in the VAM, you
must manually add it. The Debugger application's directory is named
"Debugger".
Pressing the keys "Ctrl-D" in the VAM will launch the Debugger.

An example of the Debugger:

The top of the Debugger displays the name of the module being
examined and the name of the current active state, in parentheses fol-
lowing the module name.

Pin button

(pin / currently pinned)
Use this button to choose whether the Debugger window should remain
on top of all other windows.

Select button
Use this to choose which graphics module to examine.

1. Click the Select button.

2. Click on a VTScada page to begin examining the variables in the graphics
module for that page.

Parent button
After selecting a graphics module, use the Parent button to examine the
parent of the current module.

Next button and Previous button
Step forward and backward through the history of modules you've
recently viewed.

Instances button
The Instances button enables you to step through the different instances
of the module if more than one is running. The current instance and the
total number of instances are shown beneath the button.

Root button
Used to quickly select the root module of the current module.
For example, if you are interested in examining a tag that is drawn on a
page, you would first use the Select button to choose the page, then the
Root button to move up the module tree. The display would then include
(among other things) all of the tags in the application, from which you
could select the tag you are interested in.

Caller button
Use this to examine the caller of the current module.

Search field
Use by entering a search string by which you wish the list of variables to
be restricted. The wildcard characters '?' and '*' may be used in com-
bination with either a single character or 0 or more characters to locate
specific variables. You can use the asterisk wild card to stand for any
combination of characters. For example, L* will return all variable names
that begin with the letter "L"; *L or *L* will return all variable names that
contain an "L" anywhere in the body of their name.
Pressing the key combination, "Alt-Home" will perform the same function
as clicking on the Root button.

Variables check box
Filters the list to include variables when selected.

Parameters check box
Filters the list to include parameters when selected.

Modules check box
Filters the list to include modules when selected.

Sort check box
Filters the list alphabetically when selected. If deselected, the items dis-
played in the list will appear in the order in which they were declared.

Global check box
Filters the list to include all variables that can be accessed from the cur-
rent module; otherwise, only the variables in the current module will be
displayed.

Note: When a new value is entered in the edit fields in the debugger,
the Enter key must be pressed or it will not "register" (i.e. changing
focus does not automatically enter values into the fields of the debug-
ger). Further, if a text string is greater than 255 characters, only the
first 255 characters are shown in the value field, but its full length is
still registered.

Beneath the filtering and sorting check boxes appears the list of mod-
ules, variables and parameters. This list may be resized by dragging the
divider between the Name and Value columns. If an item in the list is a
module, an expand module button ">" will appear to the right of its
"Value" column.

By clicking on this button you can expand the module and examine its
contents.

Under the list of modules, variables and parameters is information about
the items in the list. (example shows the list for an Analog Input tag with
the UnscaledMax parameter selected)

Clicking on any item in the list of modules, variables and parameters will
bring up information on the selected item, such as the value of the selec-
ted item, the data type (if the selected item is a variable), the attributes
of the selected item, the class of the item, and if the selected item is a
variable and the "Global" check box is selected, the module to which the
variable belongs will be displayed. The name of the selected module, vari-
able or parameter is centered above the Value field.
In the event that a selected variable has a value that can be modified, the
Value field becomes enabled for modification, and includes a "clear
value" button, which is marked with an "X". Any changes you make to the
value of a selected variable will have an immediate effect in the running
instance of the current module. Clicking on the clear value button will
invalidate the current value.
If the selected variable is an array, the information displayed applies to
the current element of the array only. The array contents are visible in
the Array field at the bottom of the Debugger.
In the array display area, there is a scrollable listbox that contains a list
of elements for the selected dimension. The current dimension can be
changed at the top of this area. Selecting an element in this listbox will

allow information on the element to be displayed/edited in the variable
information area.

Related Information:

...Source Debugger

Instance Count Application
The Instances utility provides a count of the instances (or copies) of mod-
ules that are running in all VTScada applications on the workstation.

Note: If the Instances application is not listed in the VAM, you must
manually add it. The Instances application's directory is named
"Instance" and is stored within the VTScada installation directory.

The Instance tool can help you find potential problems in your applic-
ation code. For instance, a high count for a particular module might
indicate either:

l Excessive numbers of instances of a module have been launched.

l Module instances fail to stop executing when they should.
An example of the Instances utility:

As shown, the Instances utility provides a count of how many instances of
each module are running, and the file name where the module can be
found. (Most of the files listed are accessible only to Trihedral employ-
ees.)
At the bottom left of the dialog are two values showing the total number
of modules running and the total number of instances of those modules.
The display is not updated automatically. You can use the Re-Sample but-
ton, found at the lower right of the dialog, whenever you want a current
count.

Memory Tracer Application
The Memory Tracer application can be used by Trihedral staff to analyze
VTS’s demand on computer memory. It is often used to identify potential
memory leaks when developing new engine code. The Memory Tracer
application can be launched from the VAM.

Related Information:

...Using the Memory Tracer Utility - Instructions

...Analyzing a Memory Trace File - Description of the information cap-
tured

...Sorting Data in the Allocation Information List - Find and use the sort-
ing features

...Viewing Smaller Segments of a Time Slice - Find and use the display
features.

Using the Memory Tracer Utility

VTScada memory allocation calls are each given a unique ID. A memory
leak or other problem would be indicated by an unusually high count or

total byte value, or by an allocation histogram that is not mostly empty.
By referencing the caller ID associated with a high count value or that
shows up many times during the time slice, programmer's can quickly
find the code that is responsible for allocating this memory.
To begin capturing the VTScada memory usage, click the Capture button.
The button will read "Capturing" for several seconds while data is being
saved to the specified text file.
By default, VTScada creates a default memory trace file in the format of
an encrypted text file named, "MemTrace.txt," which is stored within the
MemTrace subdirectory of the VTScada installation directory (e.g.
C:\VTScada\MemTrace\MemTrace.txt)
You may use the Pick File button or the Capture File field to specify an
alternate location or file name if you wish. Memory Trace files may be
used to send a trace to another computer for analysis.
The Filter Ranges, are used to restrict the capture to:

l VTScada usage during a given time frame

l Low and high byte sizes

l Low and high caller ID values.
The Reset button in this area will restore the filter to the widest possible
ranges.

Analyzing a Memory Trace File

Once you’ve captured data to a memory trace file, or opened an existing
file, you can analyze its data. To do so, simply click the Analyze button.
When the progress bar reaches 100%, the Memory Tracer application’s
elements will be populated with data.
For each Caller ID (identifying the line of VTScada code that allocated the
memory) the following information will be displayed:

l The count of times that line was called.

l The total memory allocated by that code

l The Caller ID

l Timestamps, identifying the earliest and latest times that code identified by
this ID allocated memory during the capture timeframe.

The histogram will normally display a large number of total bytes at the
beginning of the time frame, with a few small byte allocations during the
span. As you move the mouse across the graph, the date and time match-
ing the cursor location will be displayed. Pausing the mouse over any
blip in the histogram will cause a window to be displayed showing the
bytes allocated at that point in time, and the Caller ID's associated with
code that allocated memory at that time.
Note that you can copy information from the Allocation Information table
with a Control-C. This information can be pasted into any text file or
spreadsheet. The copied information will not be sorted.

Sorting Data in the Allocation Information List

You can sort data in the Allocation Information list using the column
headings. Click the column heading by which you wish to sort, and an
arrow icon will appear to the right of the column heading. An upwards-
pointing arrow indicates that the column is being filtered from low to
high values, while a downwards-pointing arrow indicates that the column
is being filtered from high to low values.

Viewing Smaller Segments of a Time Slice

The Memory Tracer application is used to zoom in on data displayed in
the Allocation Histogram.
Position the mouse pointer at the starting of the area you wish to zoom
in on.
Click and drag to select the entire area you wish to zoom in on. The selec-
ted area will be highlighted in grey.
Click the Zoom button. The Analyze process will repeat for just the selec-
ted time span and the Allocation Information list will display only those
records that are associated with the selected zoom area.

Profiler Application
The Profiler can be used to analyze your applications to discover state-
ments that are placing an excessive load on system resources. If a par-
ticular statement runs for a large percentage of the data collection time,
it may be due to an "If 1" (continuously executing) condition. A statement
that is called an extremely large number of times may indicate an inef-
ficient algorithm in your code. Statements of this nature can have a
severe impact on the speed and performance of an application. The Pro-
filer can help you recognize such statements and correct any problems.

Note: The meaning of "high number" will vary depending on your applic-
ation. It is helpful to run the profiler at different times and under dif-
ferent conditions to gain a sense of what is normal for any given
application.

The Profiler analysis tool can be used in two ways: by collecting statistics
about running statements during a defined collection period, or by tak-
ing an instant count of the number of statements of various priorities
that are pending at the moment the Stats button is clicked.
An example of the Profiler follows. Note the "Settings" button. This will
open a configuration dialog that can adjust how the profiler works. See:
Profiler Settings. The notes in the Profiler Settings topic contain import-
ant information for anyone who intends to save the data collected by the
profiler.
If the Profiler application is not referenced in the VAM, you must manu-
ally add it. The Profiler application's directory is named "Profile" and is
stored within the VTScada installation directory.

The Profiler utility includes the following elements:

Command Buttons

Pin - When selected, the Profiler will always be the top-most window.
Start/Stop - Begins data collection. While the profile is running, the start
button will become a Stop button.
Clear - Clears the history of the last profile collected. Does not apply to
display of pending statements, collected by the Stats button.
Stats - Click to collect information about the number of pending state-
ments of various priorities. (These are described in the list of displayed
information, later in these notes.)
Save - Saves the data collected in the last profile to a CSV text file. This
file will be saved to the C:\VTScada\Profile\Data folder and will have the
name Year-Month-Day.txt. (2011-07-15.txt)

Note: If no file is created, check the thresholds in the Settings dialog –
it may be that no statement meets the minimum thresholds as con-
figured and therefore, there is no data to save.

Settings… Opens a dialog that provides configuration options for the pro-
filer. Described in the following topic.

Displayed Information

Last Profile - Shows the start time, end time and duration of the last data
collection period.
Running Profile - Displays an elapsed time count in seconds while a pro-
file is being collected.
Statement Count - Shows the number of statements that executed during
the most recent profile.
Normal Pending - Shows the number of normal statements that were
awaiting execution when the Stats button was clicked. For example, if a
tag value changed just before you clicked the stats button, then there
may be statements pending execution to react to that tag value change.
If the Normal Pending value is very high, it may indicate that the script-
execution engine is heavily loaded. This value cannot be taken by itself
to indicate system loading since an IF-1 condition may create a large
load while only adding 1 statement to the list of those pending.
High Pending - Similar to Normal Pending, but shows the number of
high priority statements that were awaiting execution when the Stats but-
ton was clicked.
Timers Pending - Shows the number of time-related functions that were
pending when the Stats button was clicked. A large number of these may
indicate poor design.
Priority Pending - Shows the number of priority statements that were
awaiting execution when the Stats button was clicked. Steady-state pri-
ority functions generally place a heavy load on system resources.

Grid Display Items

Counts -The number of times each statement executed during the most
recent profile.
Time (ms) - The execution time (in milliseconds) for each statement in
the most recent profile.
Pct - The percentage of time that each statement executed during the
most recent profile.
File Name - The full path to and name of the source file containing each
statement.

Module Name - The name of the module (within the identified source
file) that contains each statement.
State - The state (within the identified module) that contains each state-
ment.
Statement# - The numerical index of the statement within the identified
state.

Note: When counting statements in a state, the Profiler begins at "0"
and counts all steady-state statements from the top of the state to the
bottom. The Profiler then returns to the top of the state and begins
counting the statements within the first script, then the statements
within the second script, and so forth.

Related Information:

...Profiler Settings

Profiler Settings

This dialog is used to control how the profile collects information.

Profile Duration
You may set a fixed length of time for the data collection period. This
value is always in seconds – if you enter a decimal value it will be

rounded down to the nearest full second. If a duration is set, you can still
use the Stop button to end a data collection period whenever you wish.

Save Settings
Options in this box control how the profiler saves information to a file.
The file is saved to the Data folder under the Profiler application dir-
ectory and will have the name Year-Month-Day.txt. One file will be cre-
ated per day – multiple saves to file within a day are appended to the end
of the day's data file.

Max. Statements Per Log
The data file will contain information sorted in decreasing order by
count, by running time or both. Within each section, there will be Max
Statements Per Log rows.

Count Threshold
When checked, the file will contain statements sorted by execution count
in decreasing order. At least one statement must be executed this many
times within the data collection period to be included in the saved file.
Assuming that one statement crossed the threshold level, exactly Max
Statements Per Log rows will be included, regardless of how many state-
ments crossed the threshold level.

Time Threshold (ms)
Same as Count Threshold, except that this group of statements is sorted
by total execution time during the collection period.
If neither County Threshold or Time Threshold are selected, the profile
results for logging are sorted by whichever column, and in whichever
order is selected in the grid list display.

Enable Auto Save
When checked, a fresh save will occur each Sample Interval seconds while
the profiler is collecting data.

Hide Grid While Profiling
The statements that create the grid display in the profiler can be
executed many times while data is being collected and will be included in
the statistics. You may choose to disable the grid during data collection.

Auto Start
When checked, the profiler will begin collecting data as soon as it starts.
You may use a set collection time, or the stop button to end the col-
lection time period.

RPC Timing Utility
The RPC Timing Utility is included with VTScada, but not added to the
default list of applications in the VAM. Use the Find Existing option of
the Add Application Wizard to add it to your VAM.

This utility provides an assessment of remote procedure call round-trips
between the servers running an application. Use it to identify timing
issues, especially in busy systems. It can also identify servers that are
using unintended IP addresses (non-SCADA network cards) and servers
that are being overloaded with RPC calls.

Timings are relative to the workstation where you run this application
(never shown in the list). To refresh the display, click on the run button.
A fixed number of test messages will be sent, from which timing stat-
istics will be gathered.

"Q" is an abbreviation of "Queue", and refers to the time messages wait
before being sent. Average, best and worst delays are collected while the
run button is held.
The tolerance column refers to the configured link tolerance value. See:
Link Tolerances for relevant information.
You may copy the displayed values to the Windows clipboard, or export
them to a comma separated values file. The default file name will be
"RPCTimes_" followed by a timestamp that identifies when the file was
created (not when the values were collected.)

Source Debugger
The Source Debugger is the most powerful and comprehensive of the
VTScada debugging tools.

Note: If the Source Debugger application is not visible in the VAM, you
must manually add it. The Source Debugger application's directory is

named "Source Debugger," and is stored within the VTScada installation
directory.

The Source Debugger enables you to test code written using the VTScada
scripting language. Using the Source Debugger, you can:

l Examine the source code for the VTScada application you are debugging.

l Pause execution of VTScada script code by setting breakpoints.

l View the execution history of a specific thread when a breakpoint is "hot".

l View and modify variable values.

l Search for a specific instance of a module by specifying a Boolean expression
.

l Locate module instances that use a specific variable in steady-state, and find
the module instance that is setting a variable in steady-state.

l Build one to four "Watch" lists of selected variables that remain on view con-
tinuously.

l Slay instances of modules.

Note: In addition to the Source Debugger, VTScada includes an older
application named "Debugger". While the older debugger can still be
useful in certain situations, the Source Debugger is by far the more
advanced of the two tools.

Related Information:

...Debugger Utility - used to examine the contents of modules and their
properties.

...Source Debugger Components - window by window component list.

...Selecting an Application for Debugging - methods of selecting what to
work with.

...Dump Files - creating and viewing.

...Examining Code Paths Using Thread Display - use of the Tread Display
window.

...Working with Breakpoints and Data Breakpoints - setting, using, releas-
ing.

...Working with Watches - how to set and release.

...Working with Variables, Arrays, Pointers, Constants, and Parameters -
how to examine the various data structures.

...Working with Modules - search, display, refresh, step into, sort and fil-
ter.

...Working with the Execution History - a history of threads that have
run.

...Copying and Pasting Code Using the Source Debugger - the Source
Debugger enables you to copy and paste any kind of object.

...Source Debugger Options - display and control options, including work-
space definitions.

...Code Coverage - discover how much of your code actually runs.

Source Debugger Components

The various components of the Source Debugger are as labeled. A
description of each can be found in the following topics.

Components:

...Source Debugger: Tool Bar

...Source Debugger: Module Tree

...Source Debugger: Code Display

...Source Debugger: Summary (Live) Tab

...Source Debugger: Summary (Dump) Tab

...Source Debugger: Module Content Window

...Source Debugger: Action Window

...Source Debugger: Watch Window

Source Debugger: Tool Bar

At the top of the Source Debugger appears a tool bar, similar to that
shown here (broken into two lines to fit this page).

Note: As with all VTScada buttons and tools, placing your mouse
pointer over each button opens a tool tip that indicates the function of
the button, along with its keyboard shortcut.

The buttons on the Source Debugger’s tool bar are as follows. (Left to
right, by group).

Navigation Group

Back Button & Forward Button
Use these two buttons to move back and forth through the modules you
have recently viewed. You must have moved backward in the module
order for the forward button to be enabled.
Note: You may also use the keyboard combinations Alt + Left Arrow
(move left) and Alt + Right Arrow(move right) to step through the mod-
ules.

Parent Button
Click the Parent button to move to the parent of the module selected in
the module tree.

Caller Button
The Caller button can be clicked to move to the caller of the module
selected in the module tree.

Select Group

Select Window to Debug Button
Select a window to debug while your VTScada application is running.
See also: Selecting an Application for Debugging

Open Source File Button
The Open Source File button can be clicked to browse to and open a spe-
cific source file for debugging.
See also: Open a Source Code File for Debugging

Debug Test Framework Button
Launch the Test Framework application, to run pre-written tests on the
selected module.
See also: Test Framework Application

Dump File Group

Open Dump File Button
The Open Dump File button can be clicked to browse to and open a spe-
cific dump file for debugging.
See also: Dump Files

Create Dump File Button
The Create Dump File button can be clicked to create a dump file for the
application being debugged.
See also: Dump Files

Clipboard Group

Cut Button
The Cut button can be clicked to cut selected text from the source file
being debugged.
See also: Copying and Pasting Code Using the Source Debugger

Copy Button
The Copy button can be clicked to copy selected text from the source file
being debugged to the clipboard.
See also: Copying and Pasting Code Using the Source Debugger

Variables Group

Show Module Data in New Window Button
The Show Module Data in New Window button can be clicked to launch a
new window that displays the objects associated with a selected module.
See also: Display the Contents of a Module in a Separate Window

Refresh Trees Button
The Refresh Trees button enables you to refresh the module trees, ensur-
ing that any new module instances that have been added are displayed.
See also: Refresh the Module Tree

Sort Data Button
Sort the variables, parameters, and modules in the module content win-
dow in ascending order alphabetically.

See also: Sort Data in the Module Tree or Module Content Window

Sort Tree Button
Sort the modules in the module tree in ascending order alphabetically.

Hide Constants Button
Hide any constants that are being displayed in the module content win-
dow.
See also: Working with Variables, Arrays, Pointers, Constants, and Para-
meters

Show Only Parameters Button
Command the Source Debugger to display only parameters for the selec-
ted module in the module content window.
See also: Working with Variables, Arrays, Pointers, Constants, and Para-
meters

Breakpoints Group

Toggle Breakpoint (F9) Button
Set a breakpoint in the code you are viewing. A breakpoint indicates to
the Source Debugger that the selected application should pause exe-
cution at a certain point.
See also: Working with Breakpoints and Data Breakpoints

Enable/Disable Breakpoint (Ctrl + F9) Button
Disable an existing breakpoint or enable a disabled breakpoint in the
code you are debugging or examining.

Breakpoint Properties (Alt + F9) Button
Open a window within which conditional breakpoints can be configured.

Continue (F5) Button
Continue execution of the code you are debugging or examining when a
breakpoint has been hit and code execution paused.

Step Into (F11) Button
The Step Into button steps you into a statement, even if it is in another
source file.
See also: Step Into a Statement

Step Over (F10) Button
The Step Over button steps you onto the next instruction. Stepping over
a subroutine call runs it at full speed and halts execution of the stepped
thread at the next function or statement.

Run to Cursor (F12) Button
The Run to Cursor button places a temporary breakpoint at the high-
lighted line of source code. If the Source Debugger has halted execution
of a thread and that break is highlighted in the Breakpoints tab of the
Action window, that thread’s execution will be resumed at full speed. The
Run to Cursor button can be used like a shortcut that will run from a
breakpoint to wherever the highlighted line of code is situated.
See also: Run Code from a Breakpoint to a Selected Line

Watch Group

Add Watch (Ctrl + W) Button
Add the selected variable and its value from the module content window
to the selected tab in the watch window.
See also: Setting a Watch on a Variable

Add Watch Expression Button
Add the selected expression from the module content window to the
selected tab in the watch window.
See also: Set a Data Breakpoint

Remove Watch (Del)
Remove the selected variable and its value from the watch window.
See also: Remove a Watch

Options
Set several options that affect the way the Source Debugger appears and
behaves.
See also: Source Debugger Options

Daytime/Nighttime
Toggles the background between white (daytime) and black (nighttime)
mode. The foreground (text) color will be the reverse.

Modules Group

Find Module
Enter a Boolean expression and search to find all instances of the current
module.
See also: Search for a Specific Module Instance

Slay
Terminate the execution of the selected module instance.
See also: Slay a Module Instance

Workspace Group

Open Workspace
A workspace is the set of the selected module, the breakpoints, and the
watches for a Source Debugger session, stored in a .DWS file. Use this
button to re-open a workspace that you have saved with the Save Work-
space button.

Save Workspace
See preceding description for Open Workspace. Use this button to save
the breakpoints and watches, and the selected module that you are work-
ing with, from one session to another.

Reload Auto Workspace
If you have enabled the automatic workspace reload feature (done in the
Options dialog - see: Source Debugger Options) then you may use this
button to load the last automatically-saved workspace.

Code Coverage Group

Toggle Code Coverage
Toggles the display of code coverage (the indicator of what modules,
states, statements and parameters used)

Reset Code Coverage Information

Resets the code coverage counters to zero.

Refresh Code Coverage
Displays an up-to-date view of the code coverage.

Previous Highlight
Steps through the display to the previous statement (parameter…) high-
lighted as having been used by the module.

Next Highlight
Steps through the display to the next statement (parameter…) high-
lighted as having been used by the module.

Merge Code Coverage From File
Loads the code coverage record as stored in a file, into the current dis-
play. This is especially useful for team debugging where various team
members are testing different parts of the code and wish to merge their
results.

Merge Code Coverage To File
Saves the code coverage, from the current session to a file. This is espe-
cially useful for team debugging where various team members are test-
ing different parts of the code and wish to merge their results.

Mouse Coordinates
To the far right of the Source Debugger's tool bar is the mouse coordin-

ates section. As you move your mouse pointer around on the screen, it
reports the X and Y coordinates with respect to the origin of the VTScada
window that the mouse pointer is over.

Close Window
This small "x" at the right-most edge of the toolbar will close the selec-
ted window in the Code Display area.

Source Debugger: Module Tree

To the left of the Source Debugger window appears the module tree.

As its name implies, the module tree reports a list of all modules in the
selected application, organized in a hierarchical tree structure. The mod-
ules shown in the trees are not dynamically updated in real-time. To do
so would impose a significant execution overhead that would likely
impair or affect the normal running of the system. The trees are auto-
matically refreshed when a breakpoint is "hit" (see Set or Clear a Break-
point), or when the "Refresh Trees" tool bar button is clicked.
A small square box to the left of the module name indicates a module
that has submodules. A plus symbol in the box indicates that display of
the submodules is hidden, while a minus symbol in the box is displayed
when the submodule tree has been expanded. You may expand any dir-
ectory to view its sub-directories by clicking the plus sign to its left, or
by double-clicking the module name. Likewise, you can contract a branch
in the module tree by clicking the minus sign or double-clicking the mod-
ule name again.
At the bottom of the module tree appear three tabs that may be clicked
to change the type of modules that are displayed in the module tree as
follows:

Static: Displays static modules. This represents the hierarchy of modules
present in the source code of your script application when it was com-
piled. The static tree shows you exactly what is in the engine, statically
loaded without any parent.
Scope: Displays the "parent/child" relationships of each module instance.
Whereas the static tree displays one entry per compiled module, the
scope tree displays one entry per module instance that is running, there-
fore, there may be none, or many entries for the same module code. A
module instance in the scope tree will resolve its variable references in
its parent module instances shown in this tree.
Call: Displays the actual call sequence for each module instance (i.e.
which module has called a module instance (see Module Calls)).
See also: Sorting Data in the Module Content Window or Module Content
Window.

Source Debugger: Code Display

The code display area occupies the majority of the space in the Source
Debugger.

As its name implies, the code display area shows the source code for the
selected modules. Selecting a module from the Module Tree displays the
source code file containing that module, positioned at the line in the
source file that contains the module code.
At the bottom of the code window appear a series of tabs that mark the
source code files that you have viewed using the Source Debugger. A new
tab is added each time you click on a module for viewing that is not in a
source code file for which a tab exists. You may click any of these tabs to
view the associated source code.
The Summary (Live) tab displays details about the live system (see Source
Debugger: Summary (Live) Tab). If you are reviewing a crash dump, the
label on the tab will change to match (see Source Debugger: Summary
(Dump) Tab).
On the left side of the source code, the line number within the source file
is displayed. Clicking on a line within the display highlights that line and
selects it for the purposes of setting, enabling, or clearing a breakpoint.

Source Debugger: Summary (Live) Tab

The Summary (Live) tab of the code display area can be clicked to display
details about the live system.

Note: You may also debug a dump file using the Source Debugger.
Please refer to Source Debugger: Summary (Dump) Tab for details.

There are five sections on the System Summary window (each of which
can be unrolled or rolled to view more or less information):

l Operating System: Identifies the operating system for the local PC.

l VTScada Information: Provides a snapshot of the VTScada installation run-
ning on the local PC, including the amount of memory that is being used.
This information is dynamically updated. Unrolling the VTScada Information
section enables you to view basically the same information that is contained
in the About dialog).

l Version number

l Serial number

l License type

l Free updates expiry (extracted from the installation key)

l Max tags allowed

l Max browser clients allowed

l Alarm Notification System installed?

l Memory used

l Applications: Provides information about the applications installed on the
local machine, including a list of those running and those that are stopped.
You may expand the Running and Stopped subsections to see the names of
the applications. The count (to the right of the Applications heading) includes
applications that haven’t been added to the VAM. Please note that the System
Library is always running so that you may debug the VAM.

l Modules: Provides details similar to Instance Count, except more efficient.
When the Modules tab is unrolled, Instance Count is run. This is a fairly
expensive process in terms of system resources, so this section only updates
periodically unless it is unrolled again.

l Threads: Identifies the set of running threads within VTScada. The number to
the right of the thread name is the Windows thread identifier. The module
that last ran, its state, and its statement number are identified. This section is
updated on a fairly slow cycle to save system resources, but you may use the
update button for faster updates. Under the System subheading (within the
Threads section) the sequence of execution is provided (this is the same
information as is presented in the Thread List Application – time, module
name, state, and statement number).

l Execution History: Displays a history of all threads that have run, sorted by
time. Of use especially when debugging a source dump as you can quickly
find what modules or statements ran just before the dump occurred. See:
Working with the Execution History.

Source Debugger: Summary (Dump) Tab

The code display window can display the contents of a dump file. At first
glance, this may appear to be the same as for the Live tab however, there
are several small but important differences.
When a dump file is displayed, the tab will be labeled, "Summary
(Dump)". All information in the Summary (Dump) window applies to the
PC on which the dump occurred, rather than to the local PC (unless the
dump occurred on the local PC). (Information on debugging a live system
is provided in Source Debugger: Summary (Live) Tab.)

Note: You may generate a dump file at any time. Instructions appear in
Generating a Dump File.

At the top of the Summary (Dump) window appears the text "System Sum-
mary", beneath which the path to the dump file being examined is dis-
played.
There are five sections on the System Summary window (each of which
can be unrolled or rolled to view more or less information):

l Operating System: Identifies the operating system for the PC on which the
dump took place.

l VTScada Information: Provides a snapshot of the VTScada installation run-
ning on the PC on which the dump took place, including the amount of

memory that was being used. (This information is static, as a dump file is
being examined, rather than a live system.) Unrolling the VTScada Inform-
ation section enables you to view basically the same information that is con-
tained in the About dialog).

l Version number

l Serial number

l License type

l Free updates expiry (extracted from the installation key)

l Max tags allowed

l Max browser clients allowed

l Alarm Notification System installed?

l Memory used

l Applications: Provides information about the applications installed on the PC
on which the dump took place, including a list of those that were running
and those that were stopped at the time of the dump. You may expand the
Running and Stopped subsections to see the names of the applications. The
count (to the right of the Applications heading) includes applications that
weren’t added to the VAM at the time of the dump.

l Modules: Unlike the Modules section for a live system summary (see Source
Debugger: Summary (Live) Tab), no modules will be displayed in the Mod-
ules section for a dump file, as none will be loaded and running.

l Threads: Identifies the set of threads that were running within VTScada at the
time of the dump. The number to the right of the thread name is the Win-
dows thread identifier. The module that last ran, its state, and its statement
number are identified. Under the System subheading (within the Threads sec-
tion) the sequence of execution that last took place prior to the dump is
provided (this is the same information as is presented in the Thread List
Application – time, module name, state, and statement number).

Note: When examining a dump file, the last statement executed can be
determined from the thread list.

Note: You may point the Source Debugger to source code on another
PC if you are debugging on a PC without source code. To do so, please
read Source Debugger Options.

Source Debugger: Module Content Window

The lower left portion of the screen is occupied by the module content
window.

This window displays a list of the contents of the module selected in the
module tree, including its variables, parameters, and related sub-
modules. The count at the lower right corner shows the number of vari-
ables within the filtered list.
If the module you are examining is a tag, you can discover the name of
each instance by searching for the Name property, or by looking for the
Root property. The tag name will be shown in brackets following the
value of Root, and will be shown if you hover over the property.

Above the module content window appears the name of the module
being viewed, along with the total number of instances of that module,
and the instance you are viewing. The up and down arrow buttons next
to the current instance number can be used to scroll through the
instances of the selected module. Alternatively, you may click in the

current instance number box and type in an instance number. When a
new module instance is selected, the scope and call module trees will
change to show the hierarchical position of the selected module
instance.
The Return Value field displays (and enables you to set) the return value
for the module being viewed, while the Filter field enables you to filter
the contents of the window to view only those modules that match the fil-
ter criteria (see Filtering Data in the Module Content Window). The
Return Value's edit field will be disabled if it can't be set.
The leftmost column of the variable/value list displays the name of each
variable, parameter, or submodule within the displayed module. The
rightmost column displays the current value of that variable for the selec-
ted module instance. You can change the value of any variable (see
Changing the Value of a Variable).
A variety of tools are available to help you further examine each variable
and module in the window:

There are three tabs featured at the bottom of the module content win-
dow:
Local: The local tab displays only the variables and values that are local
to the selected object or module.
Instance:
Auto: The Auto tab displays the variables and values near the selected
source code line. (Near is defined as one source code line before and one
after the selected one.) This works both when simply clicking on a line of
source code and is perhaps of most use when single stepping through
lines of code. The Auto tab will automatically refresh as you step through
the code. Automatic scope resolution will walk up through the code to
find array declaration and displays in the Auto tab window.
Global: The Global tab displays the contents of the local tab, plus all vari-
ables and values in the scope of the selected object or module (see Dis-
playing Objects with a Global Scope in the Module Content Window).

Related Information:

...Switch to module

...View contents

...Convert number

...View metadata

Switch to module

Module and object values have a right-facing arrow button next to them.
Clicking on the arrow button or double-clicking on the value of the

variable will cause the module or module instance addressed by the
value to become the selected one.

View contents

Array and pointer values have a button with a small window icon next to
them. Clicking on that button or double-clicking on the value of the
variable will cause a pop-up window to be displayed that enables you to
view the content of arrays and follow pointers (see Displaying Array and
Pointer Contents). In the case of modules, clicking that button will open a
secondary window in which the details about the module’s contents will
be displayed (see Displaying the Contents of a Module in a Separate Win-
dow).
If you were reading the last two paragraphs carefully, you might now be
wondering whether double-clicking on the value of the variable selects a
module instance or if it opens a pop-up. The answer is that it does both.

Convert number

Any numeric quantity can be converted to octal, decimal, hex, floating
point, or timestamp from its radix. To cycle through these numeric con-
versions, simply continue to click the button labeled with a dash to the
right of the variable or parameter (see Cycling Through Numeric Con-
versions for a Variable).

View metadata

Any value that has underlying metadata will have a metadata button
beside it. (See Dictionaries) Clicking this button will open a pop-up
window that enables you to view the variable's metadata.
The metadata button should not be taken as indicating whether or not a
variable is a dictionary. For example, a dictionary created with several
name/value pairs, but without a root value, will not have a metadata but-
ton.
A value in VTScada has properties, other than just its value. By resting
the mouse pointer over a value in the module content window, a tool tip
window is displayed for several seconds, listing the properties of the
selected value. For example:

The rules for how dictionaries are displayed in the module window can
be confusing to new users. The following example may help to at least
illustrate the rules:
Given the following code that creates two dictionaries; the first with no
root value and the second with a root value of 5:

If Watch(1);
[
 X = Dictionary();
 X["A"] = "Data A";
 X["B"] = "Data B";
 X["C"] = "Data C";

 Y = Dictionary(1, 5);
 Y["A"] = "Data A";
 Y["B"] = "Data B";
 Y["C"] = "Data C";
]

The module content window will look like the following:

Hovering over each of the variables in turn will produce tool tips as
shown next:

Tooltip associated with a dictionary having no root value

Tooltip associated with a dictionary having a root value
Note that only Y, which has a root value as well as metadata gets a
metadata button.
X gets the Window button, which in this case performs a somewhat sim-
ilar function…

Value of Y from the metadata button

Source Debugger: Action Window

The action window is the middle window appearing at the bottom of the
Source Debugger.

The functionality of the action window is dependent upon the tab that is
selected beneath it. These tabs and their purpose are:
BreakPoints: The BreakPoints tab displays a list of the set breakpoints,
including the source file location, module, state, and statement in which

they exist. The breakpoints tab also displays any "hit" breakpoints and
the running thread that has been paused.
Use List: The Use List tab displays the source file location of each run-
ning steady-state statement that depends on the value of the variable
selected in the module content window (i.e. the "consumers" of the
value). Each statement so referenced will be triggered for execution
when the contents of the variable instance changes.
Set List: The Set List tab displays the source file location of each running
steady-state statement that is setting the value of the variable selected in
the module content window (i.e. the "producer" of the value). In correctly
written code, there should only be one such reference. Multiple such ref-
erences result in a "double-set" condition and yields an invalid value for
the variable instance.

Source Debugger: Watch Window

The Source Debugger enables you to select many variables from different
module instances and add them to one of the four Watch tabs within the
watch window. This enables you to collect together variables from many
different module instances and be able to view them collectively, regard-
less of which module is selected. The variable/value pairs placed in the
watch window have exactly the same format and capabilities as vari-
able/value pairs in the module content window.

Selecting an Application for Debugging

There are two ways to select applications for debugging:
Click the application’s name/link in the Applications section of the Sys-
tem Summary (see Source Debugger: Summary (Live) Tab).

OR
Within the VTScada application, navigate to the page whose source
code you wish to examine.
In the Source Debugger, click the Select Window to Debug.

Click on the appropriate window in your VTScada application. The
Source Debugger will select the running module instance that con-
tains the graphic statement under the mouse pointer as the current
module instance, and will display the module trees, content list, and
source code for that module window.

You can select an application that is not running using the first option
(above). Simply click the name of the application in the Stopped section
of the Applications section of the System Summary. You will not see mod-
ules listed in the Modules section, as none will be loaded and running.
You can place a break point on a non-loaded application, and then run
it, however, you must generate debug symbols for this to occur.
Each time you navigate to a different module in the module tree, or
select a new window in your VTScada application for debugging, the
Source Debugger will change the selected module instance in the module
trees, module content window, and code display. If the source file con-
taining the selected module has not yet been displayed by the Source
Debugger, a new tab will be added to the source code window and made
the current tab. You may click any tab at any time to view the code for a
different source code file. You may use the forward and back tool bar nav-
igation buttons, or the corresponding keyboard shortcuts to move back-
wards and forwards through the module instances that you have selected
and viewed.
Each application runs in its own debugger section. The title bar identifies
which is being debugged. The Source Debugger runs one session per
application or crash dump file being debugged. Once the application has

been selected, the session is committed. There is a new, independent ses-
sion for each.

Related Tasks:

...Open a Source Code File for Debugging

Related Information:

...Editing Code and Recompiling

Open a Source Code File for Debugging

The Source Debugger can be used to open a source code file for debug-
ging, as follows:

1. Click the Open Source File button. The Open Source File dialog will open.

2. Navigate to the application directory containing the source code file you wish
to debug.

3. Select the source code file and click the Open button (or double click the
selected source code file). The file’s source code will be displayed in the code
display window.

Editing Code and Recompiling

When you edit code, stop the application, and compile, the Source Debug-
ger updates the source code display and the breakpoint will stay on the
statement on which it was set, rather than the line (in case a statement or
module was deleted). If you delete the module within which a breakpoint
is set, it will disappear.

Dump Files

You can generate a dump file as a snapshot of the current system. To
generate a dump file:
Click the Create Dump File button

1. Browse to the location where you wish to save the dump file.

2. Enter a name for the dump file in the File Name field.

3. Click the Save button. The dump file will be generated and saved in the spe-
cified location.

Viewing the Contents of a Dump File

Note: Before you can view the contents of a dump file, you must first
configure the Symbol Server tab of the Source Debugger’s Options dia-
log.

The Source Debugger can do all the same things with a dump file that
you can do with a live system. To open a dump file for debugging:

1. Click the Open Dump File button. The Open Dump File dialog will open.

2. Browse to and select the dump file you wish to analyze.

3. Click the Open button.
The selected dump file will open in the code display window in its own sep-
arate tab labeled "Summary (Dump)" (see Source Debugger: Summary
(Dump) Tab).

Examining Code Paths Using Thread Display

You can use the thread display to examine code paths. To launch the
thread display:

1. Click the Summary (Live) tab of the Code Display window.

2. Click the New Window button to the right of the Threads subsection.
The thread display will launch in a separate window, as shown:

At the top of the thread display appears a count of the total number of
running threads for the application being debugged. A summary of data
for each thread then appears as a list in the thread display. This data
includes:

l The name of each thread.

l The name of the module to which the thread belongs.

l The state for each thread.

l The number of statements associated with each thread.

Working with Breakpoints and Data Breakpoints

Programmers use breakpoints to test and debug programs by causing
the program to stop at scheduled intervals so that the status of the pro-
gram can be examined in stages. Breakpoints (and watches) can be
saved from one debugging session to another using the Save Workspace
and Open Workspace buttons.
There are two types of breakpoints that are referred to throughout this
document:
Breakpoint: Wherever the term "breakpoint" is used, code breakpoint
should be inferred. A code breakpoint is a programmer-defined break in
code that when reached triggers a temporary halt in the program. To set
a breakpoint, please refer to Setting a Breakpoint.
Data Breakpoint: A data breakpoint is a breakpoint set on data that trig-
gers a break when the data is set or changed. To set a data breakpoint,
please read Setting a Data Breakpoint.

Clearing a Breakpoint
Clicking the Toggle Breakpoint button will clear a selected breakpoint
and remove the marker.

Related Information:

...Setting a Breakpoint

...Conditional Breakpoints

...Examining State at a Breakpoint

Related Tasks:

...Set a Data Breakpoint

...Run Code from a Breakpoint to a Selected Line

...Enable or Disable a Breakpoint

Setting a Breakpoint

A breakpoint is a set location in source code that indicates to the Source
Debugger that any thread executing that source code is to be paused
immediately prior to executing it (see also Data Breakpoints).

Note: If your application uses multiple threads, it is quite possible for
different threads to execute a given statement. This might typically be
the case where the breakpoint was placed in a subroutine that could be
called by modules running on different threads.

Placing a breakpoint freezes the state of the application being debugged
at a specific point so that you may examine it.

To set a breakpoint:
Select the line of code at which you wish to place the breakpoint (line
selection is keyboard and mouse driven). A breakpoint indicator will
appear at the selected line and the breakpoint window will reflect the
information.

What Happens Once a Breakpoint Has Been Set?
Application execution will continue normally at full speed until a state-
ment that contains a breakpoint is about to be executed. At that point,
execution of the thread that is attempting to execute the statement con-
taining the breakpoint will be suspended and another entry will be made
in the breakpoint tab of the Source Debugger: action window, listing the
thread that has been suspended and the breakpoint that has been hit.
The breakpoint tab will be forced to the front of the action window, the
tab containing the source code with the breakpoint will be forced to the
front of the code display window, and the Source Debugger window itself
will be made the active window. Additionally, the module trees will auto-
matically be refreshed and positioned at the module instance that con-
tains the breakpoint. This means that you can see a "snapshot" state of
the module trees at the time that the breakpoint was encountered.

The breakpoint indicator will change to show that it has been "hit" by dis-
playing a yellow arrow over its top:

What Happens to Other Threads Once a Breakpoint Has Been Set?
Note that only the thread that executes a statement containing a break-
point will be suspended. Other threads within VTScada, including those
within your application, will continue to run normally. If this were not the
case, you wouldn't be able to use the Source Debugger, as it is merely a
script application. The implication of this is that while one thread is
paused on a breakpoint, another thread may attempt to execute the
same statement, and hence cause another breakpoint. This would result
in exactly the same sequence of events, with a second entry showing a
hit breakpoint being made in the breakpoints tab of the action window.
While a thread is paused at a breakpoint, you may navigate to any mod-
ule in any of the module trees that you wish, and examine or modify the
contents of any data variable. In other words, suspension of execution of
a thread affords you the time to have a "look-around" at the state of
things at a given point in the execution of your application. This can be
most useful in detecting transitional states that would otherwise be dif-
ficult to find.

How Do I Continue Execution Past a Breakpoint?
To continue execution past a breakpoint, ensure that the breakpoint
from which you wish to continue execution is selected in the breakpoints
tab of the action window, and then click the Continue button. The selec-
ted "hit" breakpoint entry in the breakpoints tab of the Action Window
will be removed (the breakpoint will remain, but the breakpoint event will
be removed). If there are multiple breakpoints hit, only the breakpoint
event selected in the breakpoints tab will be continued.

What Happens If a Critical Section is Hit?

A breakpoint can be placed on any source code line whose module has
been compiled with debugger symbols (see the "Note" in Run the Source
Debugger). This includes scripts that contain critical sections (see Crit-
icalSection). When a breakpoint within a CriticalSection is hit, the Crit-
icalSection is effectively released and re-acquired when you continue
execution from that point. This enables other VTScada threads to run,
including the Source Debugger. Depending on the code contained within
the CriticalSection, this may cause behavioral differences within your
application.

Related Tasks:

...Set a Data Breakpoint

Set a Data Breakpoint

To set a data breakpoint:
1. Select the data variable on which you wish to set the data breakpoint.

2. Click the Add Watch Expression button on a Variable.
The Breakpoints tab in the action window will display the thread on which
the data breakpoint occurs.
A conditional breakpoint can be set on an array, but won’t work with a
pointer to a value or a dynamically allocated array.

Set a Breakpoint to Halt Execution When Data is Set
You can set a data breakpoint to halt execution when data is set. As soon
as an attempt is made to set the value of a data variable, execution will
halt. To continue from a data breakpoint, click the Continue button or
press F5.
The next attempt to set the variable will be highlighted in the code.

Setting a Breakpoint to Halt Execution When Data is Changed
As soon as an attempt is made to change the value of a data variable,
execution will halt, unless the data variable is being set to the same
value.

To continue from a data breakpoint, click the Continue button or press
F5. The next attempt to change the value of the data variable will be high-
lighted in the code.

Related Information:

...Setting a Breakpoint

Related Tasks:

...Set a Watch

Conditional Breakpoints

You can apply an expression to apply to any breakpoint, either code
breakpoints or data breakpoints.

1. Click the Breakpoint Properties button.
The Breakpoint Properties dialog will open.

2. Select the Conditional Breakpoint check box.

3. Click OK.
A question mark will appear in the breakpoint’s symbol in the Source Debug-
ger: action window and in the code display, and a field will open to allow you
to enter an expression in the Action window.

4. Enter a valid expression in the field (such as \Name == "AI20_1").

5. Click OK to the right of the field in the Action window (Breakpoints tab).

Note: You must use the scope resolution operator (\) at the beginning
of the expression, or an "unknown variable or function" error will res-
ult.

Examining State at a Breakpoint

Once you’ve set a breakpoint, the important thing to do is to look at the
data. The Global tab of the module content window displays the name of
the variable, data type, default values, and attributes class.

Note: In the case of multidimensional, dynamic, and static arrays, you
can view array values in a separate window (see Displaying Array and

Pointer Contents) You may also open a separate window for a selected
module. There is no limit as to how many data windows you can have
open to enable you to quickly navigate source files.

Related Information:

...Working with Variables, Arrays, Pointers, Constants, and Parameters -
displaying Array and Pointer Contents.

Enable or Disable a Breakpoint

To disable a set breakpoint:
1. Click on the breakpoint or data breakpoint within the source code or the

breakpoints tab of the Source Debugger: Action window.

2. Click the Enable/Disable Breakpoint button.
When a breakpoint is disabled, the entry in the breakpoints tab of the Action
Window is not removed, but in conjunction with the indicator in the code
window, changes in appearance:

This will prevent a breakpoint from suspending execution when the state-
ment containing it is executed, but it makes it easy to locate the break-
point within the source code. Double-clicking the disabled entry within
the breakpoints tab positions the code window at the source code cor-
responding to the breakpoint.
If the breakpoint being disabled has suspended threads waiting (i.e. it
has been hit and not yet continued past), then disabling the breakpoint
releases any waiting threads.

To enable a disabled breakpoint:
1. Click on the breakpoint within the source code or the breakpoints tab of the

Source Debugger: Action window.

2. Click the Enable/Disable Breakpoint button.
The breakpoint indicators for the selected breakpoint in both the code
window and the breakpoints tab will change in appearance to signify an
enabled breakpoint.

Run Code from a Breakpoint to a Selected Line

To run code from a breakpoint to a highlighted line of code, click the
Run to Cursor button. This operation can be useful when a breakpoint is
at the beginning of a source file and the highlight is at the end.

Working with Watches

The Source Debugger enables you to watch variables. You may select
many variables from different module instances and add them to one of
the four Watch tabs that appear within the watch window. This enables
you to collect together variables from many different module instances
and view them collectively, regardless as to which module is selected.
Additionally, any expression may be watched.
Watches (and breakpoints) can be saved from one debugging session to
another using the Save Workspace and Open Workspace buttons.

Related Tasks:

...Set a Watch

...Remove a Watch

Set a Watch

To watch a variable:
1. Select the variable in the module content window whose value you wish to

monitor.

2. Select the watch tab to which you wish to add the selected variable. (There
are four watch tabs situated below the watch window.)

3. Click the Add Watch button. The variable will be added to the Watch window
so that you can monitor it.

To watch an expression:
The Source Debugger enables you to set a conditional watch using an
expression. To do so:

1. Select the watch tab to which you wish to add the watch. (There are four
watch tabs situated below the watch window.)

2. Click the Add Watch button. A field will open on the selected watch tab to
allow you to enter the expression to be watched.

3. Enter an expression (e.g. \I + 42).

4. Press the Enter key. The expression will be added to the selected watch tab.

Note: You must use the scope resolution operator (\) at the beginning
of the expression, or an "unknown variable or function" error will res-
ult.

Remove a Watch

To remove a watch set on a variable or expression:
1. Select the variable or expression whose value you no longer wish to monitor

in the watch window.

2. Click the Remove Watch button.
The variable or expression will be removed from the watch window.

Working with Variables, Arrays, Pointers, Constants, and
Parameters

The Source Debugger enables you to display the contents of arrays and
pointers in a separate window. To open a secondary window displaying
array or pointer contents, click the button with the window icon that
appears to the left of the array or pointer reference in the module con-
tent window.

Note: Pointers are labeled "Pointer" in green text in the Value column of
the module content window, while arrays are labeled "Array" and the
number of array elements is indicated.

The secondary window for an array displays the name of the array (e.g.
LookupArray), to the right of which the number of array elements is indic-
ated (e.g. Array [0..64]). Beneath the array name/elements count, each
array element is listed, starting at 0, and the value for each element is lis-
ted in the Value column to its right.
The secondary window for a pointer displays the name of the pointer
(e.g. RPCStatus), to the right of which the text "Pointer" appears. Beneath

"Pointer" in the Value column is the value being pointed to by the iden-
tified pointer.

Displaying Parameters in the Module Content Window
The Source Debugger enables you to set the module content window to
display parameters only. To do so, click the Show Only Parameters but-
ton.

Displaying Objects with a Global Scope in the Module Content Window
The Source Debugger enables you to set the module content window to
display global variables, parameters, and modules by clicking its Global
tab.
Global variables, parameters, and modules are those that can be
accessed from the current module.

Hiding Constants in the Module Content Window
If you do not wish to view constants in the objects displayed in the mod-
ule content window, you may hide them by clicking the Hide Constants
button.

Cycling Through Numeric Conversions for a Variable
Any numeric quantity can be converted to octal, decimal, hex, floating
point, or timestamp from its radix.
To cycle through these numeric conversions for a variable:

1. Select the variable in the module contents window.

2. Click the button labeled with a dash to the right of the variable or parameter.
The label of the button will change to reflect to the numeric conversion being
applied to the variable.

Changing the Value of a Variable
The Source Debugger enables you to change the value of any variable in
the module content window.
To change the value of a variable:

1. Double-click the variable in the module content window. An edit field will
open to the right of the selected variable.

2. Enter a new value for the selected variable in the edit field.

3. Press the Enter key to input the value.
Although you may modify the value of a variable, you may not modify the
value of a parameter, a variable that is being set in steady state, or a vari-
able that has a representation that cannot be typed at the keyboard (for
example, you cannot modify a variable value that contains an object
value). Any value that you cannot modify is disabled.

Related Information:

...Source Debugger: Module Content Window

Working with Modules

To view the source code for a selected module:
l Locate in the module tree the module you wish to debug.

l Click the module to view its source code.
Each time you navigate to a different module in the module tree, or
select a new window in your VTScada application for debugging, the
Source Debugger will change the selected module instance in the module
trees, content list, and source code window. If the source file containing
the selected module has not yet been displayed by the Source Debugger,
a new tab will be added to the source code window and made the current
tab. You may click any tab at any time to view the code for a different
source code file. You may use the forward and back tool bar navigation
buttons or the corresponding keyboard shortcuts to move backwards and
forwards through the module instances that you have selected and
viewed.

Related Tasks:

...Display the Contents of a Module in a Separate Window

...Search for a Specific Module Instance

...Slay a Module Instance

...Refresh the Module Tree

...Step Into a Statement

...Step Over Code

...Sort Data in the Module Tree or Module Content Window

...Filter Data in the Module Content Window

Display the Contents of a Module in a Separate Window

The Source Debugger enables you to view the contents of a module (i.e.
its variables, parameters, arrays, etc.) in a separate window, which is sim-
ilar in appearance to the module content window.

1. Select the module whose contents you wish to view in a separate window.

2. Click the Show Module Data In New Window button.
A separate window will open and display the contents of the module.

Related Information:

...Source Debugger: Module Content Window

Search for a Specific Module Instance

You can enter a Boolean expression using the VTScada script syntax. This
Boolean expression will be evaluated in the scope of each instance of the
selected module. Each module for which the expression evaluates to true
is made the selected module. Use this feature to locate a specific module
instance among many.
To search for a specific instance of a module:

1. Click the Find Module button. The Find Module dialog will open.

2. Enter a Boolean expression in the field provided.

Note: The Boolean expression must conform to the VTScada script syn-
tax, and must precede all variable references with a scope resolution
operator (\).

3. Click the Find button at the top of the Find Module dialog.
This facility can be extremely useful where you are diagnosing a problem
in a large application that may have many instances of the same module
(such as a tag), and you need to locate a specific instance. As an
example, let's assume that you are using the "Completed Tutorial

Example" application that is provided with your VTScada installation, and
you wish to locate the instance of the module "AnalogInput" that cor-
responds to the tag "AI20_2". This module instance can be identified eas-
ily enough because you know that the variable "Name" within that
module holds the tag's name. As a result, you would search every
instance of the module "AnalogInput" for variable Name equals AI20_2.
The script expression to do this is:

\Name == "AI20_2"

Note that the text value of the name is contained within quotes, as per a
normal string literal, and that the variable "Name" is preceded by a scope
resolution operator (\).
Once you have selected any instance of the module "AnalogInput" and
entered the above expression, pressing the Find button compiles the
expression on the fly, and then evaluates it within each instance of the
selected module. When the expression returns true, the search is
stopped and the located module instance is made the selected module
instance. Pressing the Find button again causes the search to resume
from the point at which it left off.
When no more instances that evaluate to true can be located, a dialog
will be displayed.
If the Source Debugger is unable to compile the supplied expression, an
error dialog is displayed, describing the error. For example, if the above
expression was erroneously typed as

(\Name == "AI20_2"

the Source Debugger will display a dialog that describes the nature of
the error.

Slay a Module Instance

The Source Debugger enables you to slay a module instance.
To slay a module instance:

1. Select the module for which you wish to slay an instance in the module win-
dow. The module content window in the Module Content Window displays
the number of instances of the selected module that are running in its top
right corner.

2. Scroll through the module instance numbers using the Instance spin box
until you locate the instance you wish to slay. (Alternatively, by selecting a
specific module instance from the scope or call tabs of the module window,
you can go directly to a specific instance.)

3. Click the Slay button. A dialog will open and request confirmation that you
wish to slay the selected module instance.

4. Click the Yes button. The instance of the module you have selected will be
slain.

Related Information:

...Source Debugger: Module Content Window

Refresh the Module Tree

When you have added (or deleted) modules from an application that you
are debugging, you can refresh the module tree to ensure you are view-
ing the application’s latest data.
To do so, click the Refresh Trees button.

Step Into a Statement

You can step into a statement, even if it is located in a source file other
than the one you are debugging. To do so, click the Step Into button (or
press F11).

Note: Two threads will cause multiple breaks; only the one you’ve selec-
ted will be affected.

Step Over Code

Use the Step Over button (or pressing F10) to step on to the next func-
tion compute method, except that stepping over a subroutine call runs
the call at full speed and halts execution of the stepped thread at the
next function or statement.
Stepping causes a break to occur at:

l The next top-level statement executed on the same thread

l The next statement in an IfThen, IfElse, WhileLoop, DoLoop, Case, or Execute
clause

Note that b) means that stepping source code written as:

1: IfElse(A > B,
2: Execute(
3: X = Y;
4:);
5: { else } Execute(
6: Z = Y;
7:));

(which is not the normal style of a VTScada programmer) would result in
a step from line 1 to line 2 to line 3, or from line 1 to line 5 to line 6.
The same code in the normal style of a VTScada programmer:

1: IfElse(A > B, Execute(
2: X = Y;
3:);
4: { else } Execute(
5: Z = Y;
6:));

The preceding example would result in a step from line 1 to line 1 to line
2, or from line 1 to line 4 to line 5. On line 1, the first step stops on the
execute, hence the apparent non-movement of the source line when step-
ping. In such cases, the Breakpoint tab of the Action window will show
you the parameter of the statement on which you are stopped.

Sort Data in the Module Tree or Module Content Window

To alphabetically sort the data displayed in the module content window
in ascending order (A-Z), click the Sort Data button in the tool bar.
To alphabetically sort the data displayed in the module tree in ascending
order (A-Z), click the Sort Tree button in the tool bar.

Filter Data in the Module Content Window

The Source Debugger enables you to filter the data being displayed in
the module content window.
To filter the contents of the module content window:

1. Enter a filtering condition in the Filter field in the module content window
(e.g. to view all variables whose name ends with 1, you could enter *1. To
view all variables whose name begins with "a" you could enter a*).

2. Press the Enter key.
The module content window will display only those objects that meet the
entered filtering condition.

Note: To clear the filter, enter * in the Filter field and press the Enter
key.

Working with the Execution History

The Execute History display of the System Summary panel shows a his-
tory of threads that have run, sorted so that the most recent are at the
top of the display.

Note that, when used in the Summary (Live) view, the list does not update
dynamically. You must click the Refresh button in order to see new
threads. You can use the Copy button to copy the window contents to the
Windows™ clipboard for review elsewhere.

The arrows labeled Scroll List by Thread allow you to step over entries in
the list having the same thread ID, thereby scrolling quickly through the
display to see each thread that was running.
Double-click on any entry in the list in order to a) open that module in
the module content list window, and b) enable filtering of the display for
modules that either call the selected module, or thread entries for mod-
ules matching the one selected.
For example, a double-click on the entry 95 in the preceding figure res-
ults in the following:

Related Information:

...Filter the Thread History - tools and examples.

...Select the Thread to Display - example.

Filter the Thread History

After double-clicking on an entry in the history list, you can filter the dis-
play for modules that call the one selected, or only for thread instances
of the selected module.

By selecting the Show option., "Just Pump" and clicking the Update Filter
button, you will limit the display to modules and threads related to mod-
ule, Pump.
By selecting the Show option., "Just Pump [3 of 3]" and clicking the
Update Filter button, you will limit the display to only threads belonging
to the selected instance of Pump. The numbers in square brackets refer
to the module instance and correspond to the instance selected in the
module content list window:

Select the Thread to Display

Use the Thread selector to limit the display to show only instances of a
given thread.

After selecting a thread to display, you must click the Update Filter but-
ton before the list will change.
Modules related to the Source Debugger are hidden from the thread his-
tory list by default.

Copying and Pasting Code Using the Source Debugger

The Source Debugger enables you to copy and paste any kind of object.
You can cut or copy (using the Cut or Copy buttons or Ctrl + X and Ctrl +
C respectively):

l When a module "node" is highlighted (i.e. has a blue background) in one of
the three module trees (i.e. the static module tree, scope module tree, or call
module tree).

l When a data value is highlighted in:

l The main code display area

l The watch window (except for expressions)

l The pop-up data windows

l The array view window
You can paste using Ctrl + V:

l When a data value is highlighted in any of the above.

Note: If an object cannot be cut, copied, or pasted, the buttons for
these commands will be disabled.

If you simply highlight a data quantity and paste, the value on the clip-
board will be pasted into the highlighted variable, if the variable holds a
type than can be pasted over.
The type of the value being pasted is also pasted so you can, for
example, paste an object reference, image, array, stream, etc.
If you highlight and then single left-click a variable to enter edit mode,
the value on the clipboard will be pasted into the edit field as a text rep-
resentation of the copied quantity (e.g. the name of an object is pasted,
rather than an object value). The text representation of the value is made
available in text form, to applications outside the Source Debugger and
to processes outside VTScada.

Note: Not all VTScada values can be represented as text. For those that
cannot, the text "Valid" or "Invalid" will be pasted.

Source Debugger Options

The Source Debugger enables you to configure some basic options for
the way it behaves. These options can be modified using the Options dia-
log.

To launch the Options dialog, click Options in the Source Debugger’s
tool bar. Example follows:

The sections that follow provide an overview of the options that can be
set using each tab of the Options dialog.

Related Information:

...Source Debugger Options Dialog: General Tab - control of debugger
thread priority, timestamps, workspace reload and code coverage colors.

...Source Debugger Options Dialog: Source Paths Tab - enables the
Source Debugger to specify the path to the correct version of a source
file when the source file is stored on a PC other than the one on which
the Source Debugger is running.

...Source Debugger Options Dialog: Symbol Server Tab - ensure that the
binary image contained in a dump file is interpreted using the correct ver-
sion of VTScada.

Source Debugger Options Dialog: General Tab

Debugger runs at high thread priority
The Source Debugger is a VTScada script application, and as such is sub-
ject to equal time-sharing of the CPU with other VTScada applications. If
this check box is selected, the proportion of time the Source Debugger
gets on the CPU (with respect to other VTScada applications) will be
increased. This has the effect of allowing the Source Debugger user

interface to respond more quickly when another VTScada application is
consuming more CPU time than it should. It is useful to analyze the
reason that another VTScada application is behaving in that way.

Timestamps automatically translated
Timestamps are represented in VTScada double-precision floating-point
numbers (e.g. 1129884300.250). Checking the Timestamps automatically
translated check box will cause doubles that are in the range for
timestamps to be displayed in a more readable format. For example,
1129884300.250 will translate to Oct 21, 2005 08:45:00.25.

Automatic workspace reload
If checked, your workspace (selected module, breakpoints and watches)
will automatically be saved while you work. When you stop the source
debugger then re-open it, the automatically-saved workspace will be
loaded immediately, allowing you to continue working from the point
where you stopped.

Code coverage Colors
Three highlight colors are used when using the code coverage feature. If
you find the default colors unsatisfactory, you may select others. Please
see the section, Code Coverage for more information about what these
highlight colors mean.

Related Information:

...Code Coverage

Source Debugger Options Dialog: Source Paths Tab

It is important that the Source Debugger always opens the correct source
file (.SRC or .WEB file) and symbol file (.SYM) for the module being
examined.
The Source Paths tab enables the Source Debugger to specify the path to
the correct version of a source file when the source file is stored on a PC
other than the one on which the Source Debugger is running. It further

enables the correct version of a source file to be opened when examining
a dump file.
When there are no entries in the fields of the Source Paths tab, the
Source Debugger attempts to open the file from which the .RUN file was
compiled. For example, if C:\VTScada\VTS\AnalogIn.RUN is the .RUN file
containing the module, "AnalogInput" and it was compiled from the
source file C:\VTScada\VTSAnalogIn.SRC, the Source Debugger will
attempt to open the source file C:\VTScada\VTS\AnalogIn.SRC and the
symbol file C:\VTScada\VTS\AnalogIn.SYM.
A problem arises when the file C:\VTScada\VTS\AnalogIn.SRC is not the
source file that was compiled to produce the .RUN file. A simple solution
is to simply specify a list of paths to be searched for the source/symbol
files. This, however, is not ideal, as it is possible for a module in an
application layer to have the same name as one in another layer (e.g. the
VTScada layer). Therefore, the specification of search paths is more com-
plex. Thus there are three elements to the Source Paths tab of the
Options dialog that control the source file searching behavior.

Substitute VTScada Installation Path
The Substitute VTScada Installation Path field will accept a path to an
alternative VTScada installation folder tree. Any module compiled from a
source file located within the VTScada installation folder tree will have
their source/symbol files loaded from the path specified in this field.

External Folders
The External Folders list will accept one or more paths outside the
VTScada installation folder tree. Any module compiled from a source file
outside the VTScada installation folder tree will have their source/symbol
files loaded from a path in the External Folders list. The list is parsed
from top to bottom (i.e. if the source/symbol files cannot be found in the
path at the top of the list, the next path down the list will be searched).
Searching stops when a file is found or the end of the list has been
reached.

Always Search
The Source Debugger normally only searches the paths specified in the
Substitute VTScada Installation Path field and the External Folders list if
the source file indicated by the module is not found. If the Always Search
check box is selected, the Source Debugger will be prevented from
search for the source/symbol files in the path indicated by the .RUN file.
Instead the Source Debugger will be forced to search for the source/sym-
bol files in the paths specified in the Substitute VTScada Installation Path
field and the External Folders list.
The following will assist you in the proper configuration of the Source
Paths tab when you are analyzing a dump file.

Analyzing a Dump File
Most of the time, the version of VTScada that is contained in a dump file
will not match the version of VTScada that is running the Source Debug-
ger. In such cases, you want the Source Debugger to search a specific loc-
ation for the source/symbol files, rather than searching the folder in
which the version of VTScada running the Source Debugger is located.
For files within the dumped VTScada installation folder tree:

1. Create a folder tree that mimics the dumped VTScada installation folder tree.

2. Copy the source and symbol files for the version of VTScada corresponding
to the dumped version.

3. Paste the copied files into the new folder tree created in step 1.

4. Enter the path of the new tree into the Substitute VTScada Installation Path
field.

5. Select the Always Search check box.
For files outside the dumped VTScada installation folder tree:

1. Create one or more folders.

2. Copy the source and symbol files for the version of VTScada corresponding
to the dumped version.

3. Paste the copied files into the new folder tree created in step 1.

4. Enter the path(s) of the new folders into the External Folder list, using the
Add button.

5. Use the Move Selected buttons to arrange the folder list correctly.

6. Select the Always Search check box.

Remote Debugging Using the VIC
For files within the dumped VTScada installation folder tree:

1. Create a folder tree that mimics the dumped VTScada installation folder tree.

2. Copy the source and symbol files for the version of VTScada corresponding
to the dumped version.

3. Paste the copied files into the new folder tree created in step 1.

4. Enter the path of the new tree into the Substitute VTScada Installation Path
field.

5. Deselect the Always Search check box.
For files outside the dumped VTScada installation folder tree:

1. Create one or more folders.

2. Copy the source and symbol files for the version of VTScada corresponding
to the dumped version.

3. Paste the copied files into the new folder tree created in step 1.

4. Enter the path(s) of the new folders into the External Folder list, using the
Add button.

5. Use the Move Selected buttons to arrange the folder list correctly.

6. Deselect the Always Search check box.
The source files will be loaded from the server to which the VIC is con-
nected, unless they are not found, in which case the files will be searched
for on the PC running the VIC. The paths specified must therefore be on
the PC running the VIC. This enables you to remotely debug a production
system that does not have the source code installed on it, or has only a
subset of the source code (e.g. an application layer).

Local Debugging of a Production System
For files within the dumped VTScada installation folder tree:

1. Create a folder tree that mimics the dumped VTScada installation folder tree.

2. Copy the source and symbol files for the version of VTScada corresponding
to the dumped version.

3. Paste the copied files into the new folder tree created in step 1.

4. Enter the path of the new tree into the Substitute VTScada Installation Path
field.

5. Deselect the Always Search check box.
For files outside the dumped VTScada installation folder tree:

1. Create one or more folders.

2. Copy the source and symbol files for the version of VTScada corresponding
to the dumped version.

3. Paste the copied files into the new folder tree created in step 1.

4. Enter the path(s) of the new folders into the External Folder list, using the
Add button.

5. Use the Move Selected buttons to arrange the folder list correctly.

6. Deselect the Always Search check box.
By using paths that are either UNC names or shares on mapped drives,
source files will be loaded from the production system unless they are
not found, in which case they will be loaded from a networked file sys-
tem.
This enables you to debug a production machine live on site, while not
having to copy source files onto it.

Debugging a Production System Using Remote Control
For files within the dumped VTScada installation folder tree:

1. Create a folder tree that mimics the dumped VTScada installation folder tree
on the production system.

2. Copy the source and symbol files for the version of VTScada corresponding
to the dumped version.

3. Paste the copied files into the new folder tree created in step 1.

4. Enter the path of the new tree into the Substitute VTScada Installation Path
field.

5. Deselect the Always Search check box.
For files outside the dumped VTScada installation folder tree:

1. Create one or more folders on the production system.

2. Copy the source and symbol files for the version of VTScada corresponding
to the dumped version.

3. Paste the copied files into the new folder tree created in step 1.

4. Enter the path(s) of the new folders into the External Folder list, using the
Add button.

5. Use the Move Selected buttons to arrange the folder list correctly.

6. Deselect the Always Search check box.
As indicated in the instructions above, you will have to copy the
source/symbol files onto the production system, however, you may copy
the source/symbol files into separate folder trees on the production sys-
tem, making tidy-up at the end of the debugging session easier by allow-
ing you to later delete the source/symbol files from the separate tree.
This minimizes the risk of your inadvertently deleting important files
from the production system when debugging using source files that you
do not want to leave on the production system when finished.

Note: The user interface of your debugging session will be running on
the production server’s display. Ensure that this does not interfere with
system operation. While this method of debugging can be used, other
methods are preferred.

Source Debugger Options Dialog: Symbol Server Tab

In order to interpret the binary image that a dump file contains, the
Source Debugger requires information about the internal structure of the
VTScada engine (VTS.exe). As this changes from version to version of the
engine, the Source Debugger uses a program database (.PDB) that is gen-
erated as part of the process of building VTS.exe.

How Does the Source Debugger Locate the Correct .PDB File?
The Symbol Server tab enables the Source Debugger to locate the correct
.PDB file for the dump image being examined.

Note: The default setting for the Local Symbol Cache Path field (which
is pointed to the DumpTools subdirectory within the VTScada install-
ation directory (e.g. C:\VTScada\DumpTools) where the .PDB file is
stored) should result in the correct .PDB file being located by the
Source Debugger. The Symbol Server Location field is for internal use
by Trihedral only, and as such does not require input.

(Trihedral only) The Source Debugger uses a two-phase process to locate
the correct .PDB file:

l The Local Symbol Cache Path is examined for the .PDB file.

l If the correct .PDB file is not located in the DumpTools directory, the Source
Debugger will search a symbol server (Microsoft terminology) for the correct
.PDB file.

l A symbol server can hold many versions of .PDB (one for each version of
VTScada that is released). Internally, this is normally a network share (e.g.
\\<trihedralserver>\VTSSymbols), but can be a URL (e.g. http://<tri-
hedralservername>.trihedral.com/VTSSymbols).

Both fields do not have to be filled in. If only the Local Symbol Cache
Path field is filled in (as it is by default), the .PDB file is expected to be
found there. If both fields are completed, the operation is as described
as above, with PDBs fetched from the symbol server stored in the Local
Symbol Cache Path, there by reducing network traffic for the remainder
of this debugging session and for future sessions that require the same
.PDB. The .PDB files cached locally can be manually deleted if no longer
required.
If only the Symbol Server Location field is filled in, there is no local cach-
ing of the .PDB file, and all accesses to the desired .PDB file are done
over the network. This is a slower process, but avoids storing a .PDB file
on the local hard disk.

Confirm Workspace Load

A Workspace is the set of the selected module, the breakpoints, and the
watches in your session. You may save a workspace explicitly by using

the Save Workspace button in the toolbar, or you may set the Auto Work-
space Reload check box in the Options menu.

When loading a workspace, either by using the Open Workspace button
to load a selected workspace file that you saved earlier, or by using the
Reload Auto Workspace button to load the last automatically saved work-
space, you may choose to either replace the workspace you are working
in, or you may merge the current workspace with the one you are open-
ing.

Code Coverage

The code coverage feature is used to see what modules, states, state-
ments and variables have been executed or used. This is useful in a num-
ber of ways, not least of which are:

l Code that has not run cannot have caused an error.

l Code that should have run but hasn't, may indicate the location of an error.

Related Information:

...The Code Coverage Display - Shows the module tree, where each mod-
ule has a colored indicator showing what percentage of the module has
been covered by running code.

...Refreshing the Code Coverage Display - how to refresh the display.

...Stepping Between Blocks of Covered Code - instructions for dealing
with large gaps.

...Using a Code Coverage Merge File - how and why the current record
may be saved.

... Resetting the code coverage counts - how to obtain a clear view of
code coverage from a fresh starting point.

The Code Coverage Display

When code coverage mode has been switched on, using the Toggle Code
Coverage button, the module tree and the code display windows will
change. The module tree will display each module with a colored indic-
ator that shows what percentage of the module has been covered by run-
ning code.

Resting the mouse pointer over a module causes a tool tip to appear,
showing the code coverage within the module, and within the entire mod-
ule sub-tree.
The color indicators are as follows:

Grey – no code coverage.
Red – minimal code coverage.
Orange – medium coverage.
Yellow – high coverage.
Green – full coverage.

The code display window will look similar to the following:

The highlight colors are user-configurable. (See: Source Debugger
Options). The default colors have the following meanings:
Green background: Indicates variables that have not been covered.
Red background: Indicates statements that have not been covered.
White lines indicate code that has been run and variables that have been
used.

Note: If the entire window changes to a yellow background, this indic-
ates that the source code has been changed since the application was
last compiled. For the code coverage system to work, all changes must
be compiled. You may need to re-start the application.

Refreshing the Code Coverage Display

The code coverage counter is always running, but the display does not
update dynamically. To update the display you should use the Refresh
Code Coverage Information button in the toolbar. This will provide you
with an up-to-date view of what statements and variables have been
used.

Stepping Between Blocks of Covered Code

In a module with minimal code coverage, there may be long gaps
between the uncovered highlights. The Next Highlight and Previous High-
light buttons allow you to quickly jump from one block of uncovered
code to the next.

Using a Code Coverage Merge File

You can save the current record of what code has been covered to a file,
and then merge that information back to the current display. This can be
useful in at least two situations:

l If you are working as part of a team, each team member can test a different
part of a large application and save their code coverage history to a file.
These files can then be collected together and merged into one display to
provide a complete picture of what code and variables have been used in an
application

l You may wish to reset the counters to zero before running a test, but not
want to lose your current code coverage information. You can save the cur-
rent code coverage information to a file before performing the reset, then,
once you have finished your test, merge the code coverage information back
into the current display.

Resetting the code coverage counts

To reset all the counters to zero for a fresh start on the code coverage,
use the Reset button in the toolbar. Use this to obtain a clear view of
code coverage from a fresh starting point.

Test Framework Application
The Test Framework application enables VTScada programmers to test
VTScada applications. This application can be launched from the Source
Debugger or from the VAM.
Tests are organized on an application-by-application basis. You may
choose which application to test, and Test Framework will load an inde-
pendent copy of the application and automatically discover all tests that
are defined within the application.

Note: It is the responsibility of the VTScada programmer to write their
own tests for their individual applications. Information on writing tests
for the Test Framework is provided in Writing Tests for the Test

Framework.
The Framework may be used by customers for their own modules, but
no technical support is provided. Please request the Test Framework
package, available from the Trihedral Marketing department.

A tree showing all tests and all modules that directly or indirectly contain
tests will automatically be generated. Tests may be enabled or disabled
on an individual basis, or at a tree-node level.
For an understanding of how to design and use tests, the following Inter-
net sites may be of use:

...http://www.agiledata.org/essays/tdd.html

...http://en.wikipedia.org/wiki/Test-driven_development

Related Information:

...Test Framework Application Components - description of the user
interface components.

...Writing Tests for the Test Framework - tools and recommended meth-
ods.

...Running Tests - how to run tests and select which results to view.

Test Framework Application Components

An example of the Test Framework application:

http://www.agiledata.org/essays/tdd.html
http://en.wikipedia.org/wiki/Test-driven_development

Components:

Select Application Window
The Select Application Window button (first button from the left) enables
you to select a running application for testing (see Selecting an Applic-
ation for Testing Using the Test Framework).

Select Application from List
The select application from list button (second button from the left)
launches the Select Application dialog that displays a list of VTScada
applications that can be selected for testing.

Message Area
To the right of the tool bar buttons appears the message area field. Any
important information about the application selected for testing will be
displayed in this field (e.g. application needs to be compiled).

Module Tree

The module tree area appears just under the toolbar to the left of the dia-
log, and displays the modules that are included in the current test. You
may use the module tree to select/deselect the tests you wish to run
within the loaded application (see Running a Test Using the Test Frame-
work).

Summary Area
The summary area displays a summary of the testing, including statistics
on:

Tests Failed The number of tests that did not pass during this run.

Tests Passed The number of tests that passed during this run.

Modules Failed The number of modules that failed during this run.

Modules Passed The number of modules that passed during this run.

Asserts Failed The number of Asserts that failed during this run.

Asserts Passed The number of Asserts that passed during this run.

Modules w/o
Tests

The number of modules that did not include tests.

Modules with
Tests

The number of modules that included tests.

Enabled Tests The number of tests that were enabled.

Total Tests The total number of tests that were run.

Elapsed Time The total elapsed time (in hh:mm:ss) that it took to run the test.

Remaining Time The total amount of time (in hh:mm:ss) outstanding for the test being
run.

Run Tests
The Run Tests button can be clicked to run tests on the selected mod-
ules.

Pause Tests
The Pause Tests button can be clicked to pause the tests that are run-
ning.

Resume Tests
The Resume Tests button can be clicked to resume testing once a test
has been paused.

Stop Tests
The Stop Tests button can be clicked to stop the running tests.

Suppress Manual
Check this box to select that only the fully-automated portions of the
tests should run. This depends on the test being written to support the
flag.

Failures Only
The Failures Only radio button can be clicked if you wish the test list to
display information only on those tests that failed .

Show All
The Show All radio button can be clicked if you wish the test list to dis-
play information on all tests, passed and failed.

Test List
The test list presents information on the tests that have passed or failed
(depending upon whether the Failures Only or the Show All radio button
has been selected). Tests that passed are presented in green text, while
tests that failed are highlighted in red. The test list presents the fol-
lowing information for each test:

Test The Test column identifies the name of the application directory, source file,
and module for the test.

Message The Message column presents a short message identifying the value that was
expected and the value that was returned on completion of the test.

Comment The Comment column displays any comments relevant to the test.

Status The Status column indicates whether the test passed or failed.

Duration The Duration column displays the amount of time (in milliseconds) that it

took for the test to complete.

When The When column indicates the exact time and date that the test was com-
pleted.

Counts The Counts column indicates the number of times the test was run. (This
count is incremented each time the Run Test button is clicked.)

Failures The Failures column indicates the number of times the test failed within each
testing session.

Related Information:

...Writing Tests for the Test Framework

...Running Tests

...Viewing Test Results

Writing Tests for the Test Framework

Tests are defined by creating a module of class Test within the module to
be tested. The following guidelines should be observed:

l A module may contain zero or more tests.

l Tests may not contain other tests.

l Each test must either return Invalid if it is a subroutine, or slay itself upon
completion.

l A test must call one or more Assert functions.

l Tests are passed two parameters:
Owner: Module value of the module to test (static parent of the test module)
Framework: Object value of the Test Framework code where the Assert func-
tions are defined.

l A test is responsible for creating the environment for the module under test
(MUT). This can be done by defining globally-referenced variables and mod-
ules in the MUT within the Test module itself, or with the use of Fixtures, or
both.

l Variables outside the scope of the MUT must exist in the Test module or in a
fixture.

l A test is run in its own thread.

l The MUT is reloaded for each test to make sure all temporary variables are
cleared before each test

l Tests run with no parent scope aside from any fixtures declared.

Related Information:

...Assert Subroutines - the eight available subroutines.

...Fixture Modules - creation and use of.

...Using the ThreadIdle Function - how to use in the test framework.

Related Functions:

... SetOverride - used to override op codes with a specified script.

Assert Subroutines

Asserts are subroutines that are called within a test to validate the res-
ults of the test. Ideally, there should be one assert per test.
Eight Assert functions are defined:

l AssertTRUE(Condition, Comment)

l AssertFALSE(Condition, Comment)

l AssertEqual(Expected_Value, Actual_Value, Comment, Tolerance)

l AssertNotEqual(Expected_Value, Actual_Value, Comment)

l AssertGreater(Expected_Value, Actual_Value, Comment)

l AssertGreaterEqual(Expected_Value, Actual_Value, Comment)

l AssertLess(Expected_Value, Actual_Value, Comment)

l AssertLessEqual(Expected_Value, Actual_Value, Comment)
The parameters are:

Condition Boolean condition determining pass/fail state of the test. Invalid
is considered a failure

Comment Brief comment to help identify the source of a failure

Expected_Value Typically a constant that defines what the expected value should
have been

Actual_Value Value observed during the test

Tolerance Maximum allowable difference between Expected_Value and
Actual_Value for equivalence test of numbers. Defaults to 0.

If the condition asserted by the call is true, then the Assert has passed
and no failure will be recorded. All Asserts for a test must pass in order
for the test to pass.

Fixture Modules

Fixtures are a mechanism used to handle common test environments. A
fixture is created by defining a module with no special class in a scope
higher than the tests using the fixture. Fixtures are launched in the
order declared within the test. They become the scope tree for the Test
module.
To have a test use a fixture, you must define a variable of type
FIXTURE with the same name as the fixture module within the test. The
fixtures are launched in the order declared within the test.
Fixtures may optionally contain a FixtureReady variables. If this variable
is defined, the Test Framework will wait until this variable becomes TRUE
before launching the next fixture or the test itself.

Using the ThreadIdle Function

A ThreadIdle function has been created to help support testing. It takes a
single parameter which is an object value implying a thread. The return
value is TRUE when there are no statements on the to do list for the
thread. It does not consider timers in the return value.
This function is useful when instantiating the MUT and waiting for the ini-
tialization of the MUT to complete before executing the Assert calls.

Related Functions:

... ThreadIdle

Running Tests

Note: Your application must have tests written especially for it if you
wish to use the Test Framework application to test it. Please read Writ-
ing Tests for the Test Framework to learn about writing tests for your
application.

Selecting an Application for Testing Using the Test Framework
There are two means by which a VTScada application can be selected for
testing using the Test Framework application.
A) Selecting a Stopped Application for Testing

1. Run the Test Framework application.

2. Click the Select Application from List button (second button from the left in
the tool bar). The Select Application dialog will open.

3. Select the VTScada application containing your tests.

4. Click OK. The Select Application dialog will close, and the selected applic-
ation will load into the module tree of the Test Framework application.

B) Selecting a Running Application for Testing
1. Run the Test Framework application.

2. Run the VTScada application you wish to test using the VAM.

3. Click the Select Application Window button (first button from the left in the
tool bar).

4. Click anywhere on the running VTScada application containing your tests.
The selected application will load into the module tree of the Test Framework
application.

Once the application has been loaded into the Test Framework applic-
ation, you may run a test.

Related Tasks:

...Running a Test - how to run, pause, and resume tests.

...Viewing Test Results -selecting the result set to view.

Running a Test

Once you have selected an application for testing using the Test Frame-
work (see Selecting an Application for Testing Using the Test Frame-
work), you may run a test.

1. Select the modules containing the tests you wish to run for the loaded applic-
ation.
To do so, click the plus button to the left of each module to expand the mod-
ule tree. Any modules you wish to test should display a checkmark to their

left. If you wish to test all modules, ensure that the root module at the top of
the tree displays a checkmark.

2. Click the Run Tests button. The progress of the tests will be indicated by the
progress bar just above and to the left of the Run Tests button. Once the tests
are complete, the test list should populate with data.

3. Select the test data you wish to review:

4. Select the Show All radio button to review data on all tests, both passed and
failed, OR

5. Select the Failures Only radio button to review data on only those tests that
failed.

Pausing a Test Using the Test Framework
If you wish to pause a running test, click the Pause Tests button.

Resuming a (Paused) Test Using the Test Framework
If you have paused a test and wish to continue running it, click the
Resume Tests button.

Stopping a Test Using the Test Framework
If you wish to stop a running test, click the Stop Tests button.

Viewing Test Results

Viewing All Tests (Passed and Failed) Using the Test Framework
To view data on all tests, both passed and failed, select the Show All
radio button. The test list will display any passed tests in green text,
while any failed tests will be highlighted in red.

Viewing Failed Tests Using the Test Framework
To view data on only those tests that have failed, select the Failures Only
radio button. The test list will display any failed tests highlighted in red.
If no tests have failed and the Failures Only radio button has been selec-
ted, the test list will appear empty.

Thread List Application
Applications, as well as some system components, run in their own exe-
cution threads so that they do not interfere with the execution of other
applications or components. The Thread List analysis utility provides a
list of the separate threads of execution for which VTScada is respons-
ible.

Note: If the Thread List application is not referenced in the VAM, you
must manually add it. The Thread List application's directory is named
"ThrdList", and is stored within the VTScada installation directory.

If an execution thread becomes blocked (i.e. freezes or gets stuck while
executing a statement), the Thread List analysis tool can be used to
identify the offending statement that is causing the blockage. This
information provides a starting point for examining the scripting code
that has caused the thread to be blocked.
The Thread List utility:

As displayed above, the Thread List is composed of the following ele-
ments:

Pin The pin button can be selected to always keep the Thread List window
on top, or can be deselected to allow the Thread List window to be min-
imized.
Refresh The Refresh button can be clicked to update the display of
threads.
Auto Refresh The Auto Refresh button can be latched on to result in the
display of threads being updated automatically twice a second.
Save The Save button can be clicked to save the current thread list data
to either a text file or a .CSV file. A file dialog will prompt for a name
and provide a choice of setting the extension to either ".txt" or ".csv". In
older versions of VTScada, this file name would have been "ThreadLo-
g.txt", located within the ThrdList directory which is located within the
VTScada installation directory (e.g. C:\VTScada\ThrdList\ThreadLog.txt).
Append The append button can be selected to add new data to existing
files rather than over-writing them.
Thread Name The Thread Name column displays the name or title
assigned to each thread.
File Name The File Name column displays the path to and name of the
document file that contains the executing statement.
Module Name The Module Name column displays the name of the mod-
ule within the document file (specified in the File Name column) that con-
tains the executing statement.
State The State column displays the state within the module that contains
the executing statement.
Statement # The Statement # column displays the numerical index of the
executing statement within the state.
Thread ID The Thread ID column displays the ID number for each thread.

Trace Viewer Application

Note: The Trace Viewer application should not be confused with the
Trace VTScada Actions application, which enables you to select

different VTScada services (such as the RPC Manager and Modem Man-
ager), and actions (the Navigator or SQL calls), and monitor the selected
items by saving pertinent data about them (such as the date and time
they executed) to disk.

The Trace Viewer application enables you to monitor the content and
parameters of driver messages and VTS-related network traffic as it
occurs. The collected data is also logged to standard Access database
files for later viewing.
There are three components involved in tracing:

l The communications to be traced. Each message source, (driver tracing, RPC
diagnostics and SOAP message tracing) has its own format and therefore is
stored in its own database.

l The module that collects and writes the actual data to the database. This is
DBTrace, a system-level module that maintains live communications with the
Trace Viewer.

l The viewer. This is the Trace Viewer application, where you can select, filter
and display the communications data.

Note: Users of older versions of VTS may be familiar with the RPC Dia-
gnostics application. That application is now obsolete. The Trace
Viewer application enables you to view RPC trace information in real-
time.

Trace files are regular Microsoft Access .MDB files. These are stored in
the TraceFiles subdirectory within the VTScada installation directory.
These files are deleted as they age, with the default set to 30 days. If you
wish to modify this setting, you may do so using the DbTraceDaysToPre-
serve variable in Setup.ini. You may also control the size using
.DBTraceFileSize.
Trace files can contain additional tables that assist in the interpretation
and filtering of their data. This means that the files can be exported into
another environment and can still be interpreted correctly.

Related Information:

...Trace VTScada Actions Application

What the Trace Viewer can show you

Depending on the license you purchased with VTScada, up to five sources
of information are available to the trace viewer.
Note: Service names that contain a child-tag delimiter will be shown with
a forward-slash, rather than the more usual back-slash.

Driver Messages for running applications (always available while an
application is running)
Information collected includes:

l Timestamp, accurate to the nearest thousandth of a second

l Direction (Sent or Received from the driver)

l Service name

l Driver name as entered in the tag

l Driver area as entered in the tag

l Driver description as entered in the tag

l Port name that the driver is attached to

l Data included in the communication to/from the driver (a string of hexa-
decimal values)

Historian Diagnostics (always available)
l Error messages only. One or more Historians must be selected for tracing.

Information collected includes:

l Timestamp, accurate to the nearest thousandth of a second

l Historian name

l Trace type

l Tag name – the source of the data that did not write.

l Error code – a numeric code identifying the error.

l Error text.

l Message

RPC Diagnostics (always available)
Information collected for remote procedure calls includes:

l Timestamp, accurate to the nearest thousandth of a second

l Identification of internal events

l The message’s routing flag

l Sequence number of the message

l Direction (To or From the server identified by the IP address)

l IP address of the message source or destination

l Name of the application sending or receiving the message

l Name of the service or machine

l Data and parameters of the message

SOAP Messages (available only if you have a license for VTScada Web Ser-
vices)
Information collected includes:

l Timestamp, accurate to the nearest thousandth of a second

l Message number (large messages might be split across more than one line)

l Message status (an HTML error code indicating success or failure)

l Source IP address and Port number

l Destination IP address and Port number

l Indication of whether the message is incoming or outgoing.

l The SOAP action (the function call being made)

l Message size measured in bytes.

l The SOAP-encoded XML message

OPC Server Trace Messages (available only if you have a license for the
VTScada OPC Server and a running application is using that server)
Information collected includes:

l Timestamp, accurate to the nearest thousandth of a second

l Event description

l Textual OPC item ID being read from or written to. (Often includes the tag
name.)

l Numeric ID of the OPC property

l Write Value – the value being written to the tag

l Result – depending on the nature of the read or write operation, may be one
or more of the following:

l the value being read or written,

l the quality of the data transfer

l the number of child nodes

l the name of the tag

l access rights

l type

l timestamp

l Items such as quality, access rights, type, etc are numeric codes. See: Prop-
erties of Tag OPC Items.

Features for Driver Tracing

You can choose which drivers are visible in the Trace Viewer by using the
Select Drivers for Tracing dialog. This dialog displays a tree view of all
the drivers used in the application. Select either all, or only those that
are of interest to you.

To open the dialog, click on the Select Drivers for Tracing Button.
Note that this button is visible only when viewing the application’s driver
trace data source.
The dialog will look similar to the following:

Features for SOAP Message Tracing

SOAP message logging can generate large log files very quickly. For this
reason, an option is provided to allow you to filter the messages that are

being logged.

The Enable Conditional Logging dialog provides two options:
l You may opt to log only errors

l You may enter a comma separated list of IP addresses. Only messages com-
ing from the specified addresses will be included in the log.

This dialog is displayed by selecting the Enable Conditional Logging but-

ton, from the toolbar.

Features for Historian Diagnostics

The Historian will log diagnostic messages upon startup. Following star-
tup , diagnostic messages for the Trace Viewer will be logged only when
errors occur. If neither of these conditions occur while you are capturing
a trace, the display will be empty. An empty list is to be taken as a sign
that all is working properly.
The following example shows typical startup messages.

You must select which historian's data to capture. When you first open
the page, none will be selected by default. Click on the Select Historians
Button.

The Select Historians dialog will present a list of all Historians active in
running applications. Choose one or more by clicking on the Selected
check box.

Related Information:

...Historian Trace Information - lists the details found in error messages.

...Historian Trace Options - select the trace sources to use.

Historian Trace Information

The following information about Historian errors will be displayed in the
Trace Viewer:

l The time of the error.

l The name of the Historian tag

l The type of trace (debug or connection)

l The name of the tag whose data was being logged by the Historian

l An error code (of use only to Trihedral staff).

l The text of the error.

l A message describing the logged event.

Historian Trace Options

You may choose to enable or disable the display of the following sources
of Historian Trace information:
Button to open the dialog:

The Trace Options dialog:

This dialog also contains a Write Poll Interval field, measured in mil-
liseconds. You may adjust this value to change the frequency with which
trace information is gathered.

Features for Remote Procedure Call (RPC) Tracing

When RPC Diagnostics have been selected as the live capture data source,
the toolbar will change to show three new buttons

RPC Diagnostics – Settings
The RPC Diagnostics – Settings button is used to launch a dialog that
enables users to set parameters that will affect the behavior of RPC
traces.
See also: RPC Diagnostics Settings Dialog

RPC Diagnostics – Services
The RPC Diagnostics – Services button can be clicked to launch the RPC
Diagnostics - Services dialog that displays the current services and their
state.
See also: Services Dialog

RPC Diagnostics - Sockets
The RPC Diagnostics – Sockets button can be clicked to launch the Inter-
machine Sockets dialog that displays the MachineNodes and their sub-
ordinate SocketNodes.

Related Information:

...Interpreting RPC Diagnostics Data - translations and filters for RPC Dia-
gnostics.

...RPC Diagnostics Settings Dialog - reference: contents of this dialog.

...Inter-machine Sockets Dialog - reference: contents of this dialog.

...Inter-machine Sockets Data for Remote Machines - data displayed for
each remote connection.

...Inter-machine Sockets Data for the Local Machine - data displayed for
each local connection.

...Services Dialog - reference: contents of this dialog.

...Information Displayed for a Local Machine - possible machine states.

...Information Displayed for a Remote Machine - possible machine states.

...Information Displayed for a Client - reference: information displayed.

Interpreting RPC Diagnostics Data

The Trace Viewer performs the following translations and filters for RPC
Diagnostics:

l IPs are translated to names where possible

l GUIDs are translated to application names

l Filtering can be done by IP/name, AppGUID, Service, trace point in RPC, or
data content.

RPC Diagnostics Settings Dialog

The RPC Diagnostics Settings dialog is launched when the RPC Dia-
gnostics –Settings button is clicked in the Trace Viewer’s tool bar. The
RPC Diagnostics Settings dialog enables you to set the following para-
meters:

Detailed Trace:
Enables the display of routing between the local workstation's RPC seri-
alization FIFO and the transmission FIFOs, providing more detailed
information on the internal operation of the RPC Manager. (The typical
user does not require such information.)

Max String Length:
Specifies the maximum length for strings to be traced. The parameters
for an RPC call are traced in the Data/Parameters column of the Trace
Viewer’s list. Parameters that are text or streams may be of any length,

and so must be truncated for display purposes. The default for Max
String Length is 64, which should be suitable for the majority of users.

Inter-machine Sockets Dialog

The Inter-machine Sockets dialog is launched when the RPC Diagnostics
– Sockets button in the Trace Viewer’s tool bar is clicked. This dialog
presents information on sockets and machine nodes.

Note: This dialog presents the same information that was formerly
presented in the RPC Diagnostics application’s MachineNode display
pane.

Each line displayed in the Inter-machine Sockets dialog displays the fol-
lowing information:

l Name and IP address of each machine

l State of each machine (either remote or local)

l Dynamic display of the internal queue length

l Connection status (either green for a working connection, or red for a con-
nection failure)

You may expand any line to view more detailed information about the
inter-machine sockets by clicking the arrow icon to the right of the line.
(Clicking the arrow icon a second time will collapse the selected line.)
The expansion shows the individual sockets available for each remote
machine connection.

Inter-machine Sockets Data for Remote Machines

The following data is displayed for each remote connection:

Discards The total number of messages thrown off the queue.

Floods The total number of full queue exceptions

Execs The total number of RPCs executed by this machine node

RemVersion The version of VTScada running on this machine

Session The status of the RPC session (either Open or Closed)

Lost The total number of times communications were irrecoverably
lost

SocketsOK The number of open sockets

Resends The total number of message floods

Inter-machine Sockets Data for the Local Machine

Discards The total number of messages thrown off the queue.

Floods The total number of full queue exceptions

Execs The total number of RPCs executed by this machine node

CtxErrs Total number of RPC that failed due to a bad execution context
being specified

ModErrs Total number of RPC that failed due to a bad target module name
being specified

TxRPC Total number of RPCs transmitted

RxRPC Total number of RPCs received

Pings Total number of pings received

Acks Total number of acknowledgments received

Disc Total number of times this socket has been lost

Lost Total number of times communications have irrevocably been lost

Coll Total number of collisions encountered

Sync The number of bad sync string errors received

Hdr The number of bad header errors received

Len The number of bad length errors received

Pkt The number of incomplete packet errors received

The Reset button to the far right of each socket statistics line can be
clicked to reset the statistics.

Services Dialog

The Services dialog is launched when the RPC Diagnostics – Services but-
ton in the Trace Viewer’s tool bar is clicked. This dialog provides inform-
ation on services.

Note: This dialog presents the same information that was formerly
presented in the RPC Diagnostics application’s TagNode display pane.

Each line displayed in the Services dialog indicates the name of the
application, the name of the service, and the name of the server for each
service. In the example above, the last line displays "Completed Tutorial
Example/Simulate_IO", indicating the Simulate_IO service in the

Completed Tutorial Example application. The server for this Simulate_IO
service is displayed to the right (in this example, Anderson). Green is a
quick visual indicator of those services where the current server is the
local machine, while red indicates a networked machine.
You may expand any line to view more detailed information about the
service by clicking the arrow icon to the right of the line. (Clicking the
arrow icon a second time will collapse the selected line.)
The expansion shows the status of each machine participating in this ser-
vice from the perspective of the local machine. In the above example, the
ModemManager service in the Completed Tutorial Example application
has two participating machines:
Dave (IP 192.168.1.46) is the local machine
Anderson (IP 192.168.1.33) is a remote machine

Information Displayed for a Local Machine

To the right of each participating machine identifier appears the type
(either Remote or Local) and the state of the machine. If the machine is a
local machine, the state can be one of:

Local Indicates that this machine is the server

LocalIdle Indicates that this machine is not the server

Information Displayed for a Remote Machine

If the machine is a remote machine, the state can be one of:

Machine Pending Waiting for a socket connection to remote

AwaitSessionID Got socket, waiting for RPC session to service

Connecting Establishing connection with remote service

Syncing Syncing with remote service

Connected Good working connection to remote service

Any other reported values are transient.
Below the machine identifiers will be a series of columns that display con-
nection information for each machine.

Information Displayed for a Client

If the identified machine is a client, the following information is dis-
played:

Stat-
us

The status of this machine, either Client or N/C (not connected)

Cli-
ent
Mod-
e

During service synchronization, RPC may set a non-zero mode here in
order to filter the RPCs to be transmitted. The defined values are

0 RPC_ACCEPT_ALL (client is fully synchronized)

64 RPC_ACCEPT_FILTER (mode cut off)

128 RPC_SYNC_MODE (client is being synchronized)

250 RPC_LINKCONTROL_ONLY (client requires synchronization)

Sync Indicates the synchronization status of the client (Y indicates that
this node is in sync with the server)

Connects A count of service connection attempts

Disconnects A count of service disconnects

Acks A count of service acknowledgments

Using the Trace Viewer

The Trace Viewer is a script application included with VTScada. Before
you can run the Trace Viewer, it must be added to the list of applications
in the VAM.
If it does not appear in the VAM, you will need to add it.
On startup, the Trace Viewer will look similar to the following image. To
begin using the functions, you must select either a live data source or a
stored log file as prompted.

Related Tasks:

...Select a Live Data Source to View

...Select a Log File to View

...Clear the Current Trace

...Print the Trace Viewer's Data

...Export Data from the Trace Viewer

...Highlight Records

...Annotate Records

...Navigate to the Previous or Next Mark

...Pause and Run the Live Display

...Toggle the Timestamp Display

Related Information:

...Viewing vs. Logging a Data Source

...Trace Viewer Options and Controls

Select a Live Data Source to View

To select a live data source for viewing in the Trace Viewer:
1. Ensure the application you wish to examine is running.

2. Select the Attach to Live Capture button. The Live Data Capture dialog
will open and display the available data sources.

3. Select the name of the data source you wish to view.
The data source will be highlighted to indicate that it is the one being
viewed, and a checkmark icon will appear in the Log column to its right,
indicating that this data source is running.

4. Select the Close button.
The Trace Viewer dialog’s list will be populated with data.

Related Tasks:

...Select a Log File to View

...Clear the Current Trace

...Print the Trace Viewer's Data

...Export Data from the Trace Viewer

...Highlight Records

...Annotate Records

...Navigate to the Previous or Next Mark

...Pause and Run the Live Display

...Toggle the Timestamp Display

Viewing vs. Logging a Data Source

There are two check boxes for each data source: View and Log. You can
log data without viewing it, but cannot view without logging. Data must
be collected in order to be displayed.

Since each data source is collecting different types of information, only
one data source may be viewed at a time. You may simultaneously log as
many as you wish.
It is possible to continue logging data after closing the Trace Viewer.
This enables you to collect traces over a period of time when you suspect
that an intermittent problem may be occurring. You should note however
that trace files can quickly become large. Leaving the Trace Viewer run-
ning on a permanent basis is strongly discouraged.

Related Tasks:

...Select a Live Data Source to View

...Select a Log File to View

Select a Log File to View

To review trace data stored in a log file, follow these steps:

1. Select the Open File button (or press Ctrl + O).
The Open File dialog will open to the TraceFiles directory, and will display
the available data files. (If the Open File dialog is not pointed to the correct
directory, browse to the TraceFiles directory within the VTScada installation
directory.)

2. Select the file you wish to view in the Trace Viewer.
Driver trace files may have somewhat cryptic names, beginning with "Driver-
DBTrace-". You may find that the date of the file gives the best indication to
help choose which to open.

3. Select the Open button.
The Trace Viewer dialog’s list will be populated with data.

Related Tasks:

...Select a Live Data Source to View

...Clear the Current Trace

...Print the Trace Viewer's Data

...Export Data from the Trace Viewer

...Highlight Records

...Annotate Records

...Navigate to the Previous or Next Mark

...Pause and Run the Live Display

...Toggle the Timestamp Display

Trace Viewer Options and Controls

Data in the Trace Viewer display will look similar to the following image:

Note the row of control buttons across the top of the screen. The buttons
displayed will depend on the data source selected, but most are common
to all data sources. The common functions will be described first in the
following sections.

Related Tasks:

...Clear the Current Trace

...Print the Trace Viewer's Data

...Export Data from the Trace Viewer

...Highlight Records

...Annotate Records

...Navigate to the Previous or Next Mark

...Pause and Run the Live Display

...Toggle the Timestamp Display

Information Displayed for a Server

If the machine is a server, the following information is displayed:

Status The status of this machine, either Server or N/C (not connected)

Server
Mode

During service synchronization, RPC may set a non-zero mode here in
order to filter the RPCs to be transmitted. The defined values are:

0 RPC_ACCEPT_ALL (server not performing synchronization with
any client)

64 RPC_ACCEPT_FILTER (Mode cut off)

128 RPC_SYNC_MODE (server is performing synchronization with a cli-
ent)

250 RPC_LINKCONTROL_ONLY (server is starting synchronization with
a client)

In Sync Indicates the synchronization status of the server (Y indicates that this
node is in sync with the server)

Srv/Sy-
nc

Indicates whether the server reports itself as in sync (Y indicates that the
server is reporting itself in sync)

Altern-
ate

Indicates whether a RecommendAlternate RPC call has been actioned (Y
indicates that a RecommendAlternate RPC call has been actioned)

Ses-
sion ID

RPC Manager maintains a session ID for each instance of an application
running on a remote workstation (see "Session Ids " for further inform-
ation).

Clear the Current Trace

To clear a current trace, select the Clear Current Trace button. The
trace you are viewing will be cleared and all logged data will be deleted
from the trace file being viewed.

Note: Clearing a trace file is a permanent and irreversible action.

Related Tasks:

...Select a Live Data Source to View

...Select a Log File to View

...Print the Trace Viewer's Data

...Export Data from the Trace Viewer

...Highlight Records

...Annotate Records

...Navigate to the Previous or Next Mark

...Pause and Run the Live Display

...Toggle the Timestamp Display

Print the Trace Viewer's Data

The Trace Viewer enables you to print its data to any printer on the local
PC’s network. To print trace data follow these steps:

1. Select the Print button. The Print dialog will open.

2. Set the printing parameters as you require (i.e. select the printer, page range,
number of copies, etc.).

Note: The recommended print layout for the Trace Viewer is landscape.

3. Select the Print button.

Related Tasks:

...Select a Live Data Source to View

...Select a Log File to View

...Clear the Current Trace

...Export Data from the Trace Viewer

...Highlight Records

...Annotate Records

...Navigate to the Previous or Next Mark

...Pause and Run the Live Display

...Toggle the Timestamp Display

Export Data from the Trace Viewer

This topic is included for the benefit of anyone looking for this feature.
An export option is not included since all data shown in the Trace Viewer
is always being saved to a log file.

Related Tasks:

...Select a Live Data Source to View

...Select a Log File to View

...Clear the Current Trace

...Print the Trace Viewer's Data

...Highlight Records

...Annotate Records

...Navigate to the Previous or Next Mark

...Pause and Run the Live Display

...Toggle the Timestamp Display

Highlight Records

You can highlight records of interest in the trace viewer. Highlighted
records will appear similarly to the example shown. Note that per-
forming this action causes the live display to pause. Data will still be
logged, but you will need to resume the live display to see it.

To highlight records, follow these steps:

l Select the Highlight Records button. The mouse cursor will appear as a
highlight pen.

l Select the records you wish to highlight. The records will be highlighted in
yellow.

l Select the Highlight Records button again to stop highlighting. The mouse
cursor will revert to an arrow.

To Clear the Highlighting from a Record
Highlights can be cleared by following the same procedure you used to
set them. The highlight pen works as a toggle: select a record once to
highlight it, then select the record a second time to remove the high-
light.

Note: The Trace Viewer enables you to navigate backward and forwards
through the list to view highlighted items. Please refer to Navigating to
a Mark in the Trace Viewer for instructions.

Related Tasks:

...Select a Live Data Source to View

...Select a Log File to View

...Clear the Current Trace

...Print the Trace Viewer's Data

...Export Data from the Trace Viewer

...Annotate Records

...Navigate to the Previous or Next Mark

...Pause and Run the Live Display

...Toggle the Timestamp Display

Annotate Records

The Trace Viewer enables you to add operator notes to records. The
notes are stored in the database with the log data but, unlike operator

notes created in the Historical Data Viewer, these notes may be edited or
deleted.
To add a note, follow these steps:

1. Select the Annotate Record button.

2. Select the record you wish to annotate in the list. The Annotate Record dialog
will open.

3. Enter the note in the field provided.

4. Click OK. The record with which the note is associated will be highlighted in
green, and a window displaying the note’s text will appear in a tool tip when
the mouse pointer is rested on the record.

To edit or erase a Note:
Notes can be editing by following the same procedure you used to create
them. Select the Annotate button, and then select a green record in the
Trace Viewer. The Annotate Record dialog will re-open with the existing
note displayed. Edit as you wish, then select OK.

Related Tasks:

...Select a Live Data Source to View

...Select a Log File to View

...Clear the Current Trace

...Print the Trace Viewer's Data

...Export Data from the Trace Viewer

...Highlight Records

...Navigate to the Previous or Next Mark

...Pause and Run the Live Display

...Toggle the Timestamp Display

Navigate to the Previous or Next Mark

The Trace Viewer application enables you to emphasize rows in the list
with yellow highlighting. (see Highlighting Records in the Trace Viewer).
When you have multiple items highlighted, you may navigate between

them using the Go To Previous Mark and Go To Next Mark but-
tons.
To view a previous mark in the Trace Viewer’s list, select the Go To Pre-
vious Mark button. The list will display the last item that was highlighted
in the list. Continuing to select the Go To Previous Mark button will take
you through the highlighted items in the list until you have viewed them
all. The Go To Previous Mark button will be disabled when you have
viewed all previously highlighted items.
The Go To Next button works in a similar way.

Related Tasks:

...Select a Live Data Source to View

...Select a Log File to View

...Clear the Current Trace

...Print the Trace Viewer's Data

...Export Data from the Trace Viewer

...Highlight Records

...Annotate Records

...Pause and Run the Live Display

...Toggle the Timestamp Display

Pause and Run the Live Display

You can pause and resume the display of live data in the Trace Viewer

using the Pause Live Display and Resume Live Display buttons.
Pausing the live data display enables you to take the time to closely exam-
ine records in the list, especially in large applications where tracing
moves quickly.

Note: Pausing the live display does not stop tracing and logging from
continuing.

Related Tasks:

...Select a Live Data Source to View

...Select a Log File to View

...Clear the Current Trace

...Print the Trace Viewer's Data

...Export Data from the Trace Viewer

...Highlight Records

...Annotate Records

...Navigate to the Previous or Next Mark

...Toggle the Timestamp Display

Toggle the Timestamp Display

The first column of the Trace Viewer’s list can be toggled to display one
of three formats:

l Time: The Time column displays the time to the nearest millisecond for each
item in the list.

l Date/Time: The Date/Time column displays the date in the format
MM/DD/YYYY (e.g. 11/29/2005), and the time to the nearest millisecond for
each item in the list.

l Record: The Record column displays a record number for each item in the
list. Record numbers assist users in easier reading of the list by sequentially
numbering items.

To switch between these options, select the Toggle Timestamp Display

button. The column’s label and data will change to match.

Related Tasks:

...Select a Live Data Source to View

...Select a Log File to View

...Clear the Current Trace

...Print the Trace Viewer's Data

...Export Data from the Trace Viewer

...Highlight Records

...Annotate Records

...Navigate to the Previous or Next Mark

...Pause and Run the Live Display

Filter the Trace Viewer's List

The Trace Viewer enables you to filter the data being displayed in the list
so that you may analyze only the information that you are interested in.
Note that the filter applies only to the display: all data continues to be
logged.
Which columns can be filtered and what criteria are available for filtering
both depend on which live data source you are viewing. As a minimum,
the ability to filter for only the highlighted records is always available.
Other filters may allow multiple selections from a list of options, or free
text input that will be searched for in the specified field.
In general, to filter the Trace Viewer’s display list:

1. Select the Define Filter button. The Filter Selection dialog will open, showing
the options appropriate to the type of trace you are viewing. The example
shown here is for the Driver trace.

2. Set the filtering options you require (see Filter Selection Dialog Options for
detailed instructions).

3. Select the Apply button. The list will be filtered according to the criteria you
specified.

4. Continue to adjust the filtering parameters as you require.

5. Select the OK button to close the Filter Selection dialog.

To remove filters from the Trace Viewer’s list:
Filters are removed the same way they are set. In the Filter Selection dia-
log, for each tab in which you have set a filter, open the tab and clear the
filters from the list by selecting them and using the Delete key on your
keypad.

Related Information:

...Filtering Options

Related Tasks:

...Select a Live Data Source to View

...Select a Log File to View

...Clear the Current Trace

...Print the Trace Viewer's Data

...Export Data from the Trace Viewer

...Highlight Records

...Annotate Records

...Navigate to the Previous or Next Mark

...Pause and Run the Live Display

...Toggle the Timestamp Display

Filtering Options

When a filter is active, this button will have an orange highlight:
A filter can be applied to almost every column in the Trace Viewer dis-
play. Filters follow one of two formats. They will either provide a list of
possible values that you can filter for, or a text box where you can enter
words that the column must contain.
In every case, there will be a NOT option that enables you to reverse the
effect of each filter.
The Filter Selection dialog provides a number of options for filtering the
Trace Viewer’s list. The elements of the Filter Selection dialog are
described here to help assist you in filtering data. Tabs that contain act-
ive filters are highlighted.

Example of a Pick Filter (Direction)

For every instance of a pick filter, a list of the available values for each
column will be displayed in the dialog. Select each value you want to fil-
ter for (or exclude, if using the NOT option) and then select the Apply but-
ton. You select an option by clicking in the Pick column.
The filter is cleared by removing all of the checkmarks from the Pick
column.
Example of a Text Filter (RPC Data/Parameters)

For every instance of a text filter, enter the words you wish to filter for
(or exclude, if using the NOT option) in the space provided. Partial words
are acceptable but wildcards are not. Spaces count as characters to be
filtered for. New line characters are ignored unless the new line char-
acter is the first character in the filter. Note the extra line in the fol-
lowing image. The leading new line in this example will cause the filter
to fail to find any matches. Leaving a new line character behind when
clearing a filter is an easy mistake to make.

Select Columns for Display in the Trace Viewer's List

You can choose to enable or disable the display of all columns except the
timestamp. Some columns that you may wish to view are not displayed by
default. Also, you might decide that some of the columns are not rel-
evant to the information you are interested in.
To modify which columns are displayed:

1. Click on the Select Displayed Columns button. The Select Displayed
Columns dialog will open.

2. Select the Show column to hide or show columns. Any column names that
display a checkmark in the Show column on their right will be displayed,
while those column names that do not display a checkmark in the Show
column to their right will be hidden.

3. Select the OK button. The Trace Viewer’s list will display only those columns
that were selected for viewing.

Related Information:

...Trace Viewer Visibility and Display Options

Related Tasks:

...Select a Live Data Source to View

...Select a Log File to View

...Clear the Current Trace

...Print the Trace Viewer's Data

...Export Data from the Trace Viewer

...Highlight Records

...Annotate Records

...Navigate to the Previous or Next Mark

...Pause and Run the Live Display

...Toggle the Timestamp Display

Trace Viewer Visibility and Display Options

Keeping the Trace Viewer On Top of Other Windows
To keep the Trace Viewer dialog on top of all other windows, select the

On Top Of Other Windows button.

Hiding and Revealing the Trace Viewer's List
You can hide and reveal the Trace Viewer’s data display by selecting the

Toggle Toolbar View button in the Trace Viewer’s tool bar.

Modifying Trace Viewer Settings

To modify the settings for the Trace Viewer, click the Viewer Settings but-
ton. The Trace Viewer Settings dialog will open and allow you to modify
the following settings:
Refresh Rate – Server: You can modify the rate at which the Trace Viewer
updates its display from the server using this spin box. The default
refresh rate is 1 second.
Refresh Rate – VIC: You can modify the rate at which the Trace Viewer
updates its display over a VIC connection using this spin box. The default
refresh rate is 5 seconds.
Translate IPs to Names: You can select this check box to have the Trace
Viewer translate IP addresses into NetBIOS names.

Modifying the Font Used in the Trace Viewer's List
If you find that the data being displayed in the Trace Viewer’s list is dif-
ficult to read, you may modify the font used to display list items.
To modify the font used to display items in the Trace Viewer’s list:

1. Click the Select Font button. The Font dialog will open.

2. Select the typeface you wish to use from the Font list.

3. Select the style you wish to use from the Style list.

4. Select the size you wish to use from the Size list.

5. Click the Open button. The Trace Viewer’s list will be adjusted to use the
selected font.

Displaying the Trace Viewer’s version information
You can find which version of the trace viewer you have installed by

selecting the About button from the menu.

Trace VTScada Actions Application

Note: The Trace VTScada Actions application should not be confused
with the Trace Viewer application that permits you to view trace

information for your applications in real-time.
This application is included with every copy of VTScada, but you may
need to add it to the VAM.

The Trace VTScada Actions script application enables you to select dif-
ferent VTScada services (such as the RPC Manager and Modem Manager),
and actions (the Navigator or SQL calls), and monitor the selected items
by saving pertinent data about them (such as the date and time they
executed) to disk.
Service names that contain a child-tag delimiter will be shown with a for-
ward-slash.

Note: The Trace VTScada Actions application may still be used to write
data about selected actions to a text file named, "VTSTrace.txt". Addi-
tionally, VTScada traces all actions to disk, storing the data in a sep-
arate text file named, "VTSTraceAll.txt". Both the VTSTraceAll.txt and
VTSTrace.txt files are automatically written to the VTScada installation
directory when you exit your application.

An example of the Trace VTScada Actions dialog:

The Trace VTScada Actions utility consists of the following elements:

Start/Stop

The Start/Stop button enables you to start and stop the tracing
of the selected actions to a special text file named,
"VTSTrace.txt" (located within your VTScada installation dir-
ectory (e.g. C:\VTScada\VTSTrace.txt). When the button is
toggled on (depressed and labeled "Stop"), VTScada is tracing
the specified actions to file. When the button is toggled off
(labeled "Start"), VTScada has stopped tracing the specified
actions to file. As mentioned in the note above, by default,
VTScada now traces all actions to a "VTSTraceAll.txt" file, loc-
ated in your VTScada installation directory.

Erase

The Erase button deletes the tracing file (VTSTrace.txt) from
disk when actions have been traced to file using the Start but-
ton. The Erase button is disabled while the Start button is selec-
ted.

Records in RAM

The Records in RAM field enables you to specify the number of
trace actions you wish to be saved to RAM prior to being writ-
ten to the VTSTrace.txt file. The default for Records in RAM is
256.

Parameter Byte Limit

The Parameter Byte Limit field enables you to specify the max-
imum size of parameters. The default for Parameter Byte Limit
is 256.

Trace Application Manager

The Trace Application Manager check box can be selected to
indicate that you wish all activities pertaining to the VAM to be
traced.

Trace Dialogs

The Trace Dialogs check box can be selected to indicate that
you wish all activities pertaining to dialogs to be traced. This
setting is useful if you wish to trace 4BtnDialog calls.

Trace Display Manager

The Trace Display Manager check box can be selected to indic-
ate that you wish to record all activities related to the Display
Manager.

Trace Menu Editor

The Trace Menu Editor check box can be selected to indicate
that you wish to trace all activities related to the Menu Editor.

Trace Modem Manager

The Trace Modem Manager check box can be selected to indic-
ate that you wish to trace all activates related to the Modem
Manager.

Trace Navigator

The Trace Navigator check box can be selected to indicate that
you wish to trace all activities related to the shortcut menus in
your application.

Trace Page Manager

 The Trace Page Manager check box can be selected to indicate
that you wish to trace all activities related to the Page Man-
ager.

Trace Expression Manager

The Trace Expression Manager check box can be selected to
indicate that you wish to trace all calculations related to the
Expression Manager.

Trace Remote Configuration

The Trace Remote Configuration check box can be selected to
indicate that you wish to trace all activities related to remote
configuration.

Trace RPC Manager

The Trace RPC Manager check box can be selected to indicate
that you wish to trace all activities related to the RPC manager
and remote procedure calls.

Trace SQL Calls

The Trace SQL Calls check box can be selected to indicate that
you wish to trace all SQL calls made in your application.

Trace Startup Synchronization

The Trace Startup Synchronization check box can be selected
to indicate that you wish to trace all activities related to star-
tup synchronization.

Trace Tag Browser

The Trace Tag Browser check box can be selected to indicate
that you wish to trace all activities related to the Tag Browser.

Trace Tag Configuration

The Trace Tag Configuration check box can be selected to
indicate that you wish to trace all activities related to tag con-
figuration.

Trace Tools

Obsolete as of VTScada release 11.

Note: Each of the check boxes described above corresponds to a con-
figuration variable in the system-wide Setup.ini file (stored in the
VTScada installation directory). Information on these variables can be
found in "Configuring Setup.ini".

Trace List

The list displayed on the Trace VTScada Actions dialog displays
the actions that have been traced according to the check boxes
you've selected. For each action traced in the list, the following
data is displayed:
 Date: The date for each action being traced is displayed in the
first column of the trace list. The date is displayed using the
format, "MM/DD/YY" (e.g. 10/24/05).
 Time: The time at which each action was traced is displayed in
the second column of the trace list. The time is displayed in
milliseconds, using the format, "HH:MM:SS.MS" (e.g.
16:07:23.129).
 Trace Action: The category of the action being traced is listed
in the third column, according to the check boxes you have
selected (e.g. TraceVAM or Trace RPC).
 Data: The details about each action being traced are identified
in the fourth column.

Note: In the event that some items in the list are difficult to read, you
can expand the Trace VTScada Actions dialog either using the Windows
maximize button in its title bar, or by dragging its borders, or you can
rest your mouse pointer over each entry in the list to view its details.

Related Information:

...Trace Viewer Application

Historian - API and Queries

The Historian Manager is responsible for data logging, the Historian tags
for your application, and storage & retrieval of logged tag values. Ver-
sions of VTS prior to release 10 used a Log Manager Service, which is
now obsolete. This chapter describes the Historian Manager, data stor-
age options for the Historian and how to configure VTScada to read leg-
acy data that was created using the Log Manager service.

Related Information:

...Recording Data

...Historian Manager API

...VTScada SQLInterface Module

Recording Data
The default storage location for logged data is a file database system
that was developed by Trihedral Engineering Ltd. Information is stored
within the Data folder of your application. An API that provides read and
write functions has been provided for use in your custom code.
In addition to, or instead of, the VTScada file database system, you can
store data using any of the following database formats.

Note: There is no advantage to be gained in speed or reliability by
using a third-party database. If your goal is to provide a way report on
VTS data using a database format and tools that are familiar to you,
then you are strongly advised to add SQL Logger tags to your applic-
ation rather than change the fundamental storage system.

Supported databases:
l Oracle 10g or later

l SQLServer 2000 or later

l MySQL using the MySQL ODBC Connector 5.1.6 or later

l SQLite using the SQLite ODBC driver version 0.86 or later
The choice of database system to use is controlled by the application
property, StorageType.
If using a StorageType other than the default, you must also tell VTScada
where to find that database, using the StorageLocation property.

Related Information:

...Specify the Storage Type for Historian Data

...Specify the Location for Historian Data

Specify the Storage Type for Historian Data

If you are using the default file database system for your data, no con-
figuration needs to be done. If you would like to save data to one of the
four supported database system instead, you must set the StorageType
property for each Historian tag that will use that system.
The actual name of the property used is a combination of the Historian
tag name and the keyword "StorageType". Thus, to set a storage type for
the SystemHistorian, you would set a value for "Sys-
temHistorianStorageType". For a tag named HistorianA, "His-
torianAStorageType".
This property should not be modified if using the VTScada data store.
Otherwise, "ODBC" is to be used for all other database storage formats
since the Historian relies on the ODBC for communication with each. The
specifics for connecting to a particular database are described in the
next section, Specify the Location for Historian Data.

Related Information:

...Specify the Location for Historian Data

Specify the Location for Historian Data

You may set a specific location for the data and log files for your applic-
ation using the application property, StorageLocation. Although the

names of the properties are given here, these values should be set using
the Historian tag's configuration panel.
The actual name of the property used is a combination of the Historian
tag name and the keyword " StorageLocation ". Thus, to set a storage
type for the SystemHistorian, you would set a value for "Sys-
temHistorianStorageLocation ". For a tag named HistorianA, "His-
torianAStorageLocation ".
The default value is "History". If setting an alternate storage location for
a file database, you should provide the full path to the folder that you
want to use. The most common reason for this is if you want to save data
to a disk other than the one on which VTScada is running. This could also
be done by mounting an alternate disk to the Data\History path via MS
Windows™. The constant disk usage associated with logging data from a
large or medium sized application may cause a disk to wear out faster
than it otherwise would. By keeping the data store separate from the disk
that is running VTScada, and maintaining redundant storage on another
server, you can lessen the impact of disk failure on your operations.

Note: In tests, directing the Historian to save data to network share loc-
ations proved to be slow. Use caution if you intend to re-direct the loc-
ation of the VTScada database to a .shared location on your network

If setting an alternate storage location for an ODBC database, you can
provide either a Data Source Name (DSN) or a connection string.
The advantage of a DSN is that it is relatively easy to configure using the
Microsoft ODBC Administrator™ dialog. The disadvantage is that you or
your system administrator must create that DSN on each server that the
application runs on.
A connection string is somewhat longer to create, but once written it may
simply be copied to each server. Connection strings may be easier to
maintain over the life of the application.
Support is also provided for FileDSNs.
Example using a DSN:

SystemHistorianStorageLocation = DSN=MyDSN_Name

Example using a connection string:

SystemHistorianStorageLocation = Driver=SQL Server; Server-
r=ServerName;Database=DBName;Uid=user;Pwd=password

Related Information:

...Specify the Storage Type for Historian Data

...Historian Tags are described in the VTScada Developer's Guide

Historian Manager API
The Historian Manager is a service that runs in the VTScada layer. It con-
tains two public functions that can be accessed by your VTScada applic-
ation. Note that script applications, which are not based on the VTScada
layer, will not have access to these items.

Note: The GetLog function has been marked as deprecated. All legacy
code using that function should be updated to use the Historian func-
tions instead.

Data logging is done through the use of the WriteHistory function. Later
retrieval of that data is done using the GetTagHistory function.

Related Information:

...Trending and Plotting Functions and Statements

...Data Logged or Trended Variables in Tag Modules

Related Functions:

... GetTagHistory

... WriteHistory

Trending and Plotting Functions and Statements

There are two statements within VTScada that perform plot operations:
The first is the Plot statement, which plots an array of values against its
index. This is the most common plot type and can be used to create a
line plot, or a filled or bar plot (these types of plots are useful for filling

rectangular tanks with the trend of the recent tank levels as an altern-
ative to just a bar of the current tank level).
The second plot statement is the PlotXY statement, which plots the val-
ues in one array against the values in a second array. This can be useful
for plotting one plant parameter against another, such as plotting pro-
duction rate against conveyer speed. One problem arises when plotting
such values; since the values of both parameters normally both increase
and decrease, the plot will appear as somewhat of a scatter if the X val-
ues are not consistently increasing. To solve this problem, the Sort state-
ment can be used to re-order the arrays so that the Y values correspond
to increasing X values.
The PlotXY statement has another possible use; it can be used as an
alternative line drawing statement, with each of the array elements spe-
cifying a line segment endpoint.
VTScada enables you to configure various line styles and fill patterns for
bar plots. The plots may also be arranged to plot from left to right, right
to left, bottom to top, or top to bottom. There are a total of 8 possible
orientations for line plots, and 16 for bar plots. Optionally, plots may be
configured to display in a digital or discrete format; instead of drawing a
straight line between two points, a step or square-looking plot is drawn
that shows discrete changes in level, rather than continuous changes.
Another option enables a given bit number in the array to be plotted –
this enables arrays of values that contain status bits packed into short or
long values to be plotted directly without having to unpack them. A final
option enables groups of consecutive array elements to be averaged and
plotted as a single value on the screen; this enables a large amount of
data to be plotted on a screen of limited resolution without producing a
high degree of apparent scatter in the data and while improving the plot
speed.

Data Logged or Trended Variables in Tag Modules

Any data logged or trended variables in a tag module must be declared
with a class in the range of 1 to 6, using syntax similar to the following:

Value (1);

The class specifies the type of data to log, as shown in the following
table:

Class: Data Type:

1 Bit

2 Unsigned Byte

3 16 Bit Signed Integer

4 32 Bit Signed Integer

5 Double Precision Floating Point

6 Text or Binary Data

Variables must be declared with an appropriate value or else they will not
be logged.
The convention for declaring variables is alphabetically by variable class
type. For example, if you were to declare Z(6), Y(2), X(5), A(5) then, intern-
ally this will map to Y(2),A(5), X(5), Z(6).
After data has been logged by a tag, if you then add, delete or change
the type of the variables, the old logged data will become inaccessible
(although, it is not deleted). Changing type of logged variables or
adding/deleting is akin to creating a new tag for the purposes of the His-
torian database.
If it is permissible for the data to be trended but not logged, the tag
must be added to the "Trenders" tag group. Such tags will show a limited
amount of data when viewed via the HDV.
If you have advanced logging requirements and want to integrate logging
behavior into your tag, you must do the following:

l Your tag must have a parameter or variable named "HistorianName". This
should be set to the name of the HistorianTag to be used by your tag. It is bet-
ter to use a parameter than a variable because parameters provide flexibility
in configuration.

l Note that any tag with a HistorianName parameter or variable will be auto-
matically added to the Loggers and Trenders tag groups.

l You must declare logged variables as stated above.

l You must call \HistorianManager\WriteHistory() whenever you want to log
data.

Related Information:

...Logging Tag Data

VTScada SQLInterface Module
This service provides an SQL interface to VTScada historical data, current
tag values, alarm data, or other custom tables on an application-by-
application basis.
The interface can be accessed externally using SOAP or ODBC calls,
providing support for a subset of SQL1. Within VTScada, you might use
the SQLInterface for the convenience that the SQLQuery function
provides in some instances, relative to making multiple calls to
GetTagHistory.

Note: The SQLQuery function is essentially a wrapper for GetTagHis-
tory. No SQL query parameters are supported other than those that can
be performed by one or more calls to GetTagHistory and other VTScada
functions. SQL functions that modify data or database structures are
not supported.

The interface provides the following two functions:
l SQLQuery

Executes an SQL query on data in a VTS application by turning that query
into one or more calls to GetTagHistory.

l RegisterCustomTable
Before SQLQuery can be work, RegisterCustomTable must be used to record
what information is to be available for a defined table name and how values
are to be retrieved. All VTScada tags, notes, and alarm information has
already been registered for you. Use this function only for custom data
inquiry needs.

1Structured Query Language

SQL queries specify table names where data is to be found. This does not
match the system used by VTScada for data storage or retrieval, even if
you have configured your Historian to use a third-party SQL database.
There is no History table, nor is there an Alarms table, or any History_
TPP1 tables. But, the SQLQuery function is able to retrieve tag data as if
those tables existed because RegisterCustomTable was used to link table
names to the instructions for finding relevant data.

Related Information:

...SQLQuery - Function for retrieving logged data using structured query
language

...RegisterCustomTable - Function for registering a custom table from
which SQLQuery will retrieve information.

...SQL Queries of VTScada Data: The ODBC Server - VTScada Developer's
Guide - Configuration and examples.

1Time Per Point. The time span used when querying aggregated data
(average, minimum, maximum, etc.) from tag history.

Programming Other Modes of Com-
munication

I/O device drivers are only one of the options available to you for linking
your VTS application to external sources of data. You may also use COM
(Component Object Model), DDE (Direct Data Exchange), TCP/IP, ODBC
(Open Data Base Connectivity) or DLL (Dynamic Link Libraries).
Tools and techniques for using each of these technologies can be found
in the topics within this chapter.

Related Information:

...Communicating Directly With Hardware

...Using COM in VTS

...Using DDE

...TCP/IP Networking

...Using ODBC

...Using DLLs

...See also: Communication Drivers - how to write a custom driver.

Communicating Directly With Hardware
VTScada, through the VTSIO driver, has the ability to interface directly
with the memory addresses and IO ports of your computer’s hardware.
This is especially useful when you need to interact with legacy hardware
for which there is no driver and software API.

Note: In order to write code that interfaces directly with memory
addresses and I/O ports, you must have a detailed knowledge of the
hardware in question. You should obtain the product specification
sheets before attempting to configure the VTSIO driver.

Having an instance of the VTSIO driver configured to interface with a par-
ticular piece of hardware enables the following functions to be used to
read and write data, to and from the hardware: MemIn, MemOut, CopyIn,
CopyOut, In, InWord, Out, and OutWord. Guidance for using the can be
found in the function reference, elsewhere in this Guide.

Related Information:

...Configuring a VTSIO Driver as the Interface to PC Hardware

...Configuring a single instance of the VTSIO driver:

Configuring a VTSIO Driver as the Interface to PC Hardware

In order to configure an instance of the VTSIO Driver, you must know the
resources used by the hardware. This is generally a series of IO Port num-
bers, memory addresses, or both.
A single instance of the VTSIO Driver can handle only a single contiguous
range of IO Port numbers or memory addresses. For example, a piece of
hardware might use IO ports 250 through 257 and memory addresses
D0000 through D3FFF. For this application, two instances of the VTSIO
driver would be required – one for the IO port range and one for the
memory address range.

Configuring a single instance of the VTSIO driver:

Given a contiguous IO port range or memory address range, the fol-
lowing steps will configure an instance of the VTSIO driver. Here, the
VTScada installation directory is assumed to be C:\VTS. If a different
name has been used for the VTScada installation directory, substitute as
required.

1. Create a folder for the driver files (e.g. c:\DriverInstance1).
The following steps will refer to this as "the driver folder". This folder may be
deleted at the completion of the steps, or you may keep it in case the driver
needs to be re-installed.

2. Copy the appropriate .inf file from the VTScada installation’s Template dir-
ectory to the driver folder.

l IO.INF for an IO port range

l MEMORY.INF for a memory address range

3. Copy the subdirectories i386 and amd64 from C:\VTScada\DRIVER\VTSIO\
to the driver folder.

4. Edit the .inf file copy that you copied to the driver folder, specifying the IO
port or memory address range.

l For an IO port range, change the number range specified on the line that
starts with IOConfig=.

l For a memory address range, change the number range specified on the line
that starts with MemConfig=.

Note that these numbers are hexadecimal. Save the edited file.
The following instructions are for Windows Vista; the process is very sim-
ilar for Windows XP.

5. In the Control Panel (in Classic View), double-click on Add Hardware.
The Add Hardware Wizard should appear.

6. Click the Next button.
The dialog should look like the following:

7. Select "Install the hardware that I manually select from a list (Advanced)" and
click Next.

8. Leave "Show All Devices" selected and click Next.

9. Without changing anything in the list boxes, click the "Have Disk..." button.

10. In the box labeled "Copy manufacturer’s files from", enter the path to the
driver folder, or browse to that directory.
If you used the suggested name, then that directory will be "c:\Driver-
Instance1", as in the above screenshot. Click OK.
The dialog now should look like the following if you are creating a VTSIO
driver for an IO port range, using IO.inf (this dialog, and dialogs that follow,
will say VTSIO Memory device if you are using memory.inf).

11. Click the Next button.

12. Click the Next button.
If you get a warning about the driver not being digitally signed, select "Install
this driver software anyway".
You should see a driver installation status dialog like the following while the
driver is being installed.

When the driver has finished installing, the dialog should look like the
following.

13. Click the Finish button.
You may be prompted that your computer needs to be restarted. Safely shut
down all programs and do so.

Using COM in VTS
This chapter will assist you in using the component object model (COM)
in VTScada. Before you reading this section, please review and become
familiar with the following definitions.

Automation Inter-
face

A COM interface that uses late binding.

CLSID Class Iden-
tifier

A GUID that represents a COM class

COM Component
Object Model

A software architecture that enables the components
made by different software vendors to be combined into a
variety of applications.

DDE Direct Data Exchange.

GUID A Globally Unique Identifier.

OLE Object Linking and Embedding.

ProgID Program Identifier. A human readable form of a class iden-
tifier.

SRO Scope Resolution Operator or "\".

VTable Interface A COM interface that uses early binding.

Related Information:

...Introduction to COM

...Accessing COM Objects

...Syntactic Structure

...Sample Code

...Functions and Statements Related to COM

Introduction to COM

This document assumes a basic knowledge of what the Component
Object Model (COM) is and how it functions. You do not require an in-
depth knowledge of COM to be able to use it effectively in VTScada.

Introductory information from Microsoft and others may be referred to if
you require detailed background information on COM.

Note: The Platform SDK documentation is provided with Visual C++,
and is available for download from Microsoft. This provides a good
starting point for those new to the Component Object Model.

A COM object is a piece of code that exists in an in-process DLL or out-
of-process executable file on a computer. The COM object encapsulates
a set of behaviors that can only be accessed via a set of formally declared
"interfaces". An interface contains a list of member methods (along with
their typed parameters), that can be called. All interface methods return
a result code of type HRESULT. These interfaces can be classified into two
types:
Virtual Table interfaces and Automation interfaces
These two interfaces are described as follows:

VTable Interfaces
VTable or "Virtual Table" interfaces are very closely related to the virtual
function table that would be generated for indirectly calling C++ virtual
functions. Automation interfaces are defined by Microsoft in their OC96
specification and, essentially, provide a limited set of strongly typed func-
tions that can be called from C++ or other compatible languages. As
those functions exist in a VTable interface, knowledge about the function
names, calling conventions, and parameter types must be known when
the compatible language is compiled. This is termed "early binding".

Automation Interfaces
The early-bound functions of an automation interface, however, provide
a mechanism to access a much broader range of methods that the object
supports. The calling convention and binding of names to physical func-
tions is performed at run-time, and does not have to be known at com-
pile time. The automation interface mechanism also provides dynamic
discovery of parameter type information. Such discovery and subsequent
usage of the discovered functions is termed "late binding". These

interfaces have largely grown out of the need for scripting languages to
use COM objects without requiring compile-time knowledge of the
object's methods.
VTScada uses the late binding ability of automation interfaces to interact
with a COM object.

Accessing COM Objects

COM defines standard ways to instantiate an object, regardless of the loc-
ation of the server code that generates the object instance. An object
may be instantiated in-process by a DLL server, out-of-process on the
same computer by an EXE server, or on another computer that is also an
EXE server. Regardless of the object's location and the method of con-
struction, the syntactic constructs to manipulate the object are identical.
VTScada script code that constructs such object instances and manip-
ulates them has no knowledge of the object's location.
A COM object may be identified by a "CLSID" (class ID), comprising a 38-
character string that consists of an opening curly brace, a 36-character
GUID (Globally Unique Identifier), and a trailing closing curly brace.

Note: Each application has its own Globally Unique Identifier (GUID),
which is generated by VTScada when the application is created. It can
be found in the Information page of the Application Configuration dia-
log.

Internally, the operating system uses the GUID to look-up instantiation
information for the specified object in the system registry. This notation
is hardly human-friendly however, and so another translation exists,
allowing an object to be identified by a "ProgID" (Program ID). The ProgID
is then internally translated into a CLSID by the operating system.
A ProgID is a text string typically identifying a server code for associated
objects, along with the identity of the object itself (for example, "Tri-
hedralWidgetServer.Widget2" where "TrihedralWidgetServer" is the server
code, and "Widget2" is the object).
The look-up information for such translations and the ultimate iden-
tification of the location of the object's server is all contained in the

system registry, as such information is normally programmatically stored
there during the installation process for the object's server.
To create an instance of a COM object, you may use the COMClient state-
ment. This statement takes a parameter representing the CLSID or Pro-
gID of the object to be created (among other items), and assuming that
this identifier does indeed map to a COM object, returns a value that may
be assigned to a variable. This variable is an opaque handle, termed the
"COM Client Interface" and is the only way to subsequently manipulate
the object instance.
Manipulation of the object instance occurs via "properties" and "meth-
ods". You can think of properties as being the data that the object holds.
The automation interface provides a "property get" ability, and a "prop-
erty set" ability, to allow the properties contained within the object to be
manipulated. The automation interface also provides the ability to call
object methods.
The distinction between accessing a property and calling a method can
sometimes be blurred. For example, it may be that the object imple-
ments a method that simply changes or returns the value of an internal
property. Some properties may be parametrized; in other words, setting
the property value requires more than one parameter to be passed. The
syntactic structure of COM calls in VTScada however, conceals such con-
fusions by providing a set of uniform object manipulation operations,
where parameters passed to property manipulations are done in a man-
ner identical to those in a method call.
When using a VTable interface (see Introduction to COM), the set of prop-
erties and methods, along with their parameter types, are normally
expressed in source code form in a header file. However, automation
interfaces had such metadata programmatically generated into a binary
file called a "type library" when the object's server was built. The VTScada
engine uses the type library's metadata to convert between VTScada val-
ues and the target object's expected value types, and to locate the cor-
rect property or method within the target object. The VTScada
programmer can either use the object's formal documentation or one of

the various commercially available "type library browsers" to examine the
metadata stored in a type library, and hence, discover the methods and
properties that the object supports.
Each property get, property set or method call is described in the type lib-
rary. Each parameter will be described not only by its type, but will also
carry a directional specification such as [in] [out] or [in, out]. The dir-
ectional specification indicates whether the parameter is an input to the
instance ([in]), an output from the instance ([out]) or is both ([in, out]). By
specifying a non-constant VTScada variable as a parameter for [out] and
[in, out] parameters, the VTScada variable value will be updated at the
conclusion of the property or method invocation.

Syntactic Structure

The implementation of COM in VTScada is intended to mimic the natural
object model used by VTScada. As mentioned in Accessing COM Objects,
opaque handle held in a variable instance that has a ValueType of "COM
Client Interface" references an instance of a COM object. VTScada itself
does not act as a server for COM objects; rather, it acts merely as a cli-
ent. In other words, VTScada provides no COM objects; it simply provides
the ability to use COM objects.
All properties and methods of the COM object are accessed using the
scope resolution operator [SRO] "\". This presents the VTScada pro-
grammer with both syntactic and semantic compatibility with existing
VTScada objects.
For example, a VTScada module can be instantiated, creating an object
instance. The object instance can be scoped into to examine or modify
values within the object. An object instance may provide methods that
can be invoked. Only the instantiation syntax differs between the same
operations, performed on a COM object. This is a necessary departure in
order to describe the parameters necessary to locate an object server
and cause it to instantiate an object.
Consider the following code:

[
MyVTSObject Module;

VTSObj;
COMObj;
]
Init [
If 1 Main;
[
{ Instantiate a VTScada object }
VTSObj = MyVTSObject();
{ Instantiate a COM object }
COMObj = COMClient("Trihedral.Widget");
]
]
Main [
]

Firstly, an instance of the VTScada module "MyVTSObject" is instantiated.
The object value returned from the instantiation is stored in variable
"VTSObj". Next, an instance of the COM object identified by the ProgID
"Trihedral.Widget" is instantiated, and the COM Client Interface value is
stored in variable called "COMObj".
Suppose that you wish to modify the contents of a value, held in the vari-
able "MyValue" in the VTScada object created above. You could use code
such as:

VTSObj\MyValue = 42;

Similarly, if the COM object instantiated in the above code had a property
called "MyValue," you would use code such as:

COMObj\MyValue = 42;

This is termed a "property set" operation.
Reading the contents of a value in a VTScada object, or a property in a
COM object is also similar:

VTSResult = VTSObj\MyValue;
COMResult = COMObj\MyValue;

For the COM object, this is termed a "property get" operation.
These operations can be combined:

VTSObj\MyValue2 += VTSObj\MyValue;
COMObj\MyValue2 += COMObj\MyValue;

Note that the normal expression operators [+= in this case] can be used
just as easily with COM properties as with VTScada values.

An invocation of a method in a COM object is no different from invoking
a method of a VTScada object:

VTSObj\MyValue2 = VTSObj\GetSomething(1, 2);
COMObj\MyValue2 = COMObj\GetSomething(1, 2);

In the first of the above two lines of code, a method contained in
VTScada object instance is called with two numeric parameters. In the
second, the same thing is happening with a COM object.
In the code above, the VTScada object was "launched". A VTScada object
will remain running as long as its caller remains running. A COM object
will remain running as long as there is a valid reference to it. VTScada
objects can, however, be "called" from steady state. In this case, the
VTScada object remains running until the state containing the call stops.
Even if the VTScada object terminates, it will restart as long as the
steady-state call remains running. A similar situation exists with COM
objects. If a COM object is called from steady state, it will remain running
as long as the steady-state statement remains running. A change of state
will stop the COM object, even if there are other references held on it; in
other words, the COM Client Interface value returned from the COMClient
call is assigned elsewhere. Any variable value holding references to the
COM object will be automatically invalidated when the COM object stops:

[
 MyVTSObject Module;
 VTSObj;
 COMObj;
 COMObjName;
]
Init [
 If 1 Main;

[
 COMObjName = "Trihedral.Widget";
]
]
Main [

{ Instantiate a VTScada object }
 VTSObj = MyVTSObject();

{ Instantiate a COM object }
 COMObj = COMClient(COMObjName);
 If Trigger Done;
]
Done [

{ Both the VTScada object and the COM object are now stopped }
]

Like steady-state VTScada object calls, a steady state COM object call will
re-trigger if its return value changes or any parameters to it change. In
the case of a COM object, the return value would only change if some
external event caused the COM object to be lost (e.g. communication fail-
ure, or if the parameter(s) to the COMClient statement caused the COM
object to be destroyed). In the above code, changing the value of COMOb-
jName would cause the existing COM object to be destroyed, the value of
COMObj to be invalidated, and a new COM object to be constructed. Once
the new object has been constructed, the value of COMObj will change to
hold the COM Client Interface value for the new object.
Whether the object is a VTScada object or a COM object, properties and
methods may also be accessed in both steady-state statements and
scripts, but note that a property get in a steady-state statement will only
evaluate once, as, unlike VTScada values, there is no automatic trigger
from a COM object that a property value has changed. Instead, COM
objects use "events" to indicate changes, and these events may call
VTScada subroutines.
Consider the following code:

[
 Changed Module;
 COMObj;
 Latest;
]
Init [
 If 1 Main;

[
{ Instantiate a COM object }

COMObj = COMClient("Trihedral.Widget," Invalid, Self(),
Self(), Self());
]
]
Main [
 If Watch(Valid(Latest), Latest);

[
 ...
]
]
<
Changed
(
 NewValue;
)
ChangedEvent [
 If watch(1);

[
 Latest = NewValue;
 Return(0);
]
]
>

Note that the COMClient statement has grown four extra parameters.
The first of these specifies the context in which it is permissible to instan-
tiate the COM object. The second parameter specifies the scope in which
event subroutines are to be found. All COM events have a name asso-
ciated with them, defined by the COM object. If a subroutine module of
the same name as the event exists in the scope specified in the third
parameter to the COMClient statement, that subroutine will be called
each time the corresponding event occurs. The subroutine is called on
the same thread as the incoming event from the COM object, and so
therefore may occur concurrently with other scripts running in the same
scope.
The event subroutine is entered with whatever parameters were supplied
by the COM object and the return value is passed back to the COM object
as a result code (an HRESULT). Zero is a "success" return value. Each COM
object defines what parameters are provided and what it expects the
return value to be under different error conditions.
The event subroutine is run in the scope of the parent specified in the
fourth parameter of the COMClient statement; therefore, any non-local
variables referenced in the subroutine are resolved to values within that
scope. In the above example, "Latest" is resolved to the value of "Latest"
within the module that made the COMClient instantiation. The fifth para-
meter specifies the caller scope that is set up for the subroutine invoc-
ation. While this is normally meaningless for a subroutine, it can be used
to pass "auxiliary" scope to the subroutine, adding flexibility.
The parent and caller parameters are optional, and if not specified, will
default to Self(), Self(). The event subroutine search scope parameter is
also optional; however, failure to specify a valid search scope, or sub-
sequent invalidation of that parameter, prevents event subroutines from
being called. By specifying a variable as the event subroutine search

scope parameter, you can enable and disable event subroutine calls, or
even move the search scope for them.
The code above, then, uses a COM event to re-trigger the single state-
ment in state Main when the COM object raises a "Changed" event that
changes the value of "Latest". This is the primary method by which COM
objects cause event-driven processing in VTScada.

Sample Code

In the example of the previous topic, the object that has been instan-
tiated has been a hypothetical object. This section shows a simple work-
ing example that reads and writes spreadsheet cells in Microsoft Excel™.
This example therefore, requires that Microsoft Excel be installed on
your system.
Admittedly, this example doesn't do anything that couldn't be done using
DDE, but it serves to illustrate come techniques when using COM inter-
faces.
Each of the main segments of code in this section can be concatenated
together to make a complete script application that will compile and run.

{=========================== System ============================}
{===}
[
 Graphics Module { Contains user graphics };
 WinTitle = "Excel COM Tester" { Window title };
 System { Provides access to system library functions};
]
Main [
 Window(0, 0 { Upper left corner },
 400, 160 { View area },
 400, 160 { Virtual area },
 Graphics() { Start user graphics },

{65432109876543210}
 0b00010000000110011, WinTitle, System\DialogBGnd, 1);
]
<
{====================== System\Graphics ======================}
{ This module handles all of the graphics for the application }
{===}
Graphics
[
 ExcelObj { The COM interface to the Excel object };
 ProgID { The ProgID for the Excel object };
 RangeObj { The COM interface to a "range of cells" object};
 CellsRead { Result of reading back some cells from Excel };
 CellsWritten { Cell values to be written to Excel };

 Kill = 0 { Gets set non-zero to terminate things };
 Row { Loop counter variable };
 Col { Loop counter variable };
 ValuesText { Text of the values read from spreadsheet };
]
Main [
{***** Instantiate the Excel object...Nothing happens yet *****}
 ExcelObj = COMClient(ProgID);

{* But when the Excel object does become valid, make it visible
***}
 If Edge(Valid(ExcelObj), 1);

[
 ExcelObj\Visible = 1;
]

{***** When the Create button is pressed, make the ProgID valid.
This causes the COMClient statement, above, to retrigger and ExcelObj
to become valid *****}
 If ZButton(10, 30, 90, 10, "Create", 1, System\DefFont);

[
 ProgID = "Excel.Application";
]

Initially, "ExcelObj" will be Invalid. When the "Create" button is pressed,
the ProgID is made valid, the COMClient statement re-triggers, and the
Excel object is instantiated. On instantiation, the Excel application is run
(if not already running), but remains invisible. "ExcelObj" becoming valid
causes the second statement to execute, which makes the Excel applic-
ation window visible. Invisibility is not a general trait of such COM
objects, but rather the behavior of Excel. It is possible to leave the Excel
application invisible and still use it. You can try this by removing the
property set:

ExcelObj\Visible = 1;

The completed application will function identically, but Excel will remain
invisible.
The next requirement is code to shut down the COM object. Changing
state would be sufficient to release the reference held on Excel and cause
it to shutdown; however, Excel will not shutdown automatically if you
have modified data within it, so you must make additional method calls
to cause this to happen.

{***** Shutdown code. Pressing the "Kill" button stops the object
only. Hitting the toaster bar close stops the object and kills this
application *****}
If ZButton(110, 30, 190, 10, "Kill," 2, System\DefFont);
[

 Kill = 1;
]
If WindowClose(Self());
[
 Kill = 2;
]
If Kill;
[

{ Close down the Excel workbook and quit Excel }
 ExcelObj\Workbooks(1)\Close(0);
 ExcelObj\Quit();

{ Excel will run until the hold is released}
 ProgID = Invalid;

{ Terminate this application if so instructed }
 IfElse(Kill == 2,
 Slay(ParentObject(Self()), 0);

{ else }
 Kill = 0;
);
]

In the above code, the variable "Kill" is set to "1" if the "Kill" button is
pressed, and is set to "2" if the application is closed. To force Excel to
close with modified data, the following two method calls are made on the
Excel object:

ExcelObj\Workbooks(1)\Close(0);
ExcelObj\Quit();

Note that this would not be necessary if no changes were made to the
data that Excel was operating with, and...

ProgID = Invalid;

...would be sufficient to close Excel. Similarly, a change of state would
cause the Excel COM object to shut down. However, the simple applic-
ation given here has only one state, with the COMClient statement being
steady-state, so invalidating the ProgID or terminating the application is
the only way to release the object.
The statement above:

ExcelObj\Workbooks(1)\Close(0);

…illustrates the use of "nested" interfaces. "ExcelObj" contains one or
more "WorkBook" objects that can be accessed via the WorkBooks()
method. For example:

ExcelObj\Workbooks(1);

returns a COM Client Interface to the first workbook. Because the value
returned is a COM Client Interface, it can be used to call methods on the
object to which it is connected. This can be done either by storing the
COM Client Interface in a variable for later use:

WorkBookObj = ExcelObj\Workbooks(1);
WorkBookObj\Close(0);

or by a direct call:

ExcelObj\Workbooks(1)\Close(0);

In the latter case the "Workbooks" COM Client Interface will only exist
temporarily – for the duration of statement execution.
The Excel object just instantiated, though, has no "workbook" object. To
create one is simply another method call, which is made in response to
the user pressing he "Workbook Add" button:

{***** Other buttons...Add a workbook *****}
If ZButton(10, 90, 90, 70, "Workbook Add," Valid(ExcelObj) ? 3 : 0,
System\DefFont);
[
 ExcelObj\Workbooks\Add();
]

Excel cells are represented by a "Range" object; an interface that can be
obtained from the ExcelObj by a simple method call. This is made in
response to the "Range Get" button:

{***** Get an object which represents a range of cells *****}
If ZButton(110, 90, 190, 70, "Range Get," Valid(ExcelObj) ? 4 : 0,
System\DefFont);
[
 RangeObj = ExcelObj\Range("A1:C1");
]

Assigning values to a range of cells is done by setting the "Value" prop-
erty of the Range object to the VTScada values that will occupy those
cells. Note that you can pass VTScada arrays as well as scalar values to a
COM method or property. This is done in response to the user pressing
the "Put A1:A3" button:

{***** Set the values of a range of cells *****}
If ZButton(10, 120, 90, 100, "Put A1:A3," Valid(ExcelObj) ? 5 : 0,
System\DefFont);
[
 CellsWritten = New(3, 1);

 CellsWritten[0][0] = 11;
 CellsWritten[1][0] = 12;
 CellsWritten[2][0] = 13;
 ExcelObj\Range("A1:A3")\Value = CellsWritten;
]

Similarly, reading back a range of cells is done through the same "Value"
property. However, this time the property is used on the right-hand side
of the expression, and so is an implicit "property get," rather than the
implicit "property put" that resulted from using the property on the left-
hand side, above:

{***** Get the values of a range of cells *****}
If ZButton(110, 120, 190, 100, "Get A1:A3," Valid(ExcelObj) ? 6 : 0,
System\DefFont);
[
 CellsRead = ExcelObj\Range("A1:A3")\Value;
]

Excel requires that the data supplied to the "Value" property put is dimen-
sioned exactly the same as the range of cells into which the data is being
put. Hence, the array dimension used was 3 rows by 1 column. Exactly
the same holds true for putting data into multiple columns of the same
row. This example places 1 row of 3 columns into the workbook:

{***** Set the values of a range of cells *****}
If ZButton(10, 150, 90, 130, "Put B1:D1," Valid(ExcelObj) ? 7 : 0,
System\DefFont);
[
 CellsWritten = New(1, 3);
 CellsWritten[0][0] = 21;
 CellsWritten[0][1] = 22;
 CellsWritten[0][2] = 23;
 ExcelObj\Range("B1:D1")\Value = CellsWritten;
]
{***** Get the values of a range of cells *****}
If ZButton(110, 150, 190, 130, "Get B1:D1," Valid(ExcelObj) ? 8 : 0,
System\DefFont);
[
 CellsRead = ExcelObj\Range("B1:D1")\Value;
]

In both cases, the result of the property get is an array dimensioned
exactly the same as the cell dimensions.
The example concludes with code to display the results. The first two
ZText statements will both display the COM Client Interface values
obtained above, which will be displayed as a text string representing the
ProgID of the interface:

{***** Display code, to show what is going on *****}
ZText(210, 27, Concat("Interface Value: ," PickValid(ExcelObj,
"Invalid")), 0, System\DefFont);
ZText(210, 87, Concat("Range Value: ," PickValid(RangeObj,
"Invalid")), 0, System\DefFont);

Note that the Range interface appears to have a ProgID, even though
it is not a "creatable" interface (i.e. you could not use it as a Pro-
gID in a COMClient statement). Strictly speaking, what you see is a
textual representation of the COM Client Interface name.

The next statement displays the dimensions of the array read back
from a range of cells.

ZText(210, 117, Concat("Cells Read Dimensions: ," PickValid(ArraySize
(CellsRead, 0), "Invalid"),

" ," PickValid(ArraySize(CellsRead, 1), "Invalid")),
 0, System\DefFont);

Finally, the last code segment renders the values read from the cells into
a text string and displays it:

If Watch(1, CellsRead);
[
 Row = 0;
 ValuesText = "Cells Read: ";
 WhileLoop(Row < ArraySize(CellsRead, 0),
 Col = 0;
 WhileLoop(Col < ArraySize(CellsRead, 1),
 ValuesText = Concat(ValuesText, CellsRead[Row][Col], " ");
 Col++;
);
 Row++;
);
]
ZText(210, 147, ValuesText, 0, System\DefFont);
]
{ End of System\Graphics }
>

Compiling and running the application will result in the following user
interface display:

Functions and Statements Related to COM

The following functions are related to COM usage in VTScada.

...ActiveX - Instantiates an ActiveX object.

... COMClient - Instantiates COM objects that do not possess a user inter-
face.

... COMEvent - Sets an event subroutine context for an existing COM cli-
ent interface.

... COMPort - Opens a serial port and handles all interrupts and asyn-
chronous events for that port.

... COMStatus - Returns the last status information that occurred for a
specified COM client interface.

Using DDE
DDE (Dynamic Data Exchange) is a mechanism within Windows that
enables data to be exchanged between two different programs, such as
VTScada and Microsoft Excel. The program that supplies the data is
called the server, while the program that accepts the data is referred to
as the client. VTScada can act as either a client or a server.

Related Information:
See the VTScada Developer's Gide for:

...VTScada as a DDE Client

...VTScada as a DDE Server

TCP/IP Networking
TCP/IP support is integrated into VTScada. To use this feature you will
need to have a TCP/IP stack, which is supplied by many network vendors.
All TCP/IP functions in VTScada are performed using socket streams that
act like serial connections between two programs. VTScada can act as
both a socket server and a socket client.
Following is an example of a Client and a Server that will create a con-
nection and pass the string "Hello World" followed by a number rep-
resenting the number of seconds since midnight.

Client:

[
 Graphics Module { Contains user graphics };
 Calculations Module { Contains user calculations };
 WinTitle = "Socket Test - Client Side" { Window title };
 SocketHandle;
 Client;
 Server;
 Data;
]
Main [
 Window(0, 0 { Upper left corner },
 800, 600 { View area },
 800, 600 { Virtual area },
 Graphics() { Start user graphics },

{5432109876543210}
 0b0010000000110011, WinTitle, 0, 1);
]
<
{===================== System\Graphics =======================}
{ This module handles all of the graphics for the application }
{===}
Graphics
Init [
 If 1 Screen1;

[
 Client = ClientSocket(0, "Richard," 20000, 1024, 1024, 1);
]
]
Screen1 [
 If TimeOut(!Valid(Client), 2) Init;
 If TimeOut(ValueType(Client) <> 8,2) Error;

 If GetStreamLength(Client) > 0 || MatchKeys(2, "r");
[

 SRead(Client,
 Concat("%," Concat(GetStreamLength(Client), "c")), Data);
]
 If TimeOut(1, 1);

[
 SWrite(Client, "%s," Concat(" Hello World ," Time(Seconds(),
3)));
]
 If MatchKeys(1, " ");

[
 SWrite(Client, "%s," Concat(" Hello World ," Seconds()));
]
 ZText(10, 150, Data, 15, 0);
 ZText(200, 100, Cond(Valid(Client),"Connected,""Not
Connected"), 10, 0);
 ZText(200, 110, Concat("ErrorCode : ," Client), 10, 0);
 ZText(200, 120, Concat("Type : ," ValueType(Client)), 10, 0);
 If WindowClose(Self());

[
 CloseStream(Client);
 Slay(Self(), 1);
]
]
Error [
 ZText(100, 130, Concat("ErrorCode : ," Client), 10, 0);
]
{ End of System\Graphics }
>

Server:

[
 Graphics Module { Contains user graphics };
 Calculations Module { Contains user calculations };
 WinTitle = "Socket Test - Server Side" { Window title };
 SocketHandle;
 Client;
 Server;
 Data;
 Attribs0;
 Attribs1;
]
Main [
 Window(0, 0 { Upper left corner },
 800, 600 { View area },
 800, 600 { Virtual area },
 Graphics() { Start user graphics },

{5432109876543210}
 0b0010000000110011, WinTitle, 0, 1);
]
<
{===================== System\Graphics =======================}
{ This module handles all of the graphics for the application }
{===}
Graphics

Init [
 If 1 Wait ;

[
 SocketHandle = SocketServerStart(0, 20000, 1024, 1024, 1);
]
]
Wait [
 If SocketWait(SocketHandle) Main;

[
 Server = ServerSocket(SocketHandle);
]
]
Main [
 If GetStreamLength(Server) > 0 || MatchKeys(2, "r");

[
 SRead(Server, Concat("%," Concat(GetStreamLength(Server),
"c")), Data);
 SWrite(Server, "%s," Data);
]
 If WindowClose(Self);

[
 CloseStream(Server);
 SocketServerEnd(SocketHandle);
 Slay(Self(), 1);
]
 ZText(0, 50, Data, 15, 0);
 ZText(0, 100, Cond(Valid(Server), "Connected,""Not Connected"),
10, 0);
]
{ End of System\Graphics }
>

Related Functions:
The main functions used to handle TCP/IP are as follows:

... BlockWrite

... ClientSocket

... ServerSocket

... SocketServerStart

... SocketServerEnd

... SocketWait

... SRead

... SWrite

... TCPIPReset

SNMP Agent Configuration
The SNMP agent is not enabled by default. You must enable and con-
figure the agent before using. All of the application properties listed at
the end of this topic should be reviewed.
Once configured, you will be able to serve tag values over SNMP. An
SNMP client will be able to connect to the server to read from or write to
tags configured for SNMP access. The following features are available:

l Access to VTScada tag values via SNMP GetRequest commands.

l Ability to set VTScada tag values via SNMP SetRequest commands.

l Ability, using custom code, to send Trap/InformRequest notification to the
NMS1 when tag values change.

l Support multiple simultaneous client connections.

l The address (OID2) assigned to a tag is retained and existing address bind-
ings do not change when regenerating or updating the MIB3.

l You can export the SNMP Agent configuration as a MIB file, allowing VTScada
settings to be imported into a 3rd party system.

l The enterprise PEN may be customized.

l The community names are configurable.

Warning: Do not allow write access over an unsecured network. Com-
munity strings are merely plain-text passwords.

To enable the SNMP agent:
1. Open the Edit Properties page within the Application Configuration dialog.

2. Select the Advanced Mode option.

3. Locate the property SNMPAgentEnable.
This will be an OEM property, unless previously configured in your applic-

1Network Management System
2Object IDentifier. A part of the SNMP driver addressing system.
3Management Information Base. A hierarchy of the information available
to an SNMP device, organized by numbered Object Identifiers (OIDs).

ation. If so, you must copy the property to your application before you can
change the value.

4. Set the value of the local copy of SNMPAgentEnable to 1.

5. Save and apply changes.
The SNMP Agent requires an IP Network Listener tag to provide access to
the system. That tag provides features such as IP filtering and connection
audit logs. The IP Network Listener tag must be configured with the
name specified in the application property, SNMPAgentIPListener .

1. Locate the property, SNMPAgentIPListener.

2. Make note of the value of that property.

3. Ensure that you have an IP Network Listener tag located at the top level of the
tag hierarchy, and having a name that is identical to the value shown in the
property, SNMPAgentIPListener.

Related Information:

...MIB Objects

...Agent Tag Setup

...Agent Tag Fields

...Trihedral MIB Definition

...Agent Tag Change Notification Traps

...Custom MIB Setup

...Support for Analog Tag Values

...Support for Data Time Stamps
Refer to the VTScada Admin Guide for:
Service enabling properties:

...SNMPAgentEnable

...SNMPAgentReadCommunity

...SNMPAgentWriteCommunity

...SNMPAgentWriteEnable

...SNMPAgentIPListener
Advanced communication properties:

...SNMPAgentMaxTCPSize

...SNMPAgentMaxUDPSize

...SNMPAgentSessionTimeout
Trap configuration properties:

...SNMPAgentTrapCommunity

...SNMPAgentTrapHost

...SNMPAgentTrapPort

...SNMPAgentTagNotifyMode
Properties used only to inform traps:

...SNMPAgentInformRetryInterval

...SNMPAgentInformRetryLimit

MIB Objects

The VTScada SNMP Agent implements MIB-II, which is a basic object avail-
able on most SNMP agent devices. (See: RFC 1907 - Management Inform-
ation Base for SNMPv2)
This provides certain basic objects such as the device identification and
message processor success and error counts. VTScada fully implements
MIB-II as per compliance requirements.
Custom objects implemented by the VTScada SNMP Agent are located
under the vtscada OID (1.3.6.1.4.1.42905.1). The top level nodes of the
product are as follows:

appTraps(0) definitions for custom trap types (not accessible)

appInfo(1) application server information such as application name and
memory usage

appNotifyInfo(2) Notification subsystem information variables

appTags(3) Contains all the tags configured for use with the SNMP Agent

Agent Tag Setup

By default there will be no tags available in the agent MIB, only basic ser-
vice variables. Tag setup requires a manual action to initiate. In

particular, the property, SNMPAgentEnable must be set to 1 before pro-
ceeding.

1. Open the Idea Studio.

2. Within the Widgets palette, open the Tools folder.

3. Open the SNMP Agent Tools folder

4. Add the 'SNMP Agent' button to your page.
The SNMP Agent button has only one configurable property: the name to
be displayed on the button.

5. Close the Idea Studio.

Running the SNMP Agent:
1. Click the SNMP button.

The SNMP Agent Setup dialog will open.

There are two options: Generate New and Update Existing.
a. Generate New will reset prior OID address assignments

b. Update Existing will retain prior OID address assignments
(Either way the SNMP Agent will be updated to the current VTScada tag con-
figuration)

Select the desired option and then choose a location in which to save the
exported MIB file.
Only OPC-enabled tags can be made available via the SNMP Agent. The
update process automatically includes all OPC-enabled tags running in
the application.

l OID addresses are assigned to tags and are retained until explicitly reset.

l Every available tag will have the following fields: { Name, Value, Quality,
Timestamp, Type }

l SNMP data type and access level for Value are determined via the
OPCGetTagAttributes() API.

l A subset of the values from OPCGetTagProperties() populate the optional
fields: { Description, Area, Units, Device, Address }

l SNMP Get commands use the OPCReadTagValue() API to access the Value,
Quality, and Timestamp.

l SNMP Set commands use the OPCWriteTagValue() API to set the Value.
See the OPC setup guide for OPC API function implementation.

Note: subsequent tag configuration changes will not be included until
the next time MIB Setup is executed.

Related Information:

...Agent Tag Fields

Agent Tag Fields

The following set of fields are potentially available for every OPC-
enabled tag:

l Name - The full VTScada tag name

l Value - Value if the tag if Quality is good

l Quality - quality of the tag Value, as follows:
o Bad (0)
o Configuration Error (4)
o Uncertain (64)
o Engineering units exceed low limit (85)
o Engineering units exceed high limit (86)

o Good (192)
o Good with manual override (216)

l Timestamp - UTC timestamp associated with the tag

l Type - Name of the tag type

l Description - Description of the tag

l Area - Area of the tag

l Units - Engineering units associated with the tag value

l Device - Name of the associated I/O device tag

l Address - I/O device address associated with this tag
Except for Value, all fields are read-only.
Quality values 85 and 86 will occur only for VTScada tags that map to
32-bit integers, such as the Counter tag.

Trihedral MIB Definition

The exported VTScada SNMP Agent MIB is defined under the Trihedral
enterprise. Most management software will require the Trihedral MIB
definition in order to process the VTScada MIB.
The Trihedral enterprise MIB definition:

TRIHEDRAL-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, enterprises FROM SNMPv2-SMI;

trihedral MODULE-IDENTITY
 LAST-UPDATED "201312020000Z"
 ORGANIZATION "www.trihedral.com"
 CONTACT-INFO ""
 DESCRIPTION "Trihedral Engineering Ltd."
 REVISION "201312020000Z"
 DESCRIPTION "First draft"
 ::= { enterprises 42905 }

END

A copy of this definition is present in the installation directory under Mib-
s\TRIHEDRAL-MIB.txt

Agent Tag Change Notification Traps

The SNMP Agent provides a custom trap type for sending tag change noti-
fications to the management server. Custom code is required to send a
change notification, but this can be done from a simple child tag that
watches the parent value, or from an application service module. This
provides maximum flexibility as to when and how the notifications are
sent.

\SNMPAgent\NotifyTagChange

Description: Sends a notifyTagChange trap to the configured trap
destination.

Returns:

Usage: Subroutine

Format: SNMPAgent\NotifyTagChange(TagName[, NeedAck,
Fields])

Parameters:

TagName

Required. Name of the tag to send the notification for

NeedAck

Optional. Any Boolean expression. Set TRUE if acknow-
ledge is required or FALSE to send unacknowledged
trap. Defaults to FALSE.

Fields

Optional. An array of field names to send in trap/in-
form PDU. Defaults to (Timestamp, Value, Quality). See
available field names under Agent Tag Fields.

Comments: This sends a notifyTagChange trap to the configured
trap destination. By default the SNMP Agent noti-
fication subsystem will only send notification from
the current server.

The option SNMPAgentTagNotifyMode can adjust
this behavior as needed. The name of the RPC ser-
vice for notifications is "SNMP Agent Notifications",
which can be configured like any other VTScada RPC
service.

If the SNMP Agent Notifications service server changes then a noti-
fyServerChange trap will be sent from the new server. The management
system can choose to poll for the current tag values whenever this
occurs, as notifications may have been missed during the transition
period.
The following custom appNotifyInfo MIB objects also provide some useful
information.

l notifyServer(1) - 1 if this is the current notification server

l notifyFailCount(2) - count of notifications that did not receive an acknow-
ledge (after retries).

l lastNotifyFailUTC(3) - UTC timestamp of the last notifyFailCount
A management system relying on notifyTagChange notifications to keep
values updated should keep an eye on the fail statistics, polling for cur-
rent tag values whenever synchronization has been lost as indicated by
an increase in the fail count.

Custom MIB Setup

The option exists to configure the SNMP Agent MIB to produce an OEM
MIB rather than the standard VTSCADA MIB. The primary setting to
enable this is:

SNMPAgentOEMSetup
This is a string of the form "enterprise(PEN).product(number)".
(For example: "acme(696).rocketApp(1)").

The enterprise and PEN must match what is defined in the enterprise MIB
file. Once this setting is specified you must include the following in order
to generate a functional MIB file:

SNMPAgentOEMEnterpriseMIBModule
Enterprise MIB module name for exported MIB file (Eg; "ACME-
MIB"). Must match the enterprise MIB file module declaration.
SNMPAgentOEMProductMIBModule
Product MIB module name for exported MIB file (Eg, "ROCKET-
APP-MIB")

The MIB subsystem will create a custom MIB based on these settings.
Note that the enterprise MIB file will have to be supplied to the end user
in order for the custom product MIB to be of use. However, the VTScada
SNMP Agent does not need the actual enterprise MIB module to function.
The header of the generated MIB file will contain the following fields.
Definitions for these are optional.

SNMPAgentOEMOrganization
(string) Organization for exported MIB file

SNMPAgentOEMContactInfo
(string) Contact Information for exported MIB file

SNMPAgentOEMDescription
(string) Product description for exported MIB file

In order for the custom parameters to be SMIv2 compliant, the following
rules must be observed,

A. MIB Module names:

l Must begin with UPPER case letter; followed by zero or more letters, digits,
and hyphens

l Hyphen cannot be last, and there cannot be two consecutive hyphens

B. SNMPAgentOEMProduct setting names:

l Must begin with LOWER case letter; followed by zero or more letters and
digits

l Have no hyphens

Support for Analog Tag Values

Standard SNMP does not define a floating point data type. To provide
this values over SNMP, without truncating to integers, the floating point
numbers are encoded as strings by default.
For example, 1234.567 is returned as a DisplayString with value
"1234.567".
Tags with integer values are encouraged to report their type as integer
rather than a floating point to avoid such issues.

Related Information:

...Support for Data Time Stamps

Support for Data Time Stamps

The timestamps (type: timeticks) provided by SNMP are based on
sysUpTime (see MIB-II), which is relative to the device restart rather than
any useful epoch. Further, sysUpTime will roll over eventually.
To provide for tag values, and other useful timestamps, the SNMP Agent
encodes timestamps in type Unsigned32 as the number of seconds since
midnight of January 1, 1970 (where "midnight" is 00:00). By convention
all timestamps will be in UTC.

Related Information:

...Support for Analog Tag Values

Using ODBC
ODBC (Open Data Base Connectivity) is a standard interface to a wide vari-
ety of database packages. ODBC drivers are available for most common
databases. With the ODBC interface, a VTScada application can be written
to store and retrieve data from the database in a format independent of
the particular database used. To switch databases, only the driver needs
to be changed.

Note: In order to perform ODBC operations, an ODBC driver for the
DBMS that you wish to use must be installed on your system and prop-
erly configured. Consult your DBMS vendor documentation for details
of how to do this.

The program, VTSODBCDriverInstall.EXE (distributed with VTS), will
install an OBDC driver on your system. This driver is compatible with
both 32 and 64 bit Windows versions. The VTScada OBDC driver will
allow you to access VTScada tag and alarm history data using SQL quer-
ies – subject to this option being purchased with your VTScada license.
To access an ODBC data source, a Data Source Name (DSN) is used. This
can be configured using the Microsoft Windows ODBC Data Source Admin-
istrator (installed under Control Panel\Administrative tools) or (better)
using a file DSN or "DSN-less" connection string.
32-bit ODBC data sources on a 64-bit Windows use the Microsoft Win-
dows ODBC Data Source Administrator located in %sys-
temroot%\SYSWOW64\odbcad32.exe. Consult the online Microsoft
documentation for more details.

Related Information:

...SQL Queries of VTS Data - The ODBC Server - See the VTScada
Developer's Guide

Using DLLs
DLLs are dynamic link libraries. They are the primary means for access-
ing C code functions from VTScada. With the DLL statement, you can
access existing DLLs or access your own DLL used to create some spe-
cialty function. To create a DLL you will need a programming language
compiler for a language such as C.

Related Functions:

... DLL

... LoadDLL

Modem Manager Service

The VTScada Modem Manager provides data and voice telephony services
for standard VTScada applications.

Note: TAPI - Telephony Application Programming Interface. A com-
ponent of Microsoft operating systems. The TAPI interface enables the
connection of a PC running Windows to telephone services. The TAPI
standard supports connections by individual PCs, as well as LAN con-
nections serving many computers. Within each connection type, TAPI
defines standards for simple call control and manipulating call content.

The Modem Manager provides services that allow modems connected to
different machines to be managed as a common pool.
Key features of the Modem Manager are:

l Able to control a pool of modems distributed across a number of PCs. Any
combination of your modems may be included in or excluded from a given
pool. Within a pool, each modem is tried in turn until a call is successful.

l One more modems can be set aside from the pool, to be used as a preferred
route for outgoing calls.

l Provides control over which modems should be used, and when calls should
be made.

l Call setup, queue information, and progress information are distributed to all
copies of Modem Manager on a networked system.

l Queues and timekeeping use UTC for coordination of modems across mul-
tiple time zones.

l Provides generic audio call handling facilities, including guard tone, DTMF
detection, and speech synthesis.

l Provides a way for you to list the modems in your system.

l Trihedral provides both a TAPI Service Provider (TSP) and a modem audio
driver. These have been developed to overcome limitations that were found
in the standard Unimodem V driver from Microsoft.

The Modem Manager interfaces with a Microsoft system component
called "TAPI" (see definition box). TAPI enables different modems to be

handled in a generic manner, and to be shared between different applic-
ations and services (e.g. RAS or FAX). TAPI does not interface directly to
the modem; this is the job of the Trihedral Voice Modem Service Pro-
vider. You may use the more common Unimodem V, but a Trihedral
driver was developed to avoid several problems that have been found
with the Unimodem V driver.
Physical modems are associated with modem tags. These hold the con-
figuration details for each modem, and may be monitored for call pro-
gress or errors.

Related Information:

...Modem Tags - Configuration of, described in the VTScada Developer's
Guide.

...Modem Manager Concepts - An overview of what the Modem Manager
does.

...Canonical Address Format - Reference: how to format telephone num-
bers.

...Modem Manager Configuration Variables - Control over modem func-
tionality.

...Sequence of Events for Incoming Calls - How the Modem Manager
works.

...Sequence of Events for Outgoing Calls -

...Allocating Modems in a Managed Pool for Outgoing Calls - Modem
allocation.

... Local Modems

...Modem Manager Alarm and Event Reporting - Event codes

... Modem Manager API - Create a custom driver to handle calls.

...TAPI and UniModem Considerations - Common questions when con-
figuring modems.

Modem Manager Concepts

Client Server Relationships
The Modem Manager runs as a server on one system and as a client on
others. The server and client Modem Managers cooperate to provide
modem pool management and to set up data paths between modem
users and the allocated modem(s).

Outgoing Calls
When an outgoing call is requested, the Modem Manager selects a free
modem, or queues the call until a modem becomes free. Once a modem
is free, the call is dialed. The selected modem may be on a different PC
than that requesting the call. The Modem Manager sets up transparent
data paths between the modem and the requestor. In the event that the
Modem Manager fails to complete the connection, it can retry the
attempt using an alternative modem or modems, if they are available.

Incoming Calls
When an incoming call is received by one of the pool modems, the
Modem Manager passes the initial data to objects that have previously
registered an interest in incoming calls (discriminator modules).

l If an object accepts the offered call, then the Modem Manager sets up trans-
parent data paths between the modem and the recipient.

l If no one accepts the call, then the Modem Manager returns the call to the
operating system to allow other applications the opportunity to take the call.

This incoming discrimination can also function with incoming audio
calls.
At any time there are three logical PCs involved in a call:

l The caller or receiver.

l The Modem Manager server.

l The owner of the physical modem.

Depending upon the configuration of your system, the roles of these
three logical PCs may be played out on one, two, or three physical PCs.

Canonical Address Format
If VTScada is to use the system's modem dialing rules then the phone
number to be dialed must be given in canonical format.
The canonical address format is intended to be a universally constant dir-
ectory number; for this reason, numbers in address books are best
stored using canonical format.
A canonical phone address is a text string with the following structure:

+ CountryCode SPACE [(AreaCode) SPACE] SubscriberNumber | Subaddress
^ Name CRLF …

The components of this structure:

Component Meaning

+ Equivalent to hex 2B. Indicates that the number that follows it uses the
canonical format.

CountryCode A variably-sized string containing one or more of the digits "0" through
"9" (hex 30 through 39 inclusive). The CountryCode is delimited by the
SPACE that follows it. It identifies the country/region in which the address
is located.

SPACE Exactly one space character (hex 20). It is used to delimit the end of the
CountryCode portion of the address.

AreaCode A variably-sized string containing zero or more of the digits "0" through
"9" (hex 30 through 39 inclusive). AreaCode is the area code portion of the
address, and is optional. If the area code is present, it must be preceded
by exactly one left parenthesis character (28), and be followed by exactly
one right parenthesis character (29) and one space character (20).

Sub-
scriber-
Number

A variably-sized string containing one or more of the digits "0" through
"9" (hex 30 through 39, inclusive). It may include other formatting char-
acters as well, including any of the dialing control characters described in
the Dialable Address Format

 Character Hex Encoding

 ! 20

23

 $ 24

 * 2A

 , 2C

 ? 3F

 @ 40

 ABCD 41-44

 P 50

 T 54

 W 77

 abcd 61-64

 p 70

 t 4

 w 9

The subscriber number should not contain the left parenthesis or right par-
enthesis character (these are used only to delimit the area code), nor
should it contain the pipe (|), carat (^), or CRLF characters (which are used
to begin following fields).
Most commonly, non-digit characters in the subscriber number would
include only spaces, periods (.), and dashes (-). Any allowable non-digit
characters that appear in the subscriber number are omitted from the Dial-
ableString returned by the LineTranslateAddress function, but are retained
in the DisplayableString.

| Hex (7C). If this optional character is present, the information fol-
lowing it up to the next + | ^ CRLF, or the end of the canonical
address string, is treated as sub address information, as for an

ISDN sub address.

Subaddress A variably-sized string containing a sub address. The string is
delimited by + | ^ CRLF or the end of the address string. During
dialing, sub address information is passed to the remote party. It
can be such things as an ISDN sub address or an email address.

^ Hex (5E). If this optional character is present, the information fol-
lowing it up to the next CRLF or the end of the canonical address
string is treated as an ISDN name.

Name A variably-sized string treated as name information. Name is
delimited by CRLF or the end of the canonical address string and
can contain other delimiters. During dialing, name information is
passed to the remote party.

CRLF Hex (0D) followed by Hex (0A), and is optional. If present, it indic-
ates that another canonical number is following this one. It is
used to separate multiple canonical addresses as part of a single
address string (inverse multiplexing).

For example, the canonical representation of the main switchboard tele-
phone number at Trihedral is:

+1 (902) 835-1575

Modem Manager Configuration Variables
Through the following application properties, you have extensive control
over how the modem manager operates.
The following can be found in the VTScada Admin Guide:

...AnswerCalls

...CallInterval1

...CallOutDelay1

...CallOutDelay2

...CallOutPriority

...CycleDelay

...CycleLength

...DataIdleTime

...DialerSpeechInit

...DialResetTime

...DialWaitTime

...GuardTone

...HangUpDelay

...HelloPacketLength

...InitialDataDelay

...InitModemsDisabled

...MaxHandOffCount

...MinModemsFree

...MMCycleTime

...MMLogDateFormat

...MMLogLevel

...MMLogTimeFormat

...MMMaxQTime

...MMRPCTimeout

...ModemAlarm

...ModemAutoReset

...ModemManagerLogSize

...ModemMmaster

...<ModemName>Device

...<ModemName>Disabled

...ModemRetries

...ModemSpeechTO

...ModemTCPIPPort

...SiteRetries

...SquelchDetectDelay

...SquelchIdleTime

...SquelchPacketLength

...UseSerialAreaInModemCall

...UseUnimodem

Sequence of Events for Incoming Calls
The exact sequence of events depends on whether the modem is oper-
ating in data mode or in audio mode. This, in turn, is decided by the col-
lective modem media modes specified by the active call discriminator
modules.

Related Information:

...Modem in Data Mode

...Modem in Audio Mode

...Sequence of Events for Outgoing Calls

Modem in Data Mode

Note: The following italicized words are application properties. Inform-
ation on each of these may be found in "Application Properties for the
Modem Manager".

When a call is answered, the Modem Manager starts a configurable noise
suppression phase as follows:

1. Wait for SquelchDetectDelay seconds, then go to step 3. If while waiting, data
is received, then go immediately to step 2.

2. Throw away data until either:

a. An idle period equal to SquelchIdleTime seconds occurs, in which case
go to step 3; or

b. Data received exceeds SquelchPacketLength, in which case the call is
disconnected.

3. Wait for data to start arriving. When it does, go to step 4. If the wait exceeds
InitialDataDelay seconds, disconnect the call. Alternatively, if

InitialDataDelay1 is specified, go to step 4 after the defined period of time.
This allows for RTUs that don't speak until they are spoken to.

4. Every DataIdleTime seconds, monitor the total amount of data received in
this step. If it is at least HelloPacketLength bytes, or does not change
between two successive DataIdleTime periods, go to step 5.

5. Offer the received data packet to each registered driver.

6. The data is offered to the registered driver(s) by calling the module dis-
criminator in the driver's scope. The data received so far is passed in a buffer
as a parameter to the discriminator module. This subroutine examines the
data and returns Invalid if the data is not recognized, or the station identifier
of the driver instance that should handle the call. If the call is accepted, then
Modem Manager will call the driver's Connect() module, passing the station
identifier and the stream as parameters.

Note: An example of a data discriminator can be found in Example
Data Discriminator.

Factors to Consider for the Configuration of Incoming Calls
l Will incoming calls be answered (AnswerCalls)?

l Set up modems (on a per modem basis) to answer on a specific number of
rings (see: Modem Tag Type Properties: Settings Tab).

l Decide how many modems should be kept free to accept incoming calls
(MinModemsFree).

l Specify noise filtering conditions to ensure that good connections are appro-
priately detected.

l Register the driver (provide a module) (see Modem Manager Programming
Interface).

l Decide whether to hand-off unaccepted calls (MaxHandOffCount).

Modem in Audio Mode

An audio discriminator recites voice prompts to the caller, and determ-
ines the validity of the caller by received DTMF tones.
When a tag registers an audio discriminator object, that tag should have
a DataPort variable and a module called AudioDiscriminator().

When a call is answered, the modem is initially in audio mode. The
highest priority AudioDiscriminator() module is called with the tag's
DataPort variable set to a useable stream.

l This is a steady state call that times-out after the period of time specified
when the discriminator module was registered.

l If the discriminator module returns "0", the call is passed to the next dis-
criminator module.

l If the discriminator module returns a non-zero result, then it is deemed to
have accepted the call.

The discriminator may read and write on the DataPort stream.
Any data written to the stream is converted to speech using the voice
identified when the discriminator was registered. The speech device is ini-
tialized using the string defined by the DialerSpeechInit application prop-
erty. Data written may include any escape sequences meaningful to the
TTS engine.
If a bookmark is set, when the bookmark is reported back to the Modem
Manager, a single character equal to 0x45+Bookmark Number is be inser-
ted into the stream, and may be read by the discriminator module.

l The only other data that can be received are DTMF tones inputted at the
remote device (in order to receive such tones, this requirement must be spe-
cified in the media mode for the discriminator). This data appears in the
stream as the digits 0..9, the number-hatch character (#), or the asterisk
character (*).

l If the discriminator accepts the call, then DataPort remains as a valid stream,
and the tag that owns the discriminator now has control.

l If the discriminator rejects the call or times out, then the call is passed to the
next audio discriminator in priority order. If there are no more audio dis-
criminators, the modem is switched into data mode, and the identification of
the call continues as described in Modem in Data Mode (as if a data call had
just been received).

Careful consideration needs to be given to the overall time tolerance of
this sequence. If, say, a RAS call is received in audio mode, then it must
go through all audio discriminators, the switching of the modem to data
mode (which typically takes 10 seconds), and all the data discriminators,

before the call is handed off to RAS. This is not a deficiency in the
Modem Manager, but a necessary consequence of accepting mixed media
calls.

Note: An example of an audio discriminator can be found in Example
Audio Discriminator.

Factors to Consider for the Configuration of Outgoing Calls
Local telecommunications authorities may have regulations regarding
the frequency at which call attempts are made to a particular number. By
defining values for the following modem-related application properties,
you can set restrictions on redial attempts.

l CycleLength defines the number of steps in the cycle (with a maximum of
10),

l CallInterval1 through to CallInterval10 define the delay (in seconds) at each
step transition.

l CycleDelay defines the final delay (in seconds) before the cycle restarts.

l HangUpDelay indicates the number of seconds to wait before hanging up the
modem when there are not active attempts to read or write.

l DialWaitTime enables you to configure the number of seconds to wait before
retrying a failed modem operation after no dial tone or response from the
modem has been detected. The default value is 10 seconds. During this time,
TAPI sends initialization strings to reset the modem. If not granted an appro-
priate time interval, the modem will not reset properly.

For a complete listing of the configuration variables related to the
Modem Manager, please refer to "Application Properties for the Modem
Manager".

Sequence of Events for Outgoing Calls
The exact sequence of events depends on whether the modem is calling
out using data mode or audio mode.

Related Information:

... Data Call

... Audio Call

...Sequence of Events for Incoming Calls

Data Call

1. The originating tag calls the Modem Manager's MakeCall() method.

2. Immediately, the tag's DataPort variable is set to a valid value.

3. Shortly after, DataPort becomes an integer value >=0.
Should the call fail in any way, then DataPort becomes negative. For fur-
ther details of these values, see Call Progress and Error Codes.

4. If the call setup completes successfully, then DataPort changes to a Stream
value (ValueType(DataPort)==8).

5. The call requestor may now read and write to that stream to communicate
with the called party.

6. To hang-up the call, you may call CloseStream().
If the other end hangs-up or the call fails, then DataPort becomes Invalid.

If the call setup fails (Step 3), then the call is retried according to the con-
figured retry settings. If the call is retried, then DataPort becomes an
array pointer while the call is queued. DataPort will not go Invalid until
the call has been abandoned.

Audio Call

1. The originating tag calls Modem Manager's MakeCall() method with a media
value mode indicating an audio call.

2. Immediately, the tag's DataPort variable is set to a valid value.

3. Shortly after, DataPort becomes a pointer to an array, indicating that the call
is queued.

4. Once call setup is started, DataPort almost immediately becomes a valid
stream value.

This is different from data call setup, in that there is no progress indic-
ation. Also, although DataPort is a stream value, the call has not actually
connected at this stage. This anomaly arises because a modem operating
in voice mode cannot acquire and interpret the various tones that indic-

ate the progress of the call – the modem returns connected status as
soon as dialing is complete.
The only practical action the caller can invoke is to operate a time-out
that allows a typical connect time, before starting to use the stream.
Any data written to the stream is converted to speech using the voice
identified when the discriminator was registered. The speech device is ini-
tialized using the string defined by the DialerSpeechInit application prop-
erty. Data written may include any escape sequences meaningful to the
TTS engine.
If a bookmark is set, when the bookmark is reported back to the Modem
Manager, a single character equal to 0x45+Bookmark Number is inser-
ted into the stream and may be read by the tag.
The only other data that can be received are DTMF tones input at the
remote device. In order to receive such tones, this requirement must
have been specified in the media mode supplied to MakeCall(). This data
appears in the stream as the digits 0..9, or as the number-hatch (#) or
asterisk (*) character.
To shut down a call, you can call the CancelCall() method. If the other
end hangs up, DataPort will become invalid.

Allocating Modems in a Managed Pool for Out-
going Calls
There are situations that require a caller to indicate that only modems
with a specific property should be used when making a call, even though
those modems are part of the central managed pool (e.g. where virtual
modems have been set up with special initialization strings (e.g. for cel-
lular connection)). The Area parameter for modem tags can be used for
this purpose. If a modem tag has an area defined, then it will only be
selected for an outgoing call if the call originator has specified the same
area name. Additionally, when allocating local modems on a particular
system, the allocator will take account of any Area name associated with

the modem tag, and use it to map the physical modem. The actual cap-
abilities of a modem (Data, Voice, Fax, etc.) are handled by matching the
physical media mode of the modem.
See also: Modem Tags.

Local Modems
Local modems are used in circumstances where you wish to be able to
make outgoing calls from a modem that is part of the local PC's setup (in
a distributed application, for example).
A local modem is defined by creating a modem tag in which the work-
station parameter is blank (i.e. leave the "Workstation Name" field of the
modem tag's configuration folder blank). The Modem Manager interprets
this to mean that it has to associate this logical modem with the first
modem that is not otherwise allocated on the local PC. If there is no such
modem, then the local modem is unavailable at that workstation.
If you wish to associate a logical modem with a specific local modem,
then include a line similar to the following in the workstation.Dynamic
file on the PC.

ModemTagNameDevice = Actual Modem Device Name

Example:

Modem01Device = HSP56 Micro Modem

Please note the following details:
A local modem is used for outgoing calls only.
Local modems are only used on specific instructions from the tag
that originates the call (see MakeCall()).

Calls scheduled for handling by a local modem are queued on a separate
queue at the local PC. If the local PC is shutdown before the call has been
made, then that call will not be picked up by another PC and all memory
of that call request will be lost.

Modem Manager Alarm and Event Reporting
The Modem Manager maintains the Value parameter of the Modem Tag
to indicate overall status. The value may be one of:

0 Idle

1 Incoming call

2 Outgoing call

3 Error

An alarm may be configured on the Modem tag's value. Configuration of
alarm tags on modems is discussed in Modem Tags.

Related Information:

...Internal Event Recording

Internal Event Recording

The Modem Manager records events internally at one of four levels of
detail. All events may be displayed on-screen using the Modem Tools wid-
get. The default is to display level 0 events only.

l Level 0 events are selected to be meaningful to normal operations personnel.

l All level 0 events are distributed across all machines for display purposes.

l All level 0 events cause an event entry in the system's alarm/event log.
Level 1..3 events are of a diagnostic nature, and it is not recommended
that they be displayed on-screen during normal operation.

l Level 1..3 events are only recorded on the workstations on which they occur.

l All Modem Manager events are recorded in the system's "VTSTrace.txt" file if
recording of Modem Manager events is enabled.

The level of on-screen display and the size of the on-screen display his-
tory are customizable using application properties. For a complete list-
ing of the application properties related to the Modem Manager, please
refer to "Application Properties for the Modem Manager".

Note: You can disable the logging of modem manager alarms with the
configuration variable ModemAlarm.

Modem Manager API
If you are writing a custom driver to accept incoming modem calls, then
you must use the Modem Manager interface. Fundamental tasks include:

Register a modem
You must call the Modem Manager's Register subroutine, passing the
driver's discriminator object value, its station number, and a priority rel-
ative to other drivers. Here is a sample call with a priority setting of 10:

\ModemManager\Register(Root, Station, 10 { Priority });

Unregister a modem
If a driver needs to change its Station address, it must first unregister.
You must call the Modem Manager's Unregister subroutine, passing the
driver's discriminator object value, and the station number with which it
previously registered.

\ModemManager\Unregister(Discriminator, Station);

Provide a discriminator subroutine
You must provide a discriminator subroutine. The Modem Manager will
call this subroutine when it offers you an incoming call. The Modem Man-
ager passes a BUFFER as a parameter. This Buffer contains the initial data
received from the line (see HelloPacketLength). You should parse this
data and decide whether or not your driver supports it, and for which
STATION it is intended.

l Return INVALID to reject this call.

l Return a valid STATION number to accept the call.

l If you accept the call, then the Port\IsConnected() module will go true. You
can then obtain the serial port semaphore Port\Sem() to read and write data
via the serial port.

l If Port\IsConnected() becomes false, the call has been disconnected.

l If you wish to hang up the call, call the subroutine Port\CallComplete().

Monitor call progress
The Port\DataPort variable is VALID if a call is being setup or is active. At
all other times, it is INVALID. During call setup, the value is a SHORT
INTEGER indicating the progress of the call, changing to a STREAM when
the call connects (this is what IsConnected() indicates).

Related Functions:

... ModemStream

Log events
If required, you may insert entries into the Modem Manager's event log.
To do this, call the EventLog subroutine as follows:

\ModemManager\EventLog("Text message to be logged");

You should set the application property ModemManagerLogSize to at
least 256. Failing to do so will result in the loss of all logging events that
occur prior to the first display of the event log.

Related Information:

...Required Subroutines in Custom Drivers

...Modem Manager Functions

... ModemControl Plug-in

...Call Progress and Error Codes

... Modem Manager Constants

... Modem Manager Properties

...Example Audio Discriminator

...Example Data Discriminator

Required Subroutines in Custom Drivers

The following topics describe the Modem manager subroutines that must
be used if you are writing a custom driver to accept incoming modem
calls.

Registering a modem

You must call the Modem Manager's Register subroutine, passing the
driver's discriminator object value, its station number, and a priority rel-
ative to other drivers. Here is a sample call with a priority setting of 10:

\ModemManager\Register(Root, Station, 10 { Priority });

Discriminator
You must provide a discriminator subroutine. The Modem Manager will
call this subroutine when it offers you an incoming call. The Modem Man-
ager passes a BUFFER as a parameter. This Buffer contains the initial data
received from the line (see HelloPacketLength). You should parse this
data and decide whether or not your driver supports it, and for which
STATION it is intended.

l Return INVALID to reject this call.

l Return a valid STATION number to accept the call.

l If you accept the call, then the Port\IsConnected() module will go true. You
can then obtain the serial port semaphore Port\Sem() to read and write data
via the serial port.

l If Port\IsConnected() becomes false, the call has been disconnected.

l If you wish to hang up the call, call the subroutine Port\CallComplete().

Call Progress
The Port\DataPort variable is VALID if a call is being setup or is active. At
all other times, it is INVALID. During call setup, the value is a SHORT
INTEGER indicating the progress of the call, changing to a STREAM when
the call connects (this is what IsConnected() indicates). For details on the
integer values, please refer to the ModemStream script function.

Event Log
If required, you may insert entries into the Modem Manager's event log.
To do this, call the EventLog subroutine as follows:

\ModemManager\EventLog("Text message to be logged");

Note: You should set the application property ModemManagerLogSize
to at least 256. Failing to do so will result in the loss of all logging
events that occur prior to the first display of the event log.

Unregister (Modem Manager)
If a driver needs to change its Station address, it must first unregister.
You must call the Modem Manager's Unregister subroutine, passing the
driver's discriminator object value, and the station number with which it
previously registered.

\ModemManager\Unregister(Discriminator, Station);

Modem Manager Functions

The following functions are related to the Modem Manager.

 CallerID Returns the callerID string from the TAPI LINECALLINFO
structure. Works only with the Unimodem driver, not with
the Trihedral TSP driver.

 CancelCall Removes a queued call or abandons a call that is in-pro-
gress

 Fail Tells the Modem Manager to abort and retry an established,
outgoing call

 FindModem Returns a pointer to one of the Modem Manager's own
internal modem objects. This pointer may then be used to
access public, read-only properties for display purposes

 MakeCall Queues a call request

 ModemCount Number of available modems

 ModemDev Obtain wave device handle

 ModemDial Initiate an outgoing call

 ModemDigits Monitor a voice call for key presses

 ModemList Enumerate the available modems and their capabilities

 ModemMedia Determine or change the media mode of a call

 ModemStream Prepare to receive an incoming call

 ModemTransfer Transfer a call to another system service

Register (Modem
Manager)

Registers a discriminator that accepts incoming calls

Note also, that the Connect() method of the Serial Port tag includes the
parameter, ConnectInitString, which can be used to programmatically
send an initialization string for any particular connection attempt. If
valid, this will override the initialization string configured in the serial
port. A "\r" is always appended to this string.

ModemControl Plug-in

The \ModemControl plug-in module expects four parameters as follows:
Function

Identifies the calling condition for the plug-in:

Calling
Condition

Definition

0 about to begin a dial attempt for
an outgoing call

1 completion of a successful out-
going call

2 failure of an outgoing call

3 modem is going idle after a call
or on exit from a failed mode

4 modem is being set into a failed
mode

Index

The index of this modem device in the list of system
modem devices (as returned by the ModemList func-
tion).

Tag

The name of the tag that originated the call
(functions 0, 1, and 2 only).

UserData

The opaque user data supplied as a parameter to the
MakeCall() method (functions 0, 1, and 2 only).

Call Progress and Error Codes

Values greater than or equal to zero are progress codes, while values
less than zero are errors.

Progress Codes

Code Description

0 LineIdle Idle (no connection); waiting for call

1 CallBegins Starting outbound call

2 RingAnswered Incoming call answered; no connection yet

3 DialToneOK Dial tone on outbound call

4 DialingOut Dialing outbound call

5 RemoteRinging Remote phone ringing on outbound call

6 RemoteBusy Remote phone busy on outbound call

7 CallConnected Connected (you should not see this value; stream value is returned
at this point)

8 HandedOff Another application is handling the call

9 IncomingCallRQ Incoming call detected

10 TempProblem Temporary modem problem – hang up and retry

11 IncomingCall Incoming call accepted

Error Values

Value Error

-1 NoModems No modems defined in the system

-2 NoDialTone No dial tone detected on outbound call

-3 RemoteBusyErr Remote phone busy on outbound call

-4 NoAnswer No answer on outbound call

-5 CallerHungUp Other end hung up an incoming call

-6 ModemUnavail Modem unavailable

-7 CallFailure Other call termination condition

TAPI Errors
Errors equal to or less than –101 correspond to the Microsoft Telephony
Interface (TAPI) errors, which are normally numbered from 1. Specific
errors that may be encountered are:

Code TAPI error

-101 TAPI error code 1 (LINEERR_ALLOCATED) – the serial port is in exclusive use by
some other process.

-112 TAPI error code 12 (LINEERR_INCOMPATIBLEAPIVERSION) – the system does not
have the required version of telephony support (TAPI 2.0 required).

-115 TAPI error code 15 (LINEERR_INUSE) – the line device is in use and cannot currently
be configured, nor can it allow a party to be added or a call to be answered, placed,
or transferred.

-147 TAPI error code 47 (LINEERR_INVALMEDIAMODE) – the requested media mode
could not be accommodated (e.g. voice call request on a non-voice modem).

-167 TAPI error code 67 (LINEERR_NODEVICE) – the specified device identifier, which
was previously valid, is no longer accepted because the associated device has been
removed from the system since TAPI was last initialized. Alternately, the line
device has no associated device for the given device class.

-168 TAPI error code 68 (LINEERR_NODRIVER) – either TAPIAddr.dll could not be located,
or the telephone service provider for the specified device found that one of its com-
ponents is missing or corrupt in a way that was not detected at initialization time.
Use the Telephony Control Panel to correct the problem.

-169 TAPI error code 69 (LINEERR_NOMEM) – insufficient memory to perform the oper-
ation, or unable to lock memory.

-175 TAPI error code 75 (LINEERR_RESOURCEUNAVAIL) – insufficient resources to com-
plete the operation (e.g. a line cannot be opened due to a dynamic resource over-
commitment). Also occurs where a modem is being used by a non-TAPI applic-

ation.

The full list of possible TAPI error codes:

Error Code Error Code

ALLOCATED 101 INVALMEDIAMODE 147

BADDEVICEID 102 INVALMESSAGEID 148

BEARERMODEUNAVAIL 103 INVALPARAM 150

CALLUNAVAIL 105 INVALPARKID 151

COMPLETIONOVERRUN 106 INVALPARKMODE 152

CONFERENCEFULL 107 INVALPOINTER 153

DIALBILLING 108 INVALPRIVSELECT 154

DIALDIALTONE 109 INVALRATE 155

DIALPROMPT 110 INVALREQUESTMODE 156

DIALQUIET 111 INVALTERMINALID 157

INCOMPATIBLEAPIVERSION 112 INVALTERMINALMODE 158

INCOMPATIBLEEXTVERSION 113 INVALTIMEOUT 159

INIFILECORRUPT 114 INVALTONE 160

INUSE 115 INVALTONELIST 161

INVALADDRESS 116 INVALTONEMODE 162

INVALADDRESSID 117 INVALTRANSFERMODE 163

INVALADDRESSMODE 118 LINEMAPPERFAILED 164

INVALADDRESSSTATE 119 NOCONFERENCE 165

INVALAPPHANDLE 120 NODEVICE 166

INVALAPPNAME 121 NODRIVER 167

INVALBEARERMODE 122 NOMEM 168

INVALCALLCOMPLMODE 123 NOREQUEST 169

INVALCALLHANDLE 124 NOTOWNER 170

INVALCALLPARAMS 125 NOTREGISTERED 171

INVALCALLPRIVILEGE 126 OPERATIONFAILED 172

INVALCALLSELECT 127 OPERATIONUNAVAIL 173

INVALCALLSTATE 128 RATEUNAVAIL 174

INVALCALLSTATELIST 129 RESOURCEUNAVAIL 175

INVALCARD 130 REQUESTOVERRUN 176

INVALCOMPLETIONID 131 STRUCTURETOOSMALL 177

INVALCONFCALLHANDLE 132 TARGETNOTFOUND 178

INVALCONSULTCALLHANDLE 133 TARGETSELF 179

INVALCOUNTRYCODE 134 UNINITIALIZED 180

INVALDEVICECLASS 135 USERUSERINFOTOOBIG 181

INVALDEVICEHANDLE 136 REINIT 182

INVALDIALPARAMS 137 ADDRESSBLOCKED 183

INVALDIGITLIST 138 BILLINGREJECTED 184

INVALDIGITMODE 139 INVALFEATURE 185

INVALDIGITS 140 NOMULTIPLEINSTANCE 186

INVALEXTVERSION 141 INVALAGENTID 187

INVALGROUPID 142 INVALAGENTGROUP 188

INVALLINEHANDLE 143 INVALPASSWORD 189

INVALLINESTATE 144 INVALAGENTSTATE 190

INVALLOCATION 145 INVALAGENTACTIVITY 191

INVALMEDIALIST 146 DIALVOICEDETECT 192

ALLOCATED 101 INVALMEDIAMODE 147

Modem Tag Return Values

The modem tag type associates a specific modem on a workstation with a
physical phone line. A modem tag can have eight possible return values:

Modem Tag Value Description

0 Idle

1 Modem calling (outgoing call in progress)

2 Modem answering (incoming call in progress)

3 General failure (modem failed)

4 Server unavailable

5 Workstation owning the modem is unavailable

6 External failure

7 Manually disabled

The value of the modem tag can be used with other tags; for example a
modem tag could be selected as the tag to be monitored by an alarm tag.
An alarm could be triggered if the value of the modem tag is 3 (modem
failed), alerting the users to modem failure.
See: Modem Tags.

Modem Manager Constants

The following constants are associated with the media handling prop-
erties and requirements of modems, call requests, and incoming dis-
criminators.

AUDIO 0x08 for use with speech synthesis
DATAMODEM 0x10 for data transfer

Three additional constants are defined, although the Modem Manager
has no specific support for them.

UNKNOWN 0x02
VOICE 0x04
G3FAX 0x20

Additional control properties associated with call handling are:
NEED_DTMF 0x1000 enable receipt of DTMF tones when handling
an audio call
DTMF_STOPS_SPEECH 0x2000 received DTMF tones interrupt speech

Modem Manager Properties

The following variables may be accessed in read-only mode:

Variable Description

AvailLinesNumber Phone lines still operational

CallAttempts Total call attempts

CallCount Number of calls placed

CallDelay Total accumulated delay between call requested
time, and actual time handled

ConfigChange Trigger. Set whenever the modem configuration
changes

FailCount Number of calls that have failed

LocalCallAttempts Total local modem call attempts

LocalCallCount Number of local modem calls placed

LocalCallDelay Total accumulated delay between call requested
time and actual time handled (local modems)

LocalFailCount Number of local modem calls that failed

UsedLines Number of phone lines in use

Example Audio Discriminator

This example is of source code for a VTScada page that implements a
simple voice response system.

[
Title = "Voice";

 Color = "<E6E6E6>";
 Bitmap;
 SecBit;
 WinFlag = 0;
 AudioDiscriminator Module { Module to receive incoming calls };
{ TAPI Media modes used to select the compatibility of a modem }

 Constant TAPIMEDIATYPE_AUDIO = 0x08;
 Constant TAPIMEDIATYPE_DATAMODEM = 0x10;
 Constant NEED_DTMF = 0x1000 { Enable DTMF when handling call };
 Constant DTMF_STOPS_SPEECH = 0x2000 { Rec'd DTMF stops any speech
};
 spVoice = "bf5ead45-9f65-11cf-8fc8-0020af14f271"
{ Voice for telephone modem};

 Constant SMALLPAUSE = "\Pau=250\";
 Constant LONGPAUSE = "\Pau=500\";
 Trig;
 Number;
 Name = "(Phone)";
 DataPort;
 KeyPress;
 BookMark;

 Phase;
 Phrase;
 Incoming = 0;
]
Init [
 If \ModemManager\Started Main;

[
 Return(Self);
 AddVariable(\Code, Name, 0, 256, 0, 0, 0, 0, 0, 0);
 Scope(\Code, Name) = Self();
 Phase = 0;
 \ModemManager\Register(Self(), 1, 1,
 TAPIMEDIATYPE_AUDIO + NEED_DTMF + DTMF_STOPS_SPEECH,
 SpVoice, 30 { Discriminator Timeout }, Name);
]
]
Main [
 Return(Self);
 \System\Edit(40, 60, 180, 90, "Number to Call", Number, !Valid
(DataPort), Trig, Invalid, 4, 1);
 If Trig;

[
 Trig = Invalid;
 Phase = BookMark = 1;
 CloseStream(DataPort);
 \Code\ModemManager\MakeCall(Number, 110, 8, 1, 0, 5, Name,
Invalid,
 TAPIMEDIATYPE_AUDIO + NEED_DTMF + DTMF_STOPS_SPEECH, spVoice);
]
 If TimeOut((ValueType(DataPort) == 8) && !Incoming, 6) && Phase ==
BookMark;

[
 BookMark = -1;
 IfThen(!Valid(Case(Phase - 1,

{0} Phrase = "Hello and welcome. Please press a
key to continue.",

{1} Phrase = "This is message number 1",
{2} Phrase = "This is message number 2",
{3} Phrase = "This is message number 3",
{4} Phrase = "Goodbye!"

)),
 CloseStream(DataPort)
);
 SWrite(DataPort, "%s%s\\Mrk=%d\\\r", SmallPause, Phrase,
Phase);
]
 If SerWait(DataPort, 1);

[
 KeyPress = SerRcv(DataPort, 1);
 IfElse(PickValid(KeyPress >= 0 && KeyPress <= 9, 0) ||
KeyPress == "#" || KeyPress == "*", Execute(

{ DTMF from phone - cancels any pending speech }
 Phase++;
 IfThen(KeyPress == "*",
 Phase = 1;
);
 IfThen(KeyPress == "#",

 Phase = 5;
);
 BookMark = Phase;
);
{ Else }
{ Must be a bookmark }
 IfThen(KeyPress == MakeBuff(1, 0x41 + Phase),
 IfThen(Phase > 4,
 Phase++;
);
 BookMark = Phase;
);
);
]
]
<
{==================== Voice\AudioDiscriminator =================== }
{ This module, runs the receive call handling. If a call is not suc-
cessfully authenticated then the caller
ModemManager) will time out and will then attempt to hand the call
off. }
{===-
=}
AudioDiscriminator
(
 Mode;
)
Check [

Incoming = 1;
If TimeOut(1, 7);
[
Phase = 1;
Phrase = "Hello, you have reached the VTScada modem tester.";
SWrite(DataPort, "%s%s\\Mrk=%d\\\r", SmallPause, Phrase, Phase);

]
If KeyPress == "9" Idle;
[
Phase = BookMark = 1;
Incoming = 0;
Return(1);

]
]
Idle [
]
{ End of Voice\AudioDiscriminator }
>

Example Data Discriminator

The following example displays a minimalist discriminator for the stand-
ard Modbus Compatible Device. This code would typically be in a file in
the application directory, and referenced in the SERVICES section of the
application's AppRoot.src root file.

[
Discriminator Module;
Connect Module;
Root;
Name;
Port;
]
Init [{ This module registers as the discriminator for tag MB01 }

If \ModemManager\Started Main;
[
Name = "MB01";
Port = Scope(\Code, Name)\Port;
Root = Self;
\ModemManager\Register(Root, Name, 10);

]
]
Main [
]
<
{================ ModiconDriver\Discriminator ====================}
{ This module pass in a buffer, return a Station ID if accept the }
{ call. The station address in the incoming message is inspected. }
{ Return invalid if reject the call. }
{===}
Discriminator
(
Buffer;
)
Main [

If watch(1);
[

IfElse(PickValid(GetByte(Buffer, 0) == Scope(\Code, Name)\Sta-
tion, 0),

Return(Name),
{ Else }
Return(Invalid)
);

]
]
{ End of ModiconDriver\Discriminator }
>
<
{===================== ModiconDriver\Connect ====================== }
{ Returns the Workstation name of the driver server. Called by the }
{ Modem Manager to determine the machine name of the current server }
{ for this driver. }
{== }
Connect
(
Station;
Stream;
)
Main [

If watch(1);
[

Return(WkStaInfo(0)) ;
]

]
{ End of ModiconDriver\Connect }
>

TAPI and UniModem Considerations
The Modem Manager does not interface directly with modems; instead, it
uses the system-provided telephony interface, TAPI. This enables
VTScada to share modems with other TAPI-compliant applications, such
as RAS services, FAX services, and so forth.
All TAPI modems share the same driver called UniModem. When a
modem manufacturer's driver is installed, what actually happens is that
an .inf file is processed, and a number of registry entries, under-
standable by UniModem, are added.

Modem Initialization Strings
The Modem Manager has no knowledge of modem initialization strings.
These come from the system registry where they are entered when the
modem manufacturer's driver is installed. The Windows Control Panel's
Phone and Modems option (or Modems option) provides a mechanism for
adding extra initialization strings.

Baud Rate
At first sight, it would appear from the Modem Manager's MakeCall
method that the baud rate and other communications parameters can be
set in the parameters to this method. However, what is being set is actu-
ally the parameters pertaining to local communication with the modem,
not parameters for communication between the local and remote
modem.
The only way that particular parameters for the modem – modem link
can be set is by setting a specific initialization string for the modem.
If you want to use specific parameters for different destination locations,
then it is necessary to define cloned "ghost" modems in the system con-
figuration. This is discussed in the section that follows.

Cloned Modems
It is possible to define multiple modem entries that refer to the same
physical modem. Different initialization strings can then be associated
with the different clones. Note that if using this method, you probably
have to reboot the system after adding each modem before you can add
another.
In order to use these cloned modems from VTScada, you have to be able
to specify which modem (or type of modem) to use for a particular call.
This is achieved using the Area parameter to the modem tag, and the
MakeCall method. Normally, the area parameter to a modem tag is
unused. If it is used, then the Modem Manager will only select that
modem for an outgoing call if the area matches the area parameter sup-
plied to MakeCall.
Note that since a set of cloned modems actually map to one physical
modem, only one of them can be in use at any time.
Further, only one of the clones may have incoming calls enabled. Failure
to observe this will result in an error opening any of the modems in the
clone set.

TAPI Errors
If you find that VTScada reports a modem as permanently unavailable,
you may find that the modem event log indicates that a TAPI error is
occurring. While a full list of such errors is given in Call Progress and
Error Codes, in the vast majority of cases, this will be caused by one of
two things:

l The system has not been rebooted since the modems were last reconfigured.
While a reboot is not always required, after some reconfiguration actions the
system cannot enumerate the resources correctly until a reboot has
occurred.

l Some non-TAPI-compliant application has opened the serial port associated
with the modem. Note that this includes VTScada's ComPort function and the
system's HyperTerminal application (commonly used in troubleshooting
modems).

RPC Manager Service

This chapter provides architectural, programming, and configuration
information on the VTScada Remote Procedure Call (RPC) subsystem. This
section assumes good knowledge of the VTScada scripting language, pro-
gramming, and familiarity with networking concepts sub-sections:
The following terms and abbreviations are used when referring to the
RPC manager and its functions.

FIFO The FIFO acronym stands for "First-in, First-out"; a simple
queue.

RPC Remote Procedure Call. A Remote Procedure Call is
simply an invocation of a VTScada module (subroutine or
launched) on one workstation from VTScada code running
on the same workstation or on another workstation.

Note: It should be noted that the "RPC" acronym
does not pertain to the operating system's remote
procedure call mechanism.

RPC Manager The generic name given to the components comprising
the RPC subsystem within VTScada.

Service An object within a networked VTScada system that has an
instance on other workstations on the network.

Service Instance An instance of a Service. There can be one of these per
application per workstation on the network.

Service Syn-
chronization

 The ability to ensure that all Service Instances of the same
Service are operating on identical copies of the Service's
data.

Synchronizable
State

 The data on which a Service operates, and which must be
identically replicated in each instance of that Service
within the distributed domain.

Related Information:

...Overview of the RPC Manager Service - RPC Manager enables VTScada
to operate within a domain distributed across multiple machines, by
providing the ability to remotely execute a VTScada subroutine.

...Services - RPC Manager provides the mechanism for ensuring that ser-
vices remain synchronized across the distributed domain.

...Connection Configuration and Management - how RPC Manager main-
tains the inter-machine connections in a distributed system.

...Configure Cross-Application RPC - how cross-application RPC works
and the modifications you will need to make to your application to
achieve this.

...Application Control of Servership - in rare cases, it may be necessary
to control the servership of one or more services by the application
itself.

...System Level Services - system level services can be used to provide a
service that is common to many applications or provide a service that
does not rely on the presence of an application.

...API Reference - a reference for each method that RPC Manager
provides for external use.

...Diagnostics - See: Trace Viewer Application.

...RPC Routing and Execution - internal and external.

...RPC Security - RPC security is system based and is concerned with
ensuring that RPC communication between VTScada servers is secure.

...Configuration - two types of initialization data used by RPC Manager.

...Protocol - TCP and alternate communications protocols used by RPC.

Overview of the RPC Manager Service
RPC Manager enables VTScada to operate within a domain distributed
across multiple machines, by providing the ability to remotely execute a
VTScada subroutine.

The RPC Manager provides the cornerstone of a comprehensive server-
/client architecture, which enables tags and other VTScada services run-
ning on physically separate workstations to coordinate their activities
and share data. VTScada contains a number of services, (such as the
Alarm Manager, Log Manager, Modem Manager), and enables these ser-
vices, all of the I/O drivers and other network-aware software com-
ponents to share their data using the RPC Manager.
A VTScada service is simply a VTScada module that registers itself as a
named component with the RPC Manager. A VTScada service encap-
sulates the data and processing logic that provides a specific function
within the application. Each service should be regarded as a separate
entity whose service name is unique within the application. Different
applications running on the same workstation can contain a service of
the same name as a service in another application, That is, two standard
VTScada applications will, for example, each contain a service called
AlarmManager.
A service running within an application instance is termed a service
instance. A distributed system contains many instances of the same ser-
vice, each one running on a separate physical machine. At any given
time, for each service, there is exactly one service instance that has
"server" status. All other instances of the same service (running on
machines other than the server instance) are either clients to that server
or have not yet determined what their status should be. A brief moment
may exist when there is no server for a service, but there will never be
more than one server.
Server status can shift from one service instance to another at any time.
Such shifts are normally the result of some failure of the server or failure
of the server to communicate with an external device. When such shifts
occur, each service must arbitrate which service instance is going to
assume server status. All other service instances must then resyn-
chronize to the new server and so become clients of it.
The RPC Manager provides the code that performs service syn-
chronization and manages servers and service instances. The service

code need only provide a few, simple methods that will be invoked by
RPC Manager to achieve this. A simple, yet functional service example
that supports all the essential RPC Manager methods is discussed in
"Create a Simple Service".
RPC Manager also provides a set of methods that provide services with
the ability to make RPCs, as well as a number of useful, ancillary meth-
ods. All the methods available are documented in the Application Control
of Servership
In normal operation, RPCManager controls which service instance is cur-
rently the server for a service. The system is simply configured to
instruct RPCManager how its servership control algorithms should oper-
ate.
In rare cases, it may be necessary to control the servership of one or
more services by the application itself. Consider, for example, a system
where maintenance of the system is necessary while the application is
running. For operational reasons, the system owners do not want a num-
ber of key services to have servership held by the machine undergoing
maintenance, but do want the application to be running.
In such circumstances the application needs to either be able to disable a
particular machine from owning servership of the key services or, more
generally, be able to control which machine is the server for those ser-
vices. More complex situations could arise where, for example, a specific
machine does not want to be considered a candidate for servership.
References in this document to version 4 of RPCManager refer to the
RPCManager capable of using version 4 RPCManager protocol. This
applies to VTS version 10 onwards.

Related Information:

...RPC High Level Design - diagram showing RPC module organization.

... Remote Procedure Calls (RPCs) - notes on how calls are threaded.

...Session IDs - definition of and uses for.

...Types of RPC - directed RPC versus service RPC.

...Cross-Application RPC - notes

...Permitted Data Types in RPC - reference: list of types that may be used
in RPC parameters.

...Compression - notes

...Packed RPC Streams - to ensure that calls are made in a given
sequence.

...Application Settings for RPC - options for control.

RPC High Level Design

RPC Manager is composed of a number of layers, each consisting of a
VTScada object instance. An illustration of the layers of which the RPC
Manager follows:

Machines participating in the distributed domain communicate using
sockets over TCP/IP. Each machine can be identified by any of the names
by which it is known, or any of the IPs by which it can be addressed. RPC

Manager on each machine runs a socket server which listens for socket
connection requests on a specific port. The port number is configurable
and defaults to 5780.
The RPC Manager layer "nearest" the sockets consists of SocketNode
object instances. There is one SocketNode instance for each IP address
with which the local RPC Manager is communicating. The next layer up
consists of a set of MachineNode object instances. There is one
MachineNode object instance for each machine participating in the dis-
tributed domain. Where all machines within the domain have only one IP
address, there will be a one-to-one correspondence between
MachineNodes and SocketNodes. However, where a machine has more
than one IP address (otherwise known as a multi-homed system), there
will be more than one SocketNode for the machine’s MachineNode.
SocketNode provides a reliable error-free transport for RPCs via a spe-
cific IP address. MachineNode provides the buffering and routing of RPCs
to its sub-ordinate SocketNodes.
On a single-homed system, the RPC transport will fail when a
MachineNode’s single sub-ordinate SocketNode is unable to reliably
transport RPCs to the intended destination. In a multi-homed system, the
RPC transport will fail only when all sub-ordinate SocketNodes are
unable to reliably transport RPCs.
To identify the integrity of an RPC transport to higher layers,
MachineNode maintains a session identifier (SID) (see Session IDs) for
each application instance that is running on the remote machine asso-
ciated with that MachineNode.
The SID is opaque data. You should not try to interpret the contents of it,
just accept that the SID is unique to the reliable RPC transport to/from
the remote application instance. If the transport fails, the SID will change
to a new, unique value. If the remote application instance is terminated
and a new one started, the SID will change to a new, unique value. If no
RPC transport can be obtained to a specified remote application instance,
(either because the application is not running or communication has
failed), the SID will have a unique value, defined by RPC Manager as RPC_

NO_SID. That the SID remains at an unchanging, valid value is an abso-
lute guarantee that the same remote application instance is being com-
municated with and that no loss of RPCs is occurring.
The next higher layer, which manages service instances, uses the SID to
control service synchronization. A TagNode object instance exists for
each service instance that is running on the local machine. Each TagNode
has a number of TagServerNode object instances, one for each machine
that can be a server for the service (this may include the local machine).
The TagServerNode remembers the SID that it obtains when it estab-
lishes contact with the corresponding machine and uses any change in
the SID to detect loss of reliable communication with the potential
server. Any change in SID, for the TagServerNode that corresponds to the
server instance, will require the TagNode to initiate service re-syn-
chronization. In this way, any loss of the information flowing via RPCs
from a server to a client is detected and the service automatically re-syn-
chronized to ensure that the client is not "out-of-step" with the server.
This process is termed "service synchronization".
VTScada contains a variable, located in the root (system) scope that can
be used as a prefix to access any of the methods and public data that
RPC Manager provides. This variable is \RPCManager. You will see this
prefix used repeatedly throughout the remainder of this document.

Remote Procedure Calls (RPCs)

When a VTScada subroutine executes, all other statement execution
within the thread that is running the subroutine is suspended. The RPC
subroutine is run on the RPC Manager’s thread. This is a deliberate beha-
vior, ensuring that only one RPC subroutine is ever running within an
instance of VTScada. This enables the RPC subroutine to access three
important variables, which RPC Manager maintains:

l CurSocketNode – the MachineNode object that exists for the machine that
issued the RPC. A MachineNode exists for every machine that an instance of
VTScada can communicate with, including the local machine. Note that,
before support for multi-homed machines was introduced, this variable did

indeed refer to the SocketNode from which an RPC request had been
received. Its name has not been changed, to preserve compatibility with exist-
ing applications.

l CurSessionID – the opaque Session ID of the application instance that issued
the RPC .

l CurSourceAppGUID – the GUID of the application that issued the RPC .

Note: The contents of these three variables are valid only for the dur-
ation of the execution of the RPC subroutine. When the RPC subroutine
returns, these variables are deliberately invalidated and then set to new
contents for the next RPC subroutine execution. If you wish to retain
the contents of either of these variables, you must make a copy during
execution of the RPC subroutine.

If the RPC subroutine is not written as a launched module rather than as
a subroutine, then RPC Manager will launch the module, but access to
the above variables is not permitted. A module launched in this way will
be launched on the thread of the context into which the module is
launched (normally the service’s thread).
You should treat RPC subroutines in the same manner as one would treat
interrupt service routines. Execution of an RPC subroutine suspends all
other RPC activity on the machine executing the subroutine. Therefore, if
there is time-consuming work to be performed, it is preferable to have
the RPC subroutine launch a worker module into an appropriate context,
passing the contents of CurSocketNode and CurSessionID if required, as
parameters. For example:

{==================== SampleRPCLaunch ========================}
{ This subroutine is called via RPC and launches off a worker }
{ module to do some time-consuming work. }
{===}
(
SomeParam { Parameter to the RPC subroutine

};
)
[
DoTheWork Module;

]

Only [
If 1;
[

{** Pass the CurSessionID & CurSocketNode to the launched module
**}

DoTheWork(SomeParam, \RPCManager\CurSocketNode, \RPCMan-
ager\CurSessionID);

Return(0);
]

]

<
{============== SampleRPCLaunch\DoTheWork ===================}
{==}
DoTheWork
(
SomeParam { Same as RPC subroutine

};
ClientSocketNode { Client socket node at time of starting

};
ClientSID { Calling client's session ID

};
)

Init [
If 1 Main;
[
{ Typical initialization code here }

]
]

Main [
{ Whatever code performs the time consuming work }
If Finished;
[
Slay(Self(), 0); { Terminate myself }

]
]

{ End of SampleRPCLaunch\DoTheWork }
>

Related Information:
Cross-Application RPC

Session IDs

RPC Manager maintains a Session ID (SID) for each instance of an applic-
ation running on a remote machine. This SID should be treated as
"opaque" data. It can be tested for equality or inequality with another
SID, it can be tested against Invalid and it can be tested for equality or
inequality against the constant \RPCManager\RPC_NO_SID.
RPC Manager provides a SID so that your application can ensure integrity
with a remote application instance. A SID will change value whenever

reliable communication, for RPC, can no longer be maintained with a
remote application instance. This can be caused by:

l Irrecoverable failure of the communication link to the remote machine. RPC
Manager will do its best to recover communication, in the event of transient
failure, but there will come a point when RPC Manager determines that RPCs
can no longer be reliably delivered to the destination. In this case, the cur-
rent SID will change to RPC_NO_SID.

l Termination of the application instance on the remote machine. SIDs will
indicate the termination and restart of a remote application instance that
occurs during a transient network failure. In this case the SID will change to
RPC_NO_SID, if no application instance is running, or to a new SID if a new
application instance is running.

A SID remaining at the same value guarantees that all RPC requests are
being reliably transported to the same target application instance.
A SID can be obtained from a number of sources:

l \RPCManager\GetSessionID(). This RPC Manager provided module can be
called as a subroutine or run in steady state. It takes an application identifier
and a machine identifier as parameters and returns the current SID for that
application.

l \RPCManager\GetServerSIDPtr(). This RPC Manager provided module can
also be called as either a subroutine or run in steady state. It takes a service
name and returns a reference to a variable holding the SID for the application
instance that houses the current server for that service.

l \RPCManager\Send(). This RPC Manager provided subroutine is used to issue
an RPC. It will return the SID for the remote application instance for directed
RPCs, , that was present at the moment the RPC was queued for transmission
to the remote machine.

l \RPCManager\CurrentSessionID. This public variable is only valid during the
execution of an RPC subroutine and contains the SID for the application
instance that sourced the RPC request.

An application can make use of the SID to ensure that it is still com-
municating with the same instance of an application as it was at some
prior time. RPC Manager uses the SID for just such a purpose when syn-
chronizing services .

Related Information:
Types of RPC
Services

Types of RPC

The method used to specify the destination for an RPC can take one of
two forms:

l A directed RPC. This type of RPC specifies that the RPC should be executed
on a specific machine, identified by name or IP.

l A service RPC. This type of RPC specifies that the RPC should be executed on
one or more machines that are participating in an application service (see Ser-
vices), identifying the machines using terms such as "on the server" or "on all
clients".

The service RPC is by far the most common. Performing RPC via services
is much easier as RPC Manager does all the hard work of tracking which
machine is the server and, most importantly, of maintaining syn-
chronization between machines.

Cross-Application RPC

In most applications, RPCs are made between two instances of the same
application. By definition, these will be running on different machines.
Some system designs, however, are composed of multiple applications
and require communication between the different applications. RPC Man-
ager provides the ability to communicate between applications and sup-
ports cross-application services and service synchronization, relieving
the system developer of the control code necessary to achieve this.

Permitted Data Types in RPC

The following data types can be used in parameters to RPCs:
l Numerics

l Text

l Streams

l Arrays of the above, up to, and including, a maximum of 3 dimensions.

l Dictionaries and Structures.
Note that pointers, including arrays of pointers are not supported.

Compression

The parameters to an RPC are automatically compressed to reduce the
bandwidth requirements for RPC; however, it is good programming prac-
tice to pass large quantities of data as infrequently as possible.

Packed RPC Streams

Each RPC is asynchronous. The delivery order of RPCs is guaranteed to be
the same as the order in which they were issued from an individual
machine.
There means that there is no guarantee that if machine A issues an RPC
to machine C moments before machine B issues an RPC to machine C,
that the two RPCs will arrive at C in the order A, then B. However, if
machine A issues RPC1 and then RPC2 to machine C, machine C will
receive and process RPC1 before RPC2.
Where there is a need to ensure that a sequence of RPCs issued by
machine A is either executed in its entirety by machine B, regardless of
communication interruptions, or that there is a need to ensure that the
sequence of RPCs cannot be interposed by RPCs from another machine,
the sequence of RPCs can be "packed" into a stream. This is done using
the RPC Manager method "PackRPC".
The stream, so obtained is then used as a parameter to a remote "Run-
RPC" RPC, a method also provided by RPC Manager.
This facility is commonly used to store a sequence of RPCs that will cre-
ate a copy of a service’s synchronizable state on a remote machine.

Services
RPC Manager provides the mechanism for ensuring that services remain
synchronized across the distributed domain. Each machine participating
in the domain runs a copy of the service (a "service instance"). Exactly
one service instance has server status and is sometimes referred to as
the primary server for the service. All others have client status. Any num-
ber of machines can be capable of becoming the server. This list of poten-
tial servers is specified in the application’s Servers.RPC file or via the Edit
Server Lists panel in the Application Configuration dialog.
For the purposes of synchronization, a service is assumed to contain a
set of data that represents the "synchronizable state" of the service.
When the service starts up on another machine and wishes to become a
client of the server, the synchronizable state is transferred to the client.
The service instance in server mode will then issue updates to that set of
data. The client receives these updates and processes them to ensure
that the service on the client reflects the state of the service on the
server.
Likewise, if server status is to be transferred from one machine to
another, each client of the new server must synchronize to the new
server.
As the reader can probably appreciate, synchronization is a complex pro-
cess, with many variants, which must be proof against many possible
faults, both logic and timing. To have each service provide its own code
to achieve this would be a rich source of application faults. Hence, RPC
Manager provides all the necessary control logic to achieve service syn-
chronization and requires each service to only provide a set of oper-
ations to supply the synchronizable state, sufficient for the service’s
needs.

Related Information:

...Programming Example: Create a Simple Service - example code with
following explanations.

...Read and Write Locks - when to use semaphores.

...Synchronization Sequence - summary of the topics in this section.

...RPC Call-Backs - using RPCServerNotice to watch for events.

Programming Example: Create a Simple Service

To better understand the development of an RPC service, this section con-
tains the VTScada code for a fully functional, yet simple service, which
will maintain its synchronizable state correctly under all circumstances.
We will build this code up from scratch, starting with the simplest spe-
cification. The code contained within here is complete and fully func-
tional. You can cut and paste the code into source files and use it.
The function of the service is to continually increment one numeric vari-
able, on the server and broadcast the value of that variable to all clients.
Each client that receives the new number verifies that it is one greater
than the previous one. If it is not, the client increments an error counter.
If the service functions correctly, each client will receive the value of the
counter as the synchronizable state, followed by incremental updates to
the count, regardless of how many clients there are or at what point in
the server’s life they are started.
The code for the main module of the service is quite straightforward.
First, we need to register our service with RPC Manager and then enter a
state where, if we are the server the counter is incremented and trans-
mitted to all clients, via an RPC.
Here is the main module, in its entirety, along with an RPC subroutine
that it calls:

{============================== SampleService
================================}
{ This service maintains a simple synchronizable state and properly
supports }
{ all entry points required by RPC Manager for correct operation.
}
{==-
=========}
[
SvcName = "Sample" { Deliberately different from the mod-

ule name.
Doesn't have to be different, but

this allows
clear distinction in the code

between the two};
RPCStatus { Current RPC connect status

};

CurrentServer { Current server
};
ServiceMode { Textual description of service mode

};

{***** The synchronizable state of this service is represented by a
simple,

continually incrementing numeric. The last value generated
by this

service instance and the last value received by this service
instance

are needed to ensure continuity of count. *****}
HeartbeatCountIn = 0 { Heartbeat counter

};
HeartbeatCountOut = 1 { Heartbeat counter

};

{***** Internal variables *****}
LastHeartbeatCount = 0 { Last Heartbeat count rxd

};
SequenceErrors = 0 { Number of periodic event sequence

errors };
ServerEnable { Server enable flag...prevents race

condition};

{***** Regular service RPC modules which are service specific
*****}
PeriodicRPC Module { Periodic event RPC call module

};

{***** Required Synchronization modules, which RPC Manager will
call *****}
GetServerChanges Module;
SetHeartbeat Module;

I;
]

Init [
If 1 Main;
[
{***** Register the sample service with RPC Manager. *****}
RPCStatus = \RPCManager\Register(SvcName, Invalid, Invalid,

Invalid, \RPC_SYNC_MODE);
]

]

Main [
{***** Maintain a couple of variables just to show the status of

the service.
These can be displayed on a VTS page *****}

ServiceMode = *RPCStatus == 2 { Server status == 2 }
? "Server"
: *RPCStatus == 1 { Client status == 1 }
? "Client"
: "Unknown" { Unknown yet == 0 };

CurrentServer = \RPCManager\GetServer(SvcName);

If Watch(1, *RPCStatus);
[
IfElse (*RPCStatus == 2, Execute(
{***** Just become server...set the output value to the last

received
input value, plus 1 *****}

HeartbeatCountOut = HeartbeatCountIn + 1;
ServerEnable = 1;

);
{ else } Execute(
ServerEnable = 0;

));
]

{***** While I'm server, periodically increment the heart beat
"out" counter

and update all clients *****}
If Timeout(PickValid(*RPCStatus == 2, 0) && PickValid(ServerEnable,

0), 1);
[
\RPCManager\Send(SvcName { Service sending the

message },
\RemoteGUID { GUID defining app

},
0 { Cut-off mode - NORMAL

},
1 { Send to server flag - TRUE

},
Invalid { Machine name or IP

},
1 { Send to clients flag -

TRUE },
0 { Execute local flag - FALSE

},
1 { Recursive flag - TRUE

},
"PeriodicRPC" { target RPC module to

execute },
"SampleService" { context to execute in

},
Invalid { object for update caching

},
Invalid { InputSessionID

},
HeartbeatCountOut++ { RPC module Parameters

}
);

]
]

<
{================================ PeriodicRPC
================================}
{ Periodically RPC, called on the server and all clients, to update
the }
{ heart-beat (synchronized state).
}
{==-
=========}
PeriodicRPC
(
Sequence { Info regarding call

};
)

PeriodicRPC [
If 1;
[
CriticalSection(
IfElse ((PickValid(HeartbeatCountIn, 0) != 1) &&

PickValid(Sequence != HeartbeatCountIn + 1, 0),
IfThen (PickValid(*RPCStatus != 2, 1), { No sequence errors

on server. }
SequenceErrors++; { It's already

bumped the count. }
);

{ else } Execute(
HeartbeatCountIn = Sequence;

));
LastHeartbeatCount = Sequence;

);
Return(Invalid);

]
]

{ End of SampleService\PeriodicRPC }
>

Let us examine the code in a bit more detail:
The first task of the service code is to register itself as a service to RPC
Manager:

RPCStatus = \RPCManager\Register(SvcName, Invalid, Invalid,
Invalid, \RPC_SYNC_MODE);

The Register() call is passed the name of the service. This must be unique
within the application, but can be the same name as a service within
another application. The fifth parameter to Register() is the only other
one we are using at present and is set to a special constant value \RPC_
SYNC_MODE which tells RPC Manager that our service has a syn-
chronizable state. Omitting this parameter, or setting it to zero results in

a service that has no synchronizable state. In this case, there is no need
to provide any of the synchronization support modules that we will see
presently.
Register() returns a reference to a value that RPC Manager maintains on
behalf of the service. The value that RPCStatus addresses (*RPCStatus)
will be set by RPC Manager to one of three values:

l 2 – If the service instance is the server.

l 1 – If the service instance is a client.

l 0 – If the state of the service instance has not yet been decided.
The remainder of the code in state Main uses *RPCStatus to determine
what to do. ServiceMode and CurrentServer are set to values that can be
put on a display page. They are not necessary for service operation.
When the service instance becomes the server and on the first evaluation
of the service main module, the line:

If Watch(1, *RPCStatus);

evaluates to TRUE. This provides a point at which initialization can be per-
formed when the instance that is server changes.
Finally, a timeout statement trips once per second on the server, to
broadcast the counter contents to all connected clients and then incre-
ment the counter. The ServerEnable variable is simply there to prevent a
race condition that would arise with two statements watching the same
data value (*RPCStatus).
The RPC issued by the Send() call invokes module PeriodicRPC() on the
server and all clients, carrying the count as the sole parameter to this
RPC subroutine. When PeriodicRPC() is running in the server instance, it
does not check the sequence number for errors.
Note that PeriodicRPC() performs its work in a CriticalSection, as RPC sub-
routines are run on the RPC Manager thread, whereas the remainder of
the service code runs on the service thread.
This prevents erroneous results caused by one thread modifying a value
shared by the service and the RPC subroutine. An alternative technique is
to have the RPC subroutine launch a module that interacts with the ser-
vice’s values. A module so launched, runs on the application thread.

Selection of the most appropriate method is usually determined by the
complexity of the operations to be performed in response to an RPC sub-
routine invocation.
Note also that the name for the service that is used for registration:

SvcName = "Sample" { Deliberately different from the mod-
ule name

is different from the module name. The two names can be, and usually
are, the same. However, they are two different entities, the service name
being used to identify the service within the application and the module
name used to identify a module within the scope of \Code. The Send()
call, in state Main, uses the module name to specify the context in which
to find the RPC module, PeriodicRPC, but uses SvcName to identify the
service within the application. The difference lies in the service name
being used to determine which machines within the distributed system to
send the RPC to, while the module name identifies the module within
\Code that contains the specified RPC module name.

Related Information:

...Adding Server-Only Synchronization

...Configuring the Service

...Adding More Servers

...Server List Consistency

...Client Revision Information

...Client Changes

...Read and Write Locks

...Revised Code Example - revised for cross-application RPC

Adding Server-Only Synchronization

The code in the preceding topic is sufficient to perform the work of the
simple service, but requires the addition of a pair of modules to source
and sink the synchronizable state when so requested by RPC Manager:

{***** Required Synchronization modules, which RPC Manager will
call *****}
GetServerChanges Module;
SetHeartbeat Module;

GetServerChanges() is launched by RPC Manager, on the server, when the
service must provide its synchronizable state for a client. RPC Manager is
careful to launch this module on the same execution thread as the ser-
vice so that, while executing a script in GetServerChanges(), nothing else
can execute on the service’s thread. This can greatly simplify the acquis-
ition of the synchronizable state. It is still possible, however, to have a
launched RPC or a module launched by an RPC subroutine run during exe-
cution of a script in GetServerChanges(), as launched modules typically
do not perform all their work in one script. If any such modules can
modify the synchronizable state of the service, it is essential to either
place the acquisition of the synchronizable state by GetServerChanges()
within a CriticalSection, or to wait in GetServerChanges() until all such
modules have completed execution.
On entry to GetServerChanges(), all service RPCs for the service are sus-
pended (RPCs for other services and directed RPCs are still processed),
allowing GetServerChanges() to wait for any launched modules that can
modify the synchronizable state to finish. It is good design to only have
your synchronizable state modified by RPC subroutines or modules
launched by RPC subroutines. In this way, as no more service RPCs will be
started until GetServerChanges() indicates that they can, you can guar-
antee that the synchronizable state of your service will not change while
GetServerChanges() samples it.
GetServerChanges passes the service’s synchronizable state to RPC Man-
ager by returning a "packed stream" of RPC calls, which will be made on
the client. This enables the re-construction of the synchronizable state
to be achieved by making a sequence of RPC calls on the client, ensuring
that the entire sequence of RPC calls is delivered to the client as one
package, without scope for communication interruptions causing a par-
tial update of the synchronizable state on the client. On the client, each
component of the RPC package is executed in the strict sequence that

they are packed into the stream on the server. No other RPC call can inter-
pose in this sequence on the client.
The second of the two modules is SetHeartbeat(). This is simply a ser-
vice-specified RPC subroutine that, in our simple service case, receives,
as a parameter, the synchronizable state of the service and stores it on
the client. This RPC subroutine is the only RPC in the call package
delivered from the server.
Let’s look at the code for GetServerChanges():

<
{======================== GetServerChanges
===================================}
{ Called by RPC Manager during startup sync, on a server, to get the
package }
{ of RPCs which create a synchronizable state on the client which is
in step }
{ with the server.
}
{==-
=========}
GetServerChanges
(
RevisionInfo { Revision info from GetCli-

entRevision call
made on synchronising client

};
PackStreamRef { Pointer to var to receive chnages

};
ClientName { Name of client

};
Guid { GUID of the syncing application...

};
SyncMonitorObj { Object value of my RPCMan-

ager\ServerSync.
Goes Invalid if sync aborts...VTS

10.0 on };
)

[
Stream { Stream of changes to go to client

};
]

Sample [
{***** This delay is not necessary. It is only here to prove that

our
synchronizable state modification RPCs are suspended until

we
call SetDivert. *****}

If Timeout(1, 5) Wait;
[
{***** Sample the synchronizable state and build an RPC package

to send to
the synchronizing client. *****}

Stream = \RPCManager\PackRPC(Stream, "SetHeartbeat" { module },
Invalid { scope },
{ Parameters: } Cast(LastHeart-

beatCount, 4));
{***** Start diverting all RPCs for this client from here

onwards. RPC
Manager will release the divert when synchronization done.

This
also enables the flow of service RPCs for this machine

(the server).
Expect a flood of 5 service modification RPCs to arrive!

*****}
\RPCManager\SetDivert(SvcName, ClientName);

]
{***** If we lost the synchronizing session, abandon all hope!

*****}
If !Valid(SyncMonitorObj) Done;

]

Wait [
{***** This delay is not necessary. It is only here to prove that

the service
RPCs can continue once the RPC package has been built and

SetDivert
called. At the end of this delay, this module will pass the

sampled
state to RPC Manager which, in turn, passes it to the cli-

ent. Once again,
if we lose the synchronizing session, abandon. ******}

If Timeout(1, 10) || !Valid(SyncMonitorObj) Done;
]

Done [
If 1;
[
*PackStreamRef = Stream;
Slay(Self(), 0);

]
]

{ End of SampleService\GetServerChanges }
>

As stated above, RPC Manager launches this module when the server
instance must provide the synchronized state of the service for a client.
The parameters to GetServerChanges are:

RevisionInfo See Client Revision Information.

PackStreamRef A reference to a variable into which GetServerChanges
() will store a packed stream of RPC calls that will be

executed on the client.

ClientName The workstation name of the client instance that is syn-
chronizing with the server instance

Guid The GUID of the synchronizing application. For cross-
application RPC services, this will be different from the
GUID of the application under which GetServerChanges
runs.

SyncMonitorObj The object value of the RPCManager object that is mon-
itoring the synchronization sequence. If this goes
Invalid, you should abort the current synchronization.
Typically this will be because communications with the
client have been lost. Only available on VTS 10.0
onwards.

The script in state Sample does the important work of this code. While
this script is running, nothing else on the service’s execution thread can
run. The first job is to pack together all the RPC calls that have to be
made on the client to generate the same synchronizable state as is
present on the server. In our simple case, this consists of a single call to
SetHeartbeat with the current count as its only parameter:

Stream = \RPCManager\PackRPC(Stream, "SetHeartbeat" { module },
Invalid { scope },
{ Parameters: } Cast(LastHeart-

beatCount, 4));

After the RPC package has been built into a temporary stream, the RPC
Manager module SetDivert() is called:

\RPCManager\SetDivert(SvcName, ClientName);

This causes two things to happen:
l All RPCs for the service that are destined for the synchronizing client are held

in a queue by RPC Manager until synchronization is complete. The effect of
this is to allow the server instance to continue to perform its normal work,
including updating other clients, without the risk of updates arriving at the
synchronizing client instance before the synchronizable state has been
stored there.

l RPCs arriving for this service were held in abeyance when GetServerChanges
() was launched. These RPCs are now permitted to flow.

The intent is that the synchronizable state of the service is now allowed
to change. Changes to the state will be routed to in-sync clients and will
be buffered for the synchronizing client until the client has processed
the RPCs that bring it up to the same state as was sampled at the server.
Although the sample GetServerChanges shown is a launched module,
(specifically to incorporate the code in state Wait to demonstrate the func-
tion of SetDivert), you can also write it as a subroutine module. In this
case, it must return Invalid when it is finished its work. If you return a
valid value, RPC Manager will hang. There is no particular advantage in
choosing a subroutine over a launched module. You can simply choose
the form that suits your needs best. The same is true of two other service
synchronization modules, called by RPC Manager, named GetCli-
entRevision and GetClientChanges. (Described later.)
The client stores the synchronizable state when RPC Manager unpacks
the RPC package on the client. In this case, the only call in the package is
to SetHeartBeat():

<
{=============================== SetHeartbeat
================================}
{ Called, on the client, by the RPC contained in the package gen-
erated by the }
{ server, during GetServerChanges.
}
{==-
=========}
SetHeartbeat
(
Sequence { Info regarding call

};
)

SetHeartbeat [
If 1;
[
HeartbeatCountIn = Sequence;
\RPCManager\SetSyncComplete(SvcName, Invalid, 1);
Return(Invalid);

]
]

{ End of SampleService\SetHeartbeat }
>

{ End of SampleService }

This simply stores the synchronizable state in HeartbeatCountIn and then
informs RPC Manager that it is now synchronized. This is achieved by the
call to SetSyncComplete(). It is vital that the client makes this call. Service
synchronization will hang if this call is not made. Note that SetHeartbeat
() does not have to make this call. It can be a separate call within the RPC
package, but it must be made.
Once SetSyncComplete() is called, RPC Manager releases the queue of ser-
vice requests (on the server) for this client and all subsequent service
RPCs start flowing normally to the newly synchronized client.

Configuring the Service

Now we will incorporate our service into a VTScada application and con-
figure it. First, create a new, standard VTScada application. Do not
enable remote configuration yet. Set the start page title to be "Test Ser-
vice" and the start page file name to be "TestServ".
We want create a VTScada page that displays the innards of our service,
just so we can see what is going on. Edit the "Pages\TestSrv.SRC" file to
be like the following:

[
Title = "Test Service";

]

Main [
Return(Self);

{ RPC status }
\System\Edit(40, 110, 180, 70, "RPC Status:",

\SampleService\ServiceMode, 0);

{ Server name }
\System\Edit(230, 110, 370, 70, "Server:",

\SampleService\CurrentServer, 0);

{ Sequence Error Counts }
\System\Edit(40, 210, 180, 170, "Sequence Errors:",

\SampleService\SequenceErrors, 0);

{ Sequence Numbers }
\System\Edit(40, 260, 180, 220, "Sequence Act:",

\SampleService\LastHeartbeatCount, 0);
\System\Edit(230, 260, 370, 220, "Sequence Exp:",

\SampleService\HeartbeatCount, 0);
]

A better way of doing this would be to interactively drop an instance of a
widget that displays the required information, on a page. The creation of
widgets is outside the scope of this document however, so the above will
be sufficient for now.
Adding a module declaration to the VTScada application’s AppRoot.SRC
file incorporates the service into the application. Suppose that the ser-
vice code above is contained in file SAMPSERV.SRC. Then the
AppRoot.SRC may appear as follows:

[
Constant POINTS = 0x0002 { Point template class

};
Constant GROUPS = 0xFF00 { Collections of point types

};
Constant LIBRARIES = 0xFF01 { Library class module

};
Constant GRAPHICS = 0xFF02 { Shared widgets for points

};
Constant PAGES = 0xFF03 { Graphic pages & dialogs

};
Constant SERVICES = 0xFF04 { Service class

};
Constant PLUGINS = 0xFF05 { Plug-in class

};
Constant PRIORITYSTART = 0xFF06 { Items that are pre-started

};
Constant TSERVICES = 0xFF07 { Threaded service class

};

[(POINTS) {========= Modules that are point templates
===========}
]

[(GROUPS) {==== Modules that are collections of point types
=====}
]

[(LIBRARIES) {======== Modules that contain library objects
========}
]

[(GRAPHICS) {= Modules that are shared widgets for points =}
]

[(PAGES) {===== Modules that are graphic pages and dialogs
=====}

TestSrv Module "Pages\TestSrv.SRC";
]

[(SERVICES) {===== Modules that are services that are started
=====}

SampleService Module "SampServ.SRC";
]

[(PLUGINS) {===== Modules added to other base system modules
=====}
]

[(PRIORITYSTART) {===== Modules/variables that are to be pre-
started ====}
]

[(TSERVICES) {====== Modules that are threaded services to run
=====}
]

]

Note that VTScada has already added a similar line for the initial page
that we added.
Before we can use the service, it is necessary to inform VTScada which
machine, or machines are potential servers for the service. This is nor-
mally done in the application’s Servers.XML file. A typical Servers.XML for
our simple application might look like this:

<?xml version="1.0"?>
<RPC>

<ServerLists>
<Service Name="Default Server Lists">

<Workstation Name="Default for Workstations">
<Server>FREDSPC</Server>

</Workstation>
</Service>

</ServerLists>
</RPC>

In our simple example, we have only one potential server, "FREDSPC", for
all workstations and all services. All other machines that run this service
will be clients to FREDSPC. You should use the workstation name of the
machine that you wish to be the server, instead of FREDSPC. The applic-
ation properties dialog provides the Edit Server Lists panel as a graphical
interface for editing this XML file.
Now compile the application and run it. If all has gone well, you should
see a display similar to the following: (navigation and title bar will vary
by VTScada version)

Next we will enable remote configuration. That way, when you bring on
one or more clients, the remote configuration service will ensure that
subsequent code changes you make on the server will be correctly
propagated. Start up the server instance again. On another machine,
which will be a client, acquire and run the application. You should now
have a server and a client that will maintain the simple numeric syn-
chronizable state, no matter how you disrupt communication between
them, or stop and start the application.
You can repeat the last step to add more and more clients, if you wish.

Adding More Servers

By simply changing the application configuration, you can add more
potential servers to the list for our simple service. This enables you to
experiment with "fail-over" from one server to another. Client machines
will automatically re-synchronize to whichever machine is currently the
highest available server.
For example:

<?xml version="1.0"?>
<RPC>

<ServerLists>
<Service Name="Default Server Lists">

<Workstation Name="Default for Workstations">
<Server>FREDSPC</Server>

</Workstation>
</Service>
<Service Name="Sample">

<Workstation Name="Default for Workstations">
<Server>FREDSPC</Server>
<Server>JOESPC</Server>

<Server>GONZOSPC</Server>
</Workstation>

</Service>
</ServerLists>

</RPC>

In this configuration, the Sample service has three potential servers,
FREDSPC, JOESPC and GONZOSPC arranged in order of decreasing pri-
ority. You may have noticed that a different section was used for this (all
other services are using the default list with just the single server,
FREDSPC). This enables you to specify different server lists for different
services.
The XML Service tag specifies potential server lists for the specific service
identified by the Name property, with the "Default Server Lists" Name spe-
cifying the potential server list for all services that do not have their own
potential server list section.
Now, the machine nearest the top of Sample’s server list, which has an
available service instance, will be the current server for the service. If a
higher-ranking machine becomes available, the higher-ranking machine
will synchronize with the current server instance and then seize server
status from the lower ranking, which will then switch into client mode
and synchronize with the new server. All client machines will, likewise,
synchronize to the new server.
By now you may have realized that this architecture is distinct from the
traditional server/client architecture, where one or two machines were
designated as server. Typically, one machine would be the "hot" standby
for the other machine. The VTScada distributed architecture enables dif-
ferent services to have their server instances executing on different
machines, each with different fail over strategies. The VTScada dis-
tributed architecture enables you to focus on writing solutions for your
services, with minimal coding overhead to support such a versatile archi-
tecture.
The example is insufficient for some, more sophisticated needs. The fol-
lowing sections will examine the extensions to the above that are
provided.

Server List Consistency

It is important to ensure that each machine that can be a server for a ser-
vice has a consistent list of server machines. Failure to observe this will
result in sporadic service synchronization failure. Note the wording of
this statement. A machine that can never be a server, i.e. can only be a cli-
ent can have a different server list from the server. This is the method
used to implement clients-of-clients. However, a machine that can be a
server must have a consistent list of servers specified for that service.
Once again, note the careful wording. Consistent does not mean
identical, but if a server has a different list of machines from another
server, they are only allowed to be different by omitting some machines
from the tail of the list.
For example, the server lists for the Sample service could be configured
as follows:

<?xml version="1.0"?>
<RPC>

<ServerLists>
<Service Name="Default Server Lists">

<Workstation Name="Default for Workstations">
<Server>FREDSPC</Server>

</Workstation>
</Service>
<Service Name="Sample">

<Workstation Name="Default for Workstations">
<Server>FREDSPC</Server>
<Server>JOESPC</Server>

</Workstation>
<Workstation Name="GONZOSPC">

<Server>FREDSPC</Server>
<Server>JOESPC</Server>
<Server>GONZOSPC</Server>

</Workstation>
</Service>

</ServerLists>
</RPC>

You may wish to use such a configuration if machine GONZOSPC was in a
remote location from FREDSPC and JOESPC. Then, if the communication
medium between the two locations is broken, the area without
GONZOSPC [the "Default for Workstations" list for the "Sample" service,
used by FREDSPC and JOESPC] will use the higher available server of
FREDSPC and JOESPC, whereas the area with GONZOSPC will lose

communication with FREDSPC and JOESPC and so will fall back to
GONZOSPC.
Of course, precisely the same effect would be obtained by having each
machine use the first list, but this method reduces communication traffic
between the two areas slightly, by not having to have FREDSPC and
JOESPC examine the server status of GONZOSPC. It also prevents
FREDSPC and JOESPC from every synchronizing to GONZOSPC. If
GONZOSPC is isolated from the other two, higher servers, it will re-syn-
chronize to the higher order servers when communication is restored,
destroying the local state of the service on GONZOSPC.

Client Revision Information

Our simple service had very little data in its synchronizable state. A ser-
vice will typically have a much richer set of data. While a set of packed
RPCs, along with the ability to pass streams as RPC parameters, are a
very flexible means to cope with diverse sets of data, some data sets may
be so large that it is desirable to minimize the amount transferred.
Typical data sets that fall into this category include data that is acquired
over a period of time, but has to be retained. The classic example of this
is alarm history data. A user may wish to display such data on a client
machine at any time. The programmer is left with an unenviable choice:

1. Transfer all data during service synchronization. This lengthens syn-
chronization times significantly and becomes impractical if many clients are
attempting to synchronize concurrently. It has the advantage that, after syn-
chronization, response times to user requests are short, as the data is local
to the client.

2. Leave all the infrequently accessed data on the server. This avoids the
lengthy synchronization times, but gives a poorer response time to user
requests to access such data.

RPC Manager provides support for a compromise between the two
extremes, by transferring only that part of the data that the client
doesn’t have. Initially, the client has to be passed the entire set of syn-
chronizable data, but subsequent synchronizations are much briefer, as

only the data that the client doesn’t have is transferred. Such an arrange-
ment implies that the client must have the ability to retain the bulk of the
synchronizable state on non-volatile storage.
You may have noticed that the GetServerChanges() module that was
developed in the Simple service example did not make any use of its first
parameter, the RevisionInfo parameter. That parameter is a stream which
RPC Manager obtains by calling GetClientRevision() on the synchronizing
client.
GetClientRevision() is provided by the service code and RPC Manager
passes in a reference to a variable which it expects to be set to the
stream of client revision information. The contents of the stream is
entirely service specific and contains whatever revision information is
appropriate for the service to represent the latest data that the client
instance has. RPC Manager places no interpretation on the contents of
the stream. Typically, GetClientRevision() will populate the stream with
one or more VTScada timestamps.

<
{======================== GetClientRevision
==================================}
{==-
=========}
GetClientRevision
(
RevisionRef { Reference to revision information

};
)

Only [
If 1;
[
*RevisionRef = BuffStream("");
{***** Populate the stream with a single timestamp *****}
SWrite(*RevisionRef, "%5b", LastKnownTimeStamp);
Return(Invalid);

]
]

{ End of GetClientRevision }
>

It then becomes the server instance’s responsibility to utilize the inform-
ation within the RevisionInfo parameter to GetServerChanges() to gen-

erate the correct RPC package to bring the client up to date with the
server.
GetClientRevision() is launched by RPC Manager on the service thread.
Note that this module can be either a subroutine, returning Invalid, or a
launched module that slays itself when complete. In the example above,
we have chosen to make it a subroutine module.

Client Changes

There is one more method that a service can provide that RPC Manager
uses during synchronization – GetClientChanges(). In the same way that
the server instance builds an RPC package for execution on a client
instance, the client instance can provide an RPC package for execution
on the server. The RPC package from the client is executed after
GetServerChanges() has been called. This ensures that any changes that
result from the client instance’s RPC package being executed are not
reflected in the RPC package generated by the server instance. Any
changes in the synchronizable state of the service that result from execut-
ing the client instance-provided RPC package will cause normal service
RPCs to be made to update all client instances.
It is uncommon for this facility to be required, however there are some
circumstances in which it is necessary. The usual reason is where the cli-
ent instance can operate independently from the server instance, if it
loses the ability to communicate with the server instance.
It is essential for SetSyncComplete() to be called by the server instance,
in the process of executing the RPC call stream that the client instance
generated, just as it was essential for the client instance to call SetSyn-
cComplete() during execution of the server generated RPC package. Once
again, SetSyncComplete() can be called either by the last RPC subroutine
in the package or the SetSyncComplete() can be embedded within the
package.
The latter technique enables the RPC subroutines to be used other than
for purely synchronization, by not embedding the SetSyncComplete() in
an RPC subroutine. The following code demonstrates this:

<
{============================== GetClientChanges
===========================}
{ This module returns the changes seen on the client since the server
was }
{ last connected.
}
{==-
=======}
GetClientChanges
(
PtrPackStream { Pointer to var to receive changes

};
)

[
Stream { Stream of changes to go to client

};
]

Only [
If 1;
[
Stream = \RPCManager\PackRPC(Stream, "SomeRPC" { module },

SvcName { scope },
{ Parameters: } 69);

Stream = \RPCManager\PackRPC(Stream, "SetSyncComplete" { module
},

"RPCManager" { scope },
{ Parameters: } SvcName, Invalid,

1);
*PtrPackStream = Stream;
Slay(Self, 0);

]
]

{ End of GetClientChanges }
>

RPC subroutines that have a need to know whether they are being called
via RPC or directly can determine this by comparing the current thread
name against the name of the RPC Manager thread, as follows:

IfThen (ThreadName(Self()) == "RPC",
{ Running on the RPC Manager thread }

);

Related Functions:

... GetServerChanges

... SetSyncComplete

... PackRPC

Read and Write Locks

The simple service that we have developed has the luxury of being able
to acquire its synchronizable state within one script in the service
instance. This guaranteed that the synchronizable state could not change
while it was being acquired for transmission to the synchronizing client.
Once the SetDivert() call has been made, the service can modify the syn-
chronizable state, safe in the knowledge that updates for the syn-
chronizing client will be held in abeyance until the client has processed
the RPC package.
However, if it is not possible to acquire the synchronizable state within a
single script, some form of semaphore is going to be required, to hold
the service off from modifying the synchronizable state until it has been
sampled. Such a situation may arise if part of the synchronizable state
was held on non-volatile storage, or if the VTScada statements needed to
acquire the synchronizable state could not be used in a script.
RPC Manager provides such a semaphore and maintains one per service
instance. The semaphore provides two types of "lock" which can be
requested and acquired, a "Write" lock and a "Read" lock. These behave
according to the following two rules:

l Any number of Read locks may be granted simultaneously but they will not
be granted if a Write lock exists.

l Only one Write lock may be granted at a time and it will only be granted if
there are no Read locks.

The idea is that a service module that wishes to examine the syn-
chronizable state requests a Read lock, whereas a service module that
wishes to modify the synchronizable state requests a Write lock. This
enables many service modules to concurrently examine the service data
without fear of it changing.
RPC Manager automatically acquires locks for a service during the syn-
chronization process, as follows:

l A Write lock is obtained on the client at the start of service synchronization.
It is released when SetSyncComplete() is called on the client or when the syn-
chronization process is aborted by RPC Manager, due to communication

failure with the server instance.

l A lock is obtained on the server immediately before GetServerChanges() is
called. If the client instance provided an RPC package, a Write lock is
obtained, otherwise a Read lock is obtained. The lock is released when the cli-
ent has processed the RPC package from GetServerChanges() and the RPC
package from the client instance (if any) has been processed, or when the
synchronization process is aborted by RPC Manager, due to communication
failure with the client instance.

Note that if you choose to use locks, you must be very careful to protect
all methods which access the synchronizable state by the correct locking
call:

\RPCManager\ReadLock(&Ready, SvcName);
\RPCManager\WriteLock(&Ready, SvcName);

Both lock calls require a reference to a variable as their first parameter.
The variable value will be set to one when the lock has been obtained.
The service name is passed as the second parameter. To release the lock,
simply stop, or slay, the ReadLock() or WriteLock() instance that the
above statements are running.

Synchronization Sequence

Putting together all the parts above, the full synchronization sequence is:
1. RPC Manager obtains a Write lock on the client.

2. When the Write lock has been obtained, RPC Manager launches GetCli-
entRevision() on the client, into the service scope and on the service’s
thread.

3. RPC Manager launches GetClientChanges() on the client, into the service
scope and on the service’s thread. This is done after 2, but RPC Manager
does not wait for GetClientRevision to complete before launching GetCli-
entChanges().

4. RPC Manager then waits for both GetClientRevision() and GetClientChanges()
to terminate, by slaying themselves or returning Invalid and then sends the
client revision and changes streams to the server.

5. RPC Manager, on the server, obtains either a Read or a Write lock, depending
on whether there is a client changes stream.

6. When the lock has been obtained, RPC Manager, on the server, atomically
starts buffering service RPCs for the service and launches GetServerChanges
().

7. When GetServerChanges() calls SetDivert(), the buffered service RPCs are
released for processing and service RPCs destined for the synchronising cli-
ent start buffering.

8. When GetServerChanges() terminates, by slaying itself or returning Invalid,
RPC Manager queues the RPC package from GetServerChanges() for trans-
mission to the client. If an RPC package was received from the client, RPC
Manager, on the server, now processes that call package, calling the RPC sub-
routines within the package and then waits for SetSyncComplete() to be
called on the server.

9. RPC Manager, on the client, executes the RPC package from the server and
waits for the client service instance to call SetSyncComplete(). When this is
called, the client instance is marked as ready and the Write lock, obtained in
1, is released.

10. When the server sees the client instance marked as ready (and 7, above, has
completed), any buffered RPCs from the service for that client are queued for
transmission to the client and synchronization terminates, clearing the Read
or Write lock, obtained in 5, above.

Related Information:

...Alternate Status - when and how to configure.

...Sticky Status

...Preventing Synchronization with Lower-Order Servers

...Server Evaluation Rules - for use with Alternate Status.

Alternate Status

The prioritized list of servers that are specified in a configuration file
contains sufficient information to determine what to do when com-
munication between servers or between servers and clients fails. This
could be due to failure of the communications medium or failure of the
software on a machine (perish the thought) or failure of the computer
hardware.

There may, however, be good reason to be able to inform RPC Manager
of the health of a service. Typically, this will be where a service has to
communicate to, or use, some third-party equipment. The service will
need to indicate that it is, or is not, capable of performing the functions
that it was designed for. A driver may typically use this facility to show its
ability to communicate with a PLC.
This is achieved by setting or clearing the Alternate status of the service.
RPC Manager monitors the Alternate setting to determine the most suit-
able service instance for the service. The rules by which server status is
determined are described in the section on Server Evaluation Rules.

Related Information:
Server Evaluation Rules

Sticky Status

A service can indicate to RPC Manager that server status is to "stick" with
the machine that currently has server status for that service, rather than
migrating server status to the highest ranking available server machine.
This feature is of use where to change over to another machine carries
an unacceptable penalty. For example, a service that communicates with
some external equipment may have to drive signals or issue protocol to
perform a physical changeover of communication routing equipment.
The system designer may wish this to only happen infrequently.
A service is configured to be sticky by specifying a "Sticky" setting in the
Servers.XML file, as in the following example, which specifies the Sample
service as sticky:

<?xml version="1.0"?>
<RPC>

<ServiceSettings>
<Service Name="Sample">

<Setting Name="Sticky">1</Setting>
</Service>

</ServiceSettings>
<ServerLists>

<Service Name="Default Server Lists">
<Workstation Name="Default for Workstations">

<Server>FREDSPC</Server>
</Workstation>

</Service>
<Service Name="Sample">

<Workstation Name="Default for Workstations">
<Server>FREDSPC</Server>
<Server>JOESPC</Server>
<Server>GONZOSPC</Server>

</Workstation>
</Service>

</ServerLists>
</RPC>

If the Sticky setting is set to other than its default of zero, the service
becomes a "sticky" service. If a sticky service instance that is the current
server wishes to yield server status, it should set alternate status, see sec-
tion Alternate Status. This will cause immediate migration of server
status to the highest available server. The rules by which server status is
determined are described in the section on Server Evaluation Rules.

Preventing Synchronization with Lower-Order Servers

There are some unusual circumstances where you may not wish a
higher-order service instance to synchronize with a lower-order service
instance that holds server status. Typically, one machine would be
regarded as holding the master set of service data, regardless of whether
a service instance was running on that machine or not. VTScada Security
Manager is just one such service.
When initializing or on change of server, servers of a lower-order than
the current server will synchronize with the current server. Servers of a
higher-order than the current server will not synchronize with the cur-
rent server.
To achieve this, the service must pass a valid non-zero value in the Pri-
oritySync parameter to the \RPCManager\Register call, see section Ser-
vice Control Methods.
This does not change the server evaluation rules or the synchronization
sequence. It merely prevents synchronization to a lower-order server.

Server Evaluation Rules

The rules by which the server is determined encompass the prioritized
list of servers specified in the application’s configuration, whether or not

a service instance is synchronized, the Alternate status of a service
instance and the Sticky status of a service instance.
Note that, in the rules that follow, the phrase "available service instance"
means that a service instance has been registered and, if necessary, syn-
chronized.

1. When a service registers with RPC Manager, it defaults to having its Alternate
status clear. The prioritized list of severs is read from the application’s con-
figuration.

2. If a service instance sets itself into Alternate status the next available service
instance that is not Alternate, down the prioritized list, is selected as the
server for that service.

3. If all the service instances are in Alternate status, they are all forced out of
Alternate status, except the service instance that was the most recent server,
which remains in Alternate status. The highest priority available service
instance is selected as the server.

4. If a service instance clears its Alternate status (or has it forcibly cleared by 3)
then it is selected as the server only if there are no higher priority service
instances available.

5. If there are no available service instances, the highest priority registered, but
not synchronized, service instance is selected as the server.

6. If the selected server is not the current server and the current server is not a
"sticky" server, the current server is demoted from server status.

7. The selected server is promoted to be the current server.

8. If there is only one server on the prioritized list for the service, neither Altern-
ate status nor Sticky has any effect.

RPC Call-Backs

Certain events that happen within the lifetime of a service instance may
be of interest to the service instance or to the application as a whole.
RPC Manager looks for the existence of a module called RPCServerNotice
() in the service code and in \Code for the application. If it finds such a
module, it is called, as a subroutine when the following events occur and
with the listed notification code, supplied as a parameter:

Notification Code Reason

\RPCManager\#RPCCallbackRegistered The local service instance
has registered with RPC Man-
ager.

\RPCManager\#RPCCallbackSessionClosed A session with a remote ser-
vice instance has been dis-
connected. The
disconnection may or may
not be the result of applic-
ation shutdown..

\RPCManager\#RPCCallbackSessionOpen A session with a remote ser-
vice instance has been estab-
lished.

\RPCManager\#RPCCallbackUnRegistered The local service instance
has unregistered with RPC
Manager.

\RPCManager\#RPCCallbackSocketOK A connection to a remote
machine has been estab-
lished (\Code call-back
only).

\RPCManager\#RPCCallbackSocketLost A connection to a remote
machine has been lost
(\Code call-back only).

\RPCManager\#RPCNewSessionData A session table has been
received from the remote
system – this is synonymous
with a socket connection
being established. The RPC
session tables will not yet be
set up, so use of this call-

back should be restricted to
detecting a new connection.

RPCServerNotice() is called with the following parameters:
RPCServerNotice(NotifyCode, IP, Name, LocalIP, LocalName, Work-
stationName, ShortName, SameAsLast);
Where:

NotifyCode One of the codes listed above.

IP The IP address of the remote machine. For codes
#RPCCallbackRegistered and #RPCCall-
backUnRegistered this value is undefined.

Name The name of the remote machine. For codes
#RPCCallbackRegistered and #RPCCall-
backUnRegistered this value is undefined.

LocalIP The IP of the local machine. On a multi-homed net-
work this could be any of the legal IP addresses by
which this machine is known.

LocalName The name of the local machine.

WorkstationName The name of the local machine, as determined by a
WkStaInfo(0) statement. This is normally the same as
the previous parameter.

ShortName Valid for \Code call-backs for service instance
related events only. The name of the service to which
the event relates.

SameAsLast Valid for \Code call-backs for service instance
related events only. Non-zero if this notification is
not the same as the previous notification for the
same machine.

Connection Configuration and Management
This section describes how RPC Manager maintains the inter-machine
connections in a distributed system. It is provided as an understanding
of the sequence of operations in RPC Manager makes for easier con-
figuration and diagnosis of problems.

Related Information:

...Link Maintenance Cycle - when and how links are created.

...Multi-homed Systems - making use of multiple network interfaces.

...Clients of Clients - provides the ability for some machines to maintain
different server lists

...WANs - support for.

Link Maintenance Cycle

A machine will not attempt to open a connection to another machine
until it has a reason to do so:

1. A service instance has registered and needs to communicate to a machine.

2. A directed RPC is made to the remote machine.

3. RPC Manager is explicitly requested to open a connection to a machine.

4. The remote machine initiates communication, due to one of the above reas-
ons.

When a connection is to be established for the first time, RPC Manager
creates a MachineNode to oversee communication with the remote
machine and one or more SocketNodes to maintain the raw socket
stream connection between the machines.
The SocketNodes maintain the communication pathways between the
MachineNode at either end of the link and report status changes to their
owning MachineNode. The MachineNodes for the various interconnected
machines report status changes that they cannot transparently manage
to the \Code level RPCServerNotice(), (see the section RPC Call-Backs),
and to the TagNodes that are using them. TagNodes use these events in
their driving of service instances.

SocketNode\SocketOpen will, initially, be Invalid. The SocketNode will
aggressively try to establish a socket stream connection with a Sock-
etNode on the remote machine up to the number of times specified in
the RPCSktConnectAttemptMax system configuration setting, before
deciding whether to mark the SocketNode open or not. If it fails to obtain
a satisfactory connection within this number of attempts, Sock-
etNode\SocketOpen is marked as closed (0) and MachineNode informed.
Once a socket stream has been opened, SocketNode interrogates the
stream to get detailed network information. It then marks the Sock-
etNode open (SocketOpen>0) and informs MachineNode.
Session management information is now retrieved from MachineNode
and transmitted to the remote MachineNode. When the MachineNodes
first successfully exchange session management information, each of the
two MachineNodes is marked as open (MachineNode\SocketOpen > 0). At
this point, "pinging" is initiated down the socket stream. A "ping" is just a
"keep-alive" transmission that elicits no response from the other end.
Pings are very efficient and are only sent if there has been no other com-
munication activity on the socket stream for the number of seconds
defined in the RPCPingInterval system configuration setting.
If no activity is observed on a socket stream for the number of seconds
defined in the RPCReconnectTime system configuration setting, the Sock-
etNode terminates the socket stream and attempts to open another one.
Once again, RPCSktConnectAttemptMax attempts are made at estab-
lishing a connection during the connection establishment process, as
described above.
If, after RPCReconnectTime expired, no connection can be established
within the number of seconds defined in the RPCSocketDeadTime system
configuration setting, any sessions which the MachineNode has with
applications running on the remote machine are terminated and their ses-
sion IDs set to RPC_NO_SID. The session IDs will be set to new values
when the session tables are re-built after a connection is re-established
with the remote machine.

MachineNode will attempt to transmit RPCs to the remote machine while
it is marked as open. Each RPC transmitted receives positive acknow-
ledgment of its receipt. Failure to receive this acknowledgment within
the number of seconds defined in the RPCResendDelay system con-
figuration setting causes MachineNode to resend it. There will be a max-
imum of RPCSktResendAttempts to transmit the RPC successfully. If,
after these retries, the RPC has still not been acknowledged, the socket
stream is terminated and SocketNode goes through its link re-estab-
lishment cycle, as above.
All RPCs carry with them an identification that prevents a re-transmitted
RPC from being executed if it was received and executed, but the acknow-
ledgment was lost.

Related Information:

...Link Tolerances

...Application Settings for RPC - reference for the properties mentioned
here.

Link Tolerances

When two machines connect, the response time from one machine to
another can be variable, partly due to CPU loading, but mostly due to link
throughput limitations. To address this, a set of link "tolerances" can be
specified in the SETUP.INI file. The tolerances are only applied to the
RPCResendDelay, RPCReconnectTime and RPCPingInterval settings. The
RPCPingInterval is only affected on the receiving machine when it is used
to calculate the connection timeout.
A "tolerance factor" is specified as a percentage value, so a tolerance
factor of 100 is unity, 300 is 3 times the value and 50 is half of the value.
This enables the specification of a base, system default, set of values and
tolerances for each peer-to-peer connection that requires them.
It is desirable to be able to specify the settings for an entire system in
one file [SETUP.INI], which can then be installed on all machines in the
system. This is achieved by having an INI file section heading which

identifies a particular machine or IP interface in the system and having
all the tolerance settings [for other machines with which that machine
can communicate] specified as entries within the section. There are, how-
ever, a number of variations in how this is specified. On a system con-
sisting entirely of single homed machines, "LinkTolerance-Name" [where
name is a workstation name, as returned by WkStaInfo()] is sufficient to
uniquely identify the network pathway from that machine to other
machines. For multi-homed systems, it may be necessary to use "LinkTol-
erance-IP" [where IP is the IP of a network interface] to identify tol-
erances for different network pathways between two machines.
To resolve ambiguity and provide flexibility, each machine uses the fol-
lowing methods to extract the tolerance setting from this .INI file, when
a connection is established. The rules are performed in the order listed:

1. A search is made for a section [LinkTolerance-LocalIP], where LocalIP is the
IP of the local machine. If found, that section is searched for the IP of the
remote machine. If the IP of the remote machine is not found, the section is
searched for the name of the remote machine.

2. If 1 did not produce a tolerance, a search is made for a section [LinkTol-
erance-LocalName], where LocalName is the name of the local machine. If
found, that section is searched for the IP of the remote machine. If the IP of
the remote machine is not found, the section is searched for the name of the
remote machine.

3. If 2 did not produce a tolerance, a search is made for a section [LinkTol-
erance-RemoteIP], where RemoteIP is the IP of the remote machine. If found,
that section is searched for the IP of the local machine. If the IP of the local
machine is not found, the section is searched for the name of the local
machine.

4. If 3 did not produce a tolerance, a search is made for a section [LinkTol-
erance-RemoteName], where RemoteName is the name of the remote
machine. If found, that section is searched for the IP of the local machine. If
the IP of the local machine is not found, the section is searched for the name
of the local machine.

5. If 4 did not produce a tolerance, a search is made for a section [LinkTol-
erance-LocalIP], where LocalIP is the IP of the local machine. If found, that
section is searched for an entry called "Default".

6. If 5 did not produce a tolerance, a search is made for a section [LinkTol-
erance-LocalName], where LocalName is the name of the local machine. If
found, that section is searched for an entry called "Default".

7. If 6 did not produce a tolerance, a search is made for a section [LinkTol-
erance-RemoteIP], where RemoteIP is the IP of the remote machine. If found,
that section is searched for an entry called "Default".

8. If 7 did not produce a tolerance, a search is made for a section [LinkTol-
erance-RemoteName], where RemoteName is the name of the remote
machine. If found, that section is searched for an entry called "Default".

9. If 8 did not produce a tolerance, default to 100% of the tolerances.
Note that this procedure is only carried out the first time that a con-
nection is established between two machines.
The "Default" setting within the sections allow you to specify a default tol-
erance for all connections from the machine or interface identified in the
section header. This can significantly reduce the maintenance overhead
of these tolerance sections.
For example:

[LinkTolerance-192.168.5.42]
Default = 200

[LinkToleance-GONZOSPC]
192.168.5.50 = 300
Default = 150
JOESPC = 100

This will cause machine 192.168.5.42 to have a 200% tolerance of all
machines connected to it. GONZOSPC will have a 300% tolerance of
machine 192.168.5.50, a 100% tolerance of JOESPC and a 150% tolerance
of all other machines.
Note that these settings are specified in SETUP.INI and not in service con-
figuration files.

Note: You use workstation names other than IP addresses whenever pos-
sible, especially in networks where the workstations may be dual-

homed, or where dynamic IPs are assigned. Since workstation names
are unique, it is good practice to condition yourself to use workstation
names, rather than IP addresses, even if your system configuration
does not require the use of workstation names.

Multi-homed Systems

RPC Manager will take advantage of multiple network interfaces on a
machine. Each network interface must have its own IP address.
There are two reasons why you might want to use a multi-homed system:

1. To improve the tolerance of the distributed system to network failures.

2. To separate the SCADA system network usage from a network used by busi-
ness systems. The usage of a network by business systems can be quite
unpredictable and dedicating a network to the SCADA and associated control
systems may be prudent.

These two justifications have an area of overlap, in that the VTScada dis-
tributed system can see all networks connected to it, regardless of pur-
pose.
Through configuration parameters, you can configure RPC Manager to
use the available networks in two ways:

1. Prioritized. The available networks are arranged in an order of priority. RPC
Manager always uses the highest priority available network. This could be
used for either of the above two scenarios.

2. Round-Robin. All network interfaces are treated equal and RPC Manager
traffic is sent using each interface in turn. This could only be used for scen-
ario 1 and is the default behavior.

The two methods can be combined, where there are three or more net-
works, such that one of the networks could be prioritized and the other
two left as round robin. RPC Manager traffic will always be sent over the
prioritized network first, using the remaining two networks in round-
robin mode if the prioritized network link to a machine fails.
For example:

[RPCManager-NetPriority]
IP = 192.168.1.0/24
IP = 192.168.2.0/24

Each line of the "RPCManager-NetPriority" section specifies an IP mask,
of the form:

<IP address>/<number of bits>

such that the number of bits specified is applied to the IP address from
the most significant end. A mask value of 24 specifies the first three
numeric parts of the IP address (8-bits per number), a mask of 16 the
first two numeric parts and so on.
The example above specifies that IPs on subnet 192.168.1 are to be
given priority over IPs to the same machine on all other subnets. Like-
wise, IPs on subnet 192.168.2 are to be given priority over IPs to the
same machine on all other subnets, except subnet 192.168.1. If an IP on
subnet 192.168.1 becomes unusable, the corresponding one on subnet
192.168.2 will be used. If that also fails, any remaining IPs on other sub-
nets will have RPCs transmitted to them in round-robin fashion.

Clients of Clients

It is common sense that a service instance should always see the same
prioritized server list as all other service instances in the system, oth-
erwise unexpected results may occur. However, it is deliberately possible
to configure the distributed system in such a way that one (or more)
machines can see different server lists. Such a situation may arise if a
Remote Access Service (RAS) were to be configured so that the RAS client
did not have free access to the LAN on which the distributed system is
running. This may be desirable for security purposes, especially if the
RAS connection is a dial-up.
In such a case, it is necessary to configure VTScada running on the RAS
client as having the RAS server as its sole server instance. RPC Manager
will synchronize the service instances running on the RAS client to those
running on the RAS server. However, individual services may not provide
full support by, for example, not broadcasting updates recursively to cli-
ents.

If the machine that is acting as both client and server is obliged to re-syn-
chronize with its server, all its clients will be forced to re-synchronize
with it, after it has synchronized with its server.

Related Information:
See the Configuration section for details on how to configure this.

WANs

Wide area networks (WANs) are supported indirectly, by the operating sys-
tem support provided at the network interface level. The primary con-
siderations when having a distributed system operating in a wide area
domain are:

1. There will be reduced throughput and increased latency.

2. Security measures, e.g. firewalls, are in common use. Network admin-
istrators must open up the port required by RPC Manager for this to function.
The port required is set in RPC Manager configuration, (see Configuration)

Configure Cross-Application RPC
This section discusses how cross-application RPC works and the modi-
fications you will need to make to your application to achieve this.
Each application has it’s own Globally Unique Identifier (GUID), which is
generated by VTScada when the application is created and is stored in
the SETTINGS.STARTUP file in the application directory.
In the scope of \Code, the VTScada loader creates two variables for your
application, LocalGUID and RemoteGUID, both of which are preset to the
application GUID. As you will see from the Application Control of Server-
ship
In normal operation, RPCManager controls which service instance is cur-
rently the server for a service. The system is simply configured to
instruct RPCManager how its servership control algorithms should oper-
ate.

In rare cases, it may be necessary to control the servership of one or
more services by the application itself. Consider, for example, a system
where maintenance of the system is necessary while the application is
running. For operational reasons, the system owners do not want a num-
ber of key services to have servership held by the machine undergoing
maintenance, but do want the application to be running.
In such circumstances the application needs to either be able to disable a
particular machine from owning servership of the key services or, more
generally, be able to control which machine is the server for those ser-
vices. More complex situations could arise where, for example, a specific
machine does not want to be considered a candidate for servership.

Related Information:

...Cross-Application Services - described.

...Cross-Application Service Variations - alternate configurations.

...Revised Code Example

...CurSourceAppGUID - for the rare case where the master (or a slave)
needs to know which application is making an RPC to it.

Cross-Application Services

While cross-application RPC can be achieved between script applications
it is in standard applications that it is most useful. In standard applic-
ations, RPCs are performed between services. In cross-application RPC in
standard applications, services of the same name in different applic-
ations are maintained in synchronization.
One application houses the master service and the other applications
house the slave services. The application housing the service with
identical RemoteGUID and LocalGUID variables is the master. All other
applications house slaves. There can be many different applications hous-
ing slaves, but only one application housing the master.
This terminology (master and slave) has been selected to try and avoid
confusion between the terms server and client. In cross-application RPC,
we define the term "server" consistently with non cross-application

services, as being the only service instance that has servership of the ser-
vice. By definition, this is the master service.
Therefore, exactly one instance of the master service can be a server. All
other instances of the master service are clients. All instances of the
slave services are clients to the current master service server. This is
depicted in the following diagram, where each arrow points to the server
instance.

Each application has a service named "Service 1" and a service named
"Service 2". These two services are completely independent between the
applications, i.e. Application A’s Service 1 has no relationship with Applic-
ation B’s Service 1. Service Sample, however, is a cross-application ser-
vice. Application A houses the master service. Application B houses a
slave service. Application A on machine FRED is the current server
instance of this service. If you were to stop Application A on machine
FRED, servership of Application A would transfer to machine JOE (on the
assumption that the server list for all Application A services is FRED, fol-
lowed by JOE). Application B’s Sample service will follow the master ser-
vice and both application B’s Sample service instances will become
clients to Application A’s Sample service on machine JOE.

Note that Application B’s Sample service can not be a server instance,
hence the term "slave".

Related Information:
Cross-Application Service Variations - alternative arrangements.
CurSourceAppGUID - for the rare case where the master (or a slave)
needs to know which application is making an RPC to it.

Cross-Application Service Variations

You can have many applications which house a slave service, for
example, application A can house master service Sample. Applications B,
C and D can all house slave services of Sample.
You can also have "slaves of slaves", in a similar manner to "clients of cli-
ents", the primary difference being that, because the slaves are in sep-
arate applications from the master, they can exist on the same machine
(but don’t all have to).
To configure a "slave of a slave" configure an intermediate application
service instance (the slave) to be the master for a second application. For
example, if application A (GUID GA) houses the master service Sample,
application B (GUID GB) houses a slave service Sample and application C
(GUID GC) houses the slave of slave Sample, then create a RemoteGUID
variable in service Sample of application B and set it to GUID GA and cre-
ate a RemoteGUID variable in service Sample of application C and set it
to GUID GB. Now, B’s Sample service will synchronize with and follow the
server of application A’s Sample service and C’s Sample service will syn-
chronize with B’s Sample service.
Beware that this can become complex. Consider the following example;
in which three machines (FRED, JOE and BOB) each have an instance of
applications A, B and C. Application A houses the master service, applic-
ation B houses the slave service and application C houses the slave of
slave service. Assume, also, that the server lists for the service have been
configured FRED, then JOE for machines FRED and JOE, but only JOE for
machine BOB (i.e. BOB is a client of a client):

Once again, the arrows point to the server instance of each service. Note
that, because the slave services cannot be servers, they can only follow
their master server location. For application B, the master is housed in
application A and so, therefore, all application B slave services will have
the current application A server as their current master. Because applic-
ation B’s service instance can not be a server status (rather it is a master
to application C’s slave service) all application C slaves regard the applic-
ation B on the same machine as their master.
Be clear about this distinction between server and master: A server
instance of a service has an RPCStatus (a pointer to which is returned
from the register call) of server(2). A master instance of a service may
have an RPCStatus of server(2) OR client(1), depending on whether or not
it is server. A slave can not have an RPCStatus of server(2). Any instance
can have an RPCStatus of unknown(0).

Revised Code Example

This section will show you how to create a simple cross-application ser-
vice based on the Sample service created in an earlier section.

First, create a new standard application and copy the sample service
code, developed earlier in this document into the new application. Com-
pile this and make sure that it works.
You now have two identical applications, each of which has a different
application GUID (look in the SETTINGS.STARTUP file in each application
directory to verify this). We will now change the second application so
that the "Sample" service works cross application.
Add a RemoteGUID variable to the SampleService declarations.

{============================= SampleService
================================}
{ This service maintains a simple synchronizable state and properly
supports }
{ all entry points required by RPC Manager for correct operation.
}
{==-
========}
[
.
.
.
RemoteGUID { GUID of the master application

};
.
.
.

]

Set the RemoteGUID variable to the application GUID of the first applic-
ation. Do this before calling \RPCManager\Register. Note that the binary
form of the GUID is used. You can obtain the GUID from the first applic-
ation’s SETTINGS.STARTUP file.

Init [
If 1 Main;
[
RemoteGUID = GetGUID(1{bin}, "e7a82aa4-21b2-4303-b7d7-1d66353d-

ab35");
{***** Register the sample service with RPC Manager. *****}
RPCStatus = \RPCManager\Register(SvcName, Invalid, Invalid,

Invalid, \RPC_SYNC_MODE);
]

]

Use the fourth parameter to GetServerChanges. This is only required if
you are doing x-app RPC. It is the GUID of the application that is syn-
chronizing to the master service instance. This parameter must be called

RemoteGUID (case insensitive), so that PackRPC and SetDivert will pick it
up and work correctly.

<
{=================== GetServerChanges ==============================}
{ Called by RPC Manager during startup sync, on a server, to get the
package of RPCs which create a synchronizable state on the client
which is in step with the server. }
{===}
GetServerChanges
(
RevisionInfo { Revision info from GetClientRevision call
made on synchronizing client - unused here };
PackStreamRef { Pointer to var to receive changes };
ClientName { Name of client };
RemoteGUID { The GUID of the app synchronizing to me };
)

The Sample service in your second application is now a slave and will
remain as a synchronized client to the master Sample service in your first
application.

Related Information:
Programming Example: Create a Simple Service

CurSourceAppGUID

The principle of having a service in a second application be a slave to the
first application can be extended to as many applications as you wish,
i.e. One master service can have slaves in many different applications. It
is unusual for the master (or a slave) to need to know which application
is making an RPC to it. However, for those occasions when this is needed,
RPC Manager provides a variable called RPCManager\CurSourceAppGUID,
which contains the binary GUID of the application that sourced the cur-
rent RPC. Like all the other RPCManager\Cur*** variables, it is valid only
for the duration of the RPC subroutine call.

Application Control of Servership
In normal operation, RPCManager controls which service instance is cur-
rently the server for a service. The system is simply configured to

instruct RPCManager how its servership control algorithms should oper-
ate.
In rare cases, it may be necessary to control the servership of one or
more services by the application itself. Consider, for example, a system
where maintenance of the system is necessary while the application is
running. For operational reasons, the system owners do not want a num-
ber of key services to have servership held by the machine undergoing
maintenance, but do want the application to be running.
In such circumstances the application needs to either be able to disable a
particular machine from owning servership of the key services or, more
generally, be able to control which machine is the server for those ser-
vices. More complex situations could arise where, for example, a specific
machine does not want to be considered a candidate for servership.

Related Information:

...RPCManager API

...VTScada Plug-In API

...Service Synchronization

RPCManager API

Rather than adding new algorithms to RPCManager to cope with indi-
vidual situations, an RPCManager API exists that enables application
provided code to control servership. The API consists of three methods:

l ForceServers

l GetInhibitedServiceList

l GetInSyncServers
These API calls are described in the Service Control Methods section.
A higher-level interface still is provided by the VTScada layer. The service
ServiceCtrl drives these RPCManager APIs and provides the ability for an
OEM or application layer plug-in to be provided which simply determines
who should be server.

Related Information:
API Reference

Related Functions:

...ForceServers

...GetInhibitedServiceList

...GetInSyncServers

VTScada Plug-In API

The plug-in must be named ServiceCtrlLogic and is automatically
launched (on the application thread) and attached to the ServiceCtrl ser-
vice when the VTScada application starts.
ServiceCtrl provides an interface that the ServiceCtrlLogic may use. The
interface consists of a number of useful variable and constants defining
a structure that holds the current server states:

ServerStates { Structure holding server states
};
Trigger = 0 { Boolean - TRUE on ServerStates

change };
RPCStatus { Current RPC status of ServiceCtrl

};
ServiceName = "ServiceCtrl" { Service name

};
RPCScopeName = "ServiceCtrl" { RPC scope name (must match Appmod

decl) };
LogicObj { Instance of the ServiceCtrlLogic

module };

{***** Indices into the ServiceState structure.
The structure is held as an array, with row #SST_NAME being

the
service names and row #SST_STATES being arrays of a sub-

structure.
The sub-structure is an array with row #SST_SS_SERVER being

the
server name and row #SST_SS_STATE being the server state.

*****}
Constant #SST_NAME = 0 { Service name

};
Constant #SST_STATES = 1 { Array of server/states

};
Constant #SST_NUMELEMENTS = 2 { Keep one bigger than the max above

};
Constant #SST_SS_SERVER = 0 { Server names

};
Constant #SST_SS_STATE = 1 { Server states

};
Constant #SST_SS_NUMELEMENTS = 2 { Keep one bigger than the max

above };

Fundamental to the plug-in logic is an understanding of the ServerStates
structure. Essentially, ServerStates is a 2D array with each element of row
[#SST_NAME] holding the service names and each element of row [#SST_
STATES] holding an array. ServerStates is initialized from the inhibited
service list, from RPCManager. There is therefore one column for each
service under application control.
Each element of row [#SST_STATES] is also a 2D array, with each element
of row [#SST_SS_SERVER] holding the ordered list of servers, highest lis-
ted first. Each element of row [#SST_SS_STATE] is initially Invalid. It is the
responsibility of the plug-in to maintain this row with the servership
state of the service on the corresponding server.
A diagram may help here:

The plug-in must provide an InitializeState subroutine that gets called,
in a CriticalSection, when the ServiceCtrl service instance becomes
server. It must populate the ServerStates structure's #SST_SS_STATE ele-
ments to reflect the servership states for the service. Only one element
for each service may be set to \#RPCServer. All others must be set to
\#RPCClient. Failure to observe this precaution will result in unpre-
dictable behavior in the services being controlled.

The plug-in is at liberty to change these element states at any time, but
has to do so in a CriticalSection, to avoid race conditions with RPCMan-
ager. After setting them it must set ServiceCtrl’s Trigger variable to 1.
If the plug-in wishes to make an RPC call to other service instances of
itself (inside the ServiceCtrl service), it can use the expression Concat
(\RPCScopeName, "\LogicObj") as the RPC call scope and \ServiceName as
the name of the service in which to make the call.

Service Synchronization

ServiceCtrl is an RPC service. It is therefore subject to normal RPCMan-
ager service synchronization rules. To this effect it provides a GetServer-
Changes method, to be called by RPCManager during service
synchronization. This is extended into the ServiceCtrlLogic plug-in via
two subroutine methods that the plug-in can provide:

l StartGetServerChanges(). This is called in a CriticalSection at the start of
GetServerChanges, allowing the plug-in to pack any RPCs is wishes to have
executed during synchronization, before any RPCs that ServiceCtrl may gen-
erate as part of its synchronization package. StartGetServerChanges is expec-
ted to return a stream of packed RPCs, with the current stream pointer at the
end of stream. If no RPCs are packed, StartGetServerChanges must return
Invalid.

l EndGetServerChanges(Stream). This is called in the same CriticalSection after
ServiceCtrl has packed any RPCs it wishes into the supplied stream. The
stream is positioned at end of stream. The plug-in can pack any RPCs it
wishes into the stream and is expected to return the stream. If no RPCs are
packed into the stream, EndGetServerChanges must return the stream
unchanged.

ServiceCtrl will augment the stream with a SetSyncComplete call after
EndGetServerChanges has returned.

System Level Services
A system level service is an RPC service whose execution scope lies
within the system library (i.e. the root of VTS), rather than within an
application. System level services are therefore started when VTScada
starts, rather than when an application starts and remain running until
VTScada is closed down.
System level services can be used to provide a service that is common to
many applications or provide a service that does not rely on the presence
of an application.
VTScada defines one such service – the VICManager service. Its function
is to coordinate the management of VTScada Internet Clients across a
number of computers running VTScada. It must be able to transfer and
synchronize VIC server lists and application configurations regardless of
whether any of those applications are running. In addition, it provides
code that an application can call to obtain state information regarding
VIC sessions across all configured computers and to control those VIC
sessions.

Related Information:

...Creating a System Level Service - list of RPC-specific exceptions and
additions to a standard VTScada service.

Creating a System Level Service

A system level service operates identically to an application service, with
the following exceptions and additions:

l It cannot use an application GUID. Instead the system-level GUID must be
used. This is an all-zero GUID and is pre-declared in RPCMan-
ager\SystemGUID.

l The service must define local variables RemoteGUID and LocalGUID. These
must be preset to RPCManager\SystemGUID.

l The service must either provide its own configuration file or use a section in
the system SETUP.INI file.

l If the service requires RPC call-backs (see section RPC Call-Backs) it must
insert into the array in \ServiceList the object value of the scope in which the
call-back method (RPCServerNotice) can be found, for example:

{***** Insert myself into the system-level service list *****}
ServiceList = InsertArrayItem(ServiceList, Invalid, Self());

Other than the above list, write a system-level service just as you would
an application level service.

API Reference
This section contains a reference for each method that RPC Manager
provides for external use.
Some methods can be called only as subroutines, whereas some methods
can be called either from steady state or as subroutines. These are
clearly indicated in each function description. Calling a method that is
implemented only as a subroutine from steady state will have undesir-
able effects. Note that a steady-state call may return Invalid for a brief
time before the return value of the method stabilizes.

Related Functions:

...RPC Manager Functions - list with descriptions and links.

...Deprecated RPC Methods

...Server List Source Callback Methods

RPC Manager Functions

 BinIP2Text (RPC Manager Library) Returns a text representation
of a specified binary IP in a printable format.

 ConnectToMachine (RPC Manager Library) This subroutine increments the
usage count on the specified workstation and forces
RPC Manager to attempt to establish a connection
with the specified workstation if it is not already con-
nected. Subroutine call only.

 DisconnectFromMachine (RPC Manager Library) This subroutine disconnects
from a workstation by decrementing the usage count
on the specified workstation and forcing the RPC Man-
ager to attempt to establish a connection with the spe-
cified workstation if it is not already connected.
Subroutine call only.

ForceServers (RPC Manager Library) Sets the servership of an applic-
ation service to a specific state.

 GetClientDiverts (RPC Manager Library) Returns a one-dimensional
array of flags, indicating the divert status of each cli-
ent.

 GetClientGUIDs (RPC Manager Library) Returns a one-dimensional
array of the application GUIDs of the clients of the spe-
cified RPC service instance.

 GetClientIPs (RPC Manager Library) Returns a one-dimensional
array of the IPs of the clients of the specified service
instance.

 GetClientList (RPC Manager Library) Returns a one-dimensional
array of the names of the clients of the specified ser-
vice instance. Steady state or subroutine call.

 GetClientMode (RPC Manager Library) Returns a one-dimensional
array of the modes of the clients of the specified ser-
vice instance.

 GetClientNodes (RPC Manager Library) Returns a one-dimensional
array of the object values of the MachineNodes of the
clients of the specified service instance. Steady state
or subroutine call.

GetClientsListed (Obsolete - RPC Manager Library) Returns a one-
dimensional array of the names or IPs of the clients
that have been derived from the "-Clients" section of
the service configuration file.

GetInhibitedServiceList (RPC Manager Library) Returns a one-dimensional

array of the names of all services inhibited from
RPCManager servership control.

GetInSyncServers (RPC Manager Library) Returns a one-dimensional
array of the names or IPs of the potential, syn-
chronized servers for the given service.

 GetIP (RPC Manager Library) Returns an IP address for a
workstation, given its name.

 GetLocalIP (RPC Manager Library) Returns an IP address for the
local workstation that is known to the specified
remote workstation.

 GetLocalNumber (RPC Manager Library) Returns the index of the local
workstation down the prioritized server list for the
named service. Steady state or subroutine call.

 GetMachineNode (RPC Manager Library) Returns the object value of the
MachineNode for the specified name or IP. Steady
state or subroutine call.

 GetMakeAltPtr (RPC Manager Library) Returns a pointer to a variable
containing the Alternate status for the local service
instance in the calling application for the specified ser-
vice. Steady state or subroutine call.

 GetRemoteVersion (RPC Manager Library) Returns the version number of
VTScada running on a specified workstation. Steady
state or subroutine call.

 GetServer (RPC Manager Library) Returns the name of the active
server for a specified service.

 GetServerChanges (RPC Manager Library) Launched by RPC Manager on
a service server to obtain the service's syn-
chronization data (i.e. called by RPC Manager during
startup synchronization on a server to get the pack-
age of RPCs that create a synchronizable state on the
client which is in step with the server).

 GetServerMode (RPC Manager Library) Returns the mode in which the

current server for a specified service is running.

 GetServerNumber (RPC Manager Library) Returns the index down the pri-
oritized server list of the current server for the spe-
cified service. Steady state or subroutine call.

 GetServerSIDPtr (RPC Manager Library) Returns a pointer to a variable
that holds the session ID for the current server for the
specified service.

 GetServersListed (RPC Manager Library) This subroutine returns a one-
dimensional array of the names or IPs of the servers
that has been derived from the "-Servers" section of
the service configuration file.

 GetServiceScope (RPC Manager Library) Returns the service instance for
a service.

 GetSessionID (RPC Manager Library) Returns the current session ID
for a specified application on a workstation.

 GetSocketStatus (RPC Manager Library) Returns the connection status
of either: 1) The machine node if the subnet is not
valid, or 2) The socket that is on the specified subnet.

 GetStatus (RPC Manager Library) Returns a variable that holds
the current service instance status for the specified
service.

 IsClient (RPC Manager Library) Is Client of a Service. This sub-
routine returns an indication of whether or not a par-
ticular workstation is a client connected to a service.
Returns 1 for the specified service if the specified
machine is a client to the machine on which the IsCli-
ent() call is made.

 IsMatch (RPC Manager Library) Determines whether two
names or IPs indicate the same workstation. This sub-
routine returns a "1" if the two names or IPs (any com-
bination) refer to the same workstation.

 IsPotentialServer (RPC Manager Library) Is Potential Server for a Service.

This subroutine returns an indication of whether or
not the local workstation is a potential server for a ser-
vice. Returns "1" if the local workstation can be a
server for the specified service. IsPotentialServer
should not be called in steady state.

 IsPrimaryServer (RPC Manager Library) Is Primary Server Active for a
Service. This module returns an indication of whether
or not the active server for a service is the primary
server. Returns "1" if the local workstation is the cur-
rent server for the specified service.

 IsServiceReady (RPC Manager Library) Is Primary Server Active for a
Service. Only available in VTS 6. This module returns
an indication of whether or not the specified server is
in synchronization with the server instance. Returns
"1" if the local instance is in synchronization with the
server instance.

PackData (OBSOLETE) (RPC Manager Library) This method packs
an array or set of module instance parameters into a
stream.

 PackParms (RPC Manager Library) This method packs supplied
parameters into a stream. Subroutine call only.

 PackRPC (RPC Manager Library) Packs an RPC call and a set of
parameters into a stream. Subroutine call only.

 RecommendAlternate (RPC Manager Library) Instructs RPC Manager that the
local service instance does not consider itself a good
server candidate.

 RecommendPrimary (RPC Manager Library) Instructs RPC Manager that the
local service instance considers itself a good server
candidate.

 Register (RPC Manager) Registers a service for RPC and returns a pointer to the
variable containing the current RPC status of the ser-
vice.

 RunPack (RPC Manager Library) Is unpacks and executes a set
of RPCs from a stream constructed with PackRPC.

 SetDivert (RPC Manager Library) Informs RPC Manager that the
synchronization state of a service has been sampled
during synchronization, and service RPCs for the spe-
cified client should be buffered until synchronization
completes. Subroutine call only.

 SetRemoteValue (RPC Manager Library) This subroutine sets the spe-
cified variable within an application instance on a
workstation to the specified value. Subroutine call
only.

 SetSyncComplete (RPC Manager Library) Informs RPC Manager that ser-
vice synchronization is complete as far as the local ser-
vice instance is concerned. Subroutine call only.

 TextIP2Bin (RPC Manager Library) Returns the Binary rep-
resentation of the specified IP.

 UnpackData (RPC Manager Library) This method unpacks a stream
into an array or set of module instance parameters.
Subroutine call only.

 UnpackParms (RPC Manager Library) This method unpacks a stream
into the supplied parameters. Subroutine call only.

 WriteLock (RPC Manager Library) This subroutine attempts to
require a Write lock for the specified service.
Subroutine call only.

Deprecated RPC Methods

The methods in this section are deprecated and have been retained for
use by existing, legacy applications. New applications should use
\RPCManager\Send() which subsumes all the functionality provided by
these legacy methods.
RPC (function call)
SendAll
Broadcast

RPCExecute
RPCExecuteServer
RPCExecuteAll

Server List Source Callback Methods

An object that is passed into the ListSource parameter of \RPCMan-
ager\Register() should implement the following methods. Note that usu-
ally Invalid is passed into that parameter, in which case the list (if not
explicitly provided in the ServerList parameter of the Register call) is
retrieved from the application’s Servers.XML file. However, providing a
ListSource object with the following interface is a way of specifying an
alternate source of server lists for the service, should you desire a dif-
ferent way of dynamically updating server lists and settings.

Related Functions:

...ServerListSubscribe

...ServerListUnsubscribe

...GetServerList

...GetRPCServiceSettings

ServerListSubscribe

Description: Called by RPCManager to subscribe to server list changes.

Returns:

Usage:

Function Groups:

Format: ServerListSubscribe(SubscriberObj, Callback)

Parameters:

SubscriberObj

Object that is subscribing to server list changes

Callback

Text name of method in Subscriber to call (with no

parameters) when the server list may have changed

Comments: If the server list cannot be changed dynamically, then this
need not be implemented.

ServerListUnsubscribe

Description: Called by RPCManager to unsubscribe from server list
changes.

Returns:

Usage:

Function Groups:

Format: ServerListUnsubscribe(SubscriberObj)

Parameters:

SubscriberObj

Object that is unsubscribing from server list changes

Comments: If the server list cannot be changed dynamically, then this
need not be implemented

GetServerList

Description: Called by RPCManager (on service registration, and after
every subscription callback) to retrieve the server list given
a specified server list name. It should return an array of
server names/IPs.

Returns:

Usage:

Function Groups:

Format: GetServerList(ServerListName)

Parameters:

ServerListName

Name of server list to retrieve

Comments:

GetRPCServiceSettings

Description:

Returns:

Usage:

Function Groups:

Format: GetRPCServiceSettings(ServerListName)

Parameters:

ServerListName

Name of server list whose settings we are retrieving

Comments: It should return a dictionary of service settings, typically a
dictionary with a single "Sticky" element, whose value is
the sticky flag for the specified service.

Diagnostics
Earlier versions of the RPC Manager had an inbuilt diagnostic facility,
which could be activated by setting the system variable \RPCMan-
ager\RPCDiagnostics to a non-zero value. Setting this back to zero will
disable the diagnostics again.
This application has been superseded by the Trace Viewer application.

Related Information:

...Trace Viewer Application.

RPC Routing and Execution
Related Information:

...RPC Internal Routing

...RPC External Routing

...RPC Execution

RPC Internal Routing

RPC Manager absolutely guarantees that a sequence of RPCs generated
on one machine, will be routed to the next consumer of the request in
the order that the RPCs were generated.
What this means to the programmer is that two consecutive RPCs that are
generated on the same machine as each other and are to execute on the
same target machine will always be executed in the order in which they
were generated. This assumption promotes robust algorithms when pro-
gramming for a distributed system. This assumption is necessary for the
correct operation of services and other parts of the RPC subsystem.
In the interests of preventing one large RPC blocking others, the version
4 RPCManager only preserves this rule within a service or between dir-
ected RPCs. An RPC issued from service A is not guaranteed to execute
before an RPC from service B, even if it was issued first. Two RPCs within
service A are, however, guaranteed to execute in the order they were
issued.
To achieve this, RPC Manager serializes all RPC requests through a single
FIFO queue on the local machine. The serialization includes not only loc-
ally generated requests, but also requests that arrive from other
machines.
RPC requests are then removed, one at a time, from the serialization
FIFO and examined to determine:

l If the request should be forwarded to other RPC manager instances in the dis-
tributed system. There the request will be processed in an identical fashion.

l If the request should be executed on the local machine.
In versions of RPCManager prior to version 4, each MachineNode con-
tains a transmission FIFO, ensuring that RPC requests are delivered to
the remote machine in the strict order that they were generated on the
local machine.

From version 4 onwards, each MachineNode contains one FIFO for dir-
ected RPCs and one FIFO for each service that is registered with RPCMan-
ager.
MachineNode selects the SocketNode to encode and transmit the
request, according to the methods outlined in the section on Multi-
homed Systems.
Each SocketNode\Receiver module accepts and decodes the incoming
requests and places them on the local serialization FIFO for processing.
The flow of RPC requests through the RPC subsystem is depicted in the
following diagram, where the parenthesized names are the RPC Manager
module that performs the operation:

The settings that were provided by the original \RPCManager\Send() sub-
routine call provide the initial routing information. RPC Manager may
modify this information before queuing the RPC request on a trans-
mission FIFO, so that the receiving RPC Manager will make the correct
decisions about any further routing. Further routing only occurs in the
"client of a client" case (see the section Clients of Clients).
To achieve this, the RPC request carries a set of "routing flags" with it,
which are transported across machines. These flags and the routing
strategy are discussed in section RPC External Routing.
With the Diagnostics window’s "Detail Trace" button pressed, the routing
of RPC requests between the serialization FIFO and the transmission
FIFOs are revealed. A request received from a remote machine is dia-
gnostically recorded when it is posted to the serialization FIFO, when it is
removed from the serialization FIFO for processing and when it is
queued on each transmission FIFO.
Without this button pressed, an RPC from a remote machine will be recor-
ded only when it is removed from the serialization FIFO or when it is
queued on each transmission FIFO.

RPC External Routing

All RPC requests carry a set of routing flags which determine how the
RPC Manager which is processing the request, will route the message and
whether it will execute the RPC locally.
The flags are bit-significant:

Flag Name Bit

#FNR_EXECUTE 20

#FNR_IFSERVER 21

#FNR_TOCLIENTS 22

#FNR_RECURSIVE 23

#FNR_EXSERVERS 24

The flags are initially generated when the \RPCManager\Send() call is
made:

1. If the RPC is a directed RPC, or the ExecLocally parameter is greater than
zero, #FNR_EXECUTE is set.

2. If the SendServer parameter is greater than zero, the #FNR_IFSERVER and
#FNR_EXECUTE flags are set.

3. If the SendAllClients parameter is greater then zero, the #FNR_TOCLIENTS
flag is set.

4. If the Recursive parameter is greater than zero, the #FNR_RECURSIVE flag is
set.

When the RPC request is removed from the serialization queue and pro-
cessed, the following rules are applied, in the order shown to implement
the routing algorithm:

1. If the RPC is a directed RPC:

a. If the RPC is to be run on the local machine, execute it.

b. Otherwise, place it on the transmission FIFO for the target machine.

2. If the RPC is a service RPC:

a. If the RPC has been received from a remote machine and has the #FNR_
IFSERVER set, but the recursive flag is clear, the RPC request will be
inhibited from propagating to a higher-order server. This is a some-
what special case, where an RPC request from a client-of-a-client is
not to be continually propagated to subsequent servers. To achieve
this, the #FNR_IFSERVER flag is forcibly cleared, so the following rules
can continue to be applied.

b. If the #FNR_IFSERVER flag is still set and the local machine is not the ser-
vice server (from the point of view of the local machine) and the service
filtering mode permits the request to be transmitted, it is queued on
the transmission FIFO for the service server, with the same flag settings
as the request.

c. If the #FNR_IFSERVER flag is still set and the local machine is the service
server and the #FNR_TOCLIENTS flag is set, the RPC is queued on the
transmission FIFOs for each client of this server. If the #FNR_
EXSERVERS flag is set, the RPC is only queued if the client is a potential
server from the point of view of the local machine. If the #FNR_

RECURSIVE flag is set, the request is queued with the #FNR_EXECUTE,
#FNR_TOCLIENTS and #FNR_RECURSIVE flags set to cause it to be
executed on the remote client and propagated to clients the client. If
the #FNR_EXSERVERS flag is set, this is propagated to the potential serv-
ers as well. If the #FNR_RECURSIVE flag is clear, only #FNR_EXECUTE is
set on the outgoing request.

d. If the #FNR_IFSERVER is clear and the #FNR_TOCLIENTS flag is set, the
RPC is queued on the transmission FIFOs for each client of this
machine, for the service. The flag settings used in c, above, are used
for propagation of requests to other machines. This rule implements
the transmission to a client of a client.

The above information is of value when identifying why an RPC that you
expected to go to a particular machine was not transmitted to it.

RPC Execution

An RPC request is executed on the local machine whenever:
1. The RPC request is a directed RPC, aimed at this machine.

2. The RPC is a service request and the #FNR_EXECUTE flag is set, unless the
#FNR_IFSERVER flag is also set and this machine is not the service server
(from the point of view of this machine).

The values of \RPCManager\CurSocketNode and \RPCMan-
ager\CurSessionID are set to reflect the machine that the RPC request
was received from. If the RPC was sourced from the local machine, these
will have valid values appropriate for the local machine.

RPC Security
VTScada security is application based. Usernames and passwords are
held by an application and are used to authorize the actions that a user
can perform. RPC security is system based and is concerned with ensur-
ing that RPC communication between VTScada servers is secure.
Inter-server communication security can be sub-divided into two parts:

l Security of data. This pertains to the protection against modification or dis-
covery of system data.

l Security of system. This pertains to the protection of the system against mali-
cious network traffic and unauthorized hands-on modification of the system
or the plant it controls.

Research shows the latter to be the area of almost all reported vul-
nerabilities of SCADA systems. The vulnerabilities cause loss of service, a
crash or other catastrophic failure of the SCADA system. Discovery of
these vulnerabilities is usually made in an environment other than a pro-
duction environment (i.e. someone has a copy of the software and sets
out to break it in a lab environment) and, therefore, physical access to
the system is not implemented.

Related Information:

...Security Measures

...[RPCManager-AllowIP]

Security Measures

Best practices ensure best security and a multi-tiered approach is recom-
mended:

l Physical access to the servers comprising a SCADA system needs to be
restricted to only those who need access.

l Networks also require physical security. If it is not possible to connect a com-
puter to the SCADA system servers, the attack surface is significantly
reduced. This can be achieved either by preventing physical access to the net-
working infrastructure or by using a router to provide isolation of the net-
work.

l Network access to the servers. In addition to the protection afforded by lim-
iting access to the network on which the servers are communicating, pro-
tocol security can be added to afford additional protection against
compromise of the network. Server class Windows operating systems are
quite capable of automatically securing communication to a specific
machine using IPSec (and requiring that all other servers and workstations
comply) by configuring IP Security Policies using the MMC IP Security Policy

Management snap-in and either using Windows X.509 Certificate Man-
agement or purchasing third-party trusted certificates. This affords access
restriction to nominated computers only (those with appropriate certificates
installed) and prevents data snooping and tampering by using encryption
and message digests. For a wide area network, secure tunnels must be used,
e.g. an IPSec VPN connection between sites.

[RPCManager-AllowIP]

While preventing network access using IPSec is recommended, smaller
systems running in trusted environments may wish to simply prevent
inadvertent connection to a live VTScada system by, say, a development
or test system.
The [RPCManager-AllowIP] section (in SETUP.INI) is used to achieve this.
This can also be used to provide yet another tier in the security model.
This section is not present by default. Its inclusion causes RPCManager to
refuse connections from all external computers and to refuse to estab-
lish socket connections to any external computer.
Computers that should be allowed to connect via VTScada RPC are then
added to the [RPCManager-AllowIP] section. Modification to this section
do not take effect until VTScada is restarted.
Each entry consists of a single line specifying the IP address of a peer
with which connections are permitted. Names are not acceptable, nor are
ranges of IPs. This is rarely a limitation, as the number of server systems
tend to be small and their IPs are normally static (recommended).
An example section might look like this:

[RPCManager-AllowIP]
IP = 192.168.1.5
IP = 192.168.1.6
IP = 192.168.1.7

This will allow VTScada RPC connections from only the three listed IP
addresses. It is harmless to specify the IP address of the local computer
in this section. This eases installation and maintenance of a system with,
for example, all three servers in a system being listed in the SETUP.INI
file and the same file installed on each server.

Configuration
There are two types of initialization data used by RPC Manager:

l Configuration used to control the behavior of the distributed system as a
whole or a machine within the distributed system.

l Configuration used to control a service.
Non-service configuration is held in the SETUP.INI file and has been
designed to allow the specification of the non-service configuration for
an entire distributed system identically on all machines within the dis-
tributed domain.
Service configuration, on the other hand, is specified in the application
layer’s Servers.XML file, if the \RPCManager\Register() call’s ListSource
parameter is Invalid. Otherwise, it depends on the ListSource’s API func-
tions (see Server List Source Callback Methods section).
The server list from a layer’s Servers.XML that a service uses is based on
the following order of precedence (given that the server list name is
either the ListName parameter to the service’s Register call, or, if that
isn’t provided, then the ServiceName in the Register call):

1. A server list specific to the current workstation and server list name.

2. A server list specific to the current server list name, but not workstation-spe-
cific.

3. A server list specific to the current workstation, but not service-specific.

4. The default server list.

5. If none of these lists are present in Servers.XML, then this machine is treated
like the solitary server.

Related Information:

...SETUP.INI [System] Values for RPC - list of control settings.

...Variables available in \RPCManager - publicly exposed settings.

...Application Settings for RPC - control of application-level behavior
including driver setup and alarm displays.

...Name Resolution - methods of discovering the IP address of a
machine.

SETUP.INI [System] Values for RPC

The following variables can be set in the [System] section of SETUP.INI,
located in the VTScada installation directory.

Related Information:

...Setup.ini [RPCManager-ExcludeIP] - (See: VTScada Developer's Guide)
designation of excluded addresses. See also: RAS Clients

...Setup.ini [RPCMANAGER-NETPRIORITY] - (See: VTScada Developer's
Guide) configuration of multi-homed systems. See also: Multi-homed Sys-
tems

...Setup.ini [LINKTOLERANCE] - (See: VTScada Developer's Guide) see
also, the discussion: Link Tolerances

...[RPCManager-AllowIP] - designation of allowed addresses. See also:
RPC Security

...RPCBufferLength

...RPCConnectPort

...RPCDiagnostics

...RPCMaxPacketSize

...RPCMaxQLen

...RPCMaxStartDelay

...RPCMemBuffLimit

...RPCMemSendLimit

...RPCPingInterval

...RPCReconnectTime

...RPCResendDelay

...RPCServerPort

...RPCSktConnectAttemptMax

...RPCSktResendAttempts

...RPCSocketDeadTime

...RPCSocketResendAttempts

...RPCTrace

...RPCUseBuffered

RPCBufferLength

This is the maximum TCP/IP buffer length to use for RX and TX buffers.
Prior to version 4, the default is 33,554,432 bytes if not defined. This has
no bearing on the size of the RPC packets transmitted and should be left
to default settings.
From version 4 onwards, the default is 262144. This defines the max-
imum amount of data from the socket connection that Windows will use.
If VTScada does not drain the buffers, further transmissions from the
remote end of the socket connection will cease until it is drained. This
also defines the TCP "window size" that VTScada uses.
There is an important relationship between this value and RPCMaxPack-
etSize. RPCManager reads the packet header from the socket and then
waits for sufficient data to become available before reading it. This is
intentional and reduces the amount of buffer that VTScada must allocate
and the amount of script code processing that needs to be done until the
entire packet has been received. This effectively reduces the "attack sur-
face" of RPCManager by limiting the amount of data that can be mali-
ciously pushed into a socket connection.
Therefore, for version 4 onwards, the transmitting machine's RPCBuffer-
Length MUST be greater than RPCMaxPacketSize by at least 10%. Other-
wise, you will end up with a zero-length TCP window and lose your
connection.
The default values will work for LANs and WANs.

Related Information:
RPCMaxPacketSize

RPCConnectPort

The TCP/IP port that RPC Manager tries to connect to.
Defaults to the value of RPCServerPort.

Related Information:
RPCServerPort

RPCConnectStrategy

The IP addresses that the RPC Manager can open in order to connect to
remote machines , can be provided by two sources:

l Name resolution.

l A set of IP addresses, supplied by the other machine when the VTScada
RPCManager connects to it.

The value of RPCConnectStrategy controls how these are used, as fol-
lows:

Value Connect Strategy

Invalid If a DNS server is being used for name resolution, opens each IP from
the DNS query in the order supplied by DNS.
If no DNS server, opens each IP supplied by the remote machine. This
is the default setting for all VTScada versions after 10.2.06.

FALSE Opens each IP supplied by name resolution, regardless of whether a
DNS server is being used or not and ignores the IPs supplied by the
remote machine.

TRUE Initially opens only the first IP address supplied by name resolution
and then opens each IP supplied by the remote machine.

RPCDiagnostics

Set to a non-zero value to display the RPC Diagnostics window on star-
tup. This value may also be set at run time by scoping into the system
and changing the value.

RPCMaxPacketSize

Specifies the maximum size of an encoded remote procedure call before
the call will be fragmented over a number of transmissions.
From version 4 onwards, specifies the maximum size of an RPC packet.
RPCs will be packed into a packet until there are no more to send, or
RPCMaxPacketSize is reached. The default is 65536 bytes.

For version 4 onwards, the value of this configuration value must be less
than RPCBufferLength by at least 10%. See the discussion of RPCBuffer-
Length for more detail.

RPCMaxQLen

Specifies the maximum number of RPC messages destined for remote
machines that will be queued before the queue is deemed to have
"flooded" and the session closed with all messages lost. The local RPC
queue is not subject to this limit. The larger this limit, the more tolerant
the system will be to large bursts of RPC activity. However, the larger the
queue, the more RAM will be required when the queues are large. This
parameter cannot compensate for the condition where the average RPC
traffic load exceeds the bandwidth of the network connection.
Default: RPCMaxQLen = 65536

RPCMaxStartDelay

Controls startup behavior if the workstation name is not valid. RPC Man-
ager will wait for a maximum of the seconds specified in
RPCMaxStartDelay before assuming there is no network available.
This is useful for auto starting a machine after a reboot, since it is pos-
sible for network services to not yet be started when VTScada is starting.
RPC Manager will wait indefinitely for the network to start, if this value is
set less than 0.
Default: RPCMaxStartDelay = 30

RPCMemBuffLimit

Specifies the number of bytes on a received RPC message that will be
kept in RAM before the message is transferred to a temporary file to con-
serve memory. The larger this value, the faster larger messages will be
processed, but correspondingly more RAM will be required.
Default: RPCMemBuffLimit = 2097152
(2Mb)

RPCMemSendLimit

Specifies the number of bytes on a transmitted RPC message that will be
kept in RAM before the message is transferred to a temporary file to con-
serve memory. . The larger this value, the faster larger messages will be
processed, but correspondingly more RAM will be required.
Default:RPCMemSendLimit = 1048576
(1Mb).

RPCPingInterval

Specifies the time that a socket can have no data transmitted before a
"ping’ packet will be sent to all the receiving end to determine that the
socket it still good. Will use no value less than 5. The RPCPingInterval is
subject to the ToleranceFactor on the receiving machine. The receiver
will wait 3 times this long or RPCReconnectTime, whichever is longer, to
disconnect if no data is received.
Default: RPCPingInterval = 5

Related Information:
Setup.ini [LINKTOLERANCE] (See: VTScada Developer's Guide)

RPCReconnectTime

Specifies the seconds to wait for data on a socket before disconnecting
the socket. The actual delay before disconnect is the greater of this time
and three times the RPCPingInterval. RPCReconnectTime is NOT subject
to the ToleranceFactor.
Default: RPCReconnectTime = 15

Related Information:
Setup.ini [LINKTOLERANCE] (See: VTScada Developer's Guide)

RPCResendDelay

Specifies the time to wait for an acknowledgment after sending a packet
before resending the packet. RPCResendDelay is subject to the Tol-
eranceFactor on the receiving machine.

Default (and minimum): RPCResendDelay = 3

Related Information:

...Setup.ini [LINKTOLERANCE] (See: VTScada Developer's Guide)

RPCServerPort

The TCP/IP port that RPC Manager "listens" on.
Default: RPCServerPort = 5780

Related Information:
RPCConnectPort

RPCSktConnectAttemptMax

Specifies the number of attempts to open a socket before it is declared
to be closed. The time between starts at 5 seconds and grows by 10%
after each attempt. If a socket is closed and there is no backup socket for
the session, then the session is lost and service synchronization must
occur when the socket is eventually opened and a new session estab-
lished. The minimum value is 1.
Default: RPCSktConnectAttemptMax = 5

RPCSktResendAttempts

There will be a maximum of RPCSktResendAttempts to transmit the RPC
successfully. If, after these retries, the RPC has still not been acknow-
ledged, the socket stream is terminated and SocketNode goes through its
link re-establishment cycle.

Default RPCSktResendAttempts = 5

RPCSocketDeadTime

Specifies the number of seconds that a session will remain alive with no
socket connection. This time is AFTER the RPCSktConnectAttemptMax
has expired.
Default (and minimum) RPCSocketDeadTime = 1

RPCSocketResendAttempts

Specifies the number of packet re-sends that will occur without acknow-
ledgment, before the socket is closed.
Default (and minimum) RPCSocketResendAttempts = 5

RPCTrace

Set to a non-zero value to log all RPC activity to the disk file
"RPCTRACE.TXT", in the VTScada installation directory. This variable only
has effect while RPCDiagnostics is set non-zero.
Default: RPCTrace = 0

RPCUseBuffered

When non-zero this will cause RPC to read the TCP/IP IP and Name once
only from the low-level socket stream and cache this information. This
value should only be set to 0 if the TCP/IP IP or Name can change dynam-
ically. This is not recommended.
Default: RPCUseBuffered = 1

Variables available in \RPCManager

The following variables are available within RPCManager for public con-
sumption, but are strictly read-only. Modifying any of these variables
could lead to unexpected behavior.

Started
Initially zero, this gets set to a non-zero value once the RPC Manager has
initialized. You should not attempt to register your service until RPC Man-
ager has set this value.

WkStnIP
The IP address of the local workstation. Only valid once Started is set
non-zero.

WkStnName

The name of the local workstation. Only valid once Started is set non-
zero.

WkStnVersion
The VTScada version running on the local workstation. Only valid once
Started is set non-zero.

WkStnIPList
An array, each element holding a textual representation of the set of IPs
this workstation is known by.

Related Information:

...Application Settings for RPC

Application Settings for RPC

The following list of variables pertain to remote procedure calls and the
RPC Manager.

Related Information:

...ABSharedRPC

... CIPENIPSharedRPC

... DataradioSharedRPC

... DDESharedRPC

... DNP3SharedRPC

... DriverSetupDelay

... MDSSharedRPC

... ModiconPortSharedRPC

... ModiconSharedRPC

... OmronSharedRPC

... OPCClientSharedRPC

... RemCfgTransLog

... SiemensS7PortSharedRPC

... SiemensS7SharedRPC

ABSharedRPC

Indicates whether the same RPC service should be used for all instances
of the Allen-Bradley tag type.
If set to 1 (true), then the same RPC service will be used for all instances
of the Allen-Bradley tag type.
Default: ABSharedRPC = 0
Section: System

CIPENIPSharedRPC

Indicates whether or not the same RPC service will be used for all
instances of the CIPENIP driver.
If set to 1 (true), the same RPC service is used for all instances of
CIPENIP.
Section: System
Default: CIPENIPSharedRPC = 0

DataradioSharedRPC

Indicates whether or not the same RPC service will be used for all
instances of Dataradio.
If set to 0 (false), the same RPC is NOT be used for all instances of Datar-
adio (default).
Section: System
Default: DataradioSharedRPC = 0

DDESharedRPC

Indicates whether or not the same RPC service will be used for all
instances of DDE.
If set to 0 (false), the same RPC is NOT be used for all instances of DDE
(default).
Section: System
Default: DDESharedRPC = 0

DNP3SharedRPC

Indicates whether or not the same RPC service will be used for all
instances of DNP3.
If set to 0 (false), the same RPC is NOT be used for all instances of DNP3
(default).
Section: System
Default: DNP3SharedRPC = 0

DriverSetupDelay

Indicates the number of seconds a VTScada driver waits before trying to
resend data once an attempt has failed.
Section: System
Default: DriverSetupDelay = 60

MDSSharedRPC

Indicates whether or not the same RPC service will be used for all
instances of MDS.
If set to 1 (true), the same RPC service is used for all instances of MDS.
Section: System
Default: MDSSharedRPC = 0

ModiconPortSharedRPC

Controls whether or not the same RPC service should be used for all
instances of the Modbus Plus tag type that are connected to the same
serial port or TCP/IP connection.
ModiconPortSharedRPC enables Modbus devices that share the same
serial port or TCP/IP connection to be grouped with the same device,
enabling Modbus I/O that uses different radio channels to be polled from
separate PCs.
If set to 0 (false), then the same RPC service is not used for all instances
of the Modicon tag type that are connected to the same serial port or
TCP/IP connection (default).
Section: System

Default: ModiconPortSharedRPC = 0
Related Variables: the behavior of the ModiconSharedRPC will be over-
ridden when this property is equal to 1 (true).
Note for multi-server applications using advanced server lists: If
ModiconPortSharedRPC is set to 1, each Modbus-compatible driver ser-
vice will be renamed to a combination of "ModiconServer" followed by
the port name.
For example, if the Modbus Plus tags are attached to a driver named
"PrimaryTCPPort" in an application where ModiconPortSharedRPC has
been set to 1, then the driver service will be named "Modicon-
ServerPrimaryTCPPort".

ModiconSharedRPC

Controls whether or not the same RPC service should be used for all
instances of the Modicon tag type.
If your networked application uses a polling driver, then it is recom-
mended that this variable be set to 1.
If set to 0 (false), then the same RPC service is not used for all instances
of the Modicon tag type (default).
Section: System
Default: ModiconSharedRPC = 0
Related Variables: This property will be overridden when Modicon-
PortSharedRPC property is set TRUE (1).

OmronSharedRPC

Indicates whether or not the same RPC service should be used for all
instances of the Omron tag type.
If set to 0 (false), then the same RPC service is not used for all instances
of the Omron tag type (default).
Section: System
Default: OmronSharedRPC = 0

OPCClientSharedRPC

Indicates whether or not the same RPC service should be used for all
instances of the OPC Client Driver tag type.
If set to 0 (false), then the same RPC service is not used for all instances
of the OPC Client Driver tag type (default).
Section: System
Default: OPCClientSharedRPC = 0

RemCfgTransLog

Indicates whether or not configuration database transactions should be
logged.
If set to 0 (false), then remote configuration database transactions are
not logged.

Section: System
Default: RemCfgTransLog = 0

SiemensS7PortSharedRPC

Indicates whether or not the same RPC service will be used for all
instances of the SiemensS7 tag type connected to a common TCPIP/Serial
port If set to 0 (false), the same RPC is not be used for all instances of
SiemensS7Port (default).
If set to 1 (true), the same RPC service is used for all instances of
SiemensS7Port.
Section: System
Default: SiemensS7PortSharedRPC = 0

SiemensS7SharedRPC

Indicates whether or not the same RPC service will be used for all
instances of the SiemensS7 driver.
If set to 1 (true), the same RPC service is used for all instances of
Siemens.
Section: System
Default: SiemensS7SharedRPC = 0

Name Resolution

RPC Manager uses name resolution to discover the IP for a particular
machine name. The correct configuration of name resolution services is
outside the scope of this document. Reference should be made to the
operating system documentation.

Note: Caution: A correctly configured name resolution system is essen-
tial for correct operation of the distributed system.

The default name resolution setup for Windows TCP/IP networks looks in
the following places, in the following order, in order to derive an IP
address:

1. The operating system HOSTS file is searched.

2. If not found, any configured domain name servers (DNS) are checked (includ-
ing WINS servers).

3. If still not found, NetBIOS broadcasting is used.
If you do not configure any name resolution system, the default behavior
of Windows will cause NetBIOS broadcasts to be used. While this will
work fine on most network configurations, it may not work properly on
large, segmented networks.
The basic rule is that if you can reliable ping a machine by name and
have the correct IP addressed by the ping packets, then VTScada will
work correctly.
Most SCADA systems will function well with static IP to name mapping.
This can be achieved through HOSTS files on individual machines, or by a
centralized name resolution service, such as WINS.
VTScada will, however, also function correctly with dynamic IP address
assignment, typically provided by DHCP. RAS clients also often use
dynamic IP assignment when connected into a RAS server.
If NetBIOS broadcasting is insufficient to meet your name resolution
needs, then you will need to consider one of the following alternatives:

Techniques for providing name resolution:

...HOSTS File

...Centralized Name Resolution

...RAS Clients

...Fully Qualified Domain Names

HOSTS File

The simplest approach is to configure up a master HOSTS file and ensure
that every machine in the distributed system has the same HOSTS file.
For example:

127.0.0.1 localhost
192.168.3.21 Server1
192.168.3.22 Server2
192.168.3.23 Server3
192.168.3.30 OpRoom1
192.168.3.31 OpSuper

192.168.3.50 RemoteWorks
192.168.3.55 RemoteWorks1

The disadvantage of this method is that each machine in the distributed
system must have a consistent set of information.

Centralized Name Resolution

In environments where new machines may be added on a regular basis,
maintaining a consistent set of HOSTS files may be an unacceptable over-
head. In such cases, a centralized name resolution system is preferable.
This is normally provided by one or more designated systems, often
domain controllers and is often termed DNS. The assignment of IPs to
machine network interfaces can still be performed statically, or can be
dynamically assigned.
Dynamic IP assignment refers to the ability of a designated system to
dynamically assign an IP address from a pool of IP addresses, for a
machine connected to it.
VTScada provides support for dynamic IP assignment.
For robustness, SCADA systems are generally configured with static IP
address assignments, reserving dynamic IP assignment for multiple dial-
in links.

RAS Clients

A Remote Access Service (RAS) server provides access to remote com-
puters. Generally, the RAS server is configured to provide a separate IP
address for itself and the remote client, when connected. Allocating each
client a different IP address from a pool of addresses caters for multiple
concurrent clients.
VTScada provides support for multiple remote clients.
When allowing a remote client to connect, due consideration should be
given to deciding whether the remote client will require access to the
LAN that the RAS server is connected to.
If access is required, then it is better to delegate the RAS server to be a
machine other than one running VTScada. In this way:

1. Routing between the RAS server and the SCADA system is handled by the net-
work infrastructure.

2. The RAS server can be shared between infrequent access to the SCADA sys-
tem and other work, without compromising the SCADA system.

3. "Hacking" attacks, e.g. denial-of-service (DoS), are less likely to disable your
SCADA system, when the point of access is separated from the SCADA sys-
tem.

If access is not required, or another system is not available to be a RAS
server, then you can use a machine running VTScada as the RAS server.

Note: Caution: If the RAS server is also running VTScada, prior to ver-
sion 5.1502, then, for correct operation, it is essential that the RAS IP
addresses appear on a different subnet to any Network Interface Cards
(NIC). If this precaution is not observed, the attached RAS client will be
able to access the NIC IP addresses on the same subnet. This will not
compromise operation, but will severely impair RPC Manager’s per-
formance.

From VTS version 5.1502 onwards, a machine running VTScada can
accommodate RAS clients on any subnet, including one already used by a
LAN connection. Instructing RPC Manager, via a SETUP.INI section, to not
create a connection to specific IP addresses, achieves this. By specifying
the IP that the RAS host presents as its own IP to the RAS client, the RAS
client will not create a connection to the RAS host IP, but only con-
nections to the other IPs that the host machine is known by.
For example, if a machine running VTScada had an IP of 192.168.0.40
and that machine was configured to support a RAS client, such that the
RAS client would see the host machine as 192.168.0.150 and the RAS cli-
ent be assigned an IP address from a pool of addresses from the range
192.168.0.151 to 192.168.0.155, then the following section should
appear in the RAS client’s SETUP.INI file, so that the RAS client will only
make a connection to 192.168.0.40 [which will be done over the RAS link]
and not to 192.168.0.150:

[RPCManager-ExcludeIP]
IP = 192.168.0.150

Note that this is not necessary if the RAS IP address pool is on a different
subnet from any other IP of the RAS host, so long as no routing exists
between the two subnets.
From VTS version 5.18 onwards it is not necessary to exclude any IP
addresses on the server, however, if the IP cannot be accessed by a con-
necting client VTScada system, it is advisable to exclude it from RPC Man-
ager’s view by the above method.

Fully Qualified Domain Names

A fully qualified domain name [FQDN] takes the form <host>.<domain>,
e.g. xx.xyz.com. When viewing the SocketNodes, displayed by RPC Dia-
gnostics, you may notice that the MachineNode names are machine
names, whereas the SocketNode names are FQDNs. This is because Sock-
etNode names are obtained by reverse name lookup, converting the IP of
the connected [remote] machine to a name. Name resolution, particularly
via DNS, may yield such a name.

Note: When specifying server lists, you must provide machine names
[not FQDNs] in the configuration files and when acquiring an applic-
ation from another machine.

Then configure name resolution to resolve names within the context of
the appropriate domains by specifying domain suffixes during DNS con-
figuration on the client machine [see diagram] and leave the mapping to
DNS.
In the following diagram, a machine called XX will be searched for,
firstly, within the trihedral.com domain and then in the xyz.com domain.

This means that machine names must be unique within the domains that
RPC Manager can address, e.g. using the above configuration, RPC Man-
ager will treat xx.trihedral.com and xx.xyz.com as the same machine
[even if they are not].

Protocol
RPC Manager uses TCP/IP sockets to provide a transparent com-
munication channel between RPC Manager instances. A proprietary pro-
tocol is transmitted between RPC Manager instances carrying both RPCs
and control information.

This section describes the proprietary protocol used by RPC Manager.
This information is not essential to use RPC Manager to its fullest cap-
abilities.

Related Information:

...Protocol Versions - overview.

...General Structure

...Version 3 Packet Format

...Version 4 Packet Format

...Session Table Message

...Version 3 RPC Messages

...Version 4 RPC Messages

...Packed Parameters

Protocol Versions

There are two versions of the protocol, loosely named version 3 and ver-
sion 4 (the version numbers actually refer to points of major change in
RPCManager).
Version 3 protocol is used in all RPCManagers from VTS version 7.1.21
through version 9.
Version 4 protocol is used from version 10 onwards.
Version 4 has a different structure enabling RPCs from multiple source
GUIDs and to multiple destination GUIDs to be transported in the same
RPC packet, reducing the number of RPC packets needed (and hence the
turnaround latency). Version 4 protocol supports packet compression
and does so by default. Finally, VTScada TCP/IP engine changes permit
version 4 to get increased throughput (particularly on WANs) by properly
utilizing TCP window scaling and a larger default window size.
RPCManager versions using version 4 protocol also support version 3 pro-
tocol to enable support of mixed versions of VTScada in the same SCADA
system.

General Structure

The RPC Manager protocol is a generic term that can be better defined as
the cross-machine protocol used by two SocketNodes to provide the reli-
able RPC transport. By this definition, the protocol is private to Sock-
etNode and is completely encapsulated within SocketNode.
TCP/IP provides for reliable delivery of packets of information, where, for
the purposes of this document, a packet is defined as an atomically writ-
ten block of bytes.
Each packet has the same format, information within the packet header
being used to decode the message that it carries. Messages fall into two
categories, control messages and RPC messages.

Version 3 Packet Format

A packet has the following format:

Sync
Dest
GUID

Function
Code

Message
Length

Sequence
Number

Source
GUID

Message

4
bytes

16
bytes

1 byte 2 bytes 1 byte 16 bytes variable

Sync

The Sync field is constant and is the character sequence #96#. As TCP
guarantees reliable delivery, there is no CRC or checksum on a packet;
this would be a duplication of the error checking abilities of TCP. The pur-
pose of the Sync field is to provide defence against an internal RPC Man-
ager fault, where a partial packet was transmitted. TCP guarantees
reliable, atomic delivery of an atomically written sequence of bytes. The
Sync field ensures that a non-atomic write (which should not happen) will
not cause erroneous action at the receiving RPC Manager.

Dest GUID

A running VTScada system contains one "root" system object and mul-
tiple application "root" objects. The Dest GUID field is used to dis-
criminate between these root objects and allow RPC Manager to

determine a starting scope in which to search for a target RPC sub-
routine.
The Dest GUID for an application root is the same GUID as used in the
SETTINGS.STARTUP file to uniquely identify an application’s code objects
within the distributed domain. That Dest GUID is the same for all
instances of the same application.
RPCs directed at the system root level carry an all-zero Dest GUID. An
all-zero Dest GUID is also used on control messages.

Function Code

The Function Code contains a unique value, defining the message type.
This is combined with a set of modifier flags that provide for minor
expansions to the "pure" set of commands.
The least significant 5 bits of the Function Code contains the command
code. This gives a set of 32 possible commands. Command code 0 is,
defensively, not used, giving a total of 31 commands, of which only five
are defined:

Code Name Value Meaning

#FNF_PING 1 Ping packet. No message. The Binary GUID is
all-zeros, the Message Length is zero and the
Sequence Number is zero.

#FNF_ACK 2 acknowledgment of an #FNF_RPC. No mes-
sage. The Binary GUID holds the same Binary
GUID as the #FNF_RPC that is being acknow-
ledged. The Message Length is zero. The
Sequence Number contains the same
Sequence Number as the #FNF_RPC that is
being acknowledged.

#FNF_SESSION 3 Session management table in message.

#FNF_RPC 4 RPC in message.

#FNF_ RPCMULTI 5 Multiple RPCs in message.

The most significant 3 bits contain modifier flags. These flags are com-
mand specific and, presently, are only defined for #FNF_RPC:

Flag Name Value Meaning

FNF_FLAG_
DUALGUID

32 The Source GUID is present.

#FNF_FLAG_FIRST 64 First fragment of a fragmented RPC.

#FNF_FLAG_NEXT 128 Subsequent fragment of a frag-
mented RPC

Message Length

The Message Length field contains the number of bytes that make up the
Message Field.

Sequence Number

This is a number, initialized to 1, which increments each time a trans-
mitted #FNF_RPC has been acknowledged. When it reaches 255 and incre-
ments, it wraps around to 1. For all other Function Codes, the number is
zero.
The receiving SocketNode acknowledges, but does not action, an RPC
message that was a duplicate of the previous one.
This is designed to prevent SocketNode taking replicate action if the
same RPC is re-transmitted, as part of a retry strategy. In the situation
where the remote machine sees the RPC message transmission and
acknowledges it, but the transmitting machine fails to receive the acknow-
ledgment, a successful re-transmission of the same RPC message will be
acknowledged, but a second invocation of the RPC subroutine will not
occur. This could happen because SocketNode will tolerate a high degree
of inter-machine communication link disturbance, before session ter-
mination occurs.
If the session is lost, the Sequence Number is reset to 1.

Source GUID

The Source GUID is only present in cross-application RPC messages. It is
the binary form of the GUID of the application that sourced the RPC.

Version 4 Packet Format

A packet has the following structure:

Function
Code

Sequence
#

Message
Length

Uncompressed
Length

Message

1 byte 1 byte 4 bytes 4 bytes variable

Function Code

Version 3 protocol always started with a "Sync" marker of 4 bytes, the
first byte of which was 0x23 (a # character). The version 4 function codes
defines this function code value as a session table and interprets the
remaining bytes of the transmission as an "old" format session table.
When RPCManager opens a socket connection to a peer, this is the first
message sent and enables the two RPCManagers to determine which pro-
tocol should be used. This avoids the need to have an old and new ses-
sion table format.
The least significant 5 bits of the Function Code contains the command
code. This gives a set of 32 possible commands. Command code 0 is,
defensively, not used, giving a total of 31 commands, of which only five
are defined:

Code Name Value Meaning

#FNF_PING 1 Ping packet (I have sent nothing for
some time, but I’m still here). The entire
transmission consists of only the func-
tion code.

#FNF_ACK 2 acknowledgment packet (acknowledging
an RPC or RPCs received). The entire
transmission consists of the function
code and sequence number.

#FNF_SESSION 3 Unused. A version 4 format packet car-
rying this function code is treated as
illegal and cause the session to reset.

#FNF_RPC 4 RPC in message. The entire transmission
is of variable length and consists of the
function code, sequence number, mes-
sage length and variable length message
field.

#FNF_ RPCMULTI 5 Unused. A version 4 format packet car-
rying this function code is treated as
illegal and cause the session to reset.

#FNF_RPCCOMPRESS 6 Compressed RPC in message. The entire
transmission is of variable length and
consists of all the above fields.

#FNF_NEWSESSION 35 Session management table in message.
Identical packet format to version 3.

Sequence Number

This is a number, initialized to 1, which increments each time a trans-
mitted #FNF_RPC or #FNF_RPCCOMPRESS has been acknowledged. When
it reaches 255 and increments, it wraps around to 1.
The receiving SocketNode acknowledges, but does not action, an RPC
message that was a duplicate of the previous one.
This is designed to prevent SocketNode taking replicate action if the
same RPC is re-transmitted, as part of a retry strategy. In the situation
where the remote machine sees the RPC message transmission and
acknowledges it, but the transmitting machine fails to receive the acknow-
ledgment, a successful re-transmission of the same RPC message will be
acknowledged, but a second invocation of the RPC subroutine will not
occur. This could happen because SocketNode will tolerate a high degree
of inter-machine communication link disturbance, before session ter-
mination occurs.
If the session is lost, the Sequence Number is reset to 1.

Message Length

This holds the number of bytes in the message field.

Uncompressed Length

This field, only present with function code #FNF_RPCCOMPRESS, holds
the number of bytes in the uncompressed length of the message field.

Flags

The Flags byte contains routing flags that tell RPCManager how to pro-
cess the message and flags that determine the format of the body:

Bit
Num-
ber

Meaning

0 - 4 Routing Flags. Identical to those defined for previous versions of
the RPC protocol, with the addition of the #FNR_EXSERVERS (24)
flag for routing to potential server clients only.

5 Dual GUID. When set, a Source GUID field is present in the body.
The Source GUID field is only present in cross-application RPCs.

6 - 7 Fragment Flags. This indicates:

Value Meaning

0 The body is a fragment of an RPC spanning multiple
bodies.

1 The body is the first fragment of an RPC spanning mul-
tiple bodies.

2 The body is the final fragment of an RPC spanning mul-
tiple bodies.

3 The body holds a complete RPC.

Session Table Message

A #FNF_SESSION packet is the first packet which is transmitted over a
new socket stream connection. There is no acknowledgment that this
packet has been received, however, there will be no transmission of any
other packets until a #FNF_SESSION packet is received.

The message in a #FNF_SESSION packet contains the version number of
the remote VTScada and a session management table:

Remote
VTScada
Version

Session
Table
Size

Session
Table

Workstation
Name

Flag
Byte

Session
Table

Sequence #

VTScada
Serial

Number

8-byte
IEEE float-
ing point

4 bytes variable Text, NUL
terminated.

1
byte

4 bytes 4 bytes

The Session Table Size is given in bytes and includes all bytes in the
remaining fields.
The Session Table field holds the actual session table and is constructed
from rows, each row forming the SID for a connection for an application:

Application GUID Application Session ID Connection Session ID

36 byte text GUID 36 byte text GUID 36 byte text GUID

This may appear to be a bandwidth-hungry message, but it is sent infre-
quently:

l As the first packet down a new socket stream connection.

l If an application terminates.

l If an application starts.
An operational system will probably only have two rows in the session
table, one with an Application GUID field of the all-zero Binary GUID and
one for the end-user application. Sending a row for the VTScada system
GUID permits the detection of VTScada being restarted during a network
break.
The Workstation Name is the NetBIOS name of the workstation sending
the session table.
The Flag Byte holds bits that describe the capabilities of the sending
RPCManager and what additional fields are present:

Bit Number Meaning

0 The Session Table Sequence # field is present.

1 The VTScada Serial Number is present (VTS 9.0.06

onwards).

2 The sending RPCManager supports version 4 protocol.

The Session Table Sequence number is a 32-bit number, incremented
each time a MachineNode sends a session table. This is used by the
receiving RPCManager to detect session tables that arrive out-of-
sequence on a multi-homed system. This prevents old session inform-
ation from being interpreted as the current information where one route
is slower than the other.
The VTScada Serial number is a 4-byte integer encoding of the VTScada
serial number, exactly as obtained from a GetConfiguration(0) call.

Version 3 RPC Messages

#FNF_RPC
A #FNF_RPC message has the following, generic, format:

Mode Cut-Off Routing Flags Encoded RPC

1 byte 1 byte variable

The Mode Cut-Off field contains the mode cut-off value that was sup-
plied to the original \RPCManager\Send() call. The Routing Flags field
contains the RPC routing flags, see section RPC External Routing.
If the Encoded RPC is longer than the value defined in the configuration
variable RPCMaxPacketSize, the RPC will be broken into fragments for
transmission, each fragment being no longer than RPCMaxPacketSize.
A fragmented RPC utilizes the two Function Code flags #FNF_FLAG_FIRST
(26) and #FNF_FLAG_NEXT (27). #FNF_FLAG_FIRST is set on the first frag-
ment and #FNF_FLAG_NEXT on all subsequent fragments. The #FNF_RPC
messages carry an additional 8 byte header:

Block Number Total Blocks

4 bytes 4 bytes

The Block Number field is set to zero and increments on each fragment,
until Total Blocks minus 1 is reached. This denotes the last block in

sequence. The header is followed by the generic #FNF_RPC message, so
an RPC that was fragmented over 3 packets would appear:

Syn-
c/GUID

Func-
tion
Code
(#FNF_
RPC +
#FNF_
FLAG_
FIRST)

Lengt-
h

Sequenc-
e (n)

Block
Num-
ber (0)

Total
Block-
s (3)

Mod-
e
Cut-
Off

Rout-
ing
Flags

Encode-
d RPC

Sync/GUID Function Code
(#FNF_RPC +
#FNF_FLAG_
NEXT)

Length Sequence
(n)

Block
Number
(1)

Total
Blocks
(3)

Encoded
RPC

Sync/GUID Function Code
(#FNF_RPC +
#FNF_FLAG_
NEXT)

Length Sequence
(n)

Block
Number
(2)

Total
Blocks
(3)

Encoded
RPC

#FNF_RPCMULTI
A #FNF_RPC message has the following, generic, format:

Length of this RPC Mode Cut-Off Routing Flags Encoded RPC

4 bytes 1 byte 1 byte variable

This message repeats throughout the length of the packet. Each message
consists of an RPC for the same application GUID.
This function code was introduced in VTS version 5.18 as a means of
more efficiently transporting updates for large numbers of drivers more
efficiently. The encoding of the RPC is the same as #FNF_RPC.
RPC Encoding
The Encoded RPC field of the #FNF_RPC message has only one fixed
length field, the RPC Code. All other fields are of variable length.

Target Type Target Module Name Context Packed Parameters

1 byte

The purpose of the Target Type and Target fields are to differentiate
between directed RPCs and service RPCs. The Target field’s type and con-
tent depends on the Target Type:

Target
Type
Field

Target
Field

Description

Service
RPC (0)

2 off 1 byte
numerics

The first byte contains an offset into the Context
field where the service name can be found. The
second byte contains the length of the service
name.

Service
RPC (1)

CR ter-
minated
string

The target field contains the service name, ter-
minated with a carriage return.

Directed
RPC (2)

CR ter-
minated
string

The target field contains the machine name or IP,
terminated with a carriage return.

The Module Name and Context fields are also strings terminated with a
carriage return.
The Packed Parameters field is described in the section "Packed Para-
meters" and is a common encoding with version 4 protocol.

Version 4 RPC Messages

#FNF_RPC
The message field consists of one or more "elements". An element con-
tains either a complete RPC or a fragment of an RPC. The message may
contain any combination of these. Elements are interpreted in the strict
order that they appear in the message, from first received to last
received.
The format of an element is

RPC Message Header Packed parameters

variable variable

The header description follows.
The Packed Parameters field is described in the section "Packed Para-
meters" and is a common encoding with version 3 protocol.

RPC Message Header

Flag-
s

RPC
Lengt-
h

Mod-
e
Cut-
off

Dest
GUI-
D

Sourc-
e
GUID

RPC
Typ-
e

Service
Name or
IP/Machin-
e

Module
Name

Context Frag-
ment ID

1
byte

4
bytes

1
byte

16
byte-
s

16
bytes

1
byte

CR ter-
minated

CR ter-
minated

CR ter-
minated

4 bytes

Flags
The Flags byte contains routing flags that tell RPCManager how to pro-
cess the message and flags that determine the format of the body:

Bit
Num-
ber

Meaning

0 - 4 Routing Flags. Identical to those defined for previous versions of the RPC
protocol, with the addition of the #FNR_EXSERVERS (24) flag for routing
to potential server clients only.

5 Dual GUID. When set, a Source GUID field is present in the body. The
Source GUID field is only present in cross-application RPCs.

6 - 7 Fragment Flags. This indicates:

Value Meaning

0 The body is a fragment of an RPC spanning multiple bodies.

1 The body is the first fragment of an RPC spanning multiple bod-
ies.

2 The body is the final fragment of an RPC spanning multiple bod-
ies.

3 The body holds a complete RPC.

Mode Cut-off
The Mode Cut-Off field contains the mode cut-off value that was sup-
plied to the original \RPCManager\Send() call.

Dest GUID
This field is the same as the version 3 protocol header field of the same
name and contains the application GUID that the RPC is intended for,
with an all-zero GUID conventionally meaning the system root.

Source GUID
This field is optional and only present if the Dual-GUID flag is set in the
Flags byte. If present it contains the application GUID that sourced the
message. If absent, the sourcing application GUID is the same as the
Dest GUID.

RPC Type
This field indicates if the RPC is a service (1) or a directed (2) type

Service Name or IP/Machine
This field contains the service name, if the RPC is a service RPC or the tar-
get machine name if the RPC is a directed RPC.

Module Name

This field contains the name of the module to be invoked as the target of
the RPC.

Context
This field contains the scope in which to find the module to be invoked.
This is specified as a scope string, with the starting point of the scope
being determined by the Dest GUID and Service Name (if a service RPC).

Fragment ID
This field is optional and only present if the RPC is fragmented. If the
RPC is fragmented the Flags byte will not have both the first and last frag-
ment flags set. A complete RPC will have both flags set and will not have
a Fragment ID field.
The fragments are concatenated together at the receiver and processed
once the final fragment is received. The existing algorithm in the Sock-
etNode receiver is used to maintain the stream of fragments in a tem-
porary disk file stream, rather than a memory stream, once the fragment
concatenation becomes too large.

Packed Parameters

The parameters to the RPC subroutine are packed into the Packed Para-
meters field. The Packed Parameters field is simply the output of Pack.
Running this field, in its entirety through UnPack() results in exactly the
same data structure that was passed into Pack() when the RPC was
encoded.

Type Range Encoded As

Invalid or any
unsupported
type

Single byte of value 255.

Numeric
Integer

0 to 0xDF Single byte value.

Numeric 0xE0 to 0xFFF A byte of 0xE0 or’ed with the top 4 bits of

Integer the numeric, followed by the least sig-
nificant byte of the numeric.

Numeric
Integer

0x1000 to
0x7FFF

A byte of 0xF0, followed by the 2-byte
numeric.

Numeric
Integer

0x8000 to
0xFFFF

A byte of 0xF1, followed by the 2-byte
numeric.

Numeric
Integer

0x10000 to
0x7FFFFFFF

A byte of 0xF2, followed by the 4-byte
numeric.

Numeric
Floating
Point

IEEE 4-byte
floating point
number

A byte of 0xF3, followed by the 4-byte
IEEE floating point number.

Numeric
Floating
Point

IEEE 8-byte
floating point
number

A byte of 0xF4, followed by the 8-byte
IEEE floating point number.

Text A byte of 0xF5, followed by a 2-byte
length of the text, followed by the text.

Stream A byte of 0xF6, followed by a 4-byte
length of the stream, followed by the
stream.

Array See following notes about Packed Arrays.

Packed Arrays
The first byte of an array encoding consists of a byte of 0xF7 or’ed with
the number of array dimensions minus 1. There then follows a table,
with one row per array dimension:

Start Index Number of Elements

Each table row is packed in exactly the same manner as given for scalar
values in the preceding section, minimizing the size of the table.

Each dimension of the array, in ascending order then has its elements
packed, in ascending order, in the same manner as scalar values. This
operates up to a maximum of three dimensions.

Related Functions:

... Pack

... Unpack

Security Manager

The Security Manager is a basic component of VTScada supplying all of
the code necessary to provide varying levels of security in an application.
The Security Manager is available for use with both Script and Standard
applications. It provides a set of API functions to create and modify user
accounts, verify access credentials and query relevant permissions. It
also provides a set of public variables that may be examined by applic-
ation code.
User accounts are normally stored on an application-by-application
basis. You can enable Shared Security in an application in order to use
the security database of its OEM layer.
The Security Manager is always active.

Related Information:

...Accounts - User Accounts

...Roles - Security Roles

...Security Rules - Privileges granted to Roles or Accounts

...Security Implementation - An overview of the Security Manager priv-
ilege system

...The SecurityManager API - Structures, functions and publicly accessible
properties.

...Security Event Logging

...Security NameSpaces - Account configuration for Realm Area Filtering

Accounts
There are two types of account: the user and the role. User accounts
identify each person using the application, including their name, pass-
word, privilege set and other security-related information. A role is a
named collection of security rules. One or more roles may be assigned to

each user account, thereby simplifying the process of assigning privilege
rules.
Both user accounts and role accounts are stored using the same data
structure, within the Accounts.Dynamic file, which can be found in the
application directory.
In most cases, accounts will be created by way of the user interface in the
Accounts dialog. You may also add, modify and delete accounts through
code, noting that there are security restraints in place on these functions
to prevent unauthorized tampering.
While accounts are commonly referred to by name, each account is actu-
ally identified by an ID code. You may therefore change the name of an
account if needed without losing any of its configuration.
See also: AccountData Structure, Account Storage, Security Rules.

Related Information:

...Account Storage

...Alternate Identification

...Roles

Account Storage

The Security Manager database is held in a file within the application dir-
ectory named Accounts.Dynamic. The information in this file cannot be
read or successfully modified by any means other than the Security Man-
ager user interface.
In the case that Shared Security is in use, the Accounts.Dynamic file of
the OEM layer will be used for all applications based upon that layer.
There are three sections in the Accounts.Dynamic file:
[SecMgr] Has only one entry: the version number of the security man-
ager database. This will be "140" for all versions.
[Accounts] Stores the information for each user account, in the form
used by VTS version 10.
[Accounts-200] Stores the information for each user account, in the
form used by VTScada after version 10.0. For applications upgraded from

version 10, VTScada will read the information in the [Accounts] section
once, then create an [Accounts-200] section containing the same inform-
ation stored in the new format. After the [Accounts-200] section has
been created, VTScada will no longer read the [Accounts] section
Each entry in the database takes the form, "AccountID = Encoded account
definition". Restrictions are in place so that the Accounts.Dynamic file
from one application cannot be used in another, nor can an account
definition from one application be copied for use in another application.

Alternate Identification

Alternate identification for an account may be assigned. The iden-
tification is typically a numeric code that operators may use when log-
ging in to the Alarm Notification System.
No two users may have the same alternate ID - each must be unique. The
minimum length of the ID is controlled by the Setup.INI property,
MinAltIDLength, although a default minimum of four characters will be
used if this property has not been set. MinAltIDLength must be added to
the [SYSTEM] section.

Note: Trihedral Engineering strongly discourages any reduction in the
number of characters required for identification. Any reduction in the
number of possible combinations makes it easier for an attacker to
compromise your system.

Another possible alternate identification source is a card reader. If your
application uses one of these devices, a custom module will need to be
written to handle the communications. Please contact Trihedral for sup-
port.

Related Information:
See the VTScada Developer's Guide for:

...Configure Alternate Identification

...Proximity Card Readers

Roles
A role is a type of account. The purpose of a role is to associate a set of
security privileges or rules to a name that can then be associated with
user accounts. Roles are meant to define job functions such as "Oper-
ator" and "Manager", with all of the security rules required for that job.
User accounts may be assigned multiple roles, gaining the combined priv-
ilege sets of all.
This association between a role and a user remains dynamic so that if
changes are made to a role's privilege set, all users who have been
assigned that role will immediately have their privileges changed.
While a Role is a type of account, roles differ from user accounts as fol-
lows:

Roles do not have passwords.
Roles do have descriptions.
It is not possible to log in to an application using a role name.
Automatic time-out periods do not affect roles.
Roles do not have alternate ID values.
Roles are managed in an area of the Accounts dialog that is sep-
arate from the list of user accounts.

A user account can be used as the template for a new role, which will
then have all the same privileges, but no continuing link. The reverse is
also true.

Related Information:

...The Logged Off Role

The Logged Off Role

A role named "Logged Off" will be found in every installation as soon as
security is activated. This role is in effect when no other user is logged
in. You may use this role to permit a privilege for unrestricted access.
For example, you might allow anyone to view the alarm page without
first logging in. Take care not to open a security hole in your application
by granting unnecessary privileges to this role.

You cannot delete the Logged Off role.

Note: The Logged Off account has a second use in VTScada which is to
determine whether VIC sessions would remain active when the logged
off. If the role has a password, then VIC sessions will remain active.
This function is now handled by a check box in the Administrative Set-
tings user interface, but you should use care if modifying the Logged
Off account through code.

Security Rules
Prior to VTS version 10.1, resources in an application were secured using
privileges. A privilege was created, then assigned to an output tag or
page. The privilege could then be assigned to a user so that they would
have permission to write data with the output tag or open the page. This
led to a coarse-grained security model where the only way to increase
the granularity of security was to assign new privileges.
VTS version 10.1 introduced the concept of a security rule. Rules are
assigned to accounts, not to resources. A rule is composed of three
parts:

l A mandatory privilege number (or a role name, thereby including a set of
privilege numbers).

l An optional scope.

l An optional workstation name.
A scope is the name of a tag. A rule containing a scope applies to that
named tag and all children of that tag. For example, if a tag is named
Tag1\Tag2\Tag3 and a scope of Tag1\Tag2 is specified in a rule, that
rule will apply to Tag1\Tag2 and all its children including
Tag1\Tag2\Tag3.
When a check is made to determine if the current user has access to a
resource, the privilege number assigned to the resource, the name of the
tag associated with that resource and the workstation on which the
request is being made are compared against the set of security rules

assigned to the user. For a check to pass, all component parts of one of
the user’s security rules must match.
Therefore, a rule that has only a privilege number is a "global" privilege –
it will match any resource that requires the same privilege number.
A rule that has a privilege number and a scope will only match if the priv-
ilege numbers match and the name of the resource or any parent of that
resource match the rule’s scope.
A rule that has a privilege number, a scope and a workstation name will
only match if the privilege numbers match and the name of the resource
or any parent of that resource match the rule’s scope and the request is
being made on the same workstation as specified in the rule.
This permits the specification of finer-grained security without the need
to expand the set of privileges significantly. The concept can be thought
of as a privilege number defining a verb describing the operation (e.g.
"control" or "view") and the scope defining a noun on which the verb oper-
ates (e.g. "TreatmentPlant"). The Workstation modifier adds a location
clause, referring to the operator (e.g. "from OfficeComputer"). If the tag
database is organized into a hierarchy, the noun can encompass a col-
lection of tags related by the hierarchy.
Conversion of a 10.0 or earlier VTS security database results in an equi-
valent set of global rules being generated for each user account.
SecurityCheck determines the tag name of the resource being checked. It
searches the caller and its parent scope(s) for the name of a tag by look-
ing for a "Name" variable. When it finds one, it looks up the VTSDB to
determine if the value of the found Name variable is indeed the name of
a tag. If not, the search continues. If so, the discovered name is used to
check the user’s security rules. This search can be bypassed by passing in
a valid string to SecurityCheck’s TagName parameter.
If no name is supplied nor can be discovered, only global rules will be
able to match the SecurityCheck request, as all parts of a rule must
match for a check to be successful.
Widgets and any code called by them that calls SecurityCheck therefore
must be careful to ensure that they either supply a TagName parameter

to SecurityCheck or that they call SecurityCheck from a child scope of a
tag. As most tag-centric widgets do run in tag scope, this is unlikely to
be an issue in your code.

Related Information:

...Combining Security Roles and Rules

...Accounts

...Roles

Combining Security Roles and Rules

As described in the topic Roles, a role is a security account whose pur-
pose is to encompass a named set of security rules. The intent is to
provide an easy way to represent a set of commonly assigned security
rules. For example, a role named "operator" may have a set of security
rules that are commonly assigned to any user that performs the tasks of
a plant operator.
A security rule can reference a role instead of a privilege number,
thereby allowing a role to be assigned to a user account. As a role is an
account, a role can also contain a security rule that references another
role, thereby allowing a role such as "engineer" to contain the "operator"
role.
Because a security rule has an optional scope and workstation name, a
security rule that contains a role can also qualify the role using a scope
or workstation name. This enables you to define rules such as an oper-
ator for a particular plant area ("operator" – "TreatmentPlant") and even
enables you to restrict the workstation at which that rule can be effective.
Where a security rule specifies a role and either or both the optional
scope and workstation name, the scope is only applied to security rules
within the role that do not explicitly define a scope and, likewise, the
workstation name is only applied to security rules within the role that do
not explicitly define a workstation name.

Where a role contains a security rule that references another role, scope
and workstation name overrides are applied recursively, as described
above.

Security Implementation
For every application, the security manager is activated when the applic-
ation is activated. Applications are activated when an operator requests
some action of them (for example, attempting to access the Application
Configuration dialog) or, in the case of OEM layers, when a dependant
application is activated.
The DisplayManager, the LayerModule and each VIC session all have the
concept of a user security session. SecurityManager maintains state
information for each user security session via the call tree of any code
that makes an API call into SecurityManager.
Making a call from code within that call tree causes SecurityManager to
use the security rules for the call tree’s user security session when eval-
uating permissions.
Making a call from outside such a call tree causes SecurityManager to
use the Logged Off role security rules.
If the application is in a secured state, the Security Manager provides a
number of variables controlling how security is managed and a set of
functions for working with user accounts and checking access privileges.

Related Information:

...System Privilege Reference for Programmers

...Application Privileges

...Shared Security

System Privilege Reference for Programmers

The following is a list of system privileges for the current imple-
mentation.

Constants must be preceded by \SecurityManager\ unless you have
imported the API as described in The SecurityManager API.
System privilege numbers are <= 0. Application privilege numbers are
>= 16. The table is complete; missing values are deprecated privileges.

System Priv-
ilege

Constant Value Description

Administration

Security
Administrator

PrivBitAdministrator -4 Permits access to the
Administrative Settings
dialog and modi-
fication of admin-
istrative functions. Also
required to modify
security roles.

Configure PrivBitConfigure 0 Permits access to the
Application and Con-
figuration dialog, the
Import File Changes
button on the VAM and
the right to delete
applications.

Account Con-
trol

Accounts Man-
ager

PrivBitManager -3 Permits manipulation
of the Account List;
allows the user to add,
copy, delete, and
modify user accounts.

Account
Modify

PrivBitAccountModify -2 Allows users to modify
their own password,
but does not allow

them to modify their
account privileges.

Account View PrivBitAccountView -1 Allows users to view
(but not modify) their
own privileges.

Internet Client
Access

PrivBitInternetClient -23 Allows users to make
connections to a VTS/IS
using a VIC.

Application
Control

Application
Stop

PrivBitAppClose -9 Allows users to stop
the application

Application
Manager View

PrivBitVAMView -40 Allows users to view
the VAM when the
Setup.INI property,
HideWAM, is set to
TRUE.

Version Con-
trol

Advanced Ver-
sion Control

PrivBitVersionControl -39 Allows a user to switch
or revert versions in
the Version Log.

Deploy
Changes

PrivBitDeploy -15 Allows users to per-
form updates through
the Application Con-
figuration dialog.

Revert
Changes

PrivBitRevert -16 Allows users to per-
form rollbacks through
the Application Con-
figuration dialog.

Application
Configuration

Edit Files PrivBitEditFiles -14 Allows users to change
files through the Applic-
ation Configuration dia-
log. Also required for
the Compile button on
the VAM. (Formerly
called "Remove File")

Page Add PrivBitPageAdd -17 Allows users to add
pages through the Idea
Studio.

Page Modify PrivBitPageModify -18 Allows users to modify
page properties
through the Idea Stu-
dio.

Page Delete PrivBitPageDelete -19 Allows users to delete
pages through the Idea
Studio.

Page Note Edit PrivBitPageNoteEdit -37 Allows a user to add,
edit or delete page
notes.

Page Note
Hide

PrivBitPageNoteHide -38 Allows a user to make
page notes hide
without deleting them.

Tag Operations

Parameter
View

PrivBitParamView -11 Allows users who do
not have the Tag
Modify privilege to
view tag parameters.

Tag Add/Copy PrivBitTagAddCopy -20 Allows users to add or
copy tags through the
Tag Browser. Tag
Modify also required.

Tag Modify PrivBitTagModify -21 Allows users to modify
tag properties through
the Tag Browser.

Tag Delete PrivBitTagDelete -22 Allows users to delete
tags through the Tag
Browser.

Manage Tag
Types

PrivBitManageTagTypes -41 Allows use of "Create new
type" and "Redefine type"
in the Tag Browser. Allows
use of "Manage Types" in
the Application Con-
figuration dialog.

Manual Data PrivBitManualData -6 Set or change the
Manual Data value of a
tag without having the
Tag Modify privilege.

Questionable PrivBitQuestionable -7 Change the Ques-
tionable flag of a tag
without having the Tag
Modify privilege.

Alarm Oper-
ations

Alarm Acknow-
ledge

PrivBitAlarmAck -8 Allows operators to
acknowledge alarms.

Alarm Disable PrivBitAlarmInhibit -5 Allows operators to dis-
able alarms.

Alarm Mute PrivBitAlarmMute -24 Allows users to use the
Mute button on the
Alarm page to mute all
current and future
alarms.

Alarm Silence PrivBitAlarmSilence -25 Allows users to use the
Silence button on the
Alarm page to silence
the sounding alarm.

Alarm Shelve PrivBitAlarmShelve -42 Enables operators to
shelve alarms, leaving
them enabled but deac-
tivating all notifications.

Historical Data

Group Delete PrivBitHDVGroupDelete -28 Allows the user to
delete pen groups for
the Historical Data
Viewer page.

Group Modify PrivBitHDVGroupModify -26 Allows the user to
modify pen groups for
the Historical Data
Viewer page.
If denied, then Group
Delete and Group Save
are also effectively
denied.

Group Save PrivBitHDVGroupSave -27 Allows the user to save
pen groups for the His-
torical Data Viewer
page.

Note Add PrivBitNoteAdd -30 Allows the user to add

notes to a notebook
tag using the Historical
Data Viewer page.

Pen Modify PrivBitHDVPenModify -29 Allows the user to
modify pen properties
for the Historical Data
Viewer page.

Page Access

Alarm Page
Access

PrivBitAlarmPageAccess -31 Allows the user to
access the Alarm page.

History Page
Access

PrivBitHDVAccess -33 Allows the user to
access the Historical
Data Viewer page.

Internet Client
Tools Access

PrivBitVICTools -34 Allows the user to
access the debugging
and analysis tools
included with VTScada
(see "Debugging and
Analysis ").

Internet Client
Monitor
Access

PrivBitVICMonitorView -35 Allows a user at a
VTScada internet client
to view the internet cli-
ent monitor page.

Internet Client
Monitor
Admin

PrivBitVICMonitorAdmin -36 Allows a user at a
VTScada internet client
to operate the internet
client monitor page.

Reports Page
Access

PrivBitReportsPageAccess -32 Allows the user to
access the Reports
page.

Three other constants are defined, which are duplicates of values in the
above table. These exist for backward compatibility.
PrivBitRemoveFile == PrivBitEditFiles
PrivBitUpdate == PrivBitDeploy
PrivBitRollback == PrivBitRevert

Application Privileges

Application Privilege are those that developers create for a given applic-
ation. They are generally used to restrict access to custom pages and out-
put tags. While system privileges control such actions as acknowledging
alarms and adding pages, it is the job of Application Privileges to restrict
access to developer-created pages and writing to output tags.
Every application privilege will have an index number, starting at 16.
Also, every application privilege is enumerated in the configuration file,
Settings.Dynamic with values starting at zero. When writing expressions
that check privileges, add 16 to the enumerated value in Set-
tings.Dynamic.
The first variable in this section, PrivBitsTotal, is a count of the current
number of application privileges. For each privilege, the number fol-
lowing the name controls the order in which the privileges will be dis-
played in the user interface.
Separator lines for the user interface are stored using the format,
"PrivSepDesc0 = -- Description, 1".
For example, the following set of privileges:

<SECURITYMANAGER-PRIVAPP>
PrivBitsTotal = 2
PrivDesc0 = PageAccess,0
PrivDesc1 = StationAccess,1

Matches this set in the Administrative Settings dialog.

Shared Security

Some sites run more than one application, where those applications are
based on a common OEM layer. In this situation, managers may want to
create a single security database and share it between those applications,
rather than maintain security accounts and settings for each application.
The Shared Security feature allows this.
Shared Security is enabled in the application layer by using the Admin-
istrative Options dialog to select a security provider database other than
the current application's. Only OEM layers will be available in the selec-
tion.
User accounts may be configured in any of the applications sharing a
database, but will be stored only in the OEM layer's Accounts.Dymanic
file and will apply to all applications based on that layer. Any pre-exist-
ing information in an application's Accounts.Dynamic file will be ignored
after shared security is enabled.
Note that the fundamental OEM layer, VTScada, cannot be selected as the
security provider.
If using Shared Security, it is important that only one application be run-
ning a security alarm module – see the note in Security Plug-in Modules
for SecAlarm.

The SecurityManager API
The SecurityManager API definitions can be imported into your applic-
ation by calling:

\System\ImportAPI(\SecurityManager);

The effectively includes the definitions in the calling module allowing
you to omit the \SecurityManager prefix when accessing these variables.
For example:

\SecurityManager\PrivBitManager

can be simply written:

\PrivBitManager

You should check the return value of ImportAPI. It returns the number of
variable name clashes that occurred when the import was attempted.
Zero is therefore a successful result.
Note that the following restrictions are in place:

l The API calls will use the security context of the caller to verify that the user
has Manager privilege. Any calls made from a user that is not so privileged
will fail and a security event will be logged.

l The API calls only operate on the security database associated with the secur-
ity context of the caller, thereby preventing interference from another applic-
ation or system level code.

Related Information:

...AccountData Structure

...SecurityRule Structure

...Security Manager Return Codes

...Security Manager Functions

...Security Manager Public Variables

...Security Plug-in Modules

AccountData Structure

Information about each account (both user accounts and roles) is stored
in the following structure:

AccountData Struct [
AccountID { Unique ID of this account

};
AccountName { Unique name of this account

};
Password { Password - only used for user

accounts };
AltID { Alternate ID - user accounts only

};
AutoLogoff { Automatic log-off timeout - user

a/c only };
PWDate { Password creation date - user a/c

only };
Rules { Array of SecurityRule structures

};
IsRole { TRUE if account is a role, else

user };
Disable { TRUE to disable this account

};
Description { Textual description of this

account };
CustomData { Uncommitted field for application

data };
];

API module calls that require an AccountData structure for an existing
account must provide a valid AccountID. An AccountID is a text value
whose length is specified in the imported API constant AccountIDLength.

AccountName Holds the unique name of the account, including any namespace
(group) prefix, separated by your application’s configured
NameSpaceDelimiter character. You may change an account
name, which is why the API requires the immutable AccountID for
all operations on an existing account.

PasswordUser accounts only. Any supplied passwords must conform to applic-
ation configured password strength requirements.

AltID User accounts only. This is the alternate account identification
used by such subsystems as the Alarm Notification System.

AutoLogoff User accounts only. It specifies the time, in minutes, after which a
user session using this account will be logged off if there is no UI
activity. This overrides the application configured global AutoLo-
goff value.

PWDate User accounts only. This is the date on which the current pass-
word was created. It is used to enforce password change after a
period of time. When creating an account, an Invalid value auto-
matically sets the PWDate to today. If set to zero, it forces the
user to change their password when they next log in.

Rules An array of SecurityRule structures, one per rule. If Invalid, the
user or role has no privileges whatsoever.

Disable A Boolean value, defaulting to FALSE. If set to TRUE, the account
is disabled. If this is a user account, the user cannot log in and, if
already logged in, is immediately logged out. If this is a role, its
security rules are disabled.

Description Role accounts only. The purpose is to provide a meaningful
description of the purpose of a role. Defaults to Invalid.

CustomData Not used by SecurityManager. It is provided for application use to
store any account-specific data it chooses. The data must either
be text or numeric. If you need to store more complex data, seri-
alize it into text before storing.

See: SecurityRule Structure.

SecurityRule Structure

The SecurityRule definition is used by the API to represent the content of
a security rule. The structure is part of the imported API. It has the fol-
lowing format:

SecurityRule Struct [
PrivRole { Privilege number or role account ID

};
TagName { Name of a point in the tag tree

};
Workstation { Name of a workstation for this rule

};
Disable { TRUE to disable the rule

};
];

PrivRole Must be valid and contain any of

l A system-defined privilege number (examine the
PrivBit… constants in the imported API).

l An application defined privilege (defined in your Set-
tings.Dynamic file at starting at a value of 16, for his-
torical reasons)

l The AccountID of a role or the name of a role. If a role
name is specified, SecurityManager will convert this
to an AccountID. Even if the role does not yet exist, it
will convert this to an AccountID when the role
becomes valid.

TagName May be Invalid, in which case it does not play a part in the
rule evaluation. Otherwise, this is the name of a tag, defin-
ing the scope in which the rule will permit access.

Workstation May be Invalid, in which case it does not play a part in the
rule evaluation. Otherwise, this is the name of a work-
station that the account must be logged in at in order for
the rule to permit access.

Disable Defaults to FALSE. If set to TRUE, the rule is disabled. Any
logged-on accounts using this rule will immediately have
this rule disabled.

Security Manager Return Codes

The account manipulation methods all provide a return code that is one
of the #SMAPIErr values defined in the imported API:

Constant #SMAPIErrSuccess = 0 { Successful result
};
Constant #SMAPIErrNoUser = 1 { User doesn't exist
};
Constant #SMAPIErrNeedManager = 2 { Caller did not have Manager priv-
ilege };
Constant #SMAPIErrUserExists = 3 { User already exists - can't add
again };
Constant #SMAPIErrBadParm = 4 { Bad parameter
};
Constant #SMAPIErrNotEditable = 5 { The application is not editable
};
Constant #SMAPIErrPwdTooWeak = 6 { Password is too weak
};

Note that GetAccountInfo (described in the Query Module Calls) is useful
in obtaining account information in the same format as is required by
ModifyAccount and DeleteAccount. The error code can be converted to
text e.g. for error display purposes by calling UIErrorToText().

Security Manager Functions

Four modules make up the Security Manager API, each containing its own
set of function calls. These are:

Account Manipulation Methods

AddAccount Creates a new account.

ModifyAccount Modifies an existing account.

DeleteAccount Removes an account.

Query Module

SecurityCheck Examines the rules that apply to the current user or the
named user to determine if the specified privilege has been
granted.

BuildFullName If a namespace and namespace delimiter are being used,
returns the full, namespace-qualified name of the specified
account.

GetFullName Returns the full, namespace-qualified name of the caller's
account.

GetGroupName Returns the namespace of the caller's account.

GetUserName Returns the user name of the caller's account.

GetAccountID Returns the account ID of the named account.

GetAccountInfo Returns one or more AccountData structures.

IsLoggedOn Returns TRUE if the calling user is logged on, else FALSE.

IsSecured Returns TRUE if the application has any user accounts
defined, else FALSE.

IsSuspended Returns TRUE if the user's account is suspended, else
FALSE.

UIErrorToText Returns a text string corresponding to the error code
provided.

VTScada Authentication Module

AlternateIdCheck Searches the accounts for an account whose AltID matches
the parameter value.

AlternateLogon Either creates, or attempts to log in using an alternate ID
value. See comments.

AlternateLogoff Synonym for LogOff().

Authenticate Authenticates the Namespace, UserName and Password.

QuietLogon Authenticates the authorization token (AuthToken) and, if
successful logs the calling user session on as the user spe-
cified in the AuthToken.

LogOff Logs the calling user session off.

UserCredChange The return value will increment each time there is a change
in the user session's logged-in user or their password.

Windows Authentication Module

UserLogonDialog Returns the string value of the LDAP default naming con-
text for the host machine domain.

WindowsLogon Authentication request to Windows Authentication ser-
vices.

User Interface Module

UserLogonDialog Launches the Logon dialog.

Security Manager Public Variables

The following public, read-only variables are available for applications to
examine:

InitComplete Boolean. Set TRUE when you can call APIs that do not
require accounts and settings to be loaded. Intended for
system internal use only.

Ready Boolean. Set TRUE when you can call APIs that do require
accounts and settings to be loaded. Intended for general
use.

Started Same as Ready. For backwards compatibility.

SecMgrStatus Artificial RPC status value for backwards compatibility.
Always set to #RPCServer (2), once Ready is TRUE.

Security Plug-in Modules

Plug-in modules allow users to override default behaviors in VTScada
applications. To override these modules, users can declare replacement
modules in the PLUGINS section of the VTScada application's AppRoot.src
source file.
The Security Manager recognizes two plug-in modules:

SecAlarm (SecAlarm.src)
The SecAlarm plug-in is responsible for alarm generation as prompted
by security-related events.

Note: If you are using Shared Security across several applications and
you have provided an override for the SecAlarm plug-in module in one
of the applications, you must create a dummy SecAlarm plug-in for use
in the other applications. To avoid race conditions or other conflicts,
only one of the applications should be running a security alarm mod-
ule. Security events for all the applications sharing security will be
logged only in that one application running the plug-in.

SecDenied (SecDeny.src)
The SecDenied plug-in is responsible for displaying the feedback dialog
that appears when a security check fails.

Security Event Logging
Information is logged on every security-related event witnessed by the
Security Manager, including (but not limited to):

Logon/logoff events
Account manipulation events

This information is used mainly as a form of feedback. You may view this
logged information in the History list on the Alarm page.
Note that, in the case of Shared Security, logging takes place only in the
application that runs the security alarm module.

Related Information:

...Shared Security

Security NameSpaces
VTS enables you to subdivide security accounts into name spaces. When
namespaces are in use, the Logon dialog will query users for their group
name as well as their user name and password. Namespaces are there-
fore sometimes referred to as security groups.
A given namespace can be associated with one or more tag Area prop-
erties. The result is that the users belonging to that security group will
only be able to access the tags belonging to the assigned areas. This
functionality can be organized using security name spaces in com-
bination with realm area filtering (security name spaces on their own are
not sufficient to segregate user data). For example, you may use security
name spaces and realm area filtering together in applications where you
must restrict sets of users to specific sets of pages or subsets of data,
and where managers or administrators must be able to oversee their own
user base, but should be unaware of any other end-users.
Two variables in the Settings.Dynamic <SECURITYMANAGER-ADMIN> sec-
tion are associated with security name spaces. These are:

<SECURITYMANAGER-ADMIN>
NameSpaceDelimiter =
GroupLogin =

Set GroupLogin to 1 to enable group logins, and NameSpaceDelimiter to
one or two characters that will be used as the delimiter. A colon ":" is
commonly used as the delimiter.

NameSpaceDelimiter
The NameSpaceDelimiter application property enables you to specify the
character (or characters) you wish to be used by managers setting up
security groups. The recommended characters for NameSpaceDelimiter
are two colons; however, you may use any characters you deem appro-
priate. The assigned character (or characters) must then separate the
name of the security group from the username of the user belonging to
that group when a new security account is added to your application.

The following image displays the Add Account security dialog when a
group is being specified for a new user. As you can see from this
example, the double-colon has been assigned as the NameSpaceDe-
limiter.

GroupLogin
The GroupLogin application property enables you to add a third field to
the Logon dialog that opens when the Logon button in the Display Man-
ager's title bar is clicked. This third field is the Group field, which
enables users to specify the group to which their user account belongs
when they logon to an application. To include the Group field in the
Logon dialog, you must set GroupLogin to 1.
The following image on the left displays the Logon dialog when GroupLo-
gin has been set to 0 (its default value), while the following image on the
right displays the Logon dialog when GroupLogin has been set to 1.

When logging on, users must enter the name of the security group to
which they have been assigned in the Group field.
A super user (one who has not been assigned to any group) may leave
the Group field blank, and can logon as they normally would, by entering
their username in the Username field, and their password in the Pass-
word field.
Super users cannot log in via the VIC unless extra configuration is done
as follows:

l The RootNamespace Settings.Dynamic variable has to be set to a value for
the super user realm, which is different from all other configured realms.

l That realm must be configured in the Internet settings dialog with the
required application listed.

The URL used to log in becomes "http[s]://servername/superrealm"
where superrealm is the name assigned to RootNamespace and con-
figured in Internet settings. A super user can then log in using their
(non-namespace) username and password

Socket Server Manager

This service is designed to manage inbound TCP/IP and UPD/IP sockets
that are shared by multiple drivers. It was modeled after the Modem Man-
ager and uses the same discriminator driver interfaces. Inbound socket
streams are passed to this service so that the stream will be given to the
appropriate driver instance.

Related Information:

...Socket Server Manager - Error Logging

...Socket Server Manager API

Socket Server Manager - Error Logging
Errors are logged to a text file named "SocketServerEvents.log". Two
application properties are available to control what is logged:
\SSMLogConnectFail When set to TRUE, the manager will log failed con-
nection attempts.
\SSMLogConnectSuccess When set to TRUE, the manager will log suc-
cessful connection attempts.
Both properties will default to FALSE.

Socket Server Manager API
The SocketServerManager was modeled after the Modem Manager and
uses the same discriminator driver interfaces.
Inbound socket streams are passed to this service so that the stream will
be given the appropriate driver instance.
There is one publicly accessible variable: SocketServerManager\Started
will be true when the service has started.

Related Functions:

...SocketServerManager\ArrayToString

...SocketServerManager\Register

...SocketServerManager\StringToArray

...SocketServerManager\UnRegister

SocketServerManager\ArrayToString

Description: Utility function to pack an array of filtering addresses into a
single string. The elements will be delimited using semi-
colons.

Returns: Text

Usage: Script

Function Groups: Stream and Socket

Format: \SocketServerManager\ArrayToString(AddressArray)

Parameters:

AddressArray

Required. An array of IP addresses, where each array
element is a text value.

Comments: None.

See Also:

... SocketServerManager\StringToArray

SocketServerManager\Register

Description Register a station with a group.

Returns Invalid when complete

Usage Script

Function Groups Stream and Socket

Format \SocketServerManager\Register(Context, StationKey,
GroupName[, IPAllowString])

Parameters

Context

Required. The context should be the root tag. This
must include Discriminator() and Context() sub-
routines.

StationKey

Returned by Discriminator() in the root tag. A unique
string that has meaning only VTScada, used to identify
a particular station.

GroupName

The name of an IPListener tag (or group). This will be
the source of the new data streams.

IPAllowString

An optional string. If valid, inbound connections will
be restricted as specified. May be a partially specified
address in order to allow a range of connection IP
addresses. The string is one or more semicolon delim-
ited IP addresses (or address ranges)

Comments Public subroutine used by modules that are to receive
inbound connections. This is intended for, but not limited
to, VTScada driver tags.

Users should wait until \SocketServerManager\Started is
true before attempting to use the Register or Unregister
functions.

GroupName defines a group containing driver tags and
server socket tags. Typically the name of an IP Network
Listener. Groups are for use by advanced VTScada pro-
grammers, allowing them to associate multiple IP Network
Listeners.

Context provides the context for the discriminator calls.
The StationKey must be unique within the StationList of a
GroupNode\DiscrimNode.

The Station context must have Discriminator() and Connect
() callbacks. The Discriminator module takes a sample of
incoming data and returns a station key if it can under-
stand the protocol. The Connect module will be called on
the exact station context as indicated by the station key.
Connect must return (a) the workstation name of the sta-
tion server and (b) the object value of a context imple-
menting an ExternalSocketConnect callback. This was
intended for, but is not limited to, TCP/IP and UDP/IP port
tags.

The service will not Connect() to a station unless the IP
address of the remote stream passes an optional IPAl-
lowString filter check. Utility functions ArrayToString() and
StringToArray are provided in the SocketServerManager to
ensure that the addresses are provided in the correct
format, but in general, you can rely on the result returned
from a pIPAddressList() widget, used in the tag con-
figuration.

A station must be UnRegistered when about to change the
StationKey or GroupName. The IPAllowString can be
updated by calling register again.

Example:

ActiveDevAddr{PLC address to use in reads & writes
};
ListenerGroup{SocketServerManager group to join
};
IPAddressAllow{ Semicolon delimited string of IP addresses (or ranges

which can connect to this station};
If Valid(Name) && \SocketServerManager\Started && Watch(1, Act-

iveDevAddr, ListenerGroup, IPAddressAllow);
[
CriticalSection(

IfThen(Valid(ActiveDevAddr) != Valid(RegDevAddr) || Act-
iveDevAddr != RegDevAddr ||

Valid(ListenerGroup) != Valid(RegGroup) || Listen-
erGroup != RegGroup,

\SocketServerManager\Unregister(Root, RegDevAddr, RegGroup);
);
RegDevAddr = ActiveDevAddr;
RegGroup = ListenerGroup;

{ Register with SocketServerManager }
\SocketServerManager\Register(Root, RegDevAddr, RegGroup, IPAd-

dressAllow);
);

]

See Also:

... SocketServerManager\UnRegister

SocketServerManager\StringToArray

Description Utility function to expand a semicolon-delimited string of
IP addresses into an array of individual strings

Returns Array of text

Usage Script

Function Groups Stream and Socket

Format \SocketServerManager\StringToArray(AddressString)

Parameters

AddressString

Required. A text string of IP addresses, where each
address is delimited from the next by a semicolon.

Comments None.

See Also:

...SocketServerManager\ArrayToString

SocketServerManager\UnRegister

Description: Unregister a station from a group. The station must be

unregistered whenever GroupName, or StationKey
changes.

Returns: Invalid when complete

Usage: Script

Function Groups: Stream and Socket

Format: \SocketServerManager\UnRegister(Context, StationKey,
GroupName)

Parameters:

Context

Required. The context should be the root tag. This
must have Discriminator() and Context() subroutines.

StationKey

Returned by Discriminator() in the root tag. An opaque
string used to identify a particular station.

GroupName

The name of an IPListener tag (or group). This will be
the source of the new data streams.

Comments: Users should wait until \SocketServerManager\Started is
true before attempting to use the Register or Unregister
functions.

Example:

ActiveDevAddr{PLC address to use in reads & writes
};
ListenerGroup{SocketServerManager group to join
};
IPAddressAllow{ Semicolon delimited string of IP addresses (or ranges

which can connect to this station};
If Valid(Name) && \SocketServerManager\Started && Watch(1, Act-

iveDevAddr, ListenerGroup, IPAddressAllow);
[
CriticalSection(
IfThen(Valid(ActiveDevAddr) != Valid(RegDevAddr) || Act-

iveDevAddr != RegDevAddr ||
Valid(ListenerGroup) != Valid(RegGroup) || Listen-

erGroup != RegGroup,
\SocketServerManager\Unregister(Root, RegDevAddr, RegGroup);

);
RegDevAddr = ActiveDevAddr;
RegGroup = ListenerGroup;

{ Register with SocketServerManager }
\SocketServerManager\Register(Root, RegDevAddr, RegGroup, IPAd-

dressAllow);
);

]

See Also:

... SocketServerManager\Register

Time Synchronization Manager Service

The Time Synchronization Manager Service synchronizes client clocks
with the configuration server’s clock.

Method
The Time Synchronization Manager Priority Service synchronizes time for
a VTScada application as soon as the application is started. Clients then
independently request time updates from the server both on startup and
periodically (as defined by the TimeSyncUpdtItrvl application property).
The server responds to these requests as they are received.
If synchronization with a centralized provider is required, configure the
server to do so using the Windows® configuration tools.
The client transmits 5 update requests (in the form of GetTime calls)
through RPC to the server. The server responds to each GetTime call with
a SetTime RPC call that includes the server’s current time in UTC. The cli-
ent calculates the round trip time for each request/response, and will
select the most expedient (i.e. the shortest request/response time).
After the client chooses the shortest round trip response time, the cli-
ent’s time delta from the server is calculated, taking the client’s
timezone into consideration.

Delta Tolerance
The delta tolerance is equal to the round trip time, with 0.5 seconds as
the minimum delta. The synchronization interval is 15 minutes (900
seconds), as defined by the TimeSyncUpdtItrvl application property.
If the time delta is 1 second, then the client’s clock is slewed by 10 mil-
liseconds every second. The client will then be in sync after 100 seconds,
but any logs done on time won’t show any visible discontinuity. The cli-
ent’s clock will immediately be adjusted if the delta exceeds 5 seconds.

Related Information:

...Special Considerations for Time Adjustments

...Time Synchronization Manager Properties - See: The VTScada Admin
Guide

Special Considerations for Time Adjustments
The following scenarios will cause the Time Synchronization Manager to
abort a time adjustment to a client:

l If the adjusting the client’s clock would result in rolling the client’s data back
to a previous day, the time adjustment will not occur, as doing so would have
a negative effect on data logging, especially at the first day of a month, as
the rollback would then be to the previous month.

l The client’s clock will also not be adjusted if the delta from the server is less
than some tolerance (relative to the roundtrip time of the request). For
example, if a roundtrip takes a whole second, the server’s timestamp will not
be very precise, so the client’s clock will not be adjusted unless the delta is >
0.5 seconds.

l The client’s clock will not be adjusted if the roundtrip time exceeds 10
minutes.

l The client’s clock will not be adjusted if the server’s RPC queue (which takes
priority) exceeds a user-defined value (as defined by the TimeSyncRPCQMax
application property).

l No time synchronization will take place if the TimeSyncEnable application
property is set to 0 (disabled).

Web Services and XML

The Web Services Module provides a means for VTScada to receive
Simple Object Access Protocol (SOAP) requests over a network and trans-
late those requests into VTScada procedural requests. The results of
these requests can be compiled back into the SOAP message format and
sent back to the remote computer.

Note: The ability to provide Web Services is a separate licensing option
of VTScada. If you did not purchase a license for the Web Services mod-
ule, it will not be available on your system.

This technology enables remote applications to make use of selected
VTScada services that you choose to provide from your application. Poss-
ible applications range from remote reporting to complex delivery
scheduling systems, relying on calculations done in VTScada to predict
when material deliveries will be required.

The WebService module links together a WSDL document, a VTScada
Realm, and a set of project-defined VTScada modules. This linkage
enables VTScada to accept SOAP messages directed at specific VTScada
Realms via the network and translate those messages into procedural
requests for VTScada applications. The results of these requests can then
be compiled back into SOAP message format and returned to the network
entities that made the requests.
Realms can be accessed only by authorized users. Security must be
enabled and there must be at least one account with the Internet Client
Access privilege.
Each VTScada Realm can expose a single WSDL and connect it to a spe-
cific module within a single application. All VTScada modules to be called
via that Realm must be direct submodules of the connected module, so
that the WebService functions can locate them.
Subsequent WSDL attachments to the same Realm will supersede existing
attachments, not aggregate with them.

Once a Realm is attached to a WSDL it can start accepting SOAP messages
immediately and will continue to accept them until the attachment is
removed. The individual calls can accept up to 30 parameters each.
The parameters must be provided as defined by the WSDL and passed via
the SOAP message. In the case that a complex type is sent as a parameter
in the message, that parameter will be passed to the module as a
XMLNode Tree.

Related Information:

...Terms Used with Web Services - Reference

...Web Services Process - How connections are made and information
transferred.

...Module and Parameter Naming - Guidelines

...VTScada Web Service Commands - Functions to connect to a WSDL file.

...Web Services Example - Shows how to configure VTScada and the code
(PHP in this example) to read information.

...VTScada Engine XML API - Full function reference.

Terms Used with Web Services

Term Definition

DOM Document Object Model. A W3C standard that defines a
programmatic interface to a parsed XML document. The
DOM presents an easily processed, standardized inter-
pretation of an XML document.

DTD Data Type Definition. A declaration and optional syntactic
rules that an XML document must adhere to. DTDs are still
legal, but have largely been superseded by XML schema.

RPC Remote Procedure Call.

SOAP SOAP (originally Simple Object Access Protocol) is a pro-
tocol for exchanging XML-based messages over computer

networks, normally using HTTP.

SOM Schema Object Model. A Microsoft implemented API that
provides a procedural API to schema cached in their XML
engine.

W3C World-Wide Web Consortium. An organization that main-
tains the standards used on the Internet, including the spe-
cifications that relate to XML and XML schema.

Web Service The W3C defines a Web service as a software system
designed to support inter-operable Machine to Machine
interaction over a network. Web services are often just Web
APIs that can be accessed over a network, such as the Inter-
net, and executed on a remote system hosting the reques-
ted services.

WSDL Web Services Description Language is an XML-based lan-
guage that provides a model for describing Web services.
The World Wide Web Consortium provides a description of
WSDL and a set of examples for using it at
http//www.w3.org/TR/wsdl

XML eXtensible Markup Language. A W3C standard for the rep-
resentation of arbitrary data and associated properties
using a markup language.

XML Document An XML stream that is complete, having a valid XML declar-
ation and a complete set of balanced tags.

XML Processor A VTScada engine internal entity that exposes a script code
interface to allow an XML document to be represented in a
manner easy for script to access and manipulate. The XML
processor is capable of parsing and writing XML doc-
uments.

XML Schema An XML document that specifies additional syntactic rules
that an XML document that "conforms" to the schema must
adhere to.

XSLT XML Style Sheet Transformation. An XML document that

contains a set of transforming instructions. Such a trans-
form can be used by an XML processor to generate a new
W3C standards-compliant output document from an XML
document, e.g. (X)HTML output.

Web Services Process
The WebService module works by linking together a Web Services Descrip-
tion Language (WSDL) document, a VTScada Realm, and a module within
a VTScada application.
This linkage enables VTScada to accept SOAP-encoded messages, which
are directed at specific VTScada Realms, and to translate those messages
into procedural requests for VTScada applications. The results of these
requests can be compiled back into SOAP message format and returned.
Each VTScada Realm can expose a single WSDL and connect it to a one
specific module within a single application.
The module commonly takes the form of a .SRC file in the application's
main directory. It is reserved by the system as the root of the web ser-
vice. Sub-modules of this root are used to expose parameters and
VTScada operations to the WebService.
Only one module can be associated with a realm, but since this module
may contain submodules that are available to the web service, an effect-
ively unlimited number of SOAP calls can be handled via the single root
module
Do not confuse the module with the application pages. None, any or all
tags from any or all application pages may be exposed to the web service
through the module system.
A key feature of the module will be a call to the WebService function,
SetWSDL. This function connects a Realm to the application in order to
provide the web service interface. An example of a call to this function
can be found in the Web Services Example: Creating the VTScada Module.

The WSDL file describes the structure of the web service. At a minimum
the WSDL file will define, in XML format:

l The operations that are available.

l The data types of variables passed and returned.

l The location of the Realm to which the application is linked.
The WSDL file must also include the name of the module to be called.
Incoming SOAP messages will use this same name to indicate the module
to call. Outgoing messages will use the name of the module with the
string "Response" appended, thereby indicating their source.

Note: VTScada is compliant with SOAP 1.1 not with SOAP 1.2. Messages
must be encoded for SOAP 1.1.

Once the application has been configured it can start accepting SOAP
messages immediately and will continue to accept them until the attach-
ment between the realm and the WSDL is removed.

Related Information:

...Terms Used with Web Services - Reference

...Module and Parameter Naming - Guidelines

...VTScada Web Service Commands - Functions to connect to a WSDL file.

...Web Services Example - Shows how to configure VTScada and the code
(PHP in this example) to read information.

...VTScada Engine XML API - Full function reference.

Module and Parameter Naming
The WebService functions use name matching on the WSDL1 <oper-
ation> tags in order to discover SOAP2 modules. Modules to be called
must therefore be named such that they match the names of the <oper-
ation ...> tags described in the WSDL document. Incoming SOAP mes-
sages will use this same name to indicate the module to call, while
outgoing messages will use the name of the module with the string
"Response" appended to indicate their source.
e.g.

<wsdl:message name="GetTagValueInput">
<wsdl:part name="request" type="tns:GetTagValueIn" />

</wsdl:message>

<wsdl:message name="GetTagValueOutput">
<wsdl:part name="response" type="tns:GetTagValueOut" />

</wsdl:message>
<wsdl:portType name="TagQueryServicesPort">

<wsdl:operation name="GetTagValue"
parameterOrder="request response">

<wsdl:input message="tns:GetTagValueInput"/>
<wsdl:output message="tns:GetTagValueOutput"/>

</wsdl:operation>
</wsdl:portType>

The VTScada module referenced here, GetTagValue, would have a struc-
ture similar to the following:

<
GetTagValue
(
request;
response;

)
...
>

Parameters exposed by the called modules must cover both input from
the incoming SOAP message and output to the outgoing SOAP response.

1Web Services Description Language. An XML-based language that
provides a model for describing Web services
2SOAP (originally Simple Object Access Protocol) is a protocol for exchan-
ging XML-based messages over computer networks

The names of these parameters must match the <part> tag names asso-
ciated with both the <input> tags and <output> tags as defined in the
<operation> section of the WSDL for the called module.
This system enables parameters to be properly integrated into messages.
Each output parameter will be given a pointer to a blank instance of the
type required by the method. The method should fill out these struc-
tures, extending array portions as necessary. Similarly, each input para-
meter will be passed a pointer to the incoming data type that the
parameter represents. The pointers themselves must not be changed as
this would break the linkage to the WebService system calling the module
and prevent proper passage of output data.
The return value of a called module must not be of type OBJECT and
should be INVALID. Steady-state called modules must not contain a
return statement at all as this will cause VTScada to attempt to execute
them as subroutines (i.e. procedurally). Any values that are returned will
simply be discarded by the system.
Once a web service is set up, a variable called "WSDrvr" will be added to
the connected module

Note: Developers should not include a variable with the name "WSDrvr"
themselves. The WebService initialization function will reject any mod-
ules containing such a variable.

This variable records several pieces of context data relevant to the new
web service as well as a group of support functions for common web ser-
vice processing tasks.

VTScada Web Service Commands
The WebService module exposes two methods for use during web service
deployment, SetWSDL and RemWSDL. The first performs the attachment
of a WSDL to a Realm and the second disconnects such an attachment if
it exists.

SetWSDL connects a Realm with a WSDL file and a set of VTScada mod-
ules in order to enable a web service interface. Linkage is first applied
between the WSDL file and the VTScada modules by generating an XML
schema using the WSDL and the parameters provided to this function.
The Realm’s address is then registered with the VTScada HTTP server to
connect the whole thing to the network.
A prototype for a call to the SetWSDL function follows. It will return 0 for
success and 1 for failure. If an error occurs, a message will be returned
via the pointer, pResponse.

\System\WebService\SetWSDL(<WSDL File Path>,
<Realm>,
<Call Scope>,
<Service>,
<pResponse>);

RemWSDL disconnects a Realm from a WSDL file and the associated set
of VTScada modules. It then proceeds to clean up any resources con-
sumed by the web service that this association represented. After
RemWSDL is called, the associated web service will immediately stop pro-
cessing messages. Note, however, that any operations set in motion by
that service will run to completion. This function is called implicitly if the
connected module is destroyed.
A prototype for a call to the RemWSDL function:

\System\WebService\RemWSDL(<Realm>);
RemWSDL must be called in a script.

Related Functions:

... SetWSDL

... RemWSDL

WSDrvr Services
Once a web service is successfully registered via SetWSDL, a variable
named "WSDrvr" is added to the connected module (see: VTScada Web
Service Commands). This variable exposes a set of data points for use by

the web service and the WebService functions, as well as a small group of
helper functions. The data points are presented to the web service on a
READ ONLY basis – developers should not attempt to modify these values
as it will adversely affect their web service.
The Web Service Helper Functions are described following the data
points:

Web Service Data Points

\WSDrvr\Realm This is a copy of the realm name to which the web
service is attached.

\WSDrvr\Rscope This is an object reference to the connected module.

\WSDrvr\WSDL A copy of the WSDL in use. This has not been con-
verted into VTScada format; it is a raw text dump.

\WSDrvr\XMLHandle The XML processor used for this web service, it con-
tains the basic schemas for SOAP processing as well
as a schema-converted version of the WSDL.

\WSDrvr\MsgNamespace The target namespace of the WSDL, used by all mes-
sages and operations.

\WSDrvr\XMLns A list of "xmlns" declarations delineating all of the
namespaces used in the WSDL and basic SOAP
schemas (and therefore all namespaces usable by
this web service). Any messages generated by this
service must have at least a subset of these declar-
ations attached.

\WSDrvr\NSminus Due to a rule of SOAP 1.1, the tags in a response
message to a SOAP request should not (and in most
cases must not) have namespace prefixes if they are
declared in the "MsgNamespace". This is a list of all
other namespace / prefix pairs declared for the ser-
vice and is used to generate output messages.

\WSDrvr\Nsp This object enables rapid conversion of namespaces
to prefixes. It consists of a group of variables with

names matching the namespaces declared for this
web service (note that these contain "illegal" variable
name characters, and can only be referenced via the
Scope keyword), the value of each being a string con-
taining the prefix associated with that namespace.

\WSDrvr\Pfx This object enables rapid conversion of prefixes to
namespaces. It consists of a group of variables with
names matching the namespace prefixes declared
for this web service, the value of each being a string
containing the namespace name itself.

\WSDrvr\CallIdx An object containing linkage data between messages
and modules. This is of use only to the WebService
functions.

\WSDrvr\ClassFactory The XML Schema Cache Dictionary object used by
the Web Service connected to the given module, it
can be used to instantiate any of the types in any of
the schemas registered by this service. The user of
this service is free to add additional schemas to the
Schema Cache Dictionary object as desired. Each
Web Service has its own ClassFactory object in order
to prevent a single damaged service from affecting
others.

Web Service Helper Functions

\WSDrvr\MakeTypeArray

Description: The MakeTypeArray function creates a SOAP 1.1 compliant
array within the parent XMLNode provided and of the size
specified.

Returns: Invalid.

Usage: Script

Format: \WSDrvr\MakeTypeArray(pParent, Namespace, Name,
Size, MemberNamespace, MemberName);

Parameters:

pParent

A pointer to the XMLNode where the array will be
added.

Namespace

The namespace of the array type.

Name

The name of the array.

Size

The size of the array.

MemberNamespace

The namespace of the member type.

MemberName

The name of the member type

Comments: The function creates an array of the specified size under a
member called Name in the parent XMLNode. If the Mem-
berName can be found in the schema cache under the
MemberNamespace, then each element of the array will be
of the specified type. Otherwise, it will be a plain XMLNode.

\WSDrvr\MakeTypeInstance

Description: The MakeTypeInstance function creates a copy of an
XMLNode representing an XMLType.

Return Value: The XMLNode representing the type or invalid if the type
cannot be found.

Usage: Script

Format: \WSDrvr\MakeTypeInstance(Namespace, Name)

Parameters:

Namespace

The namespace of the type

Name

The name of the type

Comments: This function creates a clone of the XMLType specified by
Name in the Namespace. If the type doesn't exist in the
Namespace or the Namespace doesn't exist in the Schema
Namespace Cache (ClassFactory) then invalid is returned.

\WSDrvr\ReportFault

Description: Used to raise an engine level SOAP fault from within the ser-
vice, causing the next processing phase to abort and a
SOAP fault packet to be returned to the client.

Return Value: Invalid

Usage: Script

Format: \WSDrvr\ReportFault(Description, Detail, ProcessFault);

Parameters:

Description

A string describing the fault.

Detail

A string providing extra detail information.

ProcessFault

0 indicates an input problem, 1 indicates a processing
problem.

Comments: The SOAP fault can be attributed to either local web service
processing or poor input data from the client. Detailed
fault information must be added to the message.

\WSDrvr\GetAttValue

Description: GetAttValue returns the value of the specified XML attrib-
ute (stored as value metadata) within a particular tag rep-
resentation.

Usage: Script

Return Value: The value of the attribute if found, otherwise Invalid

Format: \WSDrvr\GetAttValue(pTag, Name, NameSpace);

Parameters:

pTag

A pointer to the variable to be inspected.

Name

The name of the attribute to be retrieved.

NameSpace

The namespace of the member type.

Comments: The tag representation may functionally be any variable.
The name of the attribute to retrieve is first attempted to be
resolved as a full QName, and if no match is found then
just the name of the attribute is resolved. QName con-
struction is first attempted by using the NameSpace para-
meter, and then by getting the namespace of the tag.
A QName is a qualified name. For example, <tns:myEle-
ment tns:myAttrib="abc">. In this case "tns:myAttrib" is
the QName. Thus, if a Namespace is provided, then the pre-
fix for that namespace is looked up and preprended to the
name and then tried first when searching for an attribute. If
not found, then the plain Name is used.

Related Functions:

... SetWSDL

Web Services Example
A relatively straight-forward example of a web service is to use a CGI
application running on a remote website to read tag values from a
VTScada application.
The following are minimum requirements:

l A network connection.

l A running application that includes one or more tags with values to be read.

l Security is enabled and at least one account possesses the Internet Client
Access Privilege.

l A named realm that makes the application available.

l A WSDL file in the application directory that describes the service.

l A module in the application that provides the web service

l (Optional, but useful to ensure that the service is instantiated at startup:) A
line in the application's AppRoot.src module to name the service module
above.

l A program running remotely to call and use the web service.
Assuming the first two items, the network connection and a working
application are in place, the following steps will describe the process of
setting up a web service to read values from the application from a PHP-
enabled web page.
This example uses an application named StationExample which is located
in the directory C:\VTScada\StationExample. It contains a single analog
input named AI20_1.

Next Steps:

...Configuring a Realm

Configuring a Realm

The Realm provides the gateway between a VTScada application and the
internet. For this example, the realm will be named QueryServicesRealm
and will point to a single application: Station Example.
One must also configure VTScada to be a server via the Server Setup tab
(as discussed in Browsing VTScada Applications On The Web). The com-
pleted dialog box is shown in the following two figures:

Next Steps:

...Creating a WSDL File

Creating a WSDL File

The Web Services Description Language file provides the model for
describing the web service.
The file commonly starts with a header which includes links to the XML
schema. To adapt the following header to your own system, replace every
entry that reads "localhost" with the fully qualified domain name of your
own server. ('localhost' will probably work on your system for testing pur-
poses)

Note: XML requires that the target Namespace be a globally unique
identifier. Common practice would be to use a fully qualified domain
name here. "localhost" only works for our example because the applic-
ation is running on the same computer as the "remote" CGI script.

<?xml version="1.0"?>
<wsdl:definitions name="TagQueryServices"
 targetNamespace="http://localhost/"
 xmlns:tns="http://localhost/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:s="http://www.w3.org/2001/XMLSchema">

After the header comes a section describing the WSDL types. This
describes the target namespace (again, localhost is used here - sub-
stitute your own domain), and the expected input and output variables.
In this case, when a request is made for 'TagName' a response will be
generated that includes 'TagValue' and a 'ReturnCode'. The TagName is
expected to be of type String. The TagValue will be of type Float and the
ReturnCode will be an integer.

<wsdl:types>
 <s:schema
 targetNamespace="http://localhost/">
 <s:import
 namespace="http://schemas.xmlsoap.org/soap/encoding/" />
 <s:import
 namespace="http://schemas.xmlsoap.org/wsdl/" />
 <s:complexType name="GetTagValueIn">
 <s:sequence>

 <s:element
 minOccurs="1"
 maxOccurs="1"
 name="TagName"
 type="s:string" />
 </s:sequence>
 </s:complexType>
 <s:complexType name="GetTagValueOut">
 <s:sequence>
 <s:element
 minOccurs="1"
 maxOccurs="1"
 name="TagValue"
 type="s:float" />
 <s:element
 minOccurs="1"
 maxOccurs="1"
 name="ReturnCode"
 type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:schema>
</wsdl:types>

The expected SOAP messages are defined next: In this case there are
only two: GetTagValueInput (the request) and GetTagValueOutput (the
response).

<wsdl:message name="GetTagValueInput">
 <wsdl:part name="request" type="tns:GetTagValueIn" />
</wsdl:message>
<wsdl:message name="GetTagValueOutput">
 <wsdl:part name="response" type="tns:GetTagValueOut" />
</wsdl:message>

The PortType section includes a supported set of operations, in this case
"GetTagValue".
Each operation lists the input and the output messages of the operation.

<wsdl:portType name="QueryServicesPort">
 <wsdl:operation
 name="GetTagValue"
 parameterOrder="request response">
 <wsdl:input message="tns:GetTagValueInput"/>
 <wsdl:output message="tns:GetTagValueOutput"/>
 </wsdl:operation>
</wsdl:portType>

The Binding section ties the SOAP calls to the supported operations. Note
the use of the 'localhost' address in this section. Again, you will need to
change this to the domain of your own server. Also to be noted is the ref-
erence to the port defined above.

<wsdl:binding
 name="QueryServicesSoapBinding"
 type="tns:QueryServicesPort">
 <soap:binding
 style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetTagValue">
 <soap:operation soapAction="http://localhost/GetTagValue" style-
e="rpc"/>
 <wsdl:input>
 <soap:body
 use="encoded"
 namespace="http://localhost/"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output>
 <soap:body
 use="encoded"
 namespace="http://localhost/"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>

At the end of the WSDL file is the most interesting part. This small block
of code ties the operations defined above to the actual realm that will be
called from our external program. Note the name - this will appear again
in the next step which creates the VTScada module to handle the
requests. Also note the appearance of the realm name after the domain
when defining the address for the SOAP requests.

<wsdl:service name="TagQueryServices">
<wsdl:port
name="QueryServicesPort"
binding="tns:QueryServicesSoapBinding">
<soap:address
location="http://localhost/QueryServicesRealm/"/>
</wsdl:port>
</wsdl:service>

To finish the file, close the tag that opened it all:

</wsdl:definitions>

Next Steps:

...Create the VTScada Module

Create the VTScada Module

To fully understand the following block of code requires some know-
ledge of VTScada's programming language. However, the important
points are easily described:
GetTagValue is the name of the subroutine which will do exactly that
function: get the requested tag's value.
The ServiceActive line includes a call to the function SetWSDL. This func-
tion requires four parameters:

l The location of the WSDL file,

l The name of the realm,

l The scope of the call (in this case, 'self' - the current module),

l The name of the service - which was pointed out in the preceding section on
the WSDL file

The 5th parameter is ErrMsg: a pointer to an error message to return
should SetWSDL fail. While optional, this parameter is strongly recom-
mended as it can be invaluable when debugging.
The MAIN section of the code is somewhat cryptic, but what it does is
rather simple: It takes any given tag name and attempts to find the cur-
rent value associated with that tag. If found, the value will be returned
along with a "0" to indicate success. Otherwise, a value of "-1" is returned
to indicate failure.
Text lines between braces {...} are comments.

{=========================== TagQueryServices
=========================}
{ This module contains the code that implements the services
provided. }
{==-
==}
[
 ServiceActive { Return value from SetWSDL };
 GetTagValue Module;
 ErrMsg; { Error message from SetWSDL. Invalid if none. }
]
Init [
 If Watch(1);
[

 ServiceActive = \System\WebService\SetWSDL(
 "file://C:/vts/Station1/TagQueryServices.wsdl",
 "QueryServicesRealm",
 Self,"TagQueryServices",

 &ErrMsg);
]
]
<
{============================= GetTagValue
==========================}
{ Subroutine called through SOAP to request the value of a tag. }
{===-
=}
GetTagValue
(
 request;
 response;
)
[
 TagName;
 TagObj;
]
Main [
 If 1;
[

 TagName = (*request)\TagName;
 TagObj = Scope(\Code, TagName);
 IfElse(Valid(TagObj), Execute(

(*response)\TagValue = TagObj\Value; { get the tag's value }
(*response)\ReturnCode = 0; { success }

);
{Else}
(*response)\ReturnCode = -1; { error - tag doesn't exist }

);
 Return (0);
]
]
>

Next Steps:

...Modifying AppRoot.SRC

Modifying AppRoot.SRC

The final step on the VTScada side of supplying web services is to add a
line to the Services section of the application's AppRoot.SRC file to tell it
where to find the module created in the last step. This step is required
only if you want the web service to be instantiated at start up.
For this example, it will be declared as:

[(SERVICES) {=== Modules that are services that are started ===}
 TagQueryServices Module "TagQueryServices.SRC";
]

Again, note the name "TagQueryServices" that was defined in the WSDL
file and then used again within the module TagQueryServices.SRC.
After adding this line, the application will need to be re-compiled. Stop it
if it is running and run the Compile command from the VAM. You will be
prompted to import the new files:

When the application starts again it will be providing a web service of
returning requested tag values from our application.

Next Steps:

...Requesting Values via the Web Service

Requesting Values via the Web Service

This example uses a PHP web page to interact with the VTScada web ser-
vice.

Note: The point of this example is to show that any program that can
access web services can now interact with VTScada. You could call the
web service from another VTScada application, from a CGI script in a
web page as shown here, or from your own web-enabled application.

While the following code does work, it should not be taken as rep-
resenting a fully developed application. PHP was selected for this
example as it is freely available and relatively easy to use, but problems

that can be traced to the PHP configuration have been reported.

Success when using web services will require that you understand the
SOAP protocol support in your chosen client.

** Trihedral Engineering provides no support for programs other than
VTScada. **

The process of making the call to VTScada's web services is to send a
SOAP-encoded message, calling the operations that were exposed with
the WSDL file. Depending on your application, you may or may not need
to include a header with the SOAP-encoded message. If so, the header
would look something like this:

POST /TagQueryServicesRealm/SOAP/ HTTP/1.1
Host: localhost
Content-Type: text/xml; charset="utf-8"
Content-Length: 343
SOAPAction: "http://localhost/GetTagValue"

In the case of this PHP example(*), this header is not required as the PHP
SOAP client object takes care of it automatically.

<html><head><title>VTScada Web Services Tester</title></head>
<body bgcolor="#ffffff">
<?php
 echo "<h2>VTScada Web Services Tester</h2>";
 // create an instance of PHP's SOAP client object
 // the client should not need a local copy of the .WSDL. It can
pull it from the server
 $client = @new SoapClient("http://-
localhost/QueryServicesRealm/WSDL");
 $params = array('TagName'=>'AI20_1');

 try {
 $result = $client->GetTagValue($params);
 $tagvalue = $result->TagValue;
 echo "The value of AI20_1 is ".$tagvalue;
 } catch (SoapFault $exception) {
 echo $exception;
 }
?>
</body>
</html>

Full tag names are supported. For example, to access a tag from the
Completed Tutorial Example, use:

$params = array('TagName'=>'Local TCP Port\PLCSim\Pump 1\Motor
Speed');

If you are attempting to follow this example and errors are returned, you
are advised to do a web search using the text of those error messages. A
scan of online forums related to making SOAP calls from PHP will reveal
a number of common problems and solutions. Messages in your PHP
error log file may also be useful for this search. In particular, be careful
to configure VTScada and Apache with differing port numbers, and if
VTScada is using a number other than 80, adjust the addressing in the cli-
ent to match.
If security is enabled in your VTScada application, then ensure that your
account has the Internet Client Access privilege and modify the SoapCli-
ent call as follows:

 $client = @new SoapClient("http://-
localhost/QueryServicesRealm/WSDL",array('login' => "Your User Name",
'password' => "Your Password"));

For the sake of simplicity in the example, no effort is made to protect the
user name and password. Keep security in mind as you develop your own
client application.

VTScada Engine XML API

Note: Warning: Applications created prior to VTS 10 that used XML
must be re-coded to be compatible with changes made to the API in
that release.

The XML API is used to create an XML Processor, which is a script code
interface to allow an XML document to be represented in a manner easy
for script to access and manipulate. An XML Processor serves as a con-
duit between an XML document and an application that will do some-
thing with the content found in that document.

Related Information:

...Validating versus non-Validating XML Processors

...The Schema Cache Dictionary

...XMLNodes

...Accessing a portion of an XMLNode tree.

...Obtaining a list of child tags

...Determining if a member is an XMLNode or an array of nodes

...Assigning values to an array of XMLNodes

...Adding or deleting child tags

...XML Namespaces

Validating versus non-Validating XML Processors

The XML Processor can be either validating or non-validating, depending
on whether it has an optional schema cache as specified in a module des-
ignated as a Schema Cache Dictionary. If it is created to have a schema
cache, it is a validating processor.
A non-validating XML Processor checks the XML supplied to it for being
"well-formed", meaning that the XML is syntactically correct.
A validating XML Processor goes further by checking that the structure of
the supplied XML conforms to the structuring rules specified by the
schemas. To do this, the XML Processor’s schema cache must be given all
the schemas referenced by the XML, and all the schemas referenced by
the added schemas. (Note: the root XML schemas are excepted since
these are already built-in to the XML Processor)
A validating XML Processor also creates type definitions for all structures
described by the schemas. These type definitions are added to the
Namespace Schema Cache.
When a non-validating XML Processor successfully parses the XML sup-
plied, it generates an XMLNode Tree.

When a validating XML Processor successfully parses the XML supplied, it
generates an XMLNode tree. Any type definitions encountered will be
added to the Namespace Schema Cache.

Related Information:

...The Schema Cache Dictionary

...XMLNodes
For further information on XML Schemas, please refer to the following
two resources:

...http://www.w3.org/2001/XMLSchema

...http://www.w3.org/2001/XMLSchema-instance

The Schema Cache Dictionary

This is a dictionary of namespaces, keyed by XML namespace. As "Schem-
aCacheDictionary" it is required by the XMLProcessor function, which cre-
ates an XML handle. The contents of a schema cache dictionary are
XMLNode representations of the XML types.
The schema cache dictionary replaces the ClassFactory, which was used
in versions of VTS prior to 10.0

Related Information:

...XMLNodes

XMLNodes

An XMLNode has 6 members known respectively as: #content, #attribs,
#namespace, #control, #cdata and #comment. If an XML tag has child
tags, then they are represented as additional members of the structure.
For example, given the following XML code:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Simple XML to test for well-formedness -->
<catalog>
<book id="book42">
<author>Pomeroy, Steve</author>
<title>RPC Manual</title>
<genre>SCADA Software</genre>

</book>
</catalog>

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance

This would be represented in VTScada by the following XMLNode struc-
ture:

The fact that the #content member is at subscript [0] enables script code
to take advantage of automatic subscription into arrays, to refer to the
#content member of any node just by specifying the node. For example,
to access the book title, assuming the XMLNode tree is held in variable
"XMLNodes," use the following code:

XMLNode\catalog\book\title

All other members can be accessed via Scope():

Scope(XMLNode\catalog\book, "#attribs")

Both these constructs can be used on either side of an assignment.
The purpose of the 6 standard members of the structure are as follows:

Member Name Purpose

#content The textual content of the tag.

#attribs A dictionary containing the attributes of the tag.

#namespace A string representing the namespace the tag belongs
to.

#control An internal use field. Used by XMLWrite to spot loops.

#cdata A string representing any CDATA associated with the
tag.

#comment A string representing a comment associated with the
tag.

All members can be both read from and written to, but note that the
#control member will be altered by XMLWrite() when processing the
XMLNode tree. As each node is visited, the #control member is set to a
unique value for that call to XMLWrite(). If a node already has the unique
value when visited then a loop has been found and writing terminates at
that point. An error is returned.

Accessing a portion of an XMLNode tree.

Take care when writing code to access a portion of an XMLNode tree. You
should use either the address-of operator (&) to pass a pointer, or use
XMLGetNode() to extract the node of interest:

MySub(&(XMLNode\catalog\book));

or

MySub(XMLGetNode(XMLNode\catalog\book);

Note that the first version will require the use of the dereference (*) oper-
ator on every access.

Related Information:

...XMLNodes

Obtaining a list of child tags

When code requires a list of all the child tags in a tag use the ListKeys()
function. This will also return the ‘fixed’ members of the structure. Child
members can be found starting at subscript [6] if the keys are returned in
creation order by setting the Order parameter of ListKeys() to ‘TRUE’.
Example:

Members = ListKeys(XMLNode\catalog\book, 1);

Related Information:

...XMLNodes

...Accessing a portion of an XMLNode tree.

...Determining if a member is an XMLNode or an array of nodes

Related Functions:

... ListKeys

Determining if a member is an XMLNode or an array of
nodes

When an XMLNode contains multiple instances of tags with the same
name, then these are represented in the XMLNode tree by the member
containing an array of XMLNodes. For example, given the following XML
and its XMLNode representation of the price tag:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Simple XML to test for well-formedness -->
<catalog>
<book id="book69">
<author>Pomeroy, Steve</author>
<title>RPC Manual</title>
<price currency="GBP">44.95</price>
<price currency="CAD">89.95</price>

</book>
</catalog>

To determine if a member is an XMLNode use XMLGetNode():

Var1 = Valid(XMLGetNode(XMLNode\catalog\book));
Var2 = Valid(XMLGetNode(XMLNode\catalog\book\price));

Var1 will be set to ‘TRUE’, Var2 will be set to ‘FALSE’.

Assigning values to an array of XMLNodes

When assigning values to an array of XMLNodes, such as the price array
in the previous topic, neither ArrayOp1() or ArrayOp2() can be used.
Instead a While or Do loop must be used.

Related Information:

... Determining if a member is an XMLNode or an array of nodes

Related Functions:

... WhileLoop

... DoLoop

Adding or deleting child tags

Members are added using XMLCloneNode() and removed with XMLDe-
leteMember(). XMLCloneNode() takes a dictionary of new members and
their values and adds them to a copy of the specified node which is then
returned as a result of the call. This enables addition of multiple mem-
bers at the same time:

MembersDict = Dictionary(0);
MembersDict["ISBN"] = XMLCreateNode("01234567890");
MembersDict["SubTitle"] = XMLCreateNode("All the RPC you’ll ever
need!");
XMLNode\catalog\book = XMLCloneNode(XML\catalog\book, MembersDict);

Results in the following XMLNode tree (building on the book example
shown in earlier topics).

Deleting a member requires the use of XMLDeleteMember() specifying
the XMLNode and the member, as shown:

XMLDeleteMember(XMLNode\catalog\book, "ISBN");

Note that the deletion is done ‘in-place’.

Related Functions:

... XMLCloneNode

... XMLDeleteMember

XML Namespaces

Namespaces are used to avoid ambiguity between XML elements of the
same name. An XML Namespace is often specified as a URI. Such a URI
might typically look like:
http://schemas.xmlsoap.org/wsdl/http/
Namespaces are declared with an associated prefix that is then applied
to a tag. When the XMLNode representation is constructed, the prefix is
removed and the namespace corresponding to the prefix is set in the
#namespace member of the node. When writing out an XMLNode tree, a
namespace dictionary is supplied, often the same one produced when
parsing the incoming XML that indicates the prefixes to be used for each
namespace.
Although multiple prefixes could be used for a single namespace, on writ-
ing out the XMLNode tree only the first prefix added to a namespace dic-
tionary is used. The following XML uses namespaces and the subsequent
images show the XMLNode representation and the namespace dictionary.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Simple XML to test for well-formedness - should work -->
<ans:catalog xmlns:ans="http://trihedral.com/enginetests/XML">
<ans:book id="book69">
<ans:author>Pomeroy, Steve</ans:author>
<ans:title>RPC Manual</ans:title>
<ans:genre>SCADA Software</ans:genre>
<ans:price>44.95</ans:price>
<ans:publish_date>2006-01-19</ans:publish_date>
<ans:description>A guide to VTScada RPC.</ans:description>

</ans:book>
</ans:catalog>

http://schemas.xmlsoap.org/wsdl/http/

The VTScada Wizard Engine

A Wizard wraps up a configuration task into a series of steps where input
validation can be made at each stage, and the user is free to go back and
alter previously entered information until the Wizard is finalized. A
simple, uncluttered user-interface makes the Wizard particularly suitable
for guiding inexperienced users through complex procedures.
VTScada provides a Wizard Engine that manages the task of steering an
implementer-supplied module through its various states. The Wizard
Engine also provides some useful support functions.

Note: VTScada includes a wizard template that has been provided to
assist programmers in creating their own wizards. This template is
installed with the VTScada software, and can be found in the Example
folder within the VTScada installation directory:
C:\VTScada\Examples\Wizard.SRC.
You can add import this module as a page in the Idea Studio (File menu
>> Import). Make sure that you add the page to the menu, then close
the Idea Studio and open the wizard page. The sample wizard will open
in a pop-up, demonstrating several features that you can use in your
own wizards. (Wizard pages are generally not added to the menu, but
rather are opened explicitly, when required.)

The WizardEngine exports a constant Version property, so that scripts
can handle future changes to the WizardEngine functionality. This prop-
erty was introduced at version 2. The absence of this property indicates
version 1.

Related Information:

...Getting Started

...Flow Direction

...Wizard Configuration Settings

...Cautionary Notes for Wizards

Related Functions:

...Basic Wizard Engine Module

Getting Started
A Wizard is a module that runs in its own window. For reasons that
should become clear, the recommended (but not the only) way of struc-
turing the Wizard module is to have an outer module with two states,
with all the necessary initialization done on the transition between these,
and a child module containing the Wizard code, which is launched as the
final step. For these notes, the use of this model is assumed. The term
"Parent" refers to the outer module, and "Wizard" refers to the Wizard
code module.

Parent Module, parameters and variables:
If you intend to pass parameters to the Wizard, do so as you would for
any module:

{ Receive any required parameters from the calling environment
... }
(
 Param1;
 Param2; { etc as required. }
)

Several variable declarations are common to most Wizards:

[
 Title = "Wizard Template" { Change this as required
};
 Wizard = Module { Wizard serialization engine (a
submodule) };
 Constant Forward = 1;
 Constant Backward = -1;
 Constant SPACE = 8;

 Move { State change trigger
};
 NextState { Next step in the wizard
serialization };
 WTitle { Text for header bar
};
 Cancel = 0 { Cancel flag - set when engine wishes to
cancel };
 Constant CRLF = Concat(MakeBuff(1, 13), MakeBuff(1, 10));

 Constant LHS = 8 { LHS of the message panel
};
 Constant TOP = 60 { Top of the message
panel };
 Protected BOT { Y coord of horiz line above
buttons };
 Protected RHS { RHS of the drawing
panel };
 Protected MID { Centre of drawing
panel };
 Protected Split { Horizontal division of drawing
panel };
 Root { Object value of Wizard - useful for tag
config };

Window Parameters
If running the Wizard in its own window, the recommended window para-
meters are:

 Width = 520;
 Height = 360;
 Style = 0b1010010100000111;

Note that the height of the top and bottom bars of the window are fixed
at 30 and 40 pixels respectively.
Alternatively, you can run a Wizard within a Display Manager page. To do
this, the following attributes should be defined in the page's source file:

Constant PageWidth = 520;
Constant PageHeight = 360;
Constant WinFlag = 1;
Constant PageStyle = 0;
Constant PagWinOpt = 0b1010010100000111;
Constant NoStretch = 1;
Constant Bitmap;
Constant Color = -17 { Background color for page - #SYSCOLOR_
BUTTONFACE };
SecBit { Set page security as
required };
WindowCloseFlag = 1 { Flag tells DispMgr not to close our win-
dow };

Tag Configuration
In general, if the Wizard is being used to perform Tag configuration then
the simplest way to do this is to start the Wizard with a Parms array para-
meter of the correct size for the Tag type and to fill in the Parms array as
you proceed. It is usually possible to call a Tag's ConfigFolder since (with
Root pointing to Self and the Parms array provided) the calling

environment is correct. If it is required to configure multiple Tags, then
create multiple parameter arrays and swap them in and out of "Parms" as
needed.

{== Sample variables for tag configuration
===================================}
{ Parameter indices - these are standard, add others as
required }
 Constant #Name = 0;
 Constant #Area = 1;
 Constant #Description = 2;
 #IODevice;
 Protected TmpCfg;
 Parms;
{============== End parent module variable declarations
======================}
]

Parent Module Initialization
The Parent performs the initialization of resources required by the Wiz-
ard. It is also likely that in its main state, it has to monitor a Cancel flag
and to tear down the structure if the flag is set.
If running as a Display Manager page, the Init state should launch the
Wizard child module before running the main state, which will watch for
a Cancel from the user. If running as a Window, the main state should
call the Window function, passing the Wizard child module as a para-
meter.
The example wizard (C:\VTScada\Examples\Wizard.SRC) shows how to
write code that can be used either way. The following assumes the Wiz-
ard will run in a Display Manager page.

WizardInit [
 If 1 WizardMain;
[
{ Setup instance }

 SetInstanceName(Self, \SecurityManager\GetAccountID());
{ Setup some basic metrics }

 RHS = PageWidth - 8;
 BOT = PageHeight - 40;
 MID = Int(PageWidth / 2);
 Split = MID + 40;

If you are going to be configuring Tags, then you will likely need a parms
array and various offsets into that array. You can establish these dynam-
ically as follows...

{ Get a module/object handle to the required tag
type, where "SampleTag"
 is to be replaced by the module name of the type you require.
}
 TmpCfg = Scope(\Code, "SampleTag");

{ Get its parameter indices }
 #IODevice = GetDefaultValue(FindVariable("#IODevice", TmpCfg, 0,
0));

{ ... etc. }
 Parms = New(FormalParms(TmpCFG));

Or, alternatively:

 #IODevice = GetDefaultValue(FindVariable("#IODevice", Variable
("SampleTag"), 0, 0));

{ ... etc. }
 Parms = New(FormalParms(Variable("SampleTag")));

Finally, launch the wizard:

{ Running as a DisplayManager page - launch a Wizard }
 Wizard(Parms);
]
] {===== End WizardInit ======}

Parent Module Main State

WizardMain [
{ Running as a DisplayManager page }

 If Cancel;
[

 \DisplayManager\StopPage(Self);
]
]

Note: VTScada includes a wizard template that has been provided to
assist programmers in creating their own wizards. This template is
installed with the VTScada software, and can be found in the Example
folder within the VTScada installation directory:
C:\VTScada\Examples\Wizard.SRC.
You can add import this module as a page in the Idea Studio (File menu
>> Import). Make sure that you add the page to the menu, then close
the Idea Studio and open the wizard page. The sample wizard will open
in a pop-up, demonstrating several features that you can use in your

own wizards. (Wizard pages are generally not added to the menu, but
rather are opened explicitly, when required.)

Next Steps:

...Basic Wizard Engine Module

...Flow Direction

...Wizard Configuration Settings

...Cautionary Notes for Wizards

Basic Wizard Engine Module

Note: Use only the Wizard Engine methods. Do NOT add your own state
transition logic for the states controlled by the Wizard Engine.

The Wizard has a few special requirements:
l The first step of the Wizard user interface must correspond to the first state

in the module.

l The Wizard must launch a copy of \WizardEngine into its own scope. It will
need to retain the Object value in order to access the helper modules.

l Several variables will be required to be passed to the instance of \Wiz-
ardEngine for control of the actions of the Wizard.

l The Wizard must have a state named, "Finish". This is not necessarily the final
state in the Wizard, but is the final step of the user interface. As many addi-
tional states as are required to perform the Wizard's completion tasks may
come after the "Finish" state.

l If the Wizard is to perform Tag configuration, it may be useful for the Wizard
to be instantiated with a suitable Parms array and a Root variable so that it
can impersonate a tag instance.

In practice, the Wizard module starts at its first state and is then nav-
igated between its various states by the controlling WizardEngine, which
responds to the user's use of the "Next" and "Back" buttons, as well as
providing the programmatic flow control. Once the Wizard reaches its

"Finish" state, and the user presses the "Finish" button, the Wizard then
does whatever is required to perform its required operations. There is no
going back from this point; the Wizard must complete its task. All neces-
sary validation must be performed prior to the Wizard reaching the Fin-
ish state.
The Wizard has to launch a copy of the WizardEngine on entry to its first
state; typically:

<
{================================ Wizard
=====================================}
{ The Wizard serialization module. }
Wizard
(
 Parms;
)
[
 Protected Engine { Instance of the WizardEngine };
 Protected Trig { Trigger for input field completion };
 Protected Msg { Current message to display };
{ }
{ Other variables as required... }
{ }

]

The Wizard Engine has the following parameters:
l WizardName: A text value setting the name for this particular Wizard.

l WizBmp: An image value of a graphic that will be displayed at the first and
last steps of the Wizard (see the notes later in this topic for sizing inform-
ation).

l pState: A pointer to a variable that is set by the WizardEngine to the name of
the next state that the Wizard should execute.

l pMove: A pointer to a variable set by the WizardEngine as a trigger when the
Wizard is required to change states. The actual value of the trigger provides
further information, if required, about the direction of movement, and so
forth.

l pClose: A pointer to caller's close flag - set by engine.

l pTitle: A pointer to the caller's current title string. This will be displayed in the
header.

l LogoBmp: An image value of a graphic that will be displayed at the RHS of
the header bar. If Invalid, LogoBmp defaults to \DispMgrBitmap.

l AppName: A text value that will be displayed as the initial title and at the bot-
tom left of other screens. Defaults to the current application name if invalid.

Init [
If !Valid(Engine);
[
Root = Self();
Engine = Launch(Scope(\Code, "WizardEngine"), Self, Self,

GetDefaultValue(FindVariable("Title", Self, 0, 1)),
MakeBitmap(FileFind("C:\VTScada\Re-

sources\WizVTS.jpg," 0)),
&nextState,
&Move,
&Close,
&WTitle);

]
 WTitle = ConCat("This wizard is a template for a new Wizard.",
 CRLF, CRLF, CRLF, CRLF,
 "Press NEXT to continue");

 If Move;
[

 Move = 0;
 ForceState(NextState);
]
]

The sample code above, running in a page titled "Wizard Template" in an
application named, "Bedford," produces the following result.

Note: The example above is only a portion of a wizard module.
VTScada includes a wizard template that has been provided to assist
programmers in creating their own wizards. This template is installed
with the VTScada software, and can be found in the Template directory
within the VTScada installation directory: C:\VTScada\Example\W-
izard.src.

With regards to the image above:
l The image is scaled so that its height fits the vertical space between the title

bar and the bottom bar. The aspect ratio then determines the positioning of
the RH panel. To avoid distortion, it is best to size the image exactly. The bot-
tom bar is 40 pixels high.

l The large title "Bedford" comes from the "AppName" parameter.

l In this instance, the "WizardName" parameter is "Wizard Template" (obtained
from the DisplayManager page name), and this string is used in the window
caption and the "Welcome to…" message.

l The remainder of the text comes from the variable addressed by the pTitle
parameter. Note the use of CRLF (defined as:

Constant CRLF = Concat(MakeBuff(1, 13), MakeBuff(1, 10));

to achieve vertical spacing).
Let's review the state code:

If Move;
[
 Move = 0;
 ForceState(NextState);
]

This is the basic Wizard control. When the Next button is clicked, the vari-
able "Move" (the "pMove" parameter to the WizardEngine) will be set to
non-zero, and the variable "NextState" (the "pState" parameter to the Wiz-
ardEngine) will be set to the name of the next state to be used. So, the
remaining code for a simple Wizard could be:

StateTwo [
 WTitle = "We are at the second step.";
 If Move;

[
 Move = 0;
 ForceState(NextState);
]

]
ThirdStep [
 WTitle = "We are now at the third step.";
 If Move;

[
 Move = 0;
 ForceState(NextState);
]
]
Finish [
 If Move;

[
 Move = 0;
 ForceState(NextState);
]
]
DoLotsOfWork [
If 1 MoreWork;
[

..

Note that a title is not required for the "Finish" step, as the WizardEngine
generates standard text.

Related Functions:
Error Messages [Error] Dead Ends [NoNext]

Skipping [SkipIf] Dead Ends [NoBack]

Branching [Switch] Initial Action [InitCheckBox]

Triggered Branch [ForceMove] Final Action [FinalCheckBox]

Unconditional Branch [NextIs] Final Processing Stage [EndControl]

Wizard API

The following methods are supported by the Wizard Engine. An example
of each is provided in following topics.
Given a Wizard object, creating with a statement similar to the following:

Engine = Launch(Scope(\Code, "WizardEngine"), Self, Self,
GetDefaultValue(FindVariable("Title", Self, 0, 1)),
MakeBitmap(FileFind("C:\VTScada\Re-

sources\WizVTS.jpg," 0)),
&nextState,
&Move,
&Close,
&WTitle);

Then, each of these methods would be invoked as follows:

Engine\Method(Parameters);

Error dialog

Error(
 Msg1 { First line of error message},
 Msg2{ Second line of error message},
 Msg3{ Third line of error message}
);

Usage: Script
Causes an error message dialog to be displayed and cancels the current
state change. Up to three lines of error message are displayed depending
on the number of parameters. This is a subroutine message, pausing exe-
cution until the error message is acknowledged.

Final Check Box

FinalCheckBox(
 Value { Initial, and returned, value for checkbox },
 Msg { Text message for check box },
 Enable { TRUE to enable the display of the checkbox }

);

Usage: Steady State
Enables caller to define a checkbox for the final wizard screen, stating,
"Do this when the wizard finishes".
May be used only in the at the end of the wizard process.

Force Move

ForceMove(
 MoveNow { If valid TRUE, then trigger the state change
now },
 NewState { New target state name }
);

Usage: Steady State
Changes the next forward state. May be used to branch to a later state if
intermediate states are optional.

Initial Check Box

InitCheckBox(
 Value { Initial, and returned, value for check box },
 Msg { Text message for check box },
 Enable { TRUE to enable the display of the check box }
);

Usage: Steady State

Enables the caller to define a check box for the first wizard screen, say-
ing: "Do this when the wizard starts" ...
Valid only when used at the start of the wizard.

Next Is

NextIs(
 NewState { New target state name }
);

Usage: Steady State
Specify (change) the next state in the wizard flow. (The default is the next
state in the source code file.)

No Back

NoBack(
 Inhibit { While valid & TRUE, the "Previous" button is disabled. }

);
Usage: Steady State
May be used to prevent a return to the previous state.

No Next

NoNext(
 Inhibit { While valid & TRUE, the "Next" button is disabled.
}

);

Usage: Steady State
May be used to prevent forward progress until the operator provides
information in the current state.

Skip If

SkipIf(
 Condition { If TRUE, then switch to NewTarget state },
 NewTarget { Optional target for the switch.
 Defaults to the next state. }
);

Usage: Steady State
Evaluates its first parameter and, if true, causes an immediate state
change to the second parameter (or the next state). Note that the current
state is not added to the history (does not become the previous state).

Switch

Switch(
 Labels { Array of short label for radio buttons },
 Bmps { Array of bitmap values for icons (32*32) },
 Descriptions { Array of descriptive texts

(max is 4 lines each) },
 Destinations { Array of target state names },
 DefaultVal { Optional, default initial choice },
 BottomMargin { Optional, padding to add to bottom }
);

Usage: Steady State
Displays a set of radio buttons and sets the next state change according
to the chosen option. Explanatory text and an optional icon are displayed
for each button.

Trim

Trim(
 TextString
);

Usage: Script
A subroutine that removes leading & trailing whitespace from string,
returning the result.

End Control

EndControl(
 HideOverlay { Boolean. Set TRUE to hide the overlay
 window while processing is underway (and
 display a progress bar or other indicator)
 Set FALSE when done to restore the
 overlay window. },
 FinalTitle { The final title },
 FinalText { Text to display at finish }
);

Usage: Steady State
Controls processing options at end of Wizard flow by enabling the exten-
ded finish logic.
Setting HideOverlay, will hide the overlay window, allowing the wizard to
draw (progress info etc) in the main window. All buttons are disabled
Clearing HideOverlay, will reinstate the overlay window (with optional
text messages) and enable the Finish button again (Back and Cancel dis-
abled)

Flow Direction

The script code in the state changes is where any work resulting from a
particular state needs to be done, including validation of any entered val-
ues. Additionally, when you consider Wizard actions, it becomes clear
that you need to consider the direction of flow. For example, if you move
forward to a particular step, and then move back to the previous step
without entering anything, you do not want the Wizard to complain,
whereas you do want it to complain if you try to move forward without
entering anything. Therefore, the value of Move indicates the direction of
travel. Forward = 1, Backward = -1, and you can write:

If Move;
[
 IfThen(Move == Forward,
{ Perform Validation }

Text Input and Output

The WizardEngine utilizes the \System\TextBox method, with which you
can output multi-line text for instructions.
To collect information from the operator, you can use any of the stand-
ard input widgets, particularly members of the PTools library. With suit-
able code, you can also display a tab from a tag's ConfigFolder.
Remember to use and check the input trigger for any fields before chan-
ging states. Since the trigger values for the standard input widgets are
all set in script, you only need one trigger variable, and you can test it
for simply being valid.
A good guideline to follow for laying out Wizards is to set the input con-
trols extending 40 pixels to the right of the mid-point, and placing
helper text in a TextBox that starts 48 pixels to the right of the mid-
point.
The code for this example follows the image. This state also illustrates
input validation, where the user must provide an answer for the field,
Your Name before they may press Next.

The code for this state follows:

AskDetails [
 WTitle = "Enter your details.";
 Msg = "Please enter your name and, optionally, a few words about
yourself.";
 \System\TextBox(Split + 8, BOT - 10, RHS, TOP + 17, Msg, _Dia-
logFont, 5);
 GUITransform(0, 1, 1, 0,
 1 - LHS, TOP + 55,
 Split, 1 - (TOP + 10),
 1 { Scale whole },
 0, 0, 1, 0 { No movement; visible; reserved },
 0, 0, 0 { Not selectable },
 \DialogLibrary\PEditField(#Area, "Your Name", 4 { Text
},
 1 { ID }, Trig { trigger },
 1 { view }, 1 { Bevel }, 0 {
VAlign },
 1 { AlignTitle }, Invalid
{Min},
 Invalid {Max}, 1
{PrivNotReqd}));
 GUITransform(0, 1, 1, 0,
 1 - LHS, TOP + 110,
 Split, 1 - (TOP + 65),
 1 { Scale whole },
 0, 0, 1, 0 { No movement; visible; reserved },
 0, 0, 0 { Not selectable },
 \DialogLibrary\PEditField(#Description, "Describe your-
self",
 4 { Text }, 2 { ID }, Trig {
trigger },
 1 { view }, 1 { Bevel }, 0 {

VAlign },
 1 { AlignTitle }, Invalid
{Min},
 Invalid {Max}, 1
{PrivNotReqd}));

 If Move && PickValid(Trig != 0, 1);
[

 IfThen(Move == Forward,
 Engine\Trim(&Parms[#Area]);
 Emsg = Invalid;
 IfThen(PickValid(Parms[#Area] == "", 1),
 Emsg = "I do need to know your name.";
);
 Engine\Error(Emsg);
);
 Move = 0;
 ForceState(NextState);
]
]

Cleaning Up Input [Trim]

The Wizard Engine provides a subroutine method, "Trim," which will
remove leading and trailing spaces from a string. Trim takes a single
parameter, a pointer to a string, which is updated in place by the Trim
method.

If Move;
[
IfThen(Move == Forward && PickValid(Trig != 0, 1),
Engine\Trim(&Username); {trim leading & trailing whitespace}
IfElse(PickValid(Username, "") == "",
Engine\Error("A username is required");
… … …

Error Messages [Error]

If validation is performed when leaving a state, then there is a need to be
able to issue an error message to the user and cancel the move to the
next state. This function is provided by the WizardEngine's "Error"
method.
The "Error" method takes one, two, or three parameters, being the first,
second, and third lines of a 4BtnDialog. Calling "Error" will cause the dia-
log to be displayed and the state move cancelled.

Note: You must call "Error" before you call "ForceState".

Example:

If Move;
[
IfThen(Move == Forward && PickValid(Trig != 0, 1),
IfElse(PickValid(Username, "") == "",
Engine\Error("A username is required.");

{ Else }
IfElse(PickValid(Password, "") == "",
Engine\Error("A password is required.");

{ Else }
IfThen(!Valid(PasswordConfirm) || (Password !=

PasswordConfirm),
Engine\Error("Passwords do not match.");

);
));

);
Move = 0;
ForceState(NextState);
]

Skipping [SkipIf]

Sometimes it is necessary to skip a particular step, if some condition is
true. The WizardEngine method "SkipIf" performs this function. If its first
parameter evaluates to true, then "Move" and "NextState" are imme-
diately set to cause transition to the next state in the current direction of
travel. Since it may also be necessary to skip validation rules, the "Move"
variable indicates that skipping is taking place – it has the value "2" if
skipping forward and –2 if skipping backward.
The second (optional) parameter enables the destination state to be spe-
cified. This method is either a subroutine or a steady-state call.

GetTagName [
 Engine\SkipIf(Valid(TagName), "GotTagName");
 GUITransform(0, 1, 1, 0,
… … …

Branching [Switch]

More useful than simple skipping is to present the user with a set of
choices, and to branch the flow as requested. The WizardEngine provides

a method named, "Switch" for this purpose. The parameters to "Switch"
are:

l Labels: An array of labels for the radio buttons.

l Bmps: An array of image values for the icons (32*32 images).

l Descriptions: An array of descriptions (up to four lines of text can be accom-
modated).

l Destinations: An array of state names.

l DefaultVal: An optional parameter that is the value (0..2) of the initial selec-
tion.

A maximum of three choices can be accommodated. Assuming that suit-
able variables were declared and initialized:

Tasks = New(3);
TaskDescs = New(3);
TaskBmps = New(3);
TaskSwitch = New(3);
Tasks[0] = "Choice 1";
Tasks[1] = "Choice 2";
Tasks[2] = "Choice 3";
TaskBmps[0] = MakeBitmap(FileFind("C:\VTScada\Resources\Copy.png,"
0))
TaskBmps[1] = MakeBitmap(FileFind("C:\VTScada\Resources\Cut.png,"
0))
TaskBmps[2] = MakeBitmap(FileFind("C:\VTScada\Resources\Paste.png,"
0))
TaskDescs[0] = "Selecting this will take you down path number one.";
TaskDescs[1] = "Selecting this will take you down path number two.";
TaskDescs[2] = "Selecting this will take you down path number
three.";
TaskSwitch[0] = "Switch1";
TaskSwitch[1] = "Switch2";
TaskSwitch[2] = "Switch3";

Then the state for the branch might appear as follows:

SelectTask [
 WTitle = "Select Required Task";
 Task = Engine\Switch(Tasks, TaskBmps, TaskDescs, TaskSwitch,
SvTask);
 If Move;
[

 SvTask = PickValid(Task, 0);
 Move = 0;
 ForceState(NextState);
]
]

Example:

"Switch" returns the value (0..2) selected.

Triggered Branch [ForceMove]

Sometimes it may be necessary to force a change of Wizard state without
waiting for the user to click the "Next" button (for example, the user may
double-click some item in a list box and expect some response). The
method "ForceMove," which takes two parameters, performs this task.
The second parameter enables the destination state to be specified. The
first parameter triggers the state switch. The method is a steady-state
call and only works in a forwards direction.

PersonDetails [
 Engine\ForceMove(DClick, "EditPerson");
 If Move;
… … …

Unconditional Branch [NextIs]

When flow has been branched using the "Switch" method, it is likely that
there will be a need to use an unconditional branch to re-merge the
flow. The WizardEngine provides a method named, "NextIs," which
changes the destination state for the step from the default (next state),
to the state whose name is provided as the first parameter of the "NextIs"
method. The method is a steady-state call.

Example:

Engine\NextIs("StateName");

Dead Ends [NoNext]

There are situations when validation determines that the user can go no
further down his chosen path until he goes back and changes something.
The WizardEngine provides a method named, "NoNext," which causes the
"Next" button to be disabled. This method takes a single parameter
which should be set to TRUE to disable the "Next" button. The method is
a steady-state call.

Dead Ends [NoBack]

If used, the method NoBack will inhibit the Back button until the next (for-
ward) state change. Generally, this is not a desirable action in a wizard.
Before using this feature, please consider the options provided by the
EndControl method first.

Initial Action [InitCheckBox]

There is sometimes a need to give the user some option about some
action when the Wizard starts. The WizardEngine provides a method
InitCheckBox for this purpose. It takes three parameters:

l Value the initial value for the check box, and the returned value

l Message the message/label attached to the check box

l Enable if TRUE, then the check box is displayed.
This method should only be called from the initial state (it will be dis-
abled otherwise).

Init [
{ Initial step }
Engine\Initcheck box(tellme, "Tell me about alternatives to this

Wizard", Valid(tellme));
If Move;
[
ForceState(NextState);
IfThen(Move == Forward,

..

Final Action [FinalCheckBox]

There is sometimes a need to give the user options for actions to per-
form when the Wizard completes. The WizardEngine provides a method
named, "FinalCheckBox" for this purpose. It takes the following three
parameters:

l Value: The initial value for the check box, and the returned value.

l Message: The message/label attached to the check box.

l Enable: If true, then the check box is displayed.
This method should only be called from the "Finish" state; it will oth-
erwise be disabled.

Finish [
{ Final Step }
 Engine\Finalcheck box(RunNow, "Run the report when the wizard fin-
ishes", Valid(RunNow));
 If Move;

[
 ForceState(NextState);
 IfThen(Move == Forward,

Final Processing Stage [EndControl]

The default flow of the wizard is that the user can move freely back and
forth between the Init state and the Finish state. When the user clicks the
Finish button, there is no more interaction with the user and the wizard
window closes once any residual processing is complete.
If the final processing is likely to take some time, it is good user inter-
face design to present a progress indication while processing completes,
and then have a final landing point when everything is finished.
The method EndControl will alter this final stage. It takes three para-
meters:

l HideOverlay valid and non-zero to hide the final window overlay

l FinalTitle a text string to override the default title on the final screen

l FinalText a text string to override the default text on the final screen
Notes:

l If any of these parameters is invalid, that parameter is ignored

l The two character sequence "^W" in the FinalTitle will be replaced by the Wiz-
ard’s name

This method is as follows:
When moving forward from the Finish state (i.e. the Finish button has
been clicked) call EndControl(1) to hide the overlay window. This will
return the wizard display to be that which normally shows between the
start and finish states. Your wizard code can now draw text, progress
bars etc to keep the user informed.
You can change states (using the ForceState method to do this) and this
window will remain on display.
When all processing is complete, change to a final state and call EndCon-
trol(0, "Title", "Message"). The window will change to the usual final
screen, except that you can (optionally) replace the title and message
text. The only button that is enabled is the Finish button and when this is
clicked, you should terminate the wizard.
The following code sample is an example of using these features. In this
example, the normal finish screen shows the Finalcheck box. If it is
checked, then the wizard enters the two stage finish.

Finish [
Msg = "This is the final state in the Wizard." + CRLF + CRLF +

"However, if you wish to test the extended finish " +
"features, then tick the check box.";

Engine\EndControl(Invalid, Invalid, Msg);
Engine\FinalCheckBox(ExtendedFinish, "Use extended finish", 1);
Engine\NextIs(ExtendedFinish ? "LongFinish" : "AllDone");
If Move;
[
Move = 0;
ForceState(NextState);

]
]

LongFinish [
WTitle = "Extended Finish";
Msg = "We are waiting here for 10 seconds to simulate ongoing back-

ground tasks." + CRLF + CRLF +
"At the end of that time we will automatically advance to the

end of the Wizard.";
\System\TextBox(LHS, TOP + 65, RHS, TOP + 17, Msg, _DialogFont,

5);
Engine\EndControl(1 {Hide Overlay});
Engine\ForceMove(TimeOut(1, 10), "DoneDone");

If Move;
[
Move = 0;
ForceState(NextState);

]
]

DoneDone [
Engine\EndControl(0 {Unhide overlay}, "The ^W is totally fin-

ished!", "We really are all done now." + CRLF + "Thank you for your
patience.");
If Move;
[
Move = 0;
ForceState(NextState);

]
]

AllDone [
If !Cancel;
[
{ All done now, let’s get out of here }
Cancel = 1;

]
]

Wizard Configuration Settings
There are 5 text labels used by the Wizard Engine. These can be added to
your application's Settings.Startup file.

l WizardWelcomeTitle = Welcome to the ^W.

l WizardFinishText1 = The Wizard has acquired all necessary information.

l WizardFinishText2 = Press FINISH to complete the operation, BACK to
change parameters or

l WizardFinishText3 = CANCEL to abort the operation without making any
changes.

l WizardFinishTitle = The ^W is ready.
Note that the sequence "^W" in WizardWelcomeTitle and Wiz-
ardFinishTitle will be replaced by the name of the Wizard.

Cautionary Notes for Wizards
There are several cautionary notes that you should keep in mind when
creating a Wizard.

Loops
It is possible to use the "Switch," "ForceMove," and "SkipIf" methods to
create a Wizard structure where the user can go round a loop several
times. The WizardEngine attempts to recognize when a sequence of steps
is being repeated, and to delete the duplicates from the history, so that
when you use the "Back" button, you just go round the loop once.

State Changes
Do not be tempted to set your own state changes in your Wizard code.
The WizardEngine methods must be called for all state changes whilst
the "Next" and "Back" buttons are active; however, once you have moved
to the state after your "Finish" state, then you are in control, and not only
must you control all state changes, but you must also arrange ter-
mination once you are done (i.e. set the "Cancel" flag). Note that if you
use the EndControl method to allow progress to be displayed after the
finish state, then you must continue to use Wizard logic to change states
until you call EndControl(0).

Validation
You must fully validate all user input before reaching the "Finish" state.
when you reach this state and the user clicks "Finish," you must complete
the programmed task. There is no going back, and no opportunity for
error exits.

Note: Remember to use the Trim method before testing for null input .

General Reference

Technical notes for:

Colors, Fonts and Graphics

...VTScada Color Palette

...Constants for System Colors

...Color Theme Definition

...Fill Patterns

... Font Character Sets

...GUI Object Return Codes

...Line Types

Time and Date

...predefined Date Codes

...Date Formatting Strings

...predefined Time Formats

...Time Formatting Codes

...VTScada and Time Synchronization

Value Types and Language Support

... SQL Data Types

...Database Type Codes used in the ODBC Manager

...VTScada Value Types - Numeric Reference

...Value and Type Conversions

...Language Support

...Using a Non-English Character Set

Help Files, Function Support, Other...

...ASCII Constants

...Integrating Custom Help Files into VTS

...ParameterEdit Snap-ins

...Known Path Aliases for File-Related Functions

...SlippyMapRemoteTileSource1

...Uninstall VTScada

ASCII Constants
The following constants are defined at the \System layer. In code that
parses user-input strings, you should use these constants rather than cre-
ating your own buffers for common key values or key combinations.

Name of Constant Contents Description

CR MakeBuff(1, 13) Carriage return

ESC MakeBuff(1, 27) Escape key

LF MakeBuff(1, 10) Line feed

NULL MakeBuff(1, 0) Null byte

TAB MakeBuff(1, 9) Tab key

CRLF Concat(MakeBuff(1, 13), MakeBuff(1, 10)) CR/LF pair

UpArrow Concat(MakeBuff(1, 253), MakeBuff(1, 0x48)) Up arrow key

DownArrow Concat(MakeBuff(1, 253), MakeBuff(1, 0x50)) Down arrow key

LeftArrow Concat(MakeBuff(1, 253), MakeBuff(1, 0x4B)) Left arrow key

RightArrow Concat(MakeBuff(1, 253), MakeBuff(1, 0x4D)) Right arrow key

AltLeftArrow Concat(MakeBuff(1, 253), MakeBuff(1, 0x9B)) Alt and left arrow

AltRightArrow Concat(MakeBuff(1, 253), MakeBuff(1, 0x9D)) Alt and right arrow

SUpArrow Concat(MakeBuff(1, 253), MakeBuff(1, 0xB8)) Shift and up arrow

SDownArrow Concat(MakeBuff(1, 253), MakeBuff(1, 0xC0)) Shift and down arrow

PageUp Concat(MakeBuff(1, 253), MakeBuff(1, 0x49)) Page up key

PageDown Concat(MakeBuff(1, 253), MakeBuff(1, 0x51)) Page down key

HomeKey Concat(MakeBuff(1, 253), MakeBuff(1, 0x47)) Home key

EndKey Concat(MakeBuff(1, 253), MakeBuff(1, 0x4F)) End key

DeleteKey Concat(MakeBuff(1, 253), MakeBuff(1, 0x53)) Delete key

SPageUp Concat(MakeBuff(1, 253), MakeBuff(1, 0xB9)) Shift and page up

SPageDown Concat(MakeBuff(1, 253), MakeBuff(1, 0xC1)) Shift and page down

SHomeKey Concat(MakeBuff(1, 253), MakeBuff(1, 0xB7)) Shift and home

SEndKey Concat(MakeBuff(1, 253), MakeBuff(1, 0xBF)) Shift and end

CtrlPageUp Concat(MakeBuff(1, 253), MakeBuff(1, 0x84)) Ctrl and page up

CtrlPageDown Concat(MakeBuff(1, 253), MakeBuff(1, 0x76)) Ctrl and page down

CtrlHome Concat(MakeBuff(1, 253), MakeBuff(1, 0x77)) Ctrl and home

CtrlEnd Concat(MakeBuff(1, 253), MakeBuff(1, 0x75)) Ctrl and end

CtrlBKey MakeBuff(1, 2) Ctrl and B

CtrlCKey MakeBuff(1, 3) Ctrl and C

CtrlDKey MakeBuff(1, 4) Ctrl and D

CtrlIKey Concat(MakeBuff(1, 253), MakeBuff(1, 0xB5)) Ctrl and I

CtrlLKey MakeBuff(1, 12) Ctrl and L

CtrlNKey MakeBuff(1, 14) Ctrl and N

CtrlOKey MakeBuff(1, 15) Ctrl and O

CtrlUKey MakeBuff(1, 21) Ctrl and U

CtrlVKey MakeBuff(1, 22) Ctrl and V

CtrlXKey MakeBuff(1, 24) Ctrl and X

CtrlYKey MakeBuff(1, 25) Ctrl and Y

CtrlZKey MakeBuff(1, 26) Ctrl and Z

VTScada Color Palette
Colors in VTScada have been specified using RGB values since the release
of version 10.2. Prior to that version, the color palette, described in this
topic, provided the full range of colors available for use.
All VTScada functions that require a color value will still recognize values
from the color palette. Use the following chart as a guide when selecting
which number to use.

Color Theme Definition
You can add your own color themes to VTScada. These are stored in the
Setup.INI file, within the [Themes] section.

Themes are defined by numeric values for Hue, Saturation, Brightness
and Contrast in that order, following the theme name. The scale for
those values is based on the tools that were available at the time that
themes were introduced, and do not use plain HSL values. For reference,
note that the Plum theme with values of 0,1,1,1 is the base color.

For example:

[Themes]
Theme = Grey,0,0,1.1,1
Theme = Navy,-15,2,0.7,1
Theme = Burgundy,110,2,0.5,1

Hue ranges from -180 to +180 and represents the departure from the
color <FF343468> (a shade of purple).
Color saturation, brightness and contrast all range from zero to four.

The following example describes the best available method for defining
a new theme.

1. Open the Idea Studio and add a grayscale image to the page.
The choice must be an image, not a widget or shape.

2. Open the properties dialog for the image.

3. Click the Adjust button to open the Adjust Image dialog.

4. Use the Colorize control to set the base color of the image to RGB value
FF343468. (Red 53, Green 52, Blue 104, Opacity 255)

5. Drag the Hue and Saturation sliders until the color of the sample image
changes to approximately what you want.

6. Drag the Brightness and Contrast sliders to make fine adjustments to the
sample image.

7. Note the values for Hue, Saturation, Brightness and Contrast in order.

8. Edit your Setup.INI file to add a new entry.

Remember that you will need to stop all your applications and restart
VTScada itself before changes to Setup.INI take effect.

Setting the
values.
The entry in Setup.INI:

Theme = AutumnGlow,151.5,3.72,1.58,2.18

The resulting theme. The high
contrast setting is most clear in the controls along the bottom.

Constants for System Colors
The following constants should be used in place of their numeric values
for any function that will accept a system color designation.

Constant Value

#SYSCOLOR_SCROLLBAR -2

#SYSCOLOR_DESKTOP -3

#SYSCOLOR_ACTIVEBAR -4

#SYSCOLOR_INACTIVEBAR -5

#SYSCOLOR_MENUBACK -6

#SYSCOLOR_WINBACK -7

#SYSCOLOR_WINFRAME -8

#SYSCOLOR_MENUTEXT -9

#SYSCOLOR_WINTEXT -10

#SYSCOLOR_ACTIVETEXT -11

#SYSCOLOR_ACTIVEBORDER -12

#SYSCOLOR_INACTIVEBORDER -13

#SYSCOLOR_MDIBACK -14

#SYSCOLOR_SELECTEDBACK -15

#SYSCOLOR_SELECTEDTEXT -16

#SYSCOLOR_BUTTONFACE -17

#SYSCOLOR_BUTTONSHADOW -18

#SYSCOLOR_GRAYEDTEXT -19

#SYSCOLOR_BUTTONTEXT -20

#SYSCOLOR_INACTIVETEXT -21

#SYSCOLOR_BUTTONHLITE -22

Integrating Custom Help Files into VTS
VTScada provides you with the power to integrate custom help files into
your VTScada applications. With your own help file, you might choose to:

l Link individual tag instances to topics in a custom help file.

l Link pages to topics in a custom help file.

l Link pages, widgets or user-defined tags to any of the 100 topic files that
have been set aside in the VTScada help system for customer use. You may
change the text in these files as required.

l Override the default VTScada help files so that your custom help file opens
when your OEM-based application is selected in the VAM and the VAM's Help
button is clicked.

VTScada provides support for custom help files in a variety of formats,
but not for all possible formats. The Microsoft® .HLP and .CHM formats
are fully supported. HTML-format help files are produced by many help
authoring tools, but each uses its own code for context sensitive help. It
is not possible for VTScada to work with every format. Support is
provided for both the Doc-To-Help® DotNet format and for the Flare®
HTML5 help format. (Both DocToHelp and Flare are products of MadCap
Software Ltd.)

Add your topics to the built-in VTScada help system.
l One hundred topics have been set aside for you to edit within the VTScada

help system. Each is named for the mapping ID value assigned according to
the pattern, UserTopic100, UserTopic101, etc. Instructions for finding and
editing these topic files are provided in User-Topics in the VTScada Help
Folder.

Create your custom help file or system and assign topic mapping ID val-
ues:

l You will need to obtain a third-party help authoring tool. For .HLP and
.CHM format help files, there are many programs to choose from and prices
vary considerably. If you intend to create a DotNet or HTML5 format help sys-
tem, only DocToHelp® and Flare® are supported by VTScada.

l Topic mapping ID values are typically created within the help authoring tool
and assigned to topics there. VTScada's numbering system begins at 10,000.
In addition, values 100 through 200 are reserved for user-defined topics that
you may add to the VTScada help files. To avoid any conflict with the
VTScada ID values, create mapping IDs that are less than 10000, excluding
those in the 100 to 200 block.

Install your custom help file:
l If using the .HLP format, your help compiler will generate several files. Send

both the .HLP file and the .CNT file with your application. Save both files to
the VTScada installation folder, not to the application folder.

l If using the .CHM format, send only the .CHM file. Save this to the VTScada
installation folder, not to the application folder.

l If using the DotNet format or the HTML5 format, copy the folder structure to
a new sub-folder that you create within your VTScada installation folder (ex:
C:\VTScada\MyHelpFolder)

Link tag instances to topics in your help file

Note: If using a UserTopic that you have edited in the VTScada help sys-
tem, skip steps 1 and 2.

1. Use the advanced mode of the Edit Properties dialog to create a local copy of
the property, HelpFile.

2. Set the value of that property as follows:

l If using the .HLP or .CHM format, set the property to the name of the
file, including the extension. It is assumed that the file will be stored in
the VTScada installation folder, not in the application folder.

l If using the NetHelp (DocToHelp) format, set the value of HelpFile to
"MyHelpFolder\NetHelp", replacing "MyHelpFolder" with the name of
the folder you created to store the help files within.

l If using the HTML5 (Flare) format, set the value of HelpFile to "MyHelp-
folder\MadCapWebHelp", again replacing "MyHelpFolder" with the
name of the folder you created to store the help files within.

3. Open the properties dialog of a tag instance.

4. Set the Help Key property to the value of topic mapping id withing your help
file, matching a topic to the tag.

Operators can now right-click on widgets linked to that tag, then click
Help in the menu that appears, in order to view your topic.

Link pages to topics in a custom help file
To create a link between your page and a topic in a custom help file, edit
the page's source code, then import file changes. You can define the help
file and a specific topic for any page by adding the following line within
the module's Main state:

SetHelp(Self(), Help File Name, Mapping ID value);

Replace the parameter, "Mapping ID value" with the ID value in your help
file that matches the topic to be opened when an operator presses F1.
The help file name parameter should be replaced using the same rules as
for the HelpTopic application property:

l If using the .HLP or .CHM format, set the parameter to the name of the file,
including the extension. It is assumed that the file will be stored in the
VTScada installation folder, not in the application folder.

l If using the NetHelp (DocToHelp) format, set the parameter to "MyHelpFolder-
\NetHelp", replacing "MyHelpFolder" with the name of the folder you created
to store the help files within. Include the quotation marks.

l If using the HTML5 (Flare) format, set the parameter to "MyHelp-
folder\MadCapWebHelp", again replacing "MyHelpFolder" with the name of
the folder you created to store the help files within. Include the quotiation
marks.

l If using a UserTopic that you have edited in the VTScada help system, set the
parameter to \DevHelpFile. Do not add quotation marks.

Override the default help file for the VAM's help button
A legacy feature of VTScada is the ability to have the Help button in the
VAM open your help file instead of the default. Your help file will open
only if the operator has first selected (but not necessarily started) an
application that is based on an OEM layer rather than the VTScada library
layer. Given that requirement, and the fact that it is rare for an operator
to have access to the VAM, let alone be selecting applications, then click-
ing the help button, the following information is provided mostly for
interest's sake.

1. Stop all applications and stop VTScada.

2. Open the file, Setup.INI, in the VTScada installation folder.

3. Edit the OEM section property, OEMHelp, setting its value according to the
rules described twice already in this topic. Do not use quotation marks,
regardless of whether you are setting the value to MyHelpFile.CHM,
MyHelpFolder\NetHelp or MyHelpFolder\MadCapWebHelp.

4. Restart VTScada.

5. Select an application that was built on an OEM layer.

6. Click the VAM's help button. Your help file should open to the default wel-
come page.

User-Topics in the VTScada Help Folder

One hundred mapping ID values have been set aside in the VTScada help
system, which you can use to link to topics you create. These ID values
can be used with your pages or with individual tag instances. When an
operator presses F1 while viewing your page, or right-clicks on a tag-
linked widget and opens the Help option, your topic will be displayed.
You must create the topic files, using the provided template as a guide.
The topic files must be saved in the VTSHelp\Content\UserTopics folder.
Each topic must be named according to the pattern, "UserTopic100.htm"
where the numeric portion of the name (100 in this example) matches

the ID value set aside for the topic. You will use that ID for your page or
tag. One hundred ID values have been set aside, therefore your topics
will be named, "UserTopic100.htm" through "UserTopic199.htm".

Note: These user topics cannot be displayed in the menu of the
VTScada help system, nor will your content be found in response to a
search in the help system. They can be displayed only in response to an
F1 request.

Edit your topic files:
1. Assuming that you have installed VTScada in the folder, C:\VTScada, nav-

igate to the folder, C:\VTScada\VTSHelp\Content\UserTopics.

2. Copy the file, UserTopicTemplate.htm to UserTopicN.htm where N is a num-
ber from 100 to 199.
Start with UserTopic100.htm and work through the set in order.

3. Use a text editor, or a web page editor to open the new file, UserTopicN.htm.
Do not use MS Word, or any other word processing program that will add its
own formatting characters.

4. Search for the keyword, "+++Start"
The first 300 or so lines in the topic are required to load the CSS files,
JavaScript, menu and other parts of the VTScada help system. Do not edit
anything before "+++Start".

5. Replace the text between the <H1> header tags. Do not use headers other
than <H1>.

6. The content that you are replacing includes HTML tags and CSS style tags
that show styles used in the VTScada help system. You should use these as
needed for your own text and images.
All the text from "+++Start" through to "end---", should be replaced.
"+++Start" and "end---" should be removed.

7. Save your file.

To link a tag to a user topic you created:

1. Select the topic file and note the numeric portion of the name.

2. Open the tag properties dialog and enter the number from the topic into the
Help Search Key field of the ID tab.

3. Close the tag properties dialog.

4. To test, right-click on any widget linked to the tag, then click on "Help" in the
menu that opens. The matching topic should open in your default browser.

To link a page to a user topic:
1. Select the topic file and note the numeric portion of the name.

2. Open the source code of the page to be linked to this topic.

3. In the Main state, add the following line of code, replacing the number with
the one from the file.

SetHelp(Self(), \DevHelpFile, 101);

4. Click the Import File Changes button for this application in the VAM.

When updating your copy of VTScada, only the template file will be
replaced. Your own topic files will remain but, within these the top menu
of VTScada help topics may be out of date. You can bring your topics up
to date by copying everything before the "+++Start" marker and after
the "End---" marker from the template file, replacing the same within
your UserTopicN.htm files.

Database Type Codes used in the ODBC Man-
ager
The following numeric values are used by various functions in the library
to select formatting characteristics appropriate to each database type.

Value Meaning

0 MS SQL

1 MS Access

2 Oracle

3 MySQL

4 SyBase

predefined Date Codes
Use any of the following numeric date codes to format a data as shown.
If you require a custom format, you can build one using the text codes
shown in Date Formatting Strings.
Dates using these codes will always be displayed in English, regardless of
system configuration.
All examples showing Monday, August 13, 2012.

Note: Use only the number in the first column - the second two
describe the result of the code in the first column. They are not codes
that you can use in the function.

Date Code Example Description

0 no date

1 120813 yyMMdd

2 08/13/12 MM/dd/yy

3 08-13-12 MM-dd-yy

4 Aug 13, 2012 MMM d, yyyy

5 August 13, 2012 MMMM d, yyyy

6 13 Aug 12 dd MMM yy

7 13 Aug 2012 dd MMM yyyy

8 13/08/12 dd/MM/yy

9 13-08-12 dd-MM-yy

10 13Aug12 ddMMMyy

11 13Aug2012 ddMMMyyyy

12 Aug 13/12 MMM d/yy

13 20120813 yyyyMMdd

14 08/13 MM/dd

15 08-13 MM-dd

16 08/12 MM/yy

17 08-12 MM-yy

18 08/2012 MM/yyyy

19 08-2012 MM-yyyy

20 Aug 13 MMM d

21 August 13 MMMM d

22 Aug 2012 MMM yyyy

23 August 2012 MMMM yyyy

24 13/08 dd/MM

25 13-08 dd-MM

26 Aug MMM

27 August MMMM

28 12-08-13 yy-MM-dd

29 12/08/13 yy/MM/dd

30 2012-08-13 yyyy-MM-dd

31 2012/08/13 yyyy/MM/dd

32 12-W35-01 (1) yy-WeekOfYear-DayOfWeek (2)

33 12/W35/01 yy/WeekOfYear/DayOfWeek

34 2012-W35-01 yyyy-WeekOfYear-DayOfWeek

35 2012/W35/01 yyyy/WeekOfYear/DayOfWeek

36 12226 yyDayOfYear

37 2012226 yyyyDayOfYear

38 12-226 yy-DayOfYear

39 12/226 yy/DayOfYear

40 2012-226 yyyy-DayOfYear

41 2012/226 yyyy/DayOfYear

42 Mon, 13 Aug 2012 ddd, d MMM yyyy

(1) Week Of Year is preceded by the character W.
(2) "DayOfWeek" and "WeekOfYear" are descriptions rather than format
codes that you could use.

Related Information:
predefined Time Formats - Use for displaying time.
 Date - The function that uses the codes listed above.

Date Formatting Strings
To build a custom data format, assemble the following format codes into
text strings. Format codes are case-sensitive. Text strings are always
enclosed in double quotation marks.
Dates using these formatting strings will be displayed in the language of
the user's locale.
Before building a date format with these strings, review the list of pre-
defined Date Codes.

Format Code Description

"d" Day of month as digits with no leading zero for single-digit days.

"dd" Day of month as digits with leading zero for single-digit days.

"ddd" Day of week as a three-letter abbreviation.

"dddd" Day of week as its full name.

"g" B.C. or A.D.

"M" Month as digits with no leading zero for single-digit months.

"MM" Month as digits with leading zero for single-digit months.

"MMM" Month as a three-letter abbreviation.

"MMMM" Month as its full name.

"y" Year as last two digits, but with no leading zero for years less than
10.

"yy" Year as last two digits, but with leading zero for years less than
10.

"yyyy" Year represented by full four digits.

Example:

Date(Today(), "dddd MMM dd, yyyy")

... yields, "Thursday Aug 28, 2008"

Related Information:
Time Formatting Codes - Use for displaying time.
 Date - The function that uses the codes listed above.

Fill Patterns
The following numbers may be used in functions requiring a fill pattern
value.

Index Pattern Example

1 Solid

2 Even color mix

3 Dominant background color mix

4 NW-SE diagonals

5 NE-SW diagonals

6 Vertical lines

7 Horizontal lines

8 Vertical squiggles

9 Horizontal squiggles

10 Vertical jagged lines

11 Horizontal jagged lines

12 Diagonal jagged lines

13 Vertical crosshatch

14 Vertical and angled crosshatch

15 Angled crosshatch

16 Uneven crosshatch

17 Hollow connected squares

18 Checkerboard

19 Vertical arrows

20 Horizontal arrows

21 Angled checkerboard

22 Large dots

23 Thick connected squares

24 Squares with tiny dots

25 Bricks

Font Character Sets
Returns the VTScada character set as an actual charset code. You may dis-
regard these legacy presets and use the actual codes directly (see wing-
di.h for list).

0 ANSI_CHARSET

1 DEFAULT_CHARSET (Current system charset. Typ-
ically, the same as ANSI_CHARSET)

2 SYMBOL_CHARSET

3 SHIFTJIS_CHARSET

4 OEM_CHARSET (System specific)

5 RUSSIAN_CHARSET

6 BALTIC_CHARSET

7 CHINESEBIG5_CHARSET

8 EASTEUROPE_CHARSET

9 GB2312_CHARSET

10 GREEK_CHARSET

11 HANGUL_CHARSET

12 MAC_CHARSET

13 TURKISH_CHARSET

14 VIETNAMESE_CHARSET

GUI Object Return Codes
Objects created using the GUIx commands will return a value when selec-
ted by the mouse or the enter button, according to the following table:

Return Value Mouse Button(s)/Key No. of Clicks

0 Invalid response -

1 Right button Single

2 Middle button Single

3 Right and middle button Single

4 Left button Single

5 Left and right button Single

6 Left and middle Single

7 All three buttons Single

8 Invalid response -

9 Right button Double

10 Middle button Double

11 Right and middle button Double

12 Left button Double

13 Left and right button Double

14 Left and middle Double

15 All three buttons Double

16 <ENTER> key -

These are built from the following bit-wise values:

Bit Meaning

0 TRUE: Right button clicked

1 TRUE: Middle button clicked

2 TRUE: Left button clicked

4 TRUE: Double-click, FALSE: Single-click

5 TRUE: Enter key presses (all other bits will be zero)

Known Path Aliases for File-Related Functions

Known Path Alias Location

:{CommonProgramFiles} Common program files (varies for 32-bit and 64-bit
operating systems)

:{Fonts} Fonts folder

:{ProgramFiles} program files directory (varies for 32-bit and 64-bit

operating systems)

:{System} Windows System folder (varies for 32-bit and 64-bit
operating systems)

:{SystemX86} Windows System folder (32bit)

:{Windows} Windows folder

:{ResourceDir} Windows Resources folder

User Specific

:{UserAdminTools} Admin tools (start menu)

:{UserRoamingAppData} Roaming app data

:{UserCDBurnArea} Local pending CD to burn

:{UserCookies} IE cookies

:{UserDesktop} Desktop folder

:{UserFavorites} IE favorites

:{UserHistory} IE history

:{UserInternetCache} Temporary internet files

:{UserLocalAppData} Localized app data

:{UserDocuments} Documents folder

:{UserMusic} Music folder

:{UserPictures} Photos folder

:{UserVideos} Videos folder

:{UserNetHood} Network Places shortcut folder

:{UserPrintHood} Printer shortcut folder

:{UserProfile} Users profile folder (root of users folders)

:{UserPrograms} Programs (start menu)

:{UserRecent} Shortcuts to recently viewed documents

:{UserSendTo} Items in the 'Send To' context menu

:{UserStartMenu} Start menu root

:{UserStartup} Start menu startup folder

:{UserTemplates} Document templates

All Users share the fol-
lowing:

:{CommonAdminTools} admin tools (start menu)

:{CommonAppData} app data storage

:{CommonFavorites} IE favorites folder

:{CommonOEMLinks} OEM Links

:{CommonPrograms} start menu program list

:{CommonStartMenu} start menu root

:{CommonStartup} start menu startup folder

:{CommonTemplates} templates folder

:{PublicDesktop} desktop folder (shared icons, etc...)

:{PublicDocuments} documents folder

:{PublicMusic} music folder

:{PublicPictures} photos folder

:{PublicVideos} video folder

Line Types
The following numbers may be used in functions requiring a line style
value.

Index Style Example

0 Invisible

1 Solid

2 Dashed

3 Dotted

4 Dot-dashed

5 Dot-dot-dashed

ParameterEdit Snap-ins
These are modules that do not stand alone, but can be used for para-
meter editing in the user interface.

ParmEditColor

Description Used for choosing a color as your parameter value.

Parameters Color - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label height
PtrWaitClose - TRUE to tell caller to wait to close

ParmEditExprMovement

Description Used for choosing an expression as your parameter value
for a movement parameter

Parameters Expr - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter

value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label height
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (UNUSED)
DropListLabel0 - Label 0 for the Movement direction
drop-list
DropListLabel1 - Label 1 for the Movement direction
drop-list

ParmEditExprNoNormalize

Description Used for choosing an expression as your parameter. Note
that, the result is not wrapped with a Normalize.

Parameters Expr - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label height
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (UNUSED)
MenuEnables - Bits to enable options for expression
editor

ParmEditExprNormalize

Description ParameterEdit module for choosing an expression as your

parameter. The result is wrapped in a Normalize.

Parameters Expr - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label height
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (UNUSED)
MenuEnables - Bits to enable options for expression
editor

ParmEditFont

Description Used by the ParameterEdit to choosing a Font as your para-
meter value

Parameters FontVal - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label weight
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (UNUSED)

ParmEditHorizAlign

Description ParameterEdit module for choosing horizontal alignment

as your parameter value.

Parameters HAlign - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label weight
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (UNUSED)

ParmEditLineStyle

Description ParameterEdit module for choosing a line style as your
parameter value

Parameters Style - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label weight
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (UNUSED)

ParmEditLineWidth

Description ParameterEdit module for choosing a line width as your
parameter value

Parameters Width - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label weight
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (UNUSED)

ParmEditNum

Description ParameterEdit module for choosing a number as your para-
meter value

Parameters NumVal - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label weight
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (UNUSED)
TypeOfValue - Optional, VTScada value type required
MinVal - Optional, Min value allowed (Max also required)
MaxVal - Optional, Max value allowed (Min also required)

ParmEditParmMovement

Description ParameterEdit module for choosing a container's para-

meter as a value. Used for displaying the Movement para-
meter. Has all the additional information needed for the
Movement GUI call

Parameters ParmVal - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label weight
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (UNUSED)
ContainerInfo - Info struct for the container and its para-
meters
DropListLabel0 - Droplist label 0
DropListLabel1 - Droplist label 1

ParmEditParmValue

Description ParameterEdit module for choosing a container's para-
meter as a value.
NOTE. Due to the introduction of PickValids for default
parameters, this selector must appear in the modules array
before any of the expressions.

Parameters ParmVal - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate

LabelWidth - Label width
LabelHeight - Label weight
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (for sizing)
ContainerInfo - Info struct for container and its para-
meters
ValueTypeLo - Min value type allowed for this para-
meter. Note - If ValueTypeHi is invalid, then this is the only
value type allowed.
ValueTypeHi - Max value type allowed for this para-
meter
SubTypeList - Optional list of subtypes for object type
Scaled - Optional Boolean to indicate whether the data
be in a "Scale" expression. The default is FALSE
DefaultValue - Optional. The default value if the para-
meter's value is invalid
DefaultNoParm - Optional. The default value if no para-
meter is selected

ParmEditPattern

Description ParameterEdit module for choosing a fill pattern as your
parameter value

Parameters Brush - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label weight
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (UNUSED)

ParmEditPipeColor

Description ParameterEdit module for choosing a pipe color as your
parameter value

Parameters HighColor - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label weight
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (UNUSED)

ParmEditPipeWidth

Description ParameterEdit module for choosing a pipe width as your
parameter value

Parameters PipeWidth - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label weight
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (UNUSED)

ParmEditTag

Description Parameter Editing module for choosing a tag as your para-

meter value

Parameters TagParm - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the Parameter
Value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label weight
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (UNUSED)
PointType - Point Type allowed for this parameter

ParmEditTagMovement

Description Parameter Editing module for choosing a tag value as your
parameter value for a Movement parameter

Parameters TagMoveVal - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label height
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (UNUSED)
DropListLabel0 - Label 0 for the movement direction
drop-list
DropListLabel1 - Label 1 for the movement direction
drop-list

PointType - Point Type allowed for this parameter

ParmEditTagProperty

Description ParameterEdit module for choosing a property of the
drawn tag.
NOTE. Due to the introduction of PickValids for default
parameters, this selector must appear in the Modules array
BEFORE any of the Expressions.

Parameters ParmVal - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label height
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (for sizing)
ContainerInfo - Info struct for container and its para-
meters
TargetTypeLo - Min value type allowed for this para-
meter. If TargetTypeHi is Invalid, then this is the only value
type allowed.
TargetTypeHi - Max value type allowed for this para-
meter
TargetSubTypes - Optional list of subtypes for object
type
Scaled - Should this value be scaled?
DefaultValue - Optional, default value if the tag's value is
invalid
DefaultNoTag - Optional, default value if user selects 'No
Property Selected'

ParmEditTPMovement

Description ParameterEdit module for choosing a container's para-
meter as a value

Parameters ParmVal - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label height
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (for sizing)
DropListLabel0 - Label 0 for the movement direction
drop-list
DropListLabel1 - Label 1 for the movement direction
drop-list
ContainerInfo - Info struct for container and its para-
meters

ParmEditTagValue

Description ParameterEdit module for choosing a tag value as your
parameter value

Parameters TagParm - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width

LabelHeight - Label height
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (UNUSED)
PointType - Point type allowed for this Parameter
Scaled - Optional Boolean value indicating whether the
data should be in a Scale expression. Default = true
DefaultValue - Optional, default value if the tag's value is
invalid
DefaultNoTag - Optional, default value if no tag is set

ParmEditText

Description ParameterEdit module for choosing a text message as your
parameter value

Parameters TextMsg - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label height
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (UNUSED)
StringLiteral - TRUE to treat input/output as a string lit-
eral intended for placement in SRC code or similar.
(Handles quotation marks.) Defaults to TRUE.

ParmEditTextExpression

Description ParameterEdit module for choosing an expression that
returns text as the parameter Value. Related to Para-
meterPanel, which calls the above.

Parameters Expr - Parameter value
ParmPtr - Parameter pointer
Enable - Show the graphics for editing the parameter
value
Left - Left coordinate
Bottom - Bottom coordinate
Right - Right coordinate
Top - Top coordinate
LabelWidth - Label width
LabelHeight - Label height
PtrWaitClose - TRUE to tell caller to wait to close
DlgRoot - Root of the edit dialog (UNUSED)
MenuEnables - Bits used to enable options for the expres-
sion editor

ParameterPanel

Description This is a Generic Panel which will handle the setting of Para-
meters for an object that does not have its own panel. The
object can be a page or a widget.
If available, hints are taken from the typing information of
the object parameters and suitable Parameter Value
choosers are offered.
If the immediate container has parameters then, these too
are considered as actual value candidates. However, if
there is type information on the object or the container,
then these hints are used to filter the set of options, pos-
sibly resulting in an empty set.
This panel is designed to be callable from several sources,
such as the VGE and the Display Manager.

Parameters ObjModule - Object module that is to have its para-
meters modified
pObjParams - Pointer to an array of the object's para-
meter values
PtrWaitClose - TRUE when window closed or cancel

pressed
CodePtr - CodePtr so that the parameter value can be
read
Left - Left position of the window
Bottom - Height of window
Right - Width of the window
Top - Top position of the window
HandleScrollBar - Flag - TRUE for this module to use a
scrollbar if required
ContainerInfo - Information about container and its para-
meters
SelectedParms - Boolean array of selected parameters to
make editable
DialogRoot - The calling dialog window

Related Functions:
ParameterEdit

SlippyMapRemoteTileSource1
Sets the URL, from which Site Map tiles are loaded. Defaults to:
SlippyMapRemoteTileSource1 = http://c.tile.openstreetmap.org/ /|/ ©
[OpenStreetMap Contributors] (www.openstreetmap.org/copyright).

SQL Data Types

Type Indicator SQL Data Type

-7 SQL_BIT

-6 SQL_TINYINT

-5 SQL_BIGINT

-4 SQL_LONGVARBINARY

-3 SQL_VARBINARY

-2 SQL_BINARY

-1 SQL_LONGVARCHAR

0 SQL_UNKNOWN_TYPE

1 SQL_CHAR

2 SQL_NUMERIC

3 SQL_DECIMAL

4 SQL_INTEGER

5 SQL_SMALLINT

6 SQL_FLOAT

7 SQL_REAL

8 SQL_DOUBLE

9 SQL_DATE

10 SQL_TIME

11 SQL_TIMESTAMP

12 SQL_VARCHAR

predefined Time Formats
Use any of the following numeric time codes to format a time as shown.
If you require a custom format, you can build one using the text codes
shown in Time Formatting Codes, as described in the VTScada Pro-
grammer's Guide.

Time Code Example Description

0 no time

1 103211 HourMinuteSecond

2 10:32:11 hour:minute:seconds

3 10321100 HourMinuteSecondHundredth

4 10:32:11:00 hour:minute:seconds:hundredths

5 10:32 hour:minute

6 10:32:11 AM hour:minute:seconds AM or PM

7 10:32 AM hour:minute AM or PM

8 103211000 hour minute second thousandths

9 10:32:11.000 hour:minute:second.thousandths

Related Information:
predefined Date Codes - Used to display a date value.
 Time- Function that uses the codes listed above.

Time Formatting Codes
All examples display 9:07:12 p.m.

String Example Description

h 9 Hours with no leading zero for single-digit hours; 12-hour
clock.

hh 09 Hours with leading zero for single-digit hours; 12-hour
clock.

H 21 Hours with no leading zero for single-digit hours; 24-hour
clock.

HH 21 Hours with leading zero for single-digit hours; 24-hour
clock.

m 7 Minutes with no leading zero for single-digit minutes.

mm 07 Minutes with leading zero for single-digit minutes.

s 12 Seconds with no leading zero for single-digit seconds.

ss 12 Seconds with leading zero for single-digit seconds.

t P One character time-marker string, such as A or P.

tt PM Multi-character time-marker string, such as AM or PM.

Example:

Time(now(1), "hh.mm.ss tt")

... displays: 09.07.12 PM

Related Information:
Date Formatting Strings - Used to display a date value.
 Time- Function that uses the codes listed above.

VTScada and Time Synchronization

Note: The following information is of concern only if you are not
already maintaining time synchronization between servers and if it is
important to your operation to maintain synchronization of clocks
between servers.

VTScada includes code that will maintain time synchronization between
networked servers. Due to security settings in Windows Vista and later
versions, the Time Synchronization Service will work only if VTScada is
started with an account that has the SE_SYSTEMTIME_NAME security flag
set. The Windows Administrator account will generally have this priv-
ilege, but you can also set it for other user accounts.
To do so, you must set the user privilege, "Change the System Time" to
true using the Windows Group Policy Management Editor. Please refer to
Microsoft’s documentation for instructions on using this system tool.

VTScada Value Types - Numeric Reference
The following table lists the value types used in VTScada. When referring
to these in code, you should use the predefined constants rather than the
type numbers. The general usage is:
Cast(Val, \#VtypeText)

Type Constant Name Name Description

0 #VTypeStatus Boolean Logical data type, stores two
states: "true" (0) or "false" (non-
zero).

1 #VTypeShort Short, 16-bit
signed

Integer data type storing values
from -32768 to 32767

2 #VTypeLong Long, 32-bit
signed

Integer data type storing values
from -2147483648 to
2147483647

3 #VTypeDouble Double pre-
cision floating
point

Values range from about -
10^308 through +10^308

4 #VTypeText Text Any string of bytes whose values
range from 0 to 255. Typically
used to hold text strings.

5 #VTypeVariable Variable A handle to the data represented
by a variable declaration, not to
any particular instantiation of
that declaration. Can be used to
access variable metadata (type
information, for example) or
default values.

6 #VTypeFunction Function A pointer to the code for a par-
ticular function within a VTScada
statement. Used by functions
such as GetOneParmText to

manipulate the code itself.
Used when compiling and edit-
ing script code, not for typical
VTScada programs.

7 #VTypeObject Object value An instance of a module

8 #VTypeStream Stream A handle to a stream (of which
there are several types). See
Streams.

9 #VTypeModTree Module tree A handle to the modules in a
state diagram

10 #VTypeStateDgrm State diagram A graphical depiction of
VTScada code

11 #VTypeModule Module The code and variables that
make up a unit of a VTScada pro-
gram. See Modules.

12 #VTypeModState Code Value (a)
Module and
state

A handle to a state within a mod-
ule. See States.

13 #VTypeModStateStmnt Code Value
(b)
Module, state,
and statement

A handle to a statement within a
state. Cannot refer to any arbit-
rary function, as type 6 can. See
Statements and Graphic Objects.

14 #VTypeRefParm Reference
parameter

When a steady-state call is made
to a module, each of the actual
parameters in the call is "bound"
to its corresponding formal para-
meter.

15 <undefined> Array Refers to an entire list of con-
secutive data values. Each data
value has a consecutively
numbered index address and
may be any VTScada value.
See Array Variables

16 #VTypePath Path A series of vertex values. See
Path Variables.

17 #VTypeTraj Trajectory A combination of a Normalize
value and a Path value. See Tra-
jectory Variables.

18 #VTypeRotate Rotate Specifies a rotation amount,
measured in degrees, around a
point. See Rotate Variables

19 #VTypeBrush Brush Brush values are used in layered
graphics statements that paint
areas of the screen with a uni-
form color or pattern. See the
Brush function.

20 #VTypePen Pen Pen values are used in layered
graphics statements that draw
lines. Defines the color, style
and thickness of a line. See the
Pen function.

21 #VTypeNormalize Normalize A graphical scaling value. See
Normalize.

22 #VTypePoint Point A location, stored as an (X, Y)
pair. See Point.

23 #VTypeVertex Vertex A group of three Point values.
See Vertex.

24 #VTypeTransform Transform A transformation matrix, used to
map coordinates from one area
of the screen to another.
Can only be obtained from the
GetTransform function. Used by
the GetPathBound function.

25 #VTypeCodePtr Code pointer A handle to an active graphics
statement in a particular module

or state. Similar to type 13, but
with the additional information
of the module instance as rep-
resented by value type 7.

26 #VTypePtr Pointer Stores data by reference instead
of by value, allowing, for
example, multiple values to ref-
erence the same piece of data as
opposed to multiple copies of
the data.

27 #VTypeEditor Editor A handle to an editor object, as
created by MakeEditor.

28 #VTypeParseStack Parser stack Used by the compiler to allow
the compilation to be suspended
in the middle of a statement to
handle specific code sections
such as I/O addresses.

29 #VTypeTag Tag (Unused) Intended to provide
engine-level support for scaled
variables that could be imple-
mented using a GUI.

30 #VTypeBitmap Bitmap A handle to an image object as
returned from MakeBitmap.

31 #VTypeFont Font A handle to a font object, as
returned by the Font function.

32 #VTypeVTSdb VTScada data-
base

A handle to the VTScada data-
base as returned by the DBSys-
tem function.

33 #VTypeODBCHndl ODBC Handle Provides a connection to an
ODBC database.

34 #VTypeSAPIStrm SAPI text-to-
speech stream

A type of stream for use with
Speech Application Pro-
gramming Interfaces

35 #VTypeComClient COM Client
Interface

An object that provides an inter-
face to a COM client application

36 #VTypeCryptoProv Cryptographic
Provider

A handle to the particular cryp-
tographic service provider that
includes the key specification to
use.

37 #VTypeCryptoKey Cryptographic
Key

May be either a Session Keys or
a Public/Private Key. See Cryp-
tographic Keys.

38 #VTypeDLLhandle DLL Handle A pointer to a structure returned
from the LoadDLL function.
Used to call functions within the
DLL that was loaded. See DLL.

39 #VTypeDeflateHandle ZLib Com-
pression
Handle

Used by the Deflate function

40 #VTypeThread Thread
Handle

A script-level hook to the data
structure used to represent a
thread in a dump

41 #VTypeBreakWatch Source Debug-
ger Break-
point Handle

References a set location in the
source debugger. See Working
with Breakpoints and Data Break-
points

42 #VTypeMiniDumpHandle Minidump
Data Handle

A pointer to a data structure that
holds information from a crash
dump

43 #VTypeTimeStamp Timestamp A numeric representation of
time, measured in seconds since
January 1, 1970

44 #VTypeXMLproc XML Pro-
cessor Handle

Serves as a conduit between an
XML document and an applic-
ation. See VTScada Engine XML
API

45 #VTypeTypeDefinition Dynamic Mod-
ule Definition

Deprecated. A handle to the
definition of a form of module
used as a data container.
Created by the MakeType func-
tion. This storage is used almost
exclusively for handling XML
and cannot contain script code
(unlike other forms of Module).

46 #VTypeTypeInstance Dynamic Mod-
ule Instance

Deprecated. An instance of a
dynamic module, created using
the MakeTypeInstance function.
This is an object value (type 7)
that can only be used to store
data - it cannot contain or
execute script. Typically these
are used when generating mod-
ule trees for delivery via XML. It
is a form of data container, how-
ever in general structures
(defined by the Struct function)
and Dictionaries (type 47) are
more efficient and convenient
for this role.

47 #VTypeDictionary Dictionary A key-based data container of
flexible size, used either on its
own to hold volatile data col-
lections or in the definition of
structures (see Structures).
ValueType will not return this
value unless the dictionary is a
"pure" dictionary. A pure dic-
tionary is one for which the root
value has not been set. Other-
wise, it returns the ValueType of

the dictionary's root instead. See
Dictionaries

48 #VTypeComProperty COM Property A value exposed by a COM Inter-
face "object". This may be
accessed similarly to a typical
VTScada value but is maintained
by the COM object, not the
VTScada engine.

49 <undefined> Module in Con-
text

Contains both a module value
and an instance of the context
module where scope should be
resolved.
Normally, scope will be the par-
ent module in which the Module
was declared. A Module in Con-
text is used for widgets and
plug-ins in VTScada where the
widget is declared in
AppRoot.SRC, but linked into a
tag type such that the widget
becomes a Module in Context in
the tag instance. References to
variables in the widget will then
refer to variables in the tag
rather than to variables in
AppRoot where the widget was
declared.
If a Module In Context value is
called in steady-state, the parent
instance will provide the asso-
ciated context.

50 #VTypeHistorianHandle Historian Con-
nection
Handle

For the VTScada proprietary data
store, this will be invalidated on
an "out of disk space" error, or

on loss of access to the file stor-
age. For other databases, this
will be invalidated on any con-
nection loss.

51 #VTypeXMLNode Dictionary
Structure

A WEB_XML_ADDRESS that
points to a WEB_XML_NODE.
When ValueType() runs against a
value and finds a WEB_XML_
ADDRESS it treats it the same as
a WEB_VALUE_ADDRESS, which
sits in front of an array or struc-
ture. It then searches through
the *_ADDRESS to find what it
points to and returns the type of
that item, in this case an USER_
XML_NODE

52 #VTypePPPHandle PPP Con-
nection
Handle.

May be passed into the function,
PPPStatus() to obtain an inform-
ation structure.
May be passed to the function,
CloseStream() to forcibly close
off a connection. Passing it into
CloseStream completely inval-
idates the handle and all data
associated with it.(see: PPPStatus
and CloseStream)

Value and Type Conversions
The following table shows VTScada value and type conversions.

Value to Con-
vert

Convert
To

Condition of Original Value Returned Value

Code Pointer Module Valid value Valid value

Module
State

Valid value Valid value

Module
State

Statement Valid value Valid value

Object Valid value Valid value

Text Valid value Name of module

Double Long Valid value Valid value

Short Valid value Valid value

Status Valid value Valid value

Text Valid value String representing numeric
value

Edit Block Stream May only be used in SRead
with % option, or in StrLen

Valid value

Long Double Valid value Valid value

Short Valid value Valid value

Status Valid value Valid value

Text Valid value String representing numeric
value

Module Text Valid value Name of module

Module State Module Valid value Valid value

Text Valid value Name of module

Module State
Statement

Module Valid value Valid value

Module
State

Valid value Valid value

Text Valid value Name of module

Normalize Double Valid value The scaled value

Long In the range of -2 147 483
648 to 2 147 483 647

The value

Short In the range of -32 767 to
32 767

The value

Outside of
range

Invalid

Status 0 0 (false)

Non-0 1 (true)

Text Valid value String representing scaled value

Object Module
State

Valid value Module and state in which that
object exists

Statement Valid value Module state and statement
number that object is executing

Text Valid value Name of the module of which
that object is an instance

Short Double Valid value Valid value

Long Valid value Valid value

Status Valid value Valid value

Text Valid value String representing numeric
value

Status Double Unconnected socket 1

Connected socket Invalid

Long Unconnected socket 1

Connected socket Invalid

Short Unconnected socket 1

Connected socket Invalid

Status Unconnected socket 1

Connected socket Invalid

Text Unconnected socket "1"

Connected socket String of stream contents

Tag Double Valid value The scaled value

Long In the range of –2 147 483
648 to 2 147 483 647

The value

Outside the range Invalid

Short In the range of –32 767 to
32 767

The value

Outside the range Invalid

Status 0 0 (false)

Non-0 1 (true)

Text Valid value String representing scaled value

Text Double Number string Number in string

Long Number string Number in string

Short Number string Number in string

Status Non-0 number string 0 (false)

0 number string 1 (true)

Variable Module Module variable The module in which the module
variable resides

Text Valid value Name of variable

Uninstall VTScada
Your VTScada installation includes a wizard that can assist you in unin-
stalling the entire VTScada suite, or selected VTScada components. Unin-
stalling VTScada is a simple, two-step process that removes all
components of the VTScada software from your workstation. The unin-
stall process does not, however, affect any VTScada applications you've
created. These applications and their resources will remain untouched.
Follow these steps to completely uninstall VTScada from your system.

1. Ensure that VTScada is not running.

2. Navigate to the VTScada product or installation directory.

3. Locate the Uninstall.exe file and run it.

4. Ensure that the Automatic radio button is selected.

5. Click the Next button. The Perform Uninstall dialog opens.

6. Click the Finish button. The Uninstall Wizard removes all VTScada com-
ponents from your workstation.

Note: Although the Uninstall Wizard removes all VTScada components
from your workstation, it leaves any applications you have created and
their data untouched. These applications can be imported into other
versions of VTScada at a later date.

Language Support
The VTScada has been created using only English. Some developers have
created application that present a portion of the user interface in lan-
guages other than English. To do so:

To use another language for your application's user interface:
1. Ensure that you are using fonts that support the full range of characters

(including accented characters) used by the desired language. Modify the
built-in the Font tags to use those fonts.

2. Ensure that the default Windows system font uses the correct selection for
your language.

3. Edit your pages and pop-up pages to use the appropriate words for your lan-
guage. Page titles can be edited as required using page properties.

To use another language for the VTScada configuration dialogs and mes-
sages:

1. Open the file, C:\VTScada\Setup.INI and replace the label properties with the
appropriate words for your language.
Note: do not edit the property names. Replace only the values attached to
those names.

2. Re-start VTScada in order to load the new labels. Setup.INI is read only when
VTScada restarts.

3. Using the advanced mode of the Edit Properties page of your application's
Application Configuration dialog, replace label values with the appropriate

words for your language.
You will need to copy many of the properties from the OEM layer.

Related Information:

...Using a Non-English Character Set - Configure Windows (and thereby
VTScada) to use alternative character sets.

Using a Non-English Character Set
To display non-English characters in VTScada, you may to do the fol-
lowing: (Steps describe how to use a Chinese character set.)

1. Update your Windows to include Chinese character set if you haven't done
that when you install your Windows.

2. Go to Control Panel -> Clock, Language, and Region -> Region and Lan-
guage Setting.

3. Select 'Administrative' tab and click on the "Change system Locale..." button.

4. If the client is from Main land China, select "Chinese (Simplified, PRC)" from
the droplist.

If the client is from Hong Kong, select Chinese (Traditional, Hong Kong
S.A.R) and so on. The screen should look like the following after your
selection.

Windows will ask you to restart your system.
5. If you want to input Chinese characters in VTScada, you need to go to Con-

trol Panel -> Region and Language setting, select 'Keyboards and Lan-
guages" tab and click on "Change keyboards..." button.

6. In the "Text Services and Input Languages" dialog, Add Chinese input in the
"Installed services" and keep English as Default Input Language.

7. Run VTScada and you can edit text messages, button labels or Page Notes in
Chinese.

Note: tag names do not support Chinese characters.

Related Information:

...Language Support - Creating a user-interface with a language other
than English.

VTScada Functions - Grouped by Type

Alarm Functions

Commission (Alarm Manager module) Commission the alarm by
adding it to the Configured list.

(Alarm Manager module) Returns a deep copy of an
alarm record.

Decommission (Alarm Manager module) Decommission an alarm by
name.

EvaluateAlarm (Alarm Manager module) Passes a new value to an
alarm, to be compared to the setpoint.

GetAlarmConfiguration (Alarm Manager module) Returns a copy of an
alarm's configuration structure from the master
alarm list, creating it if it does not already exist.

GetAlarmList (Alarm Manager module) Returns filtered lists of
records from alarm databases.

GetAlarmObject (Alarm Manager module) Returns an alarm object
value given an alarm name.

GetAlarmStateStats (Alarm Manager module) Returns a structure con-
taining the cumulative alarm state statistics for the
specified tag.

GetAlarmStatus (Alarm Manager module) Returns a reference to an
alarm's status structure in the master database,
providing access the alarm's current state without
having to make additional function calls.

GetContainerNumActive Returns the number of active alarms within a hier-
archy of tags.

GetContainerNumUnacked Returns the number of unacknowledged alarms
within a hierarchy of tags.

GetNameOfRecord (Alarm Manager module) Given an alarm record,

returns the tag name.

 GetNumUnacked (Alarm Manager module) Returns either the
number of unacknowledged alarms or a
Yes/No flag to indicate that the alarms exist. If
realm-area filtering is in use, results will be
limited to the operator's realm.

GetUserNameOfRecord (Alarm Manager module) Given an alarm record,
returns the user name associated with the trans-
action.

 IsActive (Alarm Manager module) Will indicate if an
alarm is currently active. GetAlarmStatus
should be used in new code.

 IsDisabled (Alarm Manager module) Will indicate if an
alarm is currently disabled. GetAlarmStatus
should be used in new code.

IsShelved (Alarm Manager module) Will indicate if an alarm is
currently shelved. It can be used either as a sub-
routine or as a called function.

 IsUnacked (Alarm Manager module) Will indicate if an
alarm is currently unacknowledged.
GetAlarmStatus should be used in new code.

 MuteSound (Alarm Manager module) This subroutine is
used to turn off alarms sounds for all alarms,
both current and future.

 PAlmPriority (VTS Library) Draws a droplist of the currently
available alarm priorities with an optional title
or bevel or both.

SetShelved AlarmManager plug-in, that handles the shelving
and unshelving of alarms.

 SilenceSound (Alarm Manager module) This subroutine will

silence the current sounding alarm.

The following alarm functions are deprecated or obsolete as of version
11.2

Acknowledge Deprecated. (Alarm Manager module) Will
acknowledge an alarm.

Active Deprecated. (Alarm Manager module) Tells the
Alarm Manager to activate an alarm. This sub-
routine will activate an alarm and signal it as
unacknowledged.

ActiveMonitor Obsolete. (Alarm Manager module) Starts the
required actions for an active alarm. Act-
iveMonitor waits for an alarm to activate, then
activates the Sounder and, (if enabled) calls
AlarmManager to add the pop-up.

AlarmSoundCheck Obsolete. (Alarm Manager module) Checks to
see if an alarm sound can be played for the
given alarm

 Disable Deprecated. (Alarm Manager module) Tell the
Alarm Manager to disable an alarm. Disable
will also clear any active or unacknowledged
state that might exist.

DoAcknowledge Obsolete. (Alarm Manager module) This sub-
routine will do the actual work of acknow-
ledging, while the Acknowledge subroutine is
responsible for informing other computers in
the network about the alarm acknowledgment.

 Enable Deprecated (Alarm Manager module) Tell the
Alarm Manager to enable an alarm.

 Event Deprecated. (Alarm Manager module) Tell the
Alarm Manager when an alarm event occurs.

This subroutine will cause an entry to be
added to the log file without changing the
alarm status.

 ListAdd Deprecated. (Alarm Manager module) This sub-
routine will add the alarm object to a list. This
is useful if a user-defined list has been cre-
ated.

 ListRemove Deprecated. (Alarm Manager module) This sub-
routine will remove the alarm object from a
list. This is useful if a user-defined list has
been added.

 Normal Deprecated. (Alarm Manager module) Use this
function to tell the Alarm Manager when an
alarm clears. This subroutine will deactivate
the alarm. It will not affect the unac-
knowledged status.

 NormalTrip Deprecated (Alarm Manager module) This sub-
routine will deactivate an alarm and signal it
as unacknowledged.

 OffNormal Deprecated. (Alarm Manager module) This sub-
routine will activate the alarm. However, it will
not affect the unacknowledged status.

Popup Deprecated. (Alarm Manager module) Causes
an alarm pop-up dialog to be displayed.

 Register (Alarm Man-
ager)

Deprecated. (Alarm Manager module) Inform
the Alarm Manager that a module instance
may wish to generate alarms in the future.

 SetEnable Deprecated. (Alarm Manager module) Use in
preference to Enable to enable or disable
alarms build into tags.

ShelvedEvent Obsolete. AlarmManager plug-in, called to record a
shelved alarm event.

StartSound Obsolete. (Alarm Manager module) This sub-
routine is used to start a sound for an alarm if
alarm sound is enabled and the alarm priority
is higher than currently sounding alarm.

 TransferFields Deprecated (Alarm Manager module) The
TransferFields subroutine will transfer the val-
ues for each field into the returned FieldVal-
ues array. The values are found in the scope
passed in using the variable names found in
the FieldNames array.

 Trip Deprecated. (Alarm Manager module) Tell the
Alarm Manager to when a trip alarm event
occurs. This subroutine will signal an alarm as
unacknowledged.

 Unregister (Alarm Man-
ager)

Deprecated. (Alarm Manager module) Notify
the Alarm Manager that an alarm has been
removed. This will not generate an alarm; it
just removes it from the list of all configured
alarms.

Array

 AdjustArray Changes the array information for a variable.

 AMax Array maximum. This function returns the maximum value in
a sub-range of a numeric array.

 AMin Array minimum. This function returns the minimum value in
a sub-range of a numeric array.

 ArrayDimensions Returns the number of dimensions in an array.

 ArrayOp1 Performs a mathematical operation on an array with respect
to a scalar value.

 ArrayOp2 Performs a mathematical operation on an array with respect
to another array.

 ArraySize Returns the number of elements in an array dimension.

 ArrayStart Returns the first element in an array dimension

 ArrayToBuff Returns a buffer containing the numeric data from an array.

 AValid Returns the number of valid elements in an array sub-range.

 BuffToArray Reads an array from a formatted buffer containing numerical
data and returns the number of elements read.

 BuffToPointer Converts a buffer of numeric data to array of pointers. This
function reads from a formatted buffer containing numeric
data, writes to locations specified by an array of pointers, and
returns the number of elements read.

 Compress Eliminate invalid array entries.

 DeleteArrayItem Deletes an element from a single dimension dynamically alloc-
ated array and returns the modified array.

 Filter Sets the value of one array element to invalid if the cor-
responding value in another array element is invalid.

 FiltHigh Sets the values in an array sub-range that fall above a spe-
cified upper limit to a new value.

 FiltLow Sets the values in an array sub-range that fall below a spe-
cified lower limit to a new value.

 InsertArrayItem Insert Array Item. This function inserts an element into a
dynamically allocated array and returns the modified array.

 LookUp Looks up a value in an array and returns the index of the ele-
ment containing that value.

 Mean Returns the mean (average) of a portion of a numerical array.

 New Allocates memory for an array from RAM and returns a
pointer to that array.

 PointerToBuff Returns a buffer containing the numeric data from the vari-
ables pointed at by each element of the array.

 ReadX Reads numeric data from a text file into the elements of an
array.

 ReadXY Reads data points from a file into the elements of two arrays.

 SaveHistory This threaded function saves an array of data to a .DAT file for
a certain time span.

 SDev Returns the statistical sample standard deviation for a sub-
section of an array.

 Sort Allows the sorting of an array subsection according to the
order of another array.

SortArray Sorts an array of arrays based upon the key information
provided by the second parameter.

 Sum Returns the arithmetic sum of all the valid array elements in a
specified portion of a numeric array.

 TextSearch Returns the array index of the first occurrence of the given
text key in an alphabetically ordered array.

 Unpack Unpacks a set of values from a stream into a single dimen-
sional array or a set of variables referenced by object para-
meters, and returns the number of items unpacked.

 UnpackData (RPC Manager Library) This method unpacks a stream into an
array or set of module instance parameters. Subroutine call
only.

 Variance Returns the statistical sample variance for a subsection of an
array.

 WatchArray Watches an array and returns true if any of its elements types
or values change.

Bitwise Operation

 And Returns the bit-wise AND of its two parameters as a 32-bit unsigned
integer.

 Bit Returns the on/off status of a bit in a number.

 Not Returns the result of a 32 bit unsigned bitwise logical NOT operation.

 Ones Returns the number of bits set in an integer number.

 Or Performs a bit-wise OR operation and returns the result.

 PSecBit (VTS Library) Parameter Setting Security Bit. This module draws a titled,
beveled droplist of options for setting the security bit.

 SetBit Sets or clears a specific bit in a value and returns the result.

 XOr Returns the bitwise exclusive OR of its parameters.

Clipboard

 ClipboardGet Returns the current contents of the system clipboard as a string.
This function enables an application to perform text "paste" oper-
ations.

 ClipboardPut Set the current contents of the system clipboard to a string. This
function enables an application to perform text "copy" or "cut"
operations.

Color

Blend Returns an aRGB color value that is a given percentage
between two specified colors.

 Brush Returns a brush value.

Cls Clears the screen and sets its background color.

 ColorSelect (System Library) Color Selection Tool. This module draws a
color selection button and its accompanying display area.

 GetColorInfo Returns the brush and pen information for a given graphic
statement.

 GetSystemColor Returns the colors for the user-configured Windows™ colors.

 PalStatus Returns the current palette settings.

 PColorSelect (VTS Library) Draws a button that opens a color selection dia-
log and an area that displays the currently selected color.

 Pen Returns a pen value.

 PixelColor Returns the color of a pixel in the window.

 ZColorChange Changes one color within a region to another color.

Com

ActiveX Instantiates an ActiveX object. An ActiveX object is treated as a COM
client interface that requires a client window area in which to draw.

 COMClient Instantiates COM objects that do not possess a user interface.

 COMEvent Sets an event subroutine context for an existing COM client inter-
face.

 COMStatus Returns the last status information that occurred for a specified
COM client interface.

Compilation And On-Line Modifications

ActiveCode ActiveCode returns the code value of the currently active
statement in the given module instance.

ActiveState ActiveState returns the code value of the currently active
state in the given module instance.

ActiveWindow ActiveWindow returns the object value of the root module
instance in the current active window.

AddModule Adds a new module to an existing module and returns the
value of the newly created module.

 AddOptional Adds a new statement to an action script and returns its
own error code.

AddPageToApp (Obsol-
ete)

Creates a new application page.

 AddParameter Adds an existing variable as a module parameter and
returns the number of parameters in the module.

 AddState Adds a new state to an existing module and returns its
state value.

 AddStatement Adds a new statement to an existing state and returns its
own error code.

 AddVariable Adds a new variable to an existing module and returns its
variable value.

 AdjustArray Changes the array information for a variable.

 AdjustCode Adjusts the offsets and sizes of items stored in the .RUN
file within the document file.

 BuffToParm Convert buffer of numeric data to parameters. This func-
tion reads module parameters from a formatted buffer
containing numerical data and returns the number of
data items read.

 Call Starts an instance of the module specified by its first para-
meter.

 CalledInstances Returns the object values of module instances that are
called by a particular module.

 Caller Takes a given object value for a module and returns the
object value of the module by which it was called.

 CanEditDoc Returns an indication as to whether or not the document
for the given module can be edited.

 Cast Takes a value and returns a different type of value, if pos-
sible.

 ChangePersistentSize Changes the space allocated in the persistent value (.VAL)
file for a variable.

 ChildDocs Gets the module values for the root and all descendent
modules that match the conditions defined by the second
parameter.

 ClearModule Deletes the contents (all variables and states) of a module
without removing the module itself.

 ClearState Deletes all of the statements in a state.

 Compile Compiles text and creates a new function; its type of
return value is determined by its input parameters.

 ConstCount Returns the number of constant parameters in a function.

 CreateModule Creates a new module and returns a pointer to it.

 CriticalSection Marks a section of a module as a critical section and will
not allow interruption of its execution by other threads.

 Debugger (System Library) Starts the VTScada debugger.

 DeleteModule Deletes a module from the system.

 DeleteOptional Deletes a statement from an action script.

 DeleteState Deletes a state from a module.

 DeleteStatement Deletes a statement from a state.

 DeleteVariable Deletes a variable from a module.

 DelPageFromApp Deletes a system page from an application.

 FileRootModule Parses the document file that contains the given module
to find the root module in that file. Returns the module
value of the root module.

 FindAction Returns an action from the list of actions in a state.

 FindVariable Searches for a variable by text name and returns a vari-
able value.

 FirstState Sets the first state in a module.

 ForceState Sets the next state to start when the action script com-
pletes.

 FormalParms Returns the number of formal parameters declared in a
module.

 GetDefaultValue Returns a variable's default value.

 GetID This returns the ID (opcode) of a given function.

 GetInstance Returns the object value of a module instance.

 GetModuleRefBox Get Module Reference Box

 GetModuleText Returns information about a module's document file.

 GetOneParmText Returns the text for one parameter of a function.

 GetOverrides Returns an array of OpCodes and the module value that
will run when each OpCode is executed

 GetParmText Returns the text for all parameters of a function.

 GetParserOffset Returns the offset before the last compiled statement.

 GetReturnValue Returns a module's return value.

 GetState Returns the code value for the specified state.

 GetStatement Returns the code value for the specified statement.

 GetStatementNum Returns the statement number for the specified state-
ment.

 GetStateText Returns the text for the specified state.

 GetToken Reads the next token from a stream and returns the token
type.

 GetTransitText Get Transition Document Text. This function returns
information about the documentation of an action.

 GetVariableText Returns information about the documentation of a vari-
able.

 GetXformRefBox Get Transform Reference Box. This function returns the
reference box for any transform of a module.

 LastSelected Returns the most recently selected graphics statement.

 ListVars Returns a list of variables.

 LoadDLL Loads a Microsoft Windows™ dynamic link library.

 LoadModule Loads a module from its .RUN files and returns a pointer
to that module.

 LValue Left-hand Side Value. This function returns an indication
of whether its argument can be used on the left-hand side
of an assignment.

 MakeDAG Constructs a Directed Acyclic Graph (DAG - an internal
function representation).

 MakeNonPersistent Takes a variable and makes it not persistent.

 MakeNonShared Takes a shared variable and makes it not shared.

 MakePersistent Takes a variable and makes it persistent (static).

 MakeShared Takes a variable and makes it shared.

 MCSInstance Module Calling Structure Instance. This function returns
the object value of a module called by another module.

 MCSMod Module Calling Structure Module. This function returns
the module value from a line of code that calls that par-
ticular module.

 ModuleFileName Returns the full path (including the drive letter) and file
name of the document (.SRC) file of a module.

 NParm Returns the number of parameters listed in a module
instance.

 NumParms Returns the number of parameters of a statement.

 NumSets Returns the number of statements that are currently act-
ive in setting a particular variable.

 NumVariables Returns the number of variables in a module.

 OwningModule Returns the module which contains a certain variable.

 ParserSRO Adds a scope resolution reference to a variable on the top
of the PARSER_STACK given the stack and the object vari-
able.

 PersistentSize Returns the size in bytes of a variable's persistent value
size in the persistent value (.VAL) file.

 RemoveParameter Removes a parameter from a module's parameter list.

 ReplaceStatement Replaces a statement with another statement.

 ResetParm Can reset parameters that become latched.

 ResyncDoc Synchronizes the time and date for the document and
.RUN files.

 RUNFileName Returns the name of the .RUN file for a module including
the full drive and path.

 RUNFileVersion Returns the minimum version of VTScada that can read
the .RUN files produced by the current version.

 SaveModule Saves a module definition to its *.RUN file.

 SetDefault Sets the default value for a variable.

 SetModuleRefBox Sets the reference box for a single instance of a module.

 SetLibrary Sets the library for an application.

 SetModuleRefBox Sets the default reference box for a module.

 SetModuleText Sets the module's .SRC file information.

 SetOneParmText Sets the text for one parameter of a function.

 SetParameter Sets a parameter in a statement.

 SetParmText Sets the text for the parameters of a function.

 SetParserParm Sets the value for the last parameter on the parser stack
and returns its own error code.

 SetRefRect Sets the first four constant parameters of a layered
graphic statement.

 SetStateText Sets the information about the text of a state in a .SRC
file.

 SetTransfer Sets the destination for an action.

 SetTransitText Sets the information about the documentation of an
action in the .SRC file.

 SetVariableClass Sets the class number of a variable and returns its pre-
vious class number.

 SetVariableText Sets the information about the documentation of a vari-
able in the .SRC file.

 SetVariableType Sets the data type for the variable, so that only values of
that data type can be stored in the variable.

 StateList Returns a list of states for a module.

 StatementInstance Takes a given code value and object and returns a code
pointer value for that instance.

 StateName Returns the text name of the given state.

 SubStatementIndex Returns the index of a function within the statement
where it is called.

VarAttributes Returns the attributes bit field of a variable.

Configuration

ModifyTags Can be used to create, modify, or delete running tags.
Replacement for StartTag.

 OpChange Wrapper for TagMigrator\OpChange. Performs an immediate
deploy of a single tag change without disturbing any other tag
changes already in place on the local branch.

 SimpleOpChange Immediately deploys a single parameter change on a single
tag without disturbing any other tag. Makes use of OpChange.

 StartTag (Deprecated. See: ModifyTags) Is used to create tags by start-
ing new instances of the tag type specified in the parameter
list. When creating an application that requires child tags, it is
recommended that this function be used in place of the older
ChildLaunch function.

Configuration Management

AcquireLock Subroutine to acquire an exclusive lock on read-
ing/writing working copy files across all applications.

AppIsRunning Reports whether the application has been started and
the start-up process is complete.

AppIsStarted Returns TRUE if the application has been started.

AppIsStarting Returns TRUE if the application is currently in the pro-
cess of starting.

ApplyChangeSetFile Apply a named ChangeSet to an application layer.

CaptureSettings Gathers a single property value or an accumulated sec-
tion and returns the result in a tabular format.

Combine Performs a Merge2 operation with automated conflict
resolution and change priority.

CommitEditedFiles This function compiles and commits edited files if the
compile succeeds.

DirectApply Applies a set of changes directly to the repository,
without disturbing existing (non-conflicting) changes
already on either branch.

EditFile Informs the configuration management system that a

file has been modified in the working copy, typically
before making a call to CommitEditedFiles.

GetAppInstance Asynchronously, retrieves the Layer object (LayerRoot)
for a particular application specified by its GUID.

GetCodeObj Retrieves the "Code" object associated with the layer.

 GetINIProperty Given an array of INIProperty structures, returns the
value of a given property from that array.

GetLoadedAppInstance Synchronously, retrieves the Layer object (LayerRoot)
for a particular application specified by its GUID.

GetOEMLayer Retrieves the layer root module of the OEM layer
(should one exist) of the layer this is called against.

GetPlatformInfo Gathers information about the current application and
the workstation it is running on.

GetWCPath Returns the full working copy path for an application.

GetWCRevision Returns the revision structure for the repository revi-
sion currently in use by the working copy.

HasCompilationErrors Reports if the working copy presently has unresolved
compilation errors

HasUndeployedChanges Finds whether the local machine is maintaining
changes that have not been deployed, including
changes that have been recorded by EditFile but have
yet to be committed.

IsAppEditable Returns TRUE if the application can currently accept
changes without being re-started.

IsOnLocalBranch Returns TRUE if the local machine is maintaining
changes that have not been deployed within the repos-
itory.

IsRunOnly Returns TRUE if the application is a run-file-only app,
according to the WC contents.

LayerInUse Returns true if the application is running, or if there are
any applications that depend on this layer, running or

not.

Merge Applies a set of changes (the output of a Diff operation)
to a buffer.

Merge2 Attempts to apply two different Diff buffers to a single
origin buffer.

ReadINIProperties Gathers the sum of all of the properties files in this
layer and all of its parents including the local work-
station files.

ReleaseLock Releases a working copy semaphore that was acquired
by AcquireLock.

 ReadPropertiesFile Reads a single Settings file and returns an INIFile Struc-
ture.

RecordProperty Helper function used to record settings without need-
ing to explicitly interact with the settings files.

RepoSubscribe Allows the caller to specify a callback which will be
triggered whenever the application’s repository
changes.

 SetINIProperty Given an INIFiles structure, this function sets the prop-
erty with the specified name and section to the spe-
cified value

Start Start an application.

LayerRoot\Stop Stop an application.

WriteINIProperties The opposite to ReadINIProperties.

 WritePropertiesFile Write a single Settings file according to the properties
in an INIFile structure.

Container And Contributor

AddContributor Adds a contributor to a container.

 DeleteContributor Removes a contributor from a container.

 GetContributors Returns a copy of an array of object values of contributors
for a given container.

 PContributor (VTS Library) Draws a splitlist displaying all contributors to a
specific tag.

Cryptography

Base64Decode Performs a Base64 decode of a buffer.

Base64Encode Performs a Base64 encode of a buffer

Decode Returns the plain value of a cipher that is the result of the
Encode function.

 Decrypt The Decrypt function decrypts data previously encrypted
using the Encrypt function. It is the VTScada analog of the
CryptoAPI CryptDecrypt call.

 DeriveKey Generates a cryptographic session key from a seed value.

Encode Processes a VTScada string using a configurable selection of
compression, encryption, encoding and secure hashing.

 Encrypt The Encrypt function encrypts data. The algorithm used to
encrypt the data is designated by the Key parameter. It is the
VTScada analog of the CryptoAPI CryptEncrypt call.

 ExportKey The ExportKey function exports a cryptographic key or a
key pair from a CSP in a secure manner as a Key BLOB. It is
the VTScada analog of the Crypto API ExportKey call.

 GenerateKey The GenerateKey function generates a random cryp-
tographic session key or a public/private key pair. A handle
to the key or key pair is returned. This handle can then be
used as needed with any CryptoAPI function requiring a key
handle. It is the VTScada analog of the CryptoAPI’s
CryptGenKey call.

 GetCryptoProvider The GetCryptoProvider function is used to acquire a handle
to a particular key container within a particular cryp-
tographic service provider (CSP). This returned handle can
then be used to make calls to the selected CSP. It is the
VTScada analog of the CryptoAPI CryptAcquireContext call.

 GetKeyParam The CryptGetKeyParam function retrieves data that governs

the operations of a key. It is the VTScada analog of the
CryptoAPI’s CryptGetKeyParam call.

 Hash Generates a hash – a text string of bytes - of the given
string.

 ImportKey The ImportKey function transfers a cryptographic key from
a key BLOB into a CSP (cryptography service provider). It is
the VTScada analog of the CryptoAPI’s ImportKey call.

 SetKeyParam The SetKeyParam function customizes various aspects of a
session key's operations. The values set by this function are
not persisted to memory and can only be used with in a
single session. It is the VTScada analog of the CryptoAPI
SetKeyParam call.

Database And Data Source

 DBAdd Executes in its own thread to add a record to a VTScada
database and returns an indication of parameter errors.

 DBGetStream Executes in its own thread to convert a database to a
stream, and returns an indication of parameter errors.

DBInsert Identical to DBAdd, except will not update existing
records.

 DBListGet Executes in its own thread to retrieve certain records from
a list in a VTScada database and returns an indication of
parameter errors.

 DBListSize Executes in its own thread to retrieve the size of a certain
list in a VTScada database and returns an indication of
parameter errors.

 DBRemove Executes in its own thread to remove a record from a
VTScada database and returns an indication of parameter
errors.

 DBSystem Creates a VTScada database and returns its value. The
maximum field length is 65,523 characters. If the field
length is longer than 65,523 characters, the DBSystem call
will return invalid.

 DBTrace This is a trace engine that records live data to a SQL data-
base.

 DBTransaction Executes in its own thread to perform a transaction on a
VTScada database and returns an indication of parameter
errors.

 DBUpdate Executes in its own thread to update a VTScada database
from a given stream and returns an indication of para-
meter errors.

 DBValue Returns a certain value retrieved from a VTScada data-
base.

 ODBC Performs an ODBC command and returns a (dynamically
allocated) array if required.

 ODBCBeginTrans Indicates to a specified ODBC-compliant database that a
transaction is to be started.

 ODBCCommit Indicates to a specified ODBC-compliant database that a
transaction is to be committed.

 ODBCConfigureData Configures an ODBC data source and returns its error
code.

 ODBCConnect Forms a connection to an ODBC-compliant database and
returns the ODBC value associated with that database.

 ODBCDisconnect Stops a connection to the ODBC database.

 ODBCRollback Indicates to a specified ODBC-compliant database that a
transaction is to be rolled back (discarded).

 ODBCSources Retrieves a list of ODBC data sources and returns it as a
(dynamically allocated) array.

 ODBCStatus Returns the requested information about the last ODBC
statement to execute.

 ODBCTables Retrieves a list of the tables present in an ODBC-compliant
database and returns it as a dynamically allocated array.

RegisterCustomTable Registers a name for a virtual database table and defines
what information will be available from that table.

SQLQuery A launched module that executes an SQL query on data in
a VTS application.

 TODBC Performs an ODBC command; it is similar to ODBC except
that it runs in its own thread.

 TODBCBeginTrans Indicates to an ODBC-compliant database that a trans-
action is to be started. TODBCBeginTrans is similar to
ODBCBeginTrans, except that it runs in its own thread.

 TODBCCommit Indicates to an ODBC-compliant database that a trans-
action is to be committed. TODBCCommit is similar to
ODBCCommit, except that it runs in its own thread.

 TODBCConnect Forms a connection to an ODBC database; it is similar to
ODBCConnect except that it runs in its own thread (see
"Comments" section for differences)

 TODBCDisconnect Stops a connection to the ODBC database; it is similar to
ODBCDisconnect except that it runs in its own thread (see
"Comments" section for differences).

 TODBCRollback Indicates to an ODBC-compliant database that a trans-
action is to be discarded. TODBCRollback is similar to
ODBCRollback, except that it runs in its own thread.

 TServerList Executes in its own thread and creates a pointer to an
array of all servers visible from this workstation; it returns
a flag indicating its status upon completion.

DDE

 DDE Returns the value of the data for a specific item from a DDE
server program. This function is a DDE client.

 DDEPoke Sends a value for a specific item to a DDE server program.

 DDEShareAdd Adds a new DDE share name to the SYSTEM.INI file or the registry
and returns its own error code.

 DDEShareDel Deletes a DDE share name from the SYSTEM.ini file or the
registry and returns its own error code.

 SetDDEServer Sets the DDE topic name for a window.

Dictionary

 ClearVarMetaData The opposite of SetVarMetaData, this statement removes all
metadata associated with a variable.

 Dictionary Creates a database-like storage structure that provides effi-
cient addition, retrieval and removal of information linked to
key values.

 DictionaryCopy Create a new dictionary with contents identical to an existing
dictionary. It is expectd that this function will be used rarely,
since in most cases it will be more efficient to hand off a ref-
erence to a dictionary rather than build a duplicate of it.

 DictionaryRemove Removes a key / value pair from a dictionary, providing a
means to regain memory space and remove data that is no
longer needed.

 GetKeyCount Return a count of the number of keys stored by the given dic-
tionary.

 GetNextKey Allows a linear search through a dictionary in place. i.e.
without copying the contents to an array.

 GetVarMetadata Every variable object contains an embedded value. This func-
tion is used to retrieve those values.

 HasMetaData Tests whether a given variable is a dictionary. Since the
default behavior of most operands and functions on dic-
tionaries is to return just the value of the dictionary’s root,
this function provides the only means to determine whether
or not a variable contains a dictionary.

 IsDictionary A synonym for HasMetadata. Tests whether the parameter is
a dictionary.

 ListKeys Returns an array of all keys used within a dictionary. It is
expectd that this function will be used primarily in the con-
text of metadata (extended information attached to a vari-
able). ListKeys also enables you to discover what is in a
dictionary.

 MetaData If used with a variable which is not currently a dictionary, this

command attached meta data to that variable, thereby cre-
ating a dictionary object. The primary purpose in this case is
to provide a means of associating extended data with a vari-
able.

 RootValue Retrieves the root value from a dictionary. This function will
always attempt to return a value that is not itself a dictionary.
If the value stored as the root of the given dictionary is also a
dictionary, this function will return the root value from that
second dictionary. Should all root values be other dic-
tionaries (which would imply that the dictionary at the end of
the chain must actually be an earlier dictionary) then
RootValue will traverse the chain until it finds a root value
which is an earlier dictionary (i.e. the end of the chain before
it loops back) and will return that root value. This is the only
situation where the command will return a dictionary as the
result.

 SetVarMetadata Every variable object contains an embedded value. This func-
tion is used to set those values.

DLL

 DLL Returns a value of a type specified by its parameter from a call to
Microsoft Windows™ dynamic link library using the C calling con-
vention.

 LoadDLL Loads a Microsoft Windows™ dynamic link library.

Editor

AddEditorText Inserts a text string into a text editor.

 CurrentLine Returns the text string that is the current line in an editor.

 Editor Displays an editor on the screen.

 ForceEvent Forces the editor to perform an action based on the information
provided.

 GoToOffset Forces an editor to move to a location in its text.

 MakeEditor Returns an editor value which is used by an editor

 MoveEditor Moves the Editor to the given line and column.

 SetEditMode Sets the graphics edit mode for a window.

 ZEditField Draws a layered text edit field in a window and returns a status
value.

Email

 SendMail Sends a string to an email server using the Simple Mail
Transport Protocol (SMTP)

 ValidateEmailAddrs This subroutine validates a string of email addresses, and
returns TRUE if the email addresses in the string are syn-
tactically valid, or FALSE if they are not.

File I/O

 CheckFileExist (System Library) This subroutine checks for the existence
of the specified file.

 CheckPathExist (System Library) This subroutine checks for the existence
of the specified path.

 CopyDir (System Library) This subroutine recursively copies a dir-
ectory's files and sub-directories down through the entire
directory tree.

 Dir Performs a search in the given directory and returns an
array of matching file names.

 FileDialogBox Displays a threaded system common file dialog box.

 FileFind Performs a recursive search down through the directory
tree structure and returns an array of matching file names.

 FileRootModule Parses the document file that contains the given module to
find the root module in that file. Returns the module value
of the root module.

 FileSize Returns the size of a disk file in bytes.

 FileStream Returns a stream attached to a disk file or printer, and is
suitable for use in SWrite.

 FRead Reads values from a formatted file and returns the number

not read.

 FWrite Writes ASCII or binary data to a file and may also be used
to create or delete a file. It returns the number of data
items not written.

 Get Reads an array of historical data from a file (written by
Save or SaveHistory) and returns the relative file position
of the file entry following the last one read, or an error
code.

 GetFileAttribs Returns information about the specified file.

 GetHistory Get History from a File written by Save or SaveHistory.
This threaded function retrieves an array of data from a
.DAT file for a certain time span. If the parameters to
GetHistory are valid and an attempt is made to get the
data, the return value is 0, otherwise, if no attempt is
made to get the data, the return value is 1.

 GetLog This launched module returns an array of logged data.
Marked for removal, but still in use as of VTS 10. Use
GetTagHistory instead for all new code.

 GetLogInfo Interrogates a historical data file, or a set of historical data
files, and returns overall time, date, and record count
information either for the entire file(set), or for a specified
time range.

 LoadMIB Loads a specified MIB or set of MIBs and returns a dic-
tionary describing the hierarchy of the MIBs.

 MkDir Creates a directory on a disk and returns its own error
code

 ModifyConfiguration Provides a safe way to write to configuration files.

 ModuleFileName Returns the full path (including the drive letter) and file
name of the document (.SRC) file of a module.

 ReadConfiguration This function provides a safe way to read configuration
files.

 ReadINI This subroutine read a variable entry from a Settings file or

a buffer containing one and returns its value.

 ReadSectINI This subroutine read an entire section entry from a Set-
tings file or a buffer containing one and returns a 2-dimen-
sional array containing variable names and their values.

 ReadX Reads numeric data from a text file into the elements of an
array.

 ReadXY Reads data points from a file into the elements of two
arrays.

 Rename Renames an existing file.

 ResyncDoc Synchronizes the time and date for the document and
.RUN files.

 RmDir Destroys a directory on a disk and returns its own error
code.

 RUNFileName Returns the name of the .RUN file for a module including
the full drive and path.

 RUNFileVersion Returns the minimum version of VTScada that can read
the .RUN files produced by the current version.

 Save This threaded function stores data in a circular historical
data file at times indicated by a condition and returns the
record number last written to disk.

 SaveHistory This threaded function saves an array of data to a .DAT file
for a certain time span.

 SetCodeText Will modify a source code file to replace the text for a
given CodeValue with the new text.

 SetFileAttribs Sets the attributes of the specified file.

 SpeakToFile Executes on the speech thread to speak the supplied text
to a .wav format audio file.

 SplitPath Breaks up a file path name into its components.

 TempFileStream Uses the OS tmpfile() function to create a temporary file on
disk and to connect a stream to the temporary file. The
temporary file is removed when the stream is closed or no

longer referenced or if the VTScada process is terminated.

 TGet This threaded function reads an array of historical data
from a file (written by Save or SaveHistory) and returns an
indication of parameter errors.

 WriteHistory (Historian Manager Library) This subroutine writes a vari-
able's value to a Settings file or a buffer containing one
and returns its error code.

 WriteSectINI (System Library) This subroutine writes an entire section to
a Settings file or a buffer containing one and returns its
error code.

 XMLWrite Converts the instance of a type, as specified by
XMLNodeTreeIn, into XML.

Error Manager

ReportError Post error information to VTS Trace and optionally, to the
display.

Graphics

 4BtnDialog (System Library) Draws a message dialog with up to 4 but-
tons and 3 lines of text and returns the number of the but-
ton that was pressed.

 AlignSelected Aligns selected graphic objects.

 Bevel (System Library) Draws a titled beveled box.

 BitmapInfo Returns information about an image.

 Brush Returns a brush value.

CaptureImage Creates an image handle from a GUIStretch operation

 CheckBox (System Library) Draws a check box with (optional) label.

Click Returns an indication of whether or not the mouse pointer is
within a specified screen area and a particular button com-
bination is being pressed.

 ColorSelect (System Library) Color Selection Tool. This module draws a

color selection button and its accompanying display area.

 Coordinates Sets the VTScada screen coordinate limits (also called
"world coordinates") used by the graphics functions.

 CoordToPixel Takes a specified coordinate pair within a given window and
returns the overall, onscreen pixel location.

 CopyObjects Copies the code for selected drawing objects and returns it
in a buffer.

 Crop Modifies an existing image, producing a new one that dis-
plays a sub-section of the original.

DateSelector Displays a calendar, from which operators can select a date.

 DialogInitPos (System Library) Attempts to position a dialog so that it is
not started beyond the left, right, top, or bottom of the vis-
ible screen.

 DragHandle Drags a selected graphic object's selected handle.

 DrawArcPath Draws an arc in any window.

 DrawChordPath Draws a chord in any window.

 DrawEllipticalPath Draw an ellipse in any window.

 DrawPath Draws a polygon in any window.

 DrawPiePath Draws a pie in any window.

 DrawScale (Meter Parts Library) Will draw a scale (i.e. tick marks) for a
linear or radial type meter. These marks are images (nor-
mally lines) indicating the major and minor divisions of the
entire scale. This function must be called inside a GUITrans-
form in order to work properly.

 Droplist (System Library) Draws a droplist with (optional) title or
bevel or both.

 Edit (System Library) Draws an edit field with (optional) title or
bevel or both.

 EditINI (VTS Library) Draws an edit field from which a value of an
application property in Settings.Startup may be set.

 EditINICheckBox (VTS Library) Draws a check box with which an application
property in Settings.Startup may be set true or false.

 Editor Displays an editor on the screen.

 FileDialogBox Displays a threaded system common file dialog box.

 FocusID Returns the focus ID of the object in a window that currently
has the input focus.

 Folder (System Library) Draws a tabbed folder dialog.

 Font Returns a font value.

 FontDialog Displays a threaded system common font dialog box.

 Freeze Freezes all or selected animated graphics in a window.

 GetColorInfo Returns the brush and pen information for a given graphic
statement.

 GetModuleRefBox Get Module Reference Box

 GetPathBound Returns the bounding box coordinates for a path.

 GetSelected Returns a selected graphic item in a window.

 GetSelectedInfo Returns information about selected graphic item(s) in a win-
dow.

 GetShapePath Returns the path value which defines the shape of a poly-
gon.

 GetSystemColor Returns the colors for the user-configured Windowsä col-
ors.

 GetTrajectoryPath Returns the Path value which defines the trajectory of a
graphic object.

 GetTransform Returns the transform value applied to a graphic statement.

 GetXformRefBox Get Transform Reference Box. This function returns the ref-
erence box for any transform of a module.

 Grid Places a (lined) grid pattern on the screen.

 GridList (System Library) Draws a list in the style of a spreadsheet.

 GUIArc Draws an arc in a window and returns an indication when

selected by a mouse button or the <ENTER> key.

 GUIBitmap Draws an image of any of the following formats in a window
and returns an indication when selected by a mouse button
or the <ENTER> key. Available formats include: BMP, EMF,
WMF, APM, CUT, PCX, JPG, PNG, and TIF

 GUIButton Draws a push-button in a window and returns an indication
when selected by a mouse button or the <ENTER> key.

 GUIChord Draws a chord in a window and returns an indication when
selected by a mouse button or the <ENTER> key.

 GUIEllipse Draws an ellipse in a window and returns an indication when
selected by a mouse button or the <ENTER> key.

 GUIPie Draws a pie-shaped wedge in a window and returns an indic-
ation when selected by a mouse button or the <ENTER>
key.

 GUIPipe Deprecated. Use PathDraw. Draws a 3 dimensional, shaded
pipe in a window and returns an indication when selected by
a mouse button or the <ENTER> key.

 GUIPolygon Draws a multi-sided polygon in a window and returns an
indication when selected by a mouse button or the
<ENTER> key.

 GUIRectangle Draws a rectangle in a window and returns an indication
when selected by a mouse button or the <ENTER> key.

 GUIText Draws formatted text in a window and returns an indication
when selected by a mouse button or the <ENTER> key.

 GUITransform Applies a graphical transformation to all graphics in a mod-
ule and returns an indication when selected by a mouse but-
ton or the <ENTER> key.

 HScrollbar (System Library) Draws a horizontal scrollbar and returns its
position.

 IconMarker Creates the question mark and exclamation mark graphics,
used to indicate questionable and manual data in a widget.

 ImageArray Reads an existing image handle and returns another one
containing an image created from that handle by tiling the
image a given number of times.

 ImageSweep Reads an existing image handle and returns another one
containing an image created from that handle by tiling the
image a given number of times along an arc-shaped path.

 IPAddressList Displays a list of IP address which can be added to or
removed from.

 LastSelected Returns the most recently selected graphics statement.

 LinearIndicator (Meter Parts Library) Will draw a linear type indicator. A lin-
ear indicator can be drawn in 3 different ways: Scaled from
min to current position, cropped from min to current pos-
ition or as a line that moves to the current position. This
function must be called inside a GUITransform in order to
work properly.

 LinearLegend (Meter Parts Library) Draws a legend (i.e. the text labels) for
a linear type meter. They are drawn in a line, either hori-
zontally or vertically, with consistent spacing. This function
must be called inside a GUITransform in order to work prop-
erly.

 Listbox (System Library) Draws a listbox with scrollbar (if required)
and indicates the selected item.

 MakeBitmap Loads an image file of types BMP, EMF, WMF, APM, CUT,
PCX, JPG, PNG, or TIF into memory and returns a handle to
the result. Returns Invalid upon failure.

MapDraw Draws a "slippy" map, showing a list of site tags as pins on
that map.

 ModifyBitmap Reads an existing image handle and produces a new one
with modifications. The original image is not altered.
Returns invalid upon failure.

 MoveWindow Will move a window to the specified coordinates.

 NextFocusID Moves the focus position to a specific ID number.

 Normalize Returns a normalized value.

 NumSelected Returns the number of selected graphics statements in a win-
dow.

 Output Places formatted numbers or text on the screen.

Palette Allows the color assignment for a color number to be
changed, provided that Windows™ is running in 256 Color
Mode.

 PalStatus Returns the current palette settings.

 PAreaSelect (VTS Library) Draws a droplist of area options with (optional)
title and bevel.

 ParentWindow Returns the object value of the nearest non-child window.

 PasteObjects Pastes the code for multiple GUITransforms into a page
source file.

 Path Returns a graphics path value.

PathDraw Used within a Idea Studio handler to inform the engine that
a path is being drawn, and to set the appearance of that
path

 PCheckBox (VTS Library) Parameter Setting check box. This module
draws a check box with (optional) label.

 PColorSelect (VTS Library) Draws a button that opens a color selection
dialog and an area that displays the currently selected color.

 PContributor (VTS Library) Draws a split list displaying all contributors to
a specific tag.

 PDroplist (VTS Library) Parameter Setting Droplist. This module draws
a droplist with (optional) title and bevel.

 PEditfield (VTS Library) Parameter Setting Editfield. This module draws
an editfield with (optional) title and bevel.

 PEditName (VTS Library) Tag name setting editfield. This module draws
an editfield that is to be connected to the name of a tag.
Should be used by all tag ConfigFolder modules for setting
the name parameter.

 Pen Returns a pen value.

 Pending Returns the number of statements of a certain type pending.

 Pick Returns an indication of whether the locator (e.g. mouse)
has had a specified change in its button status.

 PIPAddressList Uses an IPAddressList to set a parameter with a semicolon-
delimited IP address list.

 Pipe Draw a Double Line

PIPListenerGroup Draws a droplist of all available IP Listener Groups

 PixelColor Returns the color of a pixel in the window.

 Plot Displays a plot of a subsection of a numeric array in a par-
ticular area of the window.

 PlotBuff Displays a plot of a subsection of a buffer in a particular
area of the window after converting the buffer to element
values.

 PlotXY Displays a plot of a curve in the window given the X and Y
values in two arrays.

 Point Returns a two-dimensional point, or location, in a window.

Popup (Alarm Manager module) Causes an alarm pop-up dialog to
be displayed.

 PPageSelect (VTS Library) Draws a titled, beveled droplist of pages in the
system.

 PRadioButtons (VTS Library) Parameter Setting Radio Buttons. This module
draws a set of labeled radio buttons with (optional) title and
border.

 PrintDialogBox Displays a threaded system common printer selection dia-
log box.

ProgressBar Displays a horizontal progress bar.

 PSecBit (VTS Library) Parameter Setting Security Bit. This module
draws a titled, beveled droplist of options for setting the
security bit.

 PSelectObject (VTS Library) Parameter Setting Select Tag Object Tool. This
module draws a beveled, titled droplist of existing tags of a
certain type and a new tag creation button.

 PSpinbox (VTS Library) Parameter Setting Spinbox. This module draws
a spinbox with (optional) label.

 PTypeToggle (VTS Library) Parameter Setting Type Toggled Field. This
module draws a beveled droplist or editfield with title that
sets a tag or numeric value.

 RadialIndicator (Meter Parts Library) Will draw a radial type indicator that
sweeps from a minimum angle to a maximum angle in the
same fashion that a real radial meter would.

 RadialLegend (Meter Parts Library) Draws a legend (i.e. the text labels) for
a radial type meter. They are drawn at a constant radius
from the center point of the drawing coordinates, beginning
at a defined minimum angle and ending at a defined max-
imum angle.

 RadioButtons (System Library) Draws a set of labeled radio buttons with
(optional) title and border.

 RootTransform Returns the object value that contains the root transform
applied to the given module.

 Rotate Returns a Rotate value, which specifies a rotation about a
point.

SaveImage Takes an image handle and saves it to an image file on disk.

 SectionControl (System Library) Creates a control that displays a variable
number of sections. Visually, a section consists of a header
and content. The control manages the layout and geometry
for the sections and runs a caller-supplied module to dis-
play the section content.

 SelectArea Selects active graphics statements within a rectangular area
in a window.

 SelectCodePointer Given a window object and a code pointer for an active
graphics object within that window, this function adds the

graphics object to the window's selection set.

 SelectDAG (i.e. Select Function) This function selects an active graphics
DAG.

 SelectGraphic Selects an active graphics statement at a location in a win-
dow.

 SelectHandle Returns a pointer to a handle of selected graphics state-
ments at a location in a window.

 SelectHandleNum Selects the given handle of selected graphics statements in
a window.

 SelectPath Selects a path given its code pointer value.

 SetCursor Sets the mouse cursor type for the window.

 SetHandle Sets the position of graphics handles in a window.

 SetModuleRefBox Sets the reference box for a single instance of a module.

 SetModuleRefBox Sets the default reference box for a module.

 SetRefRect Sets the first four constant parameters of a layered graphic
statement.

 SetXLoc Sets the X screen location of the locator (mouse).

 SetYLoc Sets the Y screen location of the locator (mouse).

ShowPage When called with a Page Name, will cause that page to be
displayed in the caller's display session context

SimulateMouse Sets the pointer location and sends a button press with mod-
ifiers such as Ctrl, Shift or Alt. (mouse)

 Spinbox (System Library) Draws a spinbox with (optional) label.

 SplitList (System Library) Draws a split list (listbox with two columns)
with a scrollbar if required and indicates the selected item.

 SplitListSelector (System Library) Draws a split view comprising two GridLists
separated by control buttons. Items listed on the left may be
selected to be transferred to the right. Items on the right
may be returned to the left so long as they were originally lis-
ted on the left. Scrollbars will be drawn if required.

 SplitTagSelector Draws a split view comprising two GridLists separated by
control buttons. Tag names listed on the left may be selec-
ted to be transferred to the right. Each GridList will have two
columns: the name and the description of each tag in the
list. Scrollbars will be drawn if required.

 Tag Returns a Tag value, which works like (and in place of) a
Normalize value.

TagIconMarker Draws an "IconMarker" in the center of its transform area,
and optionally shows a blank icon when in editing mode.

 TextAttribs Returns graphic-related information about a text, given a
font.

 TextBox (System Library) Displays a text string, breaking it into mul-
tiple lines at space or CRLF.

 ToolBar (System Library) Draws and maintains a toolbar and its but-
tons.

 Trajectory Move a Layered Graphic and return a Trajectory value.

 UnselectGraphics Will deselect all of the graphics in the specified window.

 UnselectObject Will deselect a statement in the context supplied.

 UnTransform Will undo a previous transform so that the module instance
and everything it has called will not be transformed.

 UpdateCoordinates Will update a graphic statement's coordinates to the doc-
ument file in which it is specified.

 Vertex Returns a Vertex value, which is a collection of 3 points and
a mode.

 VScrollbar (System Library) Draws a vertical scrollbar and returns its
position.

 WinButton Windows native button.

 WinComboCtrl Windows native "combo" control. A "combo" control is an
enhanced form of drop list. Displays a child window con-
taining a Windows combo control.

 WinEditCtrl Windows native edit control. This function returns a value

indicating the status of an edit field.

 WinTooltipCtrl Windows native "tooltip" control. A "tooltip" is a pop-up text
window that provides operational hints to users when the
mouse pointer is rested over a tool or object.

 WinYLoc Returns the Y coordinate of the locator (mouse) in a win-
dow.

 XLoc Returns the X window coordinate of the locator (mouse).

 YLoc Returns the Y window coordinate of the locator (mouse).

 ZBar Draws a layered bar in a window.

 ZBox Draws a layered box in a window.

 ZButton Draws a layered button in a window and returns true when
selected.

 ZColorChange Changes one color within a region to another color.

 ZEditField Draws a layered text edit field in a window and returns a
status value.

 ZGrid Draws a layered point grid in a window.

 ZLine Draws a line between given x and y coordinates in a win-
dow.

 ZPipe Draws a layered three-dimensional pipe in a window.

 ZText Draws a layered text label in a window.

Help

 EnableHelp Enables you to enable or disable help file activation when the F1 key
is pressed.

 Help Calls Windows™ help.

 SetHelp Sets the help file name and (optionally) the context identifier for the
window containing the specified object.

Keyboard

 FocusID Returns the focus ID of the object in a window that currently has
the input focus.

 KeyCount Returns the number of keys pressed since the state became act-
ive, either edited or non-edited.

 KeyFake Places a string of characters in a window's keyboard buffer.

 Keys Returns the most recently pressed keys from either the edited or
non-edited keystrokes.

 MatchKeys Returns true if the specified keyboard keys have been pressed in
the sequence given.

 NextFocusID Moves the focus position to a specific ID number.

 WinMatchKeys Returns true if the specified keyboard keys have been pressed in
the sequence given in another window.

 WinShiftKeys Returns a value which contains the current status of the Shift,
Control and Alt control keys.

Locator

Click Returns an indication of whether or not the mouse pointer is
within a specified screen area and a particular button com-
bination is being pressed.

 CurrentWindow Returns the application window over which the mouse cursor
currently rests.

 LocCapture Capture Locator Input. This statement captures all subsequent
input from the locator device and routes it to a specific window.

 LocSwitch Returns the current status of the locator (mouse) buttons over
the window which contains the LocSwitch statement.

 Pick Returns an indication of whether the locator (e.g. mouse) has
had a specified change in its button status.

 SetCursor Sets the mouse cursor type for the window.

 SetXLoc Sets the X screen location of the locator (mouse).

 SetYLoc Sets the Y screen location of the locator (mouse).

 Target Returns an indication of whether the locator (e.g. mouse) is
within a specified screen area.

 WinLocSwitch Returns the current status of the locator (mouse) buttons in a

certain window and its ancestors.

 WinTooltipCtrl Windows native "tooltip" control. A "tooltip" is a pop-up text win-
dow that provides operational hints to users when the mouse
pointer is rested over a tool or object.

 WinYLoc Returns the Y coordinate of the locator (mouse) in a window.

 XLoc Returns the X window coordinate of the locator (mouse).

 YLoc Returns the Y window coordinate of the locator (mouse).

Log

 Get Reads an array of historical data from a file (written by Save or
SaveHistory) and returns the relative file position of the file
entry following the last one read, or an error code.

 GetHistory Get History from a File written by Save or SaveHistory. This
threaded function retrieves an array of data from a .DAT file
for a certain time span. If the parameters to GetHistory are
valid and an attempt is made to get the data, the return value
is 0, otherwise, if no attempt is made to get the data, the
return value is 1.

 GetLog This launched module returns an array of logged data.
Marked for removal, but still in use as of VTS 10. Use
GetTagHistory instead for all new code.

 GetLogInfo Interrogates a historical data file, or a set of historical data
files, and returns overall time, date, and record count inform-
ation either for the entire file(set), or for a specified time
range.

 GetTagHistory (Historian Manager Library) Launched module that retrieves
historical data for a tag. Replaces GetLog.

 HistorianConnect Opens a logging connection and controls the lifetime of all
resources associated with that connection.

LogNTEvent Logs events to the system event log.

 SaveHistory This threaded function saves an array of data to a .DAT file for
a certain time span.

 TGet This threaded function reads an array of historical data from a
file (written by Save or SaveHistory) and returns an indication
of parameter errors.

Logic Control

 Boolean (System Library) Takes a valid Boolean test and returns the numeric
equivalent.

 Case Selects one of a set of parameters for execution and returns its
return value.

 Cond Returns one of two values depending upon the result of a conditional
expression.

 DoLoop Executes a do-while loop in a script.

 Execute Executes a group of statements as a single entity in structures that
would otherwise allow only one statement to be executed.

 FALSE Evaluates to 0 or tests whether an optional parameter evaluates to 0.

 ForceState Sets the next state to start when the action script completes.

 IF Performs an action; it changes the active state in a module instance
or executes a script or does both.

 IfElse Executes one of its two parameters based upon a condition para-
meter.

 IfOne Check for an If One Condition. This function checks for a race con-
dition in an action script and returns the value of the location.

 IfThen Conditionally Execute Statements. This statement executes a state-
ment if the condition parameter is true.

 Invalid Return Invalid Value. This function always returns an invalid value.

 PickValid Attempts to return a valid value given a list of parameters.

 TRUE Evaluates to 1 or tests whether an optional parameter evaluates to 1.

 WhileLoop Repeatedly executes a parameter while a condition is true.

Math - Generic

ABS Returns the absolute value of a numeric expression.

 AMax Array maximum. This function returns the maximum value in a
sub-range of a numeric array.

 AMin Array minimum. This function returns the minimum value in a
sub-range of a numeric array.

 CommaFormat Returns the text version of a number, formatted to use embed-
ded commas.

 Deriv Returns the derivative (rate of change) of a value.

 Edge Test for a rising or falling edge.

 Exp Returns the natural antilogarithm of a numeric expression.

 FFT Performs a fast Fourier transform between time and frequency
domains.

 FitOffset Linear regression offset. This function returns the offset or Y
intercept of the least square curve fit of data in a pair of arrays.

 FitR2 Returns the coefficient of determination (i.e. r2) for a linear
curve fit. This number gives a measure of how correct the curve
fit is.

 FitSlope Linear regression slope. This function returns the slope of the
least square curve fit of data in a pair of arrays.

 FormatInteger Returns a text string which is a decimal value converted to one
of binary, octal or hexadecimal formats.

 Intgr Time Integral. This function returns the time integral of a value.

 Ln Returns the natural logarithm (base e) of a value.

 Log Returns the common logarithm (base 10) of a number.

 LValue Left-hand Side Value. This function returns an indication of
whether its argument can be used on the left-hand side of an
assignment.

 Max Returns the maximum of a group of parameters.

 Mean Returns the mean (average) of a portion of a numerical array.

 Min Returns the minimum of a group of parameters.

 Pow Returns a number raised to a power.

Rand Returns a random number between 0 and 1.

 Scale Returns a value that has been converted from one scale to
another.

 SDev Returns the statistical sample standard deviation for a sub-
section of an array.

 Sqrt Returns the square root of a number.

 Sum Returns the arithmetic sum of all the valid array elements in a
specified portion of a numeric array.

 SumBuff Returns the summation of bytes in a buffer.

 Tag Returns a Tag value, which works like (and in place of) a
Normalize value.

 Variance Returns the statistical sample variance for a subsection of an
array.

Math - Rounding

 Ceil Returns the smallest integer greater than or equal to a number
(the ceiling).

 DeadBand Returns the previous value of the first parameter until it
changes by an amount specified by the second parameter.

 Int Integer Portion of Number. This function returns the portion of
a number before the decimal point.

 FormatNumber Returns a compactly formatted version of a number, containing
at least the specified number of significant digits.

 Limit Set Value Minimum and Maximum. This function returns a
value that is limited both on the high and low ranges.

 Step Transforms a continuous value into discrete steps.

Math - Trigonometric

ACos Calculates the trigonometric arc cosine in radians.

 ASin Returns the trigonometric arc sine in radians.

 ATan Returns the trigonometric arc tangent in radians.

 Cos Returns the trigonometric cosine of an angle in radians.

 Sin Returns the trigonometric sine of an angle in radians.

 Tan Returns the trigonometric tangent of an angle in radians.

Memory I/O

 AddRead Add a read request. This module is called by a tag to add a
request to read a specific range of memory and set the resulting
read data into the variable pointed to by the third parameter.
The pointer may be a simple variable for one element read, or
an array if more than one element is requested.

 CopyIn Copies data from an absolute RAM address and returns a buffer.

 CopyOut Copies data from a buffer to an absolute RAM address.

 DelRead Is called by a tag to delete an existing read request, as created
by an AddRead.

 In Read I/O Byte. This function returns the byte read from an I/O
port.

 InWord Read I/O Word. This function reads a 16 bit unsigned word from
an I/O port.

 MakeFixedBuff Creates a buffer value which has its data stored at a specific
memory address. Not supported under 64-bit VTScada.

 MemIn Returns a byte, word, or longword of RAM memory.

 Memory Returns the amount of memory that VTScada has acquired from
the OS heap for internal use.

 MemOut Writes a byte, word, or longword of RAM memory.

MemTrace Writes memory allocation information to a file.

 New Allocates memory for an array from RAM and returns a pointer
to that array.

 Out Writes an 8 bit byte to an I/O port.

 OutWord Writes a 16 bit word to an I/O port.

Modem

 CallerID Takes a specified modem stream and returns the caller ID from
the telephone system.

 ModemCount Returns the number of data modems configured and oper-
ational in the system.

 ModemDev Obtains the identifier for a modem sub-device. (In order to use
the audio capabilities of a voice modem, the device identifier
for the wave output device is required.)

 ModemDial Dials and attempts to connect to a remote modem and returns
the modem stream or an error code.

 ModemDigits Controls the receipt of DTMF digits entered from the keypad of
a telephone engaged on a voice call via a voice modem.

 ModemList Returns a list of the modems in the system. This function
should be used to determine the correct parameter for the
ModemStream or ModemDial functions.

 ModemMedia Enables you to determine the media mode of a serial stream
open on a modem, and change it if necessary (for example, if
you require the ability to be able to handle both incoming voice
mode and data mode calls).

 ModemStream Open a serial stream on a modem and returns its status (prior
to the connection being made), a modem stream (after the con-
nection has been established), or an error code.

 ModemTransfer Transfers a modem call to another application and returns an
indication of success.

 PPPDial Creates a PPP connection to a remote peer. The connection can
be via a dial-up or direct device connection.

 PPPHandles Returns an array of all Point-to-Point Protocol handles on the
local machine.

 PPPDial Describes the status of a PPP connection.

Module - Advanced

ActiveCode ActiveCode returns the code value of the currently active
statement in the given module instance.

AddModule Adds a new module to an existing module and returns the
value of the newly created module.

 AddParameter Adds an existing variable as a module parameter and
returns the number of parameters in the module.

 AdjustCode Adjusts the offsets and sizes of items stored in the .RUN file
within the document file.

 CalledInstances Returns the object values of module instances that are
called by a particular module.

 CanEditDoc Returns an indication as to whether or not the document for
the given module can be edited.

 ChildDocs Gets the module values for the root and all descendent mod-
ules that match the conditions defined by the second para-
meter.

 CleanModule Removes the flag that marks when a module that has been
changed programmatically and would therefore have its
changes saved to disk were this flag not cleared.

 ClearModule Deletes the contents (all variables and states) of a module
without removing the module itself.

CodeText Returns the text (or other information) for a given Code
Value.

 ConstCount Returns the number of constant parameters in a function.

 CoverageSnapshot Captures the areas in a VTScada source file which have not
executed along with summary statistic for each module in
the file to extract code coverage information.

 CreateModule Creates a new module and returns a pointer to it.

 CrossReference Returns a linked list of structures representing all references
to a specified variable or module.

 DeleteModule Deletes a module from the system.

 FileRootModule Parses the document file that contains the given module to
find the root module in that file. Returns the module value
of the root module.

 FormalParms Returns the number of formal parameters declared in a mod-
ule.

 GetModuleRefBox Get Module Reference Box

 GetModuleText Returns information about a module's document file.

 GetOneParmText Returns the text for one parameter of a function.

 GetOverrides Returns an array of OpCodes and the module value that will
run when each OpCode is executed

 GetParameter Returns the requested parameters as a constant, variable or
code pointer.

 GetParmText Returns the text for all parameters of a function.

 GetTransitText Get Transition Document Text. This function returns inform-
ation about the documentation of an action.

 GetXformRefBox Get Transform Reference Box. This function returns the ref-
erence box for any transform of a module.

 GUITransform Applies a graphical transformation to all graphics in a mod-
ule and returns an indication when selected by a mouse but-
ton or the <ENTER> key.

 ImportAPI Imports objects of class API from a given module, for use in
the calling module.

 LoadModule Loads a module from its .RUN files and returns a pointer to
that module.

 MCSInstance Module Calling Structure Instance. This function returns the
object value of a module called by another module.

 MCSMod Module Calling Structure Module. This function returns the
module value from a line of code that calls that particular
module.

 ModuleFileName Returns the full path (including the drive letter) and file
name of the document (.SRC) file of a module.

 NParm Returns the number of parameters listed in a module
instance.

 NumParms Returns the number of parameters of a statement.

 OwningModule Returns the module which contains a certain variable.

 Pack Packs a set of module parameters or an array of values into
a stream, and returns the number of items that were not
packed.

 ParentModule Returns the parent module of a module.

 ParentObject Returns the parent object of a module.

 ParmToBuff Returns a buffer of formatted numeric parameter values.

 Priority Sets the execution priority for a module, variable or object.

 PType Returns the actual type of parameter at an index.

 RemoveParameter Removes a parameter from a module's parameter list.

 ResetParm Can reset parameters that become latched.

 ResyncDoc Synchronizes the time and date for the document and .RUN
files.

 RootTransform Returns the object value that contains the root transform
applied to the given module.

 RUNFileName Returns the name of the .RUN file for a module including the
full drive and path.

 RUNFileVersion Returns the minimum version of VTScada that can read the
.RUN files produced by the current version.

 SaveModule Saves a module definition to its *.RUN file.

 SectionControl (System Library) Creates a control that displays a variable
number of sections. Visually, a section consists of a header
and content. The control manages the layout and geometry
for the sections and runs a caller-supplied module to dis-
play the section content.

 SetCodeText Will modify a source code file to replace the text for a given
CodeValue with the new text.

 SetModuleRefBox Sets the reference box for a single instance of a module.

 SetModuleRefBox Sets the default reference box for a module.

 SetModuleText Sets the module's .SRC file information.

 SetOneParmText Sets the text for one parameter of a function.

 SetOverride Allows the overriding of OpCodes with a specified script
module within a static module tree.

 SetParameter Sets a parameter in a statement.

 SetParmText Sets the text for the parameters of a function.

 UnTransform Will undo a previous transform so that the module instance
and everything it has called will not be transformed.

 UpdateCoordinates Will update a graphic statement's coordinates to the doc-
ument file in which it is specified.

Module - Basic

 Call Starts an instance of the module specified by its first para-
meter.

 Caller Takes a given object value for a module and returns the
object value of the module by which it was called.

 ChildInstances Returns the object values of module instances that are chil-
dren of a particular module instance (i.e. all objects whose
parent is a specified object).

 CriticalSection Marks a section of a module as a critical section and will
not allow interruption of its execution by other threads.

 GetInstance Returns the object value of a module instance.

GetTagList Returns an array of tags, starting at a given point in the tag
tree and including all child tags below that point, subject
to the filtering parameters.

GetTagTypes Returns an array of either the common names or the mod-
ule names of all tag types.

 GetReturnValue Returns a module's return value.

 HasReturnStatement Examines a specified object to see if it is currently running
a return statement in steady-state.

 Instance Limit Module Instances. This function limits the number of
fixed module instances allowed to run simultaneously and
returns the old limit

 IsChild Identify Child Module. This function returns an indication
of whether one module is a child module of another.

 Launch Runs a module instance and returns a pointer to it.

LocalScope Equivalent to Scope(Obj, Name, TRUE).
LocalScope is a useful shortcut where the second para-
meter is not a constant string.

LocalVariable LocalVariable(Name) is a shortcut for Scope(Self, Name,
TRUE).

 NumInstances Returns the number of module instances currently run-
ning.

 Parameter Returns the value of (or may assign a value to) a parameter
of a module, specified by the index.

 PointList Returns an array of tag names within the current scope,
given the name of a tag type or group.

 Return Sets the return value for the module in which it is
executed.

 RootWindow Returns the object value of the root (original) module dis-
played in the same window.

 Scope Performs a scope resolution and returns a reference to the
requested member within a module or other object.

 ScopeLocal As above except that ScopeLocal will not look outside the
given context.

 Self Returns the object value of the current module.

 SetInstanceName Set the name of an instance of a module.

 SetReturnValue Sets the return value of a specified object if the object is
not currently running a Return() statement in steady state.

 Slay Stops a launched module, and possibly any parent mod-
ules.

 SystemSelf Returns the object value of the system module for the
given application.

 Thread Launches a module in its own separate thread.

 ThreadHistory Returns in an array the history of execution for a specified
thread.

 ThreadIdle Returns TRUE when the ToDo list for a given thread is
empty.

 ThreadList Returns a two dimensional array containing the name and
statement last executed by each VTScada thread.

 ThreadName Returns the name of a thread.

 ThreadPriority Allows advanced users to set a specified thread to one of
six priorities, ranging from idle to time critical.

 WCSubscribe Working Copy Subscribe. After this function has been
called, any configuration change will result in the specified
callback subroutine being called.

 Window Opens a new window, starts a module inside, and even-
tually returns the module's value.

Network & Workstation

See also: RPC Manager Functions.

 GetGUID Creates a globally unique identifier or converts an existing
GUID to another format.

 GetHostByName Calls the WinSock gethostbyname function and returns the
host name, address(es) and alias names for the named com-
puter.

GetPowerState Returns a structure that describes the state of the power supply
to the workstation. Relevant when the workstation is running
on battery power.

 LocalGroup Returns an indication of whether the current Windows™ user is
a member of the specified local group. LocalGroup inter-
rogates only local groups, not domain groups.

 OPCServer Adds a new top-level branch to the VTScada OPC Server’s

namespace hierarchy.

 Platform Returns a twelve element structure that indicates the platform
under which VTScada is currently running.

 Redirect Redirects a local device to network resource.

 Register (RPC
Manager)

(RPC Manager Library) This subroutine registers a service for
RPC and returns a pointer to the variable containing the cur-
rent RPC status of the service.

 RunPack (RPC Manager Library) Is unpacks and executes a set of RPCs
from a stream constructed with PackRPC.

 Send (RPC Manager Library) This subroutine sends a message by
invoking a remote procedure call (RPC).

 ServerList Returns a pointer to an array of all available servers visible
from this workstation.

 ServerSocket Returns a server WinSock socket stream given a handle
returned by a SocketServerStart function or an integer error
code.

 SetAllBlocks (RPCManager Library) This subroutine executes on the client. It
accepts all of the blocks and data for a service.

 SetOPCData Sets an item value in the VTScada OPC Server.

 TCPIPReset Shuts down and resets all TCP/IP functions.

 TServerList Executes in its own thread and creates a pointer to an array of
all servers visible from this workstation; it returns a flag indic-
ating its status upon completion.

 WKSList Generates a list of sub-paths from the query returned by the
WKSPath function.

 WKSPath Given set of path components, generates a query path for use
in the WKSStatus command.

 WKSStatus Sends a query to the Windows™ Performance Monitor interface
(see image in WKSPath) and returns the result as a query
handle.

 WKStaInfo Returns the characteristic information about this workstation.

ODBC

AddConnection (ODBC Manager Library) Called to get the object value of
an ODBC connection. If the connection does not exist, then
a new ODBC DSN connection will be created and explicitly
added to the ODBC Manager's internal list of DSN's

 ErrMessage (ODBC Manager Library) Returns a text message for the
error code handed to it as a parameter

 ODBC Performs an ODBC command and returns a (dynamically
allocated) array if required.

 ODBCBeginTrans Indicates to a specified ODBC-compliant database that a
transaction is to be started.

 ODBCCommit Indicates to a specified ODBC-compliant database that a
transaction is to be committed.

 ODBCConfigureData Configures an ODBC data source and returns its error
code.

 ODBCConnect Forms a connection to an ODBC-compliant database and
returns the ODBC value associated with that database.

 ODBCDisconnect Stops a connection to the ODBC database.

 ODBCRollback Indicates to a specified ODBC-compliant database that a
transaction is to be rolled back (discarded).

 ODBCSources Retrieves a list of ODBC data sources and returns it as a
(dynamically allocated) array.

 ODBCStatus Returns the requested information about the last ODBC
statement to execute.

 ODBCTables Retrieves a list of the tables present in an ODBC-compliant
database and returns it as a dynamically allocated array.

 ResultFormat (ODBC Manager Library) Subroutine to convert 2-d array
as returned from query in the form, Arr[Field][Rec], to a
normalized format of Arr[Rec][Field].

SQLQuery A launched module that executes an SQL query on data in
a VTS application.

 TableSynch (ODBC Manager Library) Synchronizes the fields matching
a specified criteria within matching tables in two data-
bases. Should be run as a called module, waiting for com-
pletion. Do not call as a subroutine.

 TODBC Performs an ODBC command; it is similar to ODBC except
that it runs in its own thread.

 TODBCBeginTrans Indicates to an ODBC-compliant database that a trans-
action is to be started. TODBCBeginTrans is similar to
ODBCBeginTrans, except that it runs in its own thread.

 TODBCCommit Indicates to an ODBC-compliant database that a trans-
action is to be committed. TODBCCommit is similar to
ODBCCommit, except that it runs in its own thread.

 TODBCConnect Forms a connection to an ODBC database; it is similar to
ODBCConnect except that it runs in its own thread.

 TODBCDisconnect Stops a connection to the ODBC database; it is similar to
ODBCDisconnect except that it runs in its own thread.

 TODBCRollback Indicates to an ODBC-compliant database that a trans-
action is to be discarded. TODBCRollback is similar to
ODBCRollback, except that it runs in its own thread.

 Transaction (ODBC Manager Library) Launches a transaction in the spe-
cified database connection. The transaction takes care of
its own shut-down process.

 TransactionCached (ODBC Manager Library) Launches a transaction in the spe-
cified database connection. The transaction will be cached
locally if it fails and then sent to the database after the next
successful transaction. This module is designed to provide
logging of values that must not be lost.

Printer

 DefaultPrinter Returns the Windows® default printer.

 Print Allows text to be printed.

 PrintDialogBox Displays a threaded system common printer selection dialog
box.

 PrintLine Allows text to be printed and is followed by a carriage return-
line feed to the printer.

 PrtScrn Prints the image in a window on the default Windows® printer
and returns an error code.

 Redirect Redirects a local device to network resource.

Report

 GetOutputTypes Returns a list of available report output type plugins.

 GetReportTypes This subroutine returns a list of available report type plugins.

RPC Manager Functions

 BinIP2Text (RPC Manager Library) Returns a text representation
of a specified binary IP in a printable format.

 ConnectToMachine (RPC Manager Library) This subroutine increments the
usage count on the specified workstation and forces
RPC Manager to attempt to establish a connection
with the specified workstation if it is not already con-
nected. Subroutine call only.

 DisconnectFromMachine (RPC Manager Library) This subroutine disconnects
from a workstation by decrementing the usage count
on the specified workstation and forcing the RPC Man-
ager to attempt to establish a connection with the spe-
cified workstation if it is not already connected.
Subroutine call only.

ForceServers (RPC Manager Library) Sets the servership of an applic-
ation service to a specific state.

 GetClientDiverts (RPC Manager Library) Returns a one-dimensional
array of flags, indicating the divert status of each cli-
ent.

 GetClientGUIDs (RPC Manager Library) Returns a one-dimensional
array of the application GUIDs of the clients of the spe-
cified RPC service instance.

 GetClientIPs (RPC Manager Library) Returns a one-dimensional

array of the IPs of the clients of the specified service
instance.

 GetClientList (RPC Manager Library) Returns a one-dimensional
array of the names of the clients of the specified ser-
vice instance. Steady state or subroutine call.

 GetClientMode (RPC Manager Library) Returns a one-dimensional
array of the modes of the clients of the specified ser-
vice instance.

 GetClientNodes (RPC Manager Library) Returns a one-dimensional
array of the object values of the MachineNodes of the
clients of the specified service instance. Steady state
or subroutine call.

GetInhibitedServiceList (RPC Manager Library) Returns a one-dimensional
array of the names of all services inhibited from
RPCManager servership control.

GetInSyncServers (RPC Manager Library) Returns a one-dimensional
array of the names or IPs of the potential, syn-
chronized servers for the given service.

 GetIP (RPC Manager Library) Returns an IP address for a
workstation, given its name.

 GetLocalIP (RPC Manager Library) Returns an IP address for the
local workstation that is known to the specified
remote workstation.

 GetLocalNumber (RPC Manager Library) Returns the index of the local
workstation down the prioritized server list for the
named service. Steady state or subroutine call.

 GetMachineNode (RPC Manager Library) Returns the object value of the
MachineNode for the specified name or IP. Steady
state or subroutine call.

 GetMakeAltPtr (RPC Manager Library) Returns a pointer to a variable
containing the Alternate status for the local service
instance in the calling application for the specified ser-

vice. Steady state or subroutine call.

 GetRemoteVersion (RPC Manager Library) Returns the version number of
VTScada running on a specified workstation. Steady
state or subroutine call.

 GetServer (RPC Manager Library) Returns the name of the cur-
rently active server for a specified service.

 GetServerChanges (RPC Manager Library) Launched by RPC Manager on
a service server to obtain the service's syn-
chronization data (i.e. called by RPC Manager during
startup synchronization on a server to get the pack-
age of RPCs that create a synchronizable state on the
client which is in step with the server).

 GetServerMode (RPC Manager Library) Returns the mode in which the
current server for a specified service is running.

 GetServerNumber (RPC Manager Library) Returns the index down the pri-
oritized server list of the current server for the spe-
cified service. Steady state or subroutine call.

 GetServerSIDPtr (RPC Manager Library) Returns a pointer to a variable
that holds the session ID for the current server for the
specified service.

 GetServersListed (RPC Manager Library) This subroutine returns a one-
dimensional array of the names or IPs of the servers
that has been derived from the "-Servers" section of
the service configuration file.

 GetServiceScope (RPC Manager Library) Returns the service instance for
a service.

 GetSessionID (RPC Manager Library) Returns the current session ID
for a specified application on a workstation.

 GetSocketStatus (RPC Manager Library) Returns the connection status
of either: 1) The machine node if the subnet is not
valid, or 2) The socket that is on the specified subnet.

 GetStatus (RPC Manager Library) Returns a variable that holds

the current service instance status for the specified
service.

 IsClient (RPC Manager Library) Is Client of a Service. This sub-
routine returns an indication of whether or not a par-
ticular workstation is a client connected to a service.
Returns 1 for the specified service if the specified
machine is currently a client to the machine on which
the IsClient() call is made.

 IsMatch (RPC Manager Library) Determines whether two
names or IPs indicate the same workstation. This sub-
routine returns a "1" if the two names or IPs (any com-
bination) refer to the same workstation.

 IsPotentialServer (RPC Manager Library) Is Potential Server for a Service.
This subroutine returns an indication of whether or
not the local workstation is a potential server for a ser-
vice. Returns "1" if the local workstation can be a
server for the specified service. IsPotentialServer
should not be called in steady state.

 IsPrimaryServer (RPC Manager Library) Is Primary Server Active for a
Service. This module returns an indication of whether
or not the active server for a service is the primary
server. Returns "1" if the local workstation is the cur-
rent server for the specified service.

 IsServiceReady (RPC Manager Library) Is Primary Server Active for a
Service. Only available in VTS 6. This module returns
an indication of whether or not the specified server is
in synchronization with the server instance. Returns
"1" if the local instance is in synchronization with the
server instance.

 PackParms (RPC Manager Library) This method packs supplied
parameters into a stream. Subroutine call only.

 PackRPC (RPC Manager Library) Packs an RPC call and a set of
parameters into a stream. Subroutine call only.

 ReadLock (RPC Manager Library) Attempts to acquire a Read
lock for the specified service. Subroutine call only.

 RecommendAlternate (RPC Manager Library) Instructs RPC Manager that the
local service instance does not consider itself a good
server candidate.

 RecommendPrimary (RPC Manager Library) Instructs RPC Manager that the
local service instance considers itself a good server
candidate.

 Register (RPC Manager) Registers a service for RPC and returns a pointer to the
variable containing the current RPC status of the ser-
vice.

 RunPack (RPC Manager Library) Is unpacks and executes a set
of RPCs from a stream constructed with PackRPC.

 Send (RPC Manager Library) This subroutine sends a mes-
sage by invoking a remote procedure call.

 SetDivert (RPC Manager Library) Informs RPC Manager that the
synchronization state of a service has been sampled
during synchronization, and service RPCs for the spe-
cified client should be buffered until synchronization
completes. Subroutine call only.

 SetRemoteValue (RPC Manager Library) This subroutine sets the spe-
cified variable within an application instance on a
workstation to the specified value. Subroutine call
only.

 SetSyncComplete (RPC Manager Library) Informs RPC Manager that ser-
vice synchronization is complete as far as the local ser-
vice instance is concerned. Subroutine call only.

 TextIP2Bin (RPC Manager Library) Returns the Binary rep-
resentation of the specified IP.

 UnpackData (RPC Manager Library) This method unpacks a stream
into an array or set of module instance parameters.
Subroutine call only.

 UnpackParms (RPC Manager Library) This method unpacks a stream
into the supplied parameters. Subroutine call only.

 WriteLock (RPC Manager Library) This subroutine attempts to
require a Write lock for the specified service.
Subroutine call only.

Security

Account Manipulation Methods

AddAccount Creates a new account.

ModifyAccount Modifies an existing account.

DeleteAccount Removes an account.

Query Module

SecurityCheck Examines the rules that apply to the current user or the
named user to determine if the specified privilege has been
granted.

BuildFullName If a namespace and namespace delimiter are being used,
returns the full, namespace-qualified name of the specified
account.

GetFullName Returns the full, namespace-qualified name of the caller's
account.

GetGroupName Returns the namespace of the caller's account.

GetUserName Returns the user name of the caller's account.

GetAccountID Returns the account ID of the named account.

GetAccountInfo Returns one or more AccountData structures.

IsLoggedOn Returns TRUE if the calling user is logged on, else FALSE.

IsSecured Returns TRUE if the application has any user accounts
defined, else FALSE.

IsSuspended Returns TRUE if the user's account is suspended, else
FALSE.

UIErrorToText Returns a text string corresponding to the error code
provided.

VTScada Authentication Module

AlternateIdCheck Searches the accounts for an account whose AltID matches
the parameter value.

AlternateLogon Either creates, or attempts to log in using an alternate ID
value.

AlternateLogoff Synonym for LogOff().

Authenticate Authenticates the NameSpace, UserName and Password.

QuietLogon Authenticates the authorization token (AuthToken) and, if
successful logs the calling user session on as the user spe-
cified in the AuthToken.

LogOff Logs the calling user session off.

UserCredChange The return value will increment each time there is a change
in the user session's logged-in user or their password.

Windows Authentication Module

UserLogonDialog Returns the string value of the LDAP default naming con-
text for the host machine domain.

WindowsLogon Authentication request to Windows Authentication ser-
vices.

User Interface Module

UserLogonDialog Launches the Logon dialog.

Serial Port

 COMPort Opens a serial port and handles all interrupts and asynchronous
events for that serial port, including transmission, reception, and
control. It returns its own error code. Please note that the Seri-
alStream function is generally preferred in many situations; how-
ever, ComPort continues to be supported.

 PPPDial Creates a PPP connection to a remote peer. The connection can be
via a dial-up or direct device connection.

 SerBreak Sends a break character to a serial port.

 SerCheck Check Serial Port. This function returns the immediate or cumu-
lative serial port status.

 SerialStream Returns a serial stream that can be used in any of the serial port
functions or with any of the stream functions. Please note that the
ComPort function (which functions somewhat differently than the
SerialPort function) may also be utilized.

 SerIn Get Serial Port Byte. This function returns the next byte in the
receive buffer.

SerLen Serial Port Buffer Length. This function returns the number of bytes
currently in the receive or transmit buffers.

 SerOut Send Serial Port Byte. This statement sends a byte to the transmit
buffer.

 SerRcv Serial Port Receive. This function returns a buffer containing a
string read from the receive buffer.

 SerRTS Sets or clears the RTS line on a serial communication port.

 SerSend Serial Port Send. This function writes a string to the transmit buffer
and returns the number of bytes written.

 SerStrEsc Serial Port Receive With Escape. This function reads the receive buf-
fer until an escape code is encountered and returns the final offset
in the buffer.

 SerString Serial Port String Receive. This function reads the receive buffer
until a string is encountered and returns the final offset in the buf-
fer.

Software And Hardware

 CommandLine Returns any command line arguments as a text string.

 DriveInfo Returns information about a disk drive.

 GetConfiguration Returns the configuration parameters from the license key for
this copy of VTScada.

 IsRunning Check if a Program is running. This function returns an indic-
ation of whether a certain program is currently running on
the same computer.

 LoadDLL Loads a Microsoft Windows™ dynamic link library.

 LoadMIB Loads a specified MIB or set of MIBs and returns a dictionary
describing the hierarchy of the MIBs.

 MACID Enumerates and returns the MAC IDs registered on a par-
ticular machine.

 Platform Returns a twelve element structure that indicates the platform
under which VTScada is currently running.

 PriorityWeight Sets the system-wide weighting for priority values.

 ProcInfo Returns basic information about the VTScada process.

 Profile Returns an array profiling the execution of statements in the
application.

 Redirect Redirects a local device to network resource.

 SerialNum Returns the serial number of the copy of VTScada running.

 Spawn Runs another Windows™ program.

 Stop Causes the immediate termination of VTScada, closing all win-
dows.

 ThreadList Returns a two dimensional array containing the name and
statement last executed by each VTScada thread.

 ThreadName Returns the name of a thread.

 Version Returns the version number of the copy of VTScada currently
running.

 VersionRequired Returns the version number of VTScada that is required to
execute any .RUN files loaded since the last execution of this
statement.

 VStatus Returns the video board and screen characteristics for
VTScada.

 WKSPath Given set of path components, generates a query path for use

in the WKSStatus command.

 WKSStatus Sends a query to the Windows™ Performance Monitor inter-
face (see image in WKSPath) and returns the result as a query
handle.

 WKStaInfo Returns the characteristic information about this workstation.

Speech And Sound

 AudioFileLength (System Library) Returns the length of a RIFF format Wave file
in seconds.

 Beep Causes a tone to sound on the computer's internal speaker.

 Configure Is used to define how a speech stream will sound and where it
will be heard.

 GetDevices Runs in the VoiceTalk thread and returns a list of devices avail-
able on a SAPI text-to-speech stream.

 GetVoices Runs in the VoiceTalk thread and returns a list of voices avail-
able on a SAPI text-to-speech stream.

 MuteSound (Alarm Manager module) This subroutine is used to turn off
alarms sounds for all alarms, both current and future.

 Play Plays a multimedia sound file as installed in the operating sys-
tem. It differs from Sound in that it is a steady-state statement
and is supported by VTScada Internet Client.

 Reset Immediately stops a speech stream and cancels any buffered
speech.

 ShowLexicon Displays a SAPI text-to-speech engine lexicon dialog to permit
modification of pronunciation. This function will return imme-
diately, and the lexicon window will be managed in its own
thread, preventing the calling thread from being blocked.

 Sound Plays a multimedia sound file as installed in the operating sys-
tem.

 Speak Executes on the speech thread to speak the supplied text
through a specified SAPI text-to-speech stream.

 SpeakToFile Executes on the speech thread to speak the supplied text to a

.wav format audio file.

 VoiceTalk Opens and returns a handle to a SAPI text-to-speech stream.

State

ActiveState ActiveState returns the code value of the currently active
state in the given module instance.

 AddOptional Adds a new statement to an action script and returns its
own error code.

AddPageToApp
(Obsolete)

Creates a new application page.

 AddState Adds a new state to an existing module and returns its
state value.

 AddStatement Adds a new statement to an existing state and returns its
own error code.

 ClearState Deletes all of the statements in a state.

 DeleteOptional Deletes a statement from an action script.

 DeleteState Deletes a state from a module.

 DeleteStatement Deletes a statement from a state.

 FindAction Returns an action from the list of actions in a state.

 FirstState Sets the first state in a module.

 ForceState Sets the next state to start when the action script com-
pletes.

 GetState Returns the code value for the specified state.

 GetStatement Returns the code value for the specified statement.

 GetStatementNum Returns the statement number for the specified statement.

 GetStateText Returns the text for the specified state.

 ReplaceStatement Replaces a statement with another statement.

 SetStateText Sets the information about the text of a state in a .SRC file.

 SetTransfer Sets the destination for an action.

 StateList Returns a list of states for a module.

 StatementInstance Takes a given code value and object and returns a code
pointer value for that instance.

 StateName Returns the text name of the given state.

 SubStatementIndex Returns the index of a function within the statement where
it is called.

Stream And Socket

 BlockWrite Writes a block of data to a stream.

 BuffStream Returns an in-memory read/write (expand-
ing) buffer stream.

 ClientSocket Opens a client WinSock-compliant socket
stream and returns a stream value, or a
numeric error code.

 CloseStream Closes and flushes any type of open stream
and returns its own error code.

 CommaFormat Returns the text version of a number, format-
ted to use embedded commas.

 DBGetStream Executes in its own thread to convert a data-
base to a stream, and returns an indication
of parameter errors.

 FileStream Returns a stream attached to a disk file or
printer, and is suitable for use in SWrite.

Flush Pushes the data in all software caches asso-
ciated with a FileStream directly to the phys-
ical media.

 GetStreamLength Returns the present length of a stream in
bytes.

 GetStreamType Returns a type indication for a stream.

 GetToken Reads the next token from a stream and
returns the token type.

 In Read I/O Byte. This function returns the byte
read from an I/O port.

 Pack Packs a set of module parameters or an
array of values into a stream, and returns the
number of items that were not packed.

 PackParms (RPC Manager Library) This method packs
supplied parameters into a stream.
Subroutine call only.

 PackRPC (RPC Manager Library) Packs an RPC call and
a set of parameters into a stream. Subroutine
call only.

 PeekStream Returns a string of bytes from a stream
without removing them from the stream.

 PipeStream Returns a stream based on an operating sys-
tem named pipe.

 Read (VTSDriver Library) Used by a tag to create a
request for a single read of a given driver
address. (This is in contrast to the polled
read request of the AddRead function).

 ReadBlock (VTSDriver Library) Is launched to read a
block of data from the PLC. It maintains a
linked list of pointers to tag values with their
absolute offset into the PLC file being read by
this instance.

 RunPack (RPC Manager Library) Is unpacks and
executes a set of RPCs from a stream con-
structed with PackRPC.

 Seek Changes and returns the current position
within a stream. The return value is the cur-
rent stream position after the seek is done.

 SerialStream Returns a serial stream that can be used in
any of the serial port functions or with any of

the stream functions. Please note that the
ComPort function (which functions some-
what differently than the SerialPort function)
may also be utilized.

 ServerSocket Returns a server WinSock socket stream
given a handle returned by a Sock-
etServerStart function or an integer error
code.

 ShiftStream Inserts or deletes characters from a stream
and returns its own error code.

 SocketAttribs Returns information about a TCP/IP socket's
attributes.

 SocketPingSetup Starts the transmission of automatic keep-
alive "ping" messages through a socket
stream.

 SocketServerEnd Ends a TCP/IP socket server.

 SocketServerStart Starts a TCP/IP or UDP socket server and
returns a handle to it.

\SocketServerManager\Register Register a station with a group. (VTScada Pro-
grammer's Guide)

\SocketServerManager\UnRegister Unregister a station from a group. The sta-
tion must be unregistered whenever
GroupName, or StationKey changes.
(VTScada Programmer's Guide)

 SocketWait Wait for Socket Connect. This function
returns true when a client connects to a
socket offered by a socket server.

 SRead Reads values from a formatted stream and
returns the number of values not read.

 StreamEnd Returns whether or not a stream is at the
end.

 SWrite Performs a formatted write of ASCII or binary

data to a pre-existing stream and returns the
number of data items not written.

 TempFileStream Uses the OS tmpfile() function to create a
temporary file on disk and to connect a
stream to the temporary file. The temporary
file is removed when the stream is closed or
no longer referenced or if the VTScada pro-
cess is terminated.

 Unpack Unpacks a set of values from a stream into a
single dimensional array or a set of variables
referenced by object parameters, and
returns the number of items unpacked.

 UnpackData (RPC Manager Library) This method unpacks
a stream into an array or set of module
instance parameters. Subroutine call only.

 UnpackParms (RPC Manager Library) This method unpacks
a stream into the supplied parameters.
Subroutine call only.

 Write (VTSDriver Library) Used by a tag to create a
write request to a driver address.

String And Buffer

 ArrayToBuff Returns a buffer containing the numeric data from an array.

 BinIP2Text (RPC Manager Library) Returns a text representation of a spe-
cified binary IP in a printable format.

 BuffOrder Reverses the order of groups of bytes in a buffer, and returns a
new (rearranged) buffer.

 BuffRead Reads values from a formatted buffer and returns its own error
code.

 BuffStream Returns an in-memory read/write (expanding) buffer stream.

 BuffToArray Reads an array from a formatted buffer containing numerical
data and returns the number of elements read.

 BuffToHex Convert a buffer of numeric data to a hexadecimal value.

 BuffToParm Convert buffer of numeric data to parameters. This function
reads module parameters from a formatted buffer containing
numerical data and returns the number of data items read.

 BuffToPointer Converts a buffer of numeric data to array of pointers. This func-
tion reads from a formatted buffer containing numeric data,
writes to locations specified by an array of pointers, and returns
the number of elements read.

 BuffWrite Writes formatted values to a buffer and returns the number of
values not written.

 CharCount Returns the number of bytes in a section of a buffer that
matches a search character.

 ClipboardGet Returns the current contents of the system clipboard as a string.
This function enables an application to perform text "paste" oper-
ations.

 ClipboardPut Set the current contents of the system clipboard to a string. This
function enables an application to perform text "copy" or "cut"
operations.

 Concat Returns the text value that is the concatenation of all the text
parameters.

 CRC Returns the cyclic redundancy check (CRC) value for a buffer.

 CRCTable Returns a buffer containing a CRC table.

 Deflate Compresses/decompresses a buffer of data using the DEFLATE
algorithm, and returns the compressed/decompressed data.

 Diff Compares two buffers and generates a third buffer containing
formatted instructions describing how the first buffer can be
modified so that it will match the second. This will perform a
delimited difference unless the ChunkSize parameter is set to 1
or greater.

 Format Returns a text string corresponding to numbers in a specified
format.

 FormatInteger Returns a text string which is a decimal value converted to one
of binary, octal or hexadecimal formats.

 FRead Reads values from a formatted file and returns the number not
read.

 FWrite Writes ASCII or binary data to a file and may also be used to cre-
ate or delete a file. It returns the number of data items not writ-
ten.

 GetByte Returns a single byte from a buffer.

HexToBuff Converts a hex string to a binary buffer.

 IPAddressList Displays a list of IP address which can be added to or removed
from.

 KeyFake Places a string of characters in a window's keyboard buffer.

 Keys Returns the most recently pressed keys from either the edited or
non-edited keystrokes.

 Locate Locates a text string, returning the offset of the first matching
string in a buffer.

 MakeBuff Creates a buffer and returns its address.

 MakeFixedBuff Creates a buffer value which has its data stored at a specific
memory address. Not supported under 64-bit VTScada.

 ParmToBuff Returns a buffer of formatted numeric parameter values.

 PatternMatch Compares a string against a reference pattern and returns true if
the string matches the pattern. Along with literal characters, Pat-
ternMatch currently supports the * and ? wildcard characters
within the reference pattern.

 PlotBuff Displays a plot of a subsection of a buffer in a particular area of
the window after converting the buffer to element values.

 PointerToBuff Returns a buffer containing the numeric data from the variables
pointed at by each element of the array.

 Replace Performs a search and replace operation on a buffer and returns
the resulting buffer.

 Reverse Returns its parameter with the byte order reversed.

SerLen Serial Port Buffer Length. This function returns the number of
bytes currently in the receive or transmit buffers.

 SerOut Send Serial Port Byte. This statement sends a byte to the transmit
buffer.

 SerString Serial Port String Receive. This function reads the receive buffer
until a string is encountered and returns the final offset in the
buffer.

 SetByte Writes a single byte to a buffer.

 StrCmp Performs a case sensitive comparison of two text expressions
and returns an indication of whether the first string is greater
than, less than or equal to the second.

 StrICmp Case Insensitive Text Comparison

 StrJustify Reformats a string to have maximum line length.

StrLen Returns the length of a text string.

 SubStr Returns a string that is a portion of another string.

 SumBuff Returns the summation of bytes in a buffer.

 TextIP2Bin (RPC Manager Library) Returns the Binary representation of the
specified IP.

 TextSearch Returns the array index of the first occurrence of the given text
key in an alphabetically ordered array.

 TextSize Returns the size in characters of the definition text of a desired
item.

 ToLower Returns a text string with all the characters converted to lower
case.

 ToUpper Returns a text string with all the characters converted to upper
case..

 Write (VTSDriver Library) Used by a tag to create a write request to a
driver address.

Time And Date

In addition to the functions listed here, a utility module, TimeUtils main-
tains an updated list of timestamps such as "start of last week in UTC"
and "end of last month in local time". These are available by calling
\TimeUtils\Periods or \TimeUtils\GetPeriods.
Note that, although the start and end timestamps are available in UTC,
the time periods themselves are based on local time. For example, "Pre-
viousWeek" means the previous week in local time. The stored values are
updated each time a new time period starts.

Examples:

\TimeUtils\Periods["PreviousWeek"]["StartTimeUTC"]

called in steady state will contain the UTC start time of the previous week
based on the StartOfWeek application property.
Stored time periods include PreviousDay, PreviousWeek and Pre-
viousMonth.

\TimeUtils\GetPeriods("PreviousMonth", Timestamp)

Returns a dictionary containing the start and end times of the previous
month relative to Timestamp, in local time and UTC.

AbsTime Absolute time. This function returns true when a fixed time
has been reached.

 ConvertTimeStamp Converts a timestamp from one time zone to another.

 CurrentTime Returns the number of seconds, in local or UTC time, since
midnight of January 1, 1970 (where "midnight" is 00:00).

 Date Returns a text string giving the date that corresponds to the
number of days since January 1, 1970.

 DateNum Returns the number of days since January 1, 1970 for a
given date.

DateSelector Displays a calendar, from which operators can select a
date.

 Day Returns the day of the month for a given date number.

 Month Returns the month for a given date number.

 Now Returns the current time in seconds since midnight.

 RTimeOut Cumulative Timer. This function returns true when the total
time that an expression is true reaches the specified value.

 Seconds Returns the number of seconds since midnight of the cur-
rent day.

 SetClock Sets the VTScada system clock and calendar.

 Time Returns a formatted string for a time of day.

 TimeArrived Indicates whether a given time has occurred.

 TimeOut Returns true when the uninterrupted time that an expres-
sion is true reaches the specified value.

 TimeZone Returns information on the current time zone setting of the
machine.

 TimeZoneList Returns an array of names of time zones that are available
on the system.

 Today Returns the current number of days since January 1, 1970.

 Year Returns the year for a given date number.

Variable

Accumulate Adds a tag and a value to be counted for that tag, to a
named accumulator.

 AddVariable Adds a new variable to an existing module and returns
its variable value.

 Cast Takes a value and returns a different type of value, if
possible.

 Change Returns a true when the value of the first parameter
changes by at least the value of the second parameter.

 ChangePersistentSize Changes the space allocated in the persistent value
(.VAL) file for a variable.

CheckTagGroup Returns TRUE or FALSE according to whether a tag is
in the specified group.

 DeleteVariable Deletes a variable from a module.

 Dictionary Creates a database-like storage structure that
provides efficient addition, retrieval and removal of
information linked to key values.

 DictionaryCopy Create a new dictionary with contents identical to an
existing dictionary. It is expectd that this function will
be used rarely, since in most cases it will be more effi-
cient to hand off a reference to a dictionary rather
than build a duplicate of it.

 Edge Test for a rising or falling edge.

 FindVariable Searches for a variable by text name and returns a vari-
able value.

 GetDefaultValue Returns a variable's default value.

GetReferencedValues Collect all dynamically referenced values in the call
tree rooted at the parameter and return them in an
array.

GetSessionContainers Returns an array of the names of tags that are "con-
tainer" tags that exist at any level under the given con-
text (parent) tag

GetSessionContainerTags Returns a dictionary of tag items below a given con-
text (parent) tag

 GetUserID Returns the name of the user for the current session.

GetValue Returns the current count of the values within an accu-
mulator dictionary.

 GetVariableText Returns information about the documentation of a vari-
able.

 GetVariableType Returns the type, BASEVALUE, stored within a variable.

 GetVarMetadata Every variable object contains an embedded value.
This function is used to retrieve those values.

 HasMetaData Tests whether a given variable is a dictionary. Since
the default behavior of most operands and functions

on dictionaries is to return just the value of the dic-
tionary’s root, this function provides the only means
to determine whether or not a variable contains a dic-
tionary.

 Invalid Return Invalid Value. This function always returns an
invalid value.

IsEqual Will return TRUE if the parameter values are equi-
valent, or if both are invalid.

 IsDictionary A synonym for HasMetadata. Tests whether the para-
meter is a dictionary.

 Latch Latch On or Off. This function allows a transient
change of a variable to be captured. Its return value is
determined by the rules listed in the comments sec-
tion.

 ListKeys Returns an array of all keys used within a dictionary. It
is expectd that this function will be used primarily in
the context of metadata (extended information
attached to a variable). ListKeys also enables you to
discover what is in a dictionary.

 ListVars Returns a list of variables.

 LValue Left-hand Side Value. This function returns an indic-
ation of whether its argument can be used on the left-
hand side of an assignment.

 MakeNonPersistent Takes a variable and makes it not persistent.

 MakeNonShared Takes a shared variable and makes it not shared.

 MakePersistent Takes a variable and makes it persistent (static).

 MakeShared Takes a variable and makes it shared.

 MetaData If used with a variable which is not currently a dic-
tionary, this command attached meta data to that vari-
able, thereby creating a dictionary object. The primary
purpose in this case is to provide a means of asso-
ciating extended data with a variable.

 NumSets Returns the number of statements that are currently
active in setting a particular variable.

 NumVariables Returns the number of variables in a module.

 Parameter Returns the value of (or may assign a value to) a para-
meter of a module, specified by the index.

 PersistentSize Returns the size in bytes of a variable's persistent
value size in the persistent value (.VAL) file.

 PID Perform PID Controller Function. This function returns
a control value to maintain a parameter at a given set-
point.

 Priority Sets the execution priority for a module, variable or
object.

 PType Returns the actual type of parameter at an index.

 PTypeToggle (VTS Library) Parameter Setting Type Toggled Field.
This module draws a beveled droplist or editfield with
title that sets a tag or numeric value.

 RootValue Retrieves the root value from a dictionary. This func-
tion will always attempt to return a value that is not
itself a dictionary. If the value stored as the root of the
given dictionary is also a dictionary, this function will
return the root value from that second dictionary.
Should all root values be other dictionaries (which
would imply that the dictionary at the end of the chain
must actually be an earlier dictionary) then RootValue
will traverse the chain until it finds a root value which
is an earlier dictionary (i.e. the end of the chain before
it loops back) and will return that root value. This is
the only situation where the command will return a dic-
tionary as the result.

 SetDefault Sets the default value for a variable.

 SetVariableClass Sets the class number of a variable and returns its pre-
vious class number.

 SetVariableText Sets the information about the documentation of a
variable in the .SRC file.

 SetVariableType Sets the data type for the variable, so that only values
of that data type can be stored in the variable.

StaticSize Returns the size of a given variable, provided that the
variable is static.

Struct Returns a dictionary, using the provided parameters
as keys.

 Tag Returns a Tag value, which works like (and in place of)
a Normalize value.

 Toggle Returns its previous status value except when its para-
meter changes from a false to a true, in which case it
changes its value.

Valid Returns true if the parameter is valid.

 ValueType Returns the type of value passed to it.

 Variable Accesses a variable by its text name; its return value is
optional.

 VariableClass Returns the class of a variable.

 Watch Watches its parameters and returns true when any of
their types or values change.

 WatchArray Watches an array and returns true if any of its ele-
ments' types or values change.

WatchForTagChanges Watches for tag changes, either external or local.

 WCSubscribe Working Copy Subscribe. After this function has been
called, any configuration change will result in the spe-
cified callback subroutine being called.

VTScada Internet Client

 IsVICSession Returns TRUE to indicate that a call is being made from a VTScada
Internet Client session.

 NotifyVIC Sends a message to the VTScada Internet Client (VIC). The mes-

sage sent depends on the parameter given to the function.

 SetVicParms Sets parameters for the VTScada Internet Client.

 VICInfo Provides information about the currently connected VTScada Inter-
net Clients.

 VICMessage Transmits a message to one or all currently connected VTScada
Internet Client sessions. The message is displayed in a dialog box
on the VIC computer.

Window

ActiveWindow ActiveWindow returns the object value of the root module
instance in the current active window.

Click Returns an indication of whether or not the mouse pointer is
within a specified screen area and a particular button com-
bination is being pressed.

Cls Clears the screen and sets its background color.

 Coordinates Sets the VTScada screen coordinate limits (also called "world
coordinates") used by the graphics functions.

 CoordToPixel Takes a specified coordinate pair within a given window and
returns the overall, onscreen pixel location.

 Crop Modifies an existing image, producing a new one that dis-
plays a sub-section of the original.

 CurrentWindow Returns the application window over which the mouse cursor
currently rests.

 DelPageFromApp Deletes a system page from an application.

 FocusID Returns the focus ID of the object in a window that currently
has the input focus.

 Freeze Freezes all or selected animated graphics in a window.

 GetXformRefBox Get Transform Reference Box. This function returns the ref-
erence box for any transform of a module.

 LocCapture Capture Locator Input. This statement captures all sub-
sequent input from the locator device and routes it to a spe-

cific window.

 MoveWindow Will move a window to the specified coordinates.

 ParentWindow Returns the object value of the nearest non-child window.

 RootWindow Returns the object value of the root (original) module dis-
played in the same window.

 SetCursor Sets the mouse cursor type for the window.

 SetEditMode Sets the graphics edit mode for a window.

 SizeWindow Changes the visible size of a window on the screen.

 UnselectGraphics Will deselect all of the graphics in the specified window.

 VStatus Returns the video board and screen characteristics for
VTScada.

 WinButton Windows native button.

 WinComboCtrl Windows native "combo" control. A "combo" control is an
enhanced form of drop list. Displays a child window con-
taining a Windows combo control.

 Window Opens a new window, starts a module inside, and eventually
returns the module's value.

 WindowClose Returns true if an attempt to close the window is made.

 WindowOptions Alters the options on a window once it has been opened.

 WindowSnapshot Creates an image file containing a screen capture of the spe-
cified window.

 WinLocSwitch Returns the current status of the locator (mouse) buttons in a
certain window and its ancestors.

 WinYLoc Returns the Y coordinate of the locator (mouse) in a window.

 XLoc Returns the X window coordinate of the locator (mouse).

 YLoc Returns the Y window coordinate of the locator (mouse).

XML

GetXMLNodeArray Searches the result returned from XMLParse and returns an
array of XMLNode values of a given type.

 RemWSDL Disconnects a Realm from a WSDL file and the associated
set of VTScada modules, cleaning up any resourced used by
that web service.

 SetWSDL Connects a Realm with a WSDL file and a set of VTScada
modules in order to enable a web service interface.

 XMLAddSchema Adds a schema to an XML Processor.

 XMLCloneNode Clones an existing XMLNode, optionally adding additional
members.

 XMLCreateNode Creates a new XMLNode.

 XMLDeleteMember Deletes a member from an XMLNode in-place.

 XMLGetNode Returns an XMLNode from a tree.

 XMLParse Parses the supplied XML using the specified XML Processor.

 XMLProcessor Creates a new XML Processor.

 XMLWrite Converts the instance of a type, as specified by
XMLNodeTreeIn, into XML.

Usage Rules for Functions
VTScada code runs in two modes: Script or Steady State. Many functions
will work in only one mode. The "Usage" line in each function description
tells you the mode where the function can be used.

Note: Just because a function can be used in a given situation, doesn't
mean that it should be. For example:
* It makes no sense to put a graphics function into a Calculation tag's
expression.
* MatchKeys will capture keystrokes only when used in a window or
page, not in a service or Calculation tag.
* Script-mode functions can be used for optimized tag parameter con-
figuration, but many are not appropriate in that context.

If you are writing...

General Expressions (Calc. tags)
If you are writing an expression for a Calculation tag, or anywhere that
you have the option "Constant / Expression / Tag":

If the function is marked as "Script Only" then you cannot use it here.
If the function works in Steady State, then it will compile when used in a
Calc tag expression, but it may or may not be useful there. For example,

Tag Parameter Expressions - Optimized
Only functions that can be used in Script may be used for optimized tag
parameter expressions. These expressions are evaluated as the tag is ini-
tialized, then not run again during normal operations. You cannot use
Steady State-only functions in this situation.

Tag Parameter Expressions - Not Optimized
Only functions that can be used in Steady State may be used for non-
optimized tag parameter expressions. These expressions are re-eval-
uated whenever any of the parameter values change. You cannot use
Script-only functions in this situation.

Page Code, Services, Reports, etc.
These are full VTScada modules, declared in the application's AppRoot
file. The full VTScada language and function list can be used.

Format Examples for Functions
The format example, provided for every function, also provides relevant
information about how to use the function and the library that the func-

tion is a part of. The indication of the library is especially important to
anyone writing a Script-layer based application.

Optional Parameters
For most function examples, some of the parameters will be shown
inside square brackets. These parameters are optional. If the default val-
ues, as described in the parameter descriptions, will serve for your pur-
pose, then you may leave the parameters out. If you want to specify some
of the optional parameters, then you must provide all the parameters
between the last one required and the optional parameter you want to
specify. Use Invalid for each of the intervening optional parameters that
you do not want to specify.
Examples:

\System\DropList(X1, Y1, X2, Y2, Data, Title, Index, FocusID, Trig-
ger, NoEdit, Init, Variable [, DrawBevel, VertAlign, AlignTitle,
Style, BGColor, FGColor]);

All the parameters from DrawBevel onward are optional and may be left
out of the function call. Assuming that valid values have been defined for
the required parameters, this function will work if used as follows:

\System\DropList(X1, Y1, X2, Y2, Data, Title, Index, FocusID, Trig-
ger, NoEdit, Init, Variable);

If you wanted to draw a drop list with an orange background, and did not
care about any of the other parameters, you could use:

\System\DropList(X1, Y1, X2, Y2, Data, Title, Index, FocusID, Trig-
ger, NoEdit, Init, Variable, Invalid, Invalid, Invalid, Invalid, 135)

Will this Function Work in a Script Application?
Most development work is done within standard applications (those
based on the VTScada layer), and the documentation is written from that
point of view. Script applications will not have access to function libraries
that were created explicitly for the VTScada layer. Do not assume that
any function will work in your script application until you have tested it.
It is possible to offer general guidelines for recognizing which functions
are likely to work in a script application, but again, you should always

test first. When testing the function in a script application, try first with
the format as shown. If the test fails, try using the function with the pre-
fix \Layer\.

l Functions that are part of the \System layer will work in script applications.

l Most, but not all, of the basic string handling, math, time and date functions
will work in a script application.

l If the format example begins with a backslash (\) and is not part of the \Sys-
tem layer, then it is likely that the function will not work in a script applic-
ation, but test to be sure.

Obsolete Functions
Functions that are obsolete in VTScada version 11.2 are listed here. In
most cases, code containing these functions will continue to compile, but
the function call will do nothing.
If your legacy application uses any of the these functions, please refer to
the documentation matching your software for details. Otherwise, they
should be removed from all code intended for the current release.

ActiveMonitor (Alarm Manager)
AddPageToApp
Alarm
AlarmCat
AlarmInst
AlarmSoundCheck
AlmAck
AlmAckID
AlmArray
AlmCatName
AlmColor
AlmEnable
AlmList
AlmTone

AnimateState
CollapseTree
Cut
DeleteListItem
DoAcknowledge (Alarm Manager)
DragState
GetClientsListed
GetLogHeader
GetSubGraphic
HighlightState
HighlightTree
InsertListItem
LastSelectedModule
LastSelectedState
Load
MakeTypeInstance
ModuleCollapsed
ModuleTree
ModuleTreeSize
MoveSelState
MoveState
NewPage
NumAlarm
OperationalChange
PackData
Palette
PickModule
PickState
ReadNum
ReadText
SelectStates
SetLogHeader
SetShelved (Alarm Manager)
SetStateColor

ShadowTree
ShelvedEvent
SpeechEnum
SpeechLexiconDlg
SpeechReset
SpeechSelect
SpeechSpeak
SpeechStream
StartSound (Alarm Manager)
StateDiagram
StateHighlighted
Table
ValidateHistory
VarAttributes

4BtnDialog
(System Library)

Description: Draws a message dialog with up to 4 buttons and 3 lines of
text and returns the number of the button that was
pressed.

Returns: Numeric

Usage: Steady State only.

Function Groups: Graphics

Related to: Window

Format: \System\4BtnDialog(Icon, Btn1Label [, Btn2Label, Btn3La-
bel, Btn4Label, Text1, Text2, Text3, Open, Modal,
BoldFirst, Title, XPosPtr, YPosPtr, CloseButton, DefFocus,
HelpFileName, HelpContextID])

Parameters:

Icon

Optional. Any image value for the (41 x 41) icon to be
displayed in the dialog. Set to "Invalid" to display only
text with no icon.
predefined icons include: \System\Question_icon,
\System\Error_icon, and \System\Warning_icon.

Btn1Label

Required. Any text expression for the label on the first
button.

Btn2Label

An optional parameter giving any text expression for
the label on the second button. If invalid, the button
will be omitted.

Btn3Label

An optional parameter giving any text expression for
the label on the third button. If invalid, the button will
be omitted.

Btn4Label

An optional parameter giving any text expression for
the label on the fourth button. If invalid, the button will
be omitted.

Text1

Required. An optional parameter giving any text
expression for the first line of text to be displayed.

Text2

Required. An optional parameter giving any text
expression for the second line of text to be displayed.

Text3

Required. A parameter giving any text expression for
the third line of text to be displayed. Must be given as
Invalid if there is to be no third line.

Open

An optional parameter that is any logical expression. If
true (non-0) the dialog will be open; if false (0), it will
be closed. The default is true.
Open will be set to false once the dialog has been
acknowledged.

Modal

An optional parameter that is any logical expression. If
true (non-0), the dialog is modal, if false (0) it is non-
modal.
This parameter will override the System NoModal flag;
if it is omitted, the NoModal flag will prevail. If the
NoModal flag is also omitted, the dialog will default to
being modal.

BoldFirst

An optional parameter that is any logical expression. If
true (non-0) the first line of text in the dialog will
appear in boldface type. If false (0), it will not be bol-
ded. The default is false.

Title

An optional parameter that is any text expression that
gives the title to appear in the window's title bar. If this
parameter is omitted or is invalid, the window (dialog)
will not have a title bar and will not be repositionable
by the user.

XPosPtr

An optional parameter that is a pointer to a variable in
which the x-coordinate of the center of the dialog is
stored.

YPosPtr

An optional parameter that is a pointer to a variable in
which the y-coordinate of the center of the dialog is
stored.

CloseButton

An optional parameter that is the index of the button
to which the title bar close button should be mapped
(from 1 to 4).
If CloseBtn is invalid, then the title bar close button is
mapped to the first button with the same text as the
CancelLabel or CloseLabel application properties.
If no buttons match these labels, then "0" is returned
when the dialog is closed using the title bar close but-
ton.

DefFocus

An optional parameter that is the index of the button
that should have the focus when the dialog opens
(from 1 to 4). If DefFocus is invalid, the first button has
the focus when the dialog opens.

HelpFileName

An optional parameter that is the name of the help file
containing the help topic for this dialog (as identified
in the HelpContextID parameter). If HelpFileName or
HelpContextID are invalid, then the default is as per
the Window function.

HelpContextID

An optional parameter that is the numeric context ID
identifying the help topic for this dialog (within the
help file identified in the HelpFileName parameter).
If HelpFileName or HelpContextID are invalid, then the
default is as per the Window function.

Comments This module is a member of the System Library, and must
therefore be prefaced by \System\, as shown in the
"Format" section. If you are developing a script application,
use "System\..." rather than "\System\..." in the function
call.
The return value for this module is in the range of 1 to 4
and identifies which button has been pressed. If one of the
buttons is labeled "Cancel", pressing <ESC> will cause the

number of the "Cancel" button to be returned.
For any optional parameter that is to be set, all optional
parameters preceding the desired one must be present,
although they may be invalid.

Example:

If Valid(FileName) && ! Valid(OK);
[
Size = FileFind(FileName, 8, 4);
IfElse(Size[0], Execute(

OpenErrDlg = 1,
OK = 0
),

{ else }
OK = 1

);
]

System\4BtnDialog(MakeBitmap("Warning", 7) { Icon to use },
"OK", "Cancel", Invalid, Invalid
{ 2 buttons },
"File exists !" {1st line of text},
"Replace it ?" {2nd line of text},
Invalid {3rd line of text},
OpenErrDlg { Opening condition });

This code waits until a file name has been set, presumably from an edit
field or some other method not shown here, and then checks to see if it
already exists in the current directory. If it does exist, an error dialog
with "OK" and "Cancel" buttons appears, warning of the existence of the
file.

A Functions
The sections that follow identify all VTScada functions beginning with
"A".

ABS

Description: Returns the absolute value of a numeric expression.

Returns: A positive, numeric value

Usage: Script or steady state.

Function Groups: Generic Math

Format: Abs(X)

Related to: Min | Max | Step

Parameters: X
Required. Any numeric expression.

Comments: If the expression for X is positive, the value is
returned as positive.
If the expression for X is negative, the value
returned is the negative of the expression (i.e. the
returned value is always positive or "0")

Example:

Angle = Abs(encoderAngle);

Related Functions:

AbsTime

Description: Absolute time. This function returns true when a fixed time
has been reached.

Returns: Boolean

Usage: Steady State only.

Function Groups: Time and Date

Related to: DateNum | Day | Month | Now | RTimeOut | Seconds |
 SetClock | TimeOut | TimeArrived | Today | Year

Format: AbsTime(Enable, Interval, Offset)

Parameters:

Enable

Required. Any numeric (Boolean) expression giv-

ing the condition that allows the timer to oper-
ate.
When this parameter is true (i.e. not 0), the
timer is "running". When this parameter is false
(i.e. 0), the timer stops and the function has a
value of false.

Interval

Required. Any numeric expression giving the time in
seconds between the absolute time periods. This para-
meter must be strictly greater than 0, otherwise the
function value will be invalid.

Offset

Required. Offset is any numeric expression giving the
time in seconds to shift the absolute time from mul-
tiples of the Interval time.

Comments: The AbsTime function is designed to allow events to
be scheduled at regular time intervals in real time.
It is reset automatically when it appears in a true
action trigger, or when it appears in a function that
resets its parameters.
The parameters are relative to local time. If attempt-
ing to schedule an event for the same time across
servers in multiple time zones, the offset should be
an expression relative to each time zone.

Note: Note that the behavior will differ depending
on whether you use this function in a script code
module or in a tag expression. In script code, the
function will be reset as described, and will wait
for the next trigger to occur.
In a tag expression, this function will not be reset
after triggering.

Since AbsTime is ultimately based on midnight Janu-

ary 1st, 1970 (a Thursday), it is possible in theory to
use it for a weekly time interval, with an appropriate
offset for the day of the week starting from
Thursday. In practice, TimeArrived may be more
appropriate for a weekly trigger.

Example:

If AbsTime(1, 86400 { 24 hrs }, 28800 { shifted 8 hrs });
[
...
]

In the example above, the script will be executed every 86400 seconds
(24 hours), offset by 28800 seconds (8 hours) from midnight. This means
that the trigger will become true at 8:00 AM every morning when the
script executes. The function will then be reset to wait until 8:00 AM the
following day to execute again.

If AbsTime(1, 3600 { 1 hr }, 0 { not shifted });
[
...
]

The example displayed above enables a user to schedule an event to run
on the hour, every hour.

Related Information:
See: "Latching and Resetting Functions" in the VTScada Programmer's
Guide

Accumulate

(Hierarchical Accumulator module)

Description: Adds a tag and a value to be counted for that tag, to a
named accumulator.

Returns: Invalid

Usage: Script or steady state.

Function Groups: Variable

Related to: GetValue | GetContainerNumActive | GetCon-
tainerNumUnacked

Format: \ HierarchicalAccumulator\Accumulate(TagObj, Accu-
mulatorName, Value [,LocalUniqueID]);

Parameters:

TagObj

Required. The tag object that is contributing to the
count

AccumulatorName

Required. The name of the accumulator that the tag is
contributing to. For example, two accumulator names
in use by the Alarm Manager are, "AlarmUnacked" and
"AlarmActive". If creating your own accumulator, you
may use any name you wish.

Value

Required. The current value to count for the TagOb-
j\LocalUniqueID. Commonly a 1 or 0.

LocalUniqueID

Optional. If one tag contains item to be accumulated,
use this field to provide a locally unique identifier for
each.
Example: for accumulation of active alarms in Analog
Status tag, this parameter will be "Hi" or "Lo", depend-
ing on which built-in alarm is being counted.

Comments: The Accumulate function always returns Invalid. It may be
called in steady state (for concise code), or as a subroutine
call in a script in order to save RAM.
This function is part of the HierarchicalAccumulator mod-
ule, so must always be called as shown in the format. You
will need this function if creating a new type of tag, which
also contains its own built-in alarms. You may create an
accumulator for any property of your tag.

The accumulator enables a fresh count to be generated at
different levels in a tag tree, and as tags are moved or dis-
abled.

Access to the accumulation of active and unacknowledged
alarms is provided by the Alarm Manager's GetCon-
tainerNumUnacked and GetContainerNumActive functions.
To access accumulations of your own creation, use the \Hi-
erarchicalAccumulator\GetValue function.

Examples:

If Watch(1, AlarmLoUnacked);
[
 \HierarchicalAccumulator\Accumulate(Root, "AlarmUnacked",
AlarmLoUnacked != 0, "Lo");
]

Related Functions:

Acknowledge

Note: Deprecated. Do not use in new code.

(Alarm Manager module)

Description: Will acknowledge an alarm.

Returns: 0

Usage: Script Only.

Function Groups: Alarm

Related to: CurrentTime | Register (Alarm Manager)

Format: \AlarmManager\Acknowledge(AlarmName[, EventTime,
Operator]);

Parameters:

AlarmName

Required. The name of the alarm (not the alarm object
value that was passed to the Register subroutine) that

will be acknowledged

EventTime

Optional. Timestamp to use when adding this event to
the alarm lists. Defaults to CurrentTime()

Operator

Optional text. The name of the operator who acknow-
ledged the alarm.
If invalid, the logged-in user (according to the Security
Manager) will be used. If the Security Manger user is
empty, then the application property, "LoggedOffLa-
bel" will be used.

Comments: This subroutine's primary responsibility is to send RPC mes-
sages to other workstations. DoAcknowledge does the
actual work of acknowledging. When an acknowledgment
is done, the only field that will change is status. To change
any other field, a custom DoAcknowledge that is aware of
the structure of alarms within the application must be writ-
ten.

ACos

Description: Calculates the trigonometric arc cosine in radians.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Trigonometric Math

Related to: ASin | ATan | Cos | Sin | Tan

Format: ACos(X)

Parameters:

X

Required. Any numeric expression in the range –1 to
+1.

Comments: The returned angle is in radians. To convert an angle from
radians to degrees, divide by \pi / 180 or (approximately)
0.0174533.

Example:

radAngle = ACos(0);
degAngle = radAngle / \pi / 180;

In the example shown above, the value of degAngle will be 90.

AcquireLock

Description: Subroutine to acquire an exclusive lock on reading/writing
working copy files across all applications.

Returns: Semaphore

Usage: Script Only.

Function Groups: Configuration Management

Related to: ReleaseLock |

Format: Layer\Acquirelock(WritePermission, Owner, Sem-
aphorePtr, WrtingUserID[, IgnoreState])

Parameters:

WritePermission

Required. Any BOOLEAN expression. Set TRUE if the
owner intends to perform writes or FALSE for read-
only access.

Owner

Required. The instance of the lock owner.

SemaphorePtr

Required. A pointer that will be set TRUE when the sem-
aphore is granted.

WritingUserID

Optional. UserID (from Layer\GetUserID) for the user

acquiring the lock. Should be used if the user is going
to make working copy changes and not commit them
within the lock, so that the correct UserID is assigned
to the changes when they are committed.

IgnoreState

Optional. Set true to ignore activation. Defaults to
FALSE.

Comments: This function should be called before performing
any modification of any application’s working copy.
The output of this function is a semaphore that
guarantees exclusive access to the working copy
until it is released.
Note that the caller must wait for the semaphore to
become TRUE (1), which indicates that the lock is
held.
A lock gathered by AcquireLock should be released
by calling ReleaseLock. It is automatically released
when the variable used to collect the semaphore is
released during calling object destruction. This mod-
ule launches a destructor module so that if the
caller to this module stops, the destructor will con-
tinue to run until ReleaseLock is called or one of the
parameters becomes invalid.
Since this lock prevents any other access to the
working copy, you should minimize the length of
time it will be held.

Examples:

GetLayerLock [
 If 1 ProcessFiles;
[

 AcquireLock(1 {write}, Self, &LayerLock);
]
]

Active

Note: Deprecated. Do not use in new code.

(Alarm Manager module)

Description: Tells the Alarm Manager to activate an alarm. This sub-
routine will activate an alarm and signal it as unac-
knowledged.

Returns: 0

Usage: Script Only.

Function Groups: Alarm

Related to: Register (Alarm Manager) (Alarm Manager) | CurrentTime
| Normal | IsActive

Format: \AlarmManager\Active(AlarmObject[, EventTime]);

Parameters:

AlarmObject

Required. Object Value for the alarm that was passed
to the active Register subroutine.

EventTime

Optional, Timestamp to use when adding this event to
the alarm lists. Defaults to CurrentTime()

Comments: The Active subroutine always returns "0".

Examples:
To avoid an IF 1 condition when activating an alarm, it is common prac-
tice to include a variable to ensure that the script runs only once. This
should take its value from the current alarm state.

Init [
 AlarmOn = AlarmManager\IsActive(MyAlarm);
]

Main [
 IF value >= SomeSetPoint && ! AlarmOn;
[
 AlarmOn = 1;

 AlarmManager\Active(MyAlarmObj);
]

ActiveCode

Description: ActiveCode returns the code value of the active statement
in the given module instance.

Returns: Code Value

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Advanced Module

Related to: ActiveState | ActiveWindow | CurrentWindow | StateName
| ModuleFileName

Format: ActiveCode(Object)

Parameters:

Object

Required. Any object expression to be monitored in
the module instance.

Comments: A code value is a combination of module, state and state-
ment that is the active statement in the given module
instance (object value).

Example:

stmt = ActiveCode(readObj);

ActiveState

Description: ActiveState returns the code value of the active state in the
given module instance.

Returns: Code Value

Usage: Script or steady state.

Function Groups: Compilation and Online Modifications, States

Related to: ActiveCode | ActiveWindow | CurrentWindow | StateName
| ModuleFileName

Parameters:

Object

Required. Any object expression to be monitored in
the module instance.

Comments: A code value is a combination of module and state that is
the active statement in the given module instance (object
value).

Example:

state = ActiveState(readObj);

ActiveWindow

Description: ActiveWindow returns the object value of the root module
instance in the current active window.

Returns: Object value

Usage: Script or steady state.

Function Groups: Compilation and Online Modification, Window

Related to: ActiveCode | ActiveState | CurrentWindow | Window

Format: ActiveWindow()

Parameters: None

Comments: Child windows (those with bit 9 set in their Window call) are
not recognized as separate entities; clicking on a child win-
dow returns the object value of the root module in its par-
ent window. This is not true for owned windows (those with
bit 15 set in their Window call), which return the object
value of the root module instance in the window.

Example:

object = ActiveWindow();

ActiveX

Description: Instantiates an ActiveX object. An ActiveX object is treated
as a COM client interface that requires a client window area
in which to draw.

Usage: Steady State only.

Warning: This function should be used only by advanced pro-
grammers. It may interfere with VTScada graphics.

Function Groups: COM

Related to: COMClient | COMEvent | COMStatus

Format: ActiveX(X0, Y0, X1, Y1, ObjectIdentifier [, EventSearchS-
cope, EventParent, EventCaller, LicenseString])

Parameters:

X0, Y0, X1, Y1

Required These are the numeric coordinates of the cli-
ent window area in which the COM object is to draw
itself.

ObjectIdentifier

Required. Specifies a unique identifier for the object
that is to be instantiated. It may take one of the fol-
lowing forms:
• A text string representing a ProgID (e.g. "Excel.Ap-
plication").
• A textual GUID in registry format (e.g. "{000208-
0000-0000-C000-000000000046}"). Note that the
curly braces are compulsory.
• A binary GUID (e.g. the result from "GetGUID(1,
00020812-0000-0000-C000-000000000046)").

EventSearchScope

Optional An object value that, if present, specifies the
scope in which to search for event subroutines.
May be any expression that yields a module value or
object value. Defaults to Self().

EventParent

Optional Any expression yielding an object value. If
present, specifies the context that is used to resolve
scope for event subroutines. May be any expression
that yields an object value.
Defaults to Self().

EventCaller

Optional. Any expression that yields an object value. If
present, this specifies an "auxiliary" context for event
subroutines. An event subroutine can retrieve this
value using Caller(Self())
Defaults to Self().

LicenseString

Optional. Used to provide a license key that will be
passed to the ActiveX control when instantiated, per-
mitting the use of ActiveX controls that require license
data for activation. This will work for both server-
instantiated ActiveX controls and those that are
remotely called by a VIC.

Comments: If the statement succeeds, a COM client interface is
returned, allowing subsequent access to the object.
If it fails, Invalid is returned.
There are two significant parametric differences
between an ActiveX function and a COMClient func-
tion. Firstly, the ActiveX function requires a client
window in which to draw. Secondly, there is no
ObjectContext parameter. ActiveX objects are only
instantiated in process, as they require direct GDI
access to process resources [such as the client win-
dow area].
A window in VTScada acts as a container for ActiveX
objects, in the true OLE definitions of the OC96 spe-
cification. This architecture provides a container

enumerator so that an ActiveX object can interact
with other ActiveX objects in the same container.
Like the COMClient function, this function returns
an opaque COM Client Interface handle, through
which subsequent object manipulations are per-
formed.
Unlike the COMClient function, this statement may
be only be used as a steady-state statement.
The ActiveX object will only remain instantiated
while the steady-state statement is still running (i.e.
a change of state or destruction of the module
instance which is running the statement will cause
the ActiveX object to be destroyed). Any variables
that hold a handle to the COM Client Interface will
be invalidated at that time.

Note: Within an Anywhere Client session, this func-
tion does nothing.

Example:

[
Loaded = 0;
BrowserObj;
]
BrowserObj = ActiveX(12, 52, w - 22, h - 42, "Shell.Explorer");
If Timeout(Valid(BrowserObj) && !Loaded, 1);
[
BrowserObj\Navigate("www.google.com");
Loaded = 1;
]

Example 2:

MyObject = ActiveX(…);
X = MyObject\DoSomething(aValue); { A method call on the object }
MyAxObjects\AProperty = "Hello"; { A property set }
Y = MyAxObject\AnotherProperty; { A property get }

AddAccount

Security Manager Module

Description Creates a new account (either a user account or a role).

Returns Object value

Usage Script Only.

Related to: ModifyAccount | DeleteAccount

Format \SecurityManager\AddAccount (NewAccountData [,
PtrReturnCode, HaveLock]);

Parameters

NewAccountData

Required. An AccountData structure, a single dimen-
sion array of AccountData structures or a dictionary of
AccountData structures containing the data for the
new account(s).

PtrReturnCode

Optional. A pointer to a value that will contain one of
the defined result codes at the conclusion of the oper-
ation.

HaveLock

Optional. A Boolean value that indicates whether the
working copy lock is held by the calling code. Default
FALSE.

Comments To use this API, the calling code must be running in a secur-
ity session that has Manager privilege.

Adding an account is an asynchronous operation. If the
asynchronous operation was not attempted, due to detec-
tion of an error, the return value will be Invalid. If the asyn-
chronous operation is attempted, the return value will be
an object value. The object value will become Invalid when
the asynchronous operation completes. At that time (or
when the method returns Invalid), the value addressed by

PtrReturnCode can be examined to determine the status of
the operation. The contents of the value addressed by
PtrReturnCode are undefined until the method returns
Invalid.

A single account can be added by supplying a single
AccountData structure in NewAccountData. Multiple
accounts can be added in one operation by providing a
single dimension array or dictionary of AccountData struc-
tures in NewAccountData.

The result code returned in the value addressed by
PtrReturnCode will be a scalar value if a single structure
was supplied in NewAccountData. If an array of structures
or a dictionary of structures was supplied, a single dimen-
sion array of the same size as NewAccountData will be
returned in the value addressed by PtrReturnCode, each ele-
ment containing the result code for the corresponding
NewAccountData element.

Adding an account requires a working copy write lock. If
such a lock is held by the calling code, the HaveLock para-
meter must be set to TRUE. Otherwise omit this parameter
or set it to FALSE. If the calling code holds a read lock on
the working copy, this must be released before AddAc-
count can complete its operation.

The AccountData structure(s) provided must have the User-
name member set to a unique name. If the account being
added is a user account (as opposed to a role), a password
conformant with application password strength settings
must be provided.

On return the AccountID member of each AccountData
structure that was successfully processed will be set to a

unique user ID that will not change for the life of the
account. The Password member is not erased. It is highly
recommended that calling code be careful to ensure that
unencrypted passwords are destroyed as soon as possible
after completion of this operation.

AddConnection

(ODBC Manager Library)

Description: Called to get the object value of an ODBC connection. If the
connection does not exist, then a new ODBC DSN con-
nection will be created and explicitly added to the ODBC
Manager's internal list of DSN's

Returns: The object value of an ODBC connection

Usage: Script or steady state.

Function Groups: ODBC

Related to:

Format: \ODBCManager\AddConnection(DSN[, UserName, Pass-
word, ConnectTimeout, ExecutionTimeout, IdleTime,
CheckBackupTime, DisconnectOnError, HandleError,
UseDriverTimeout, MirrorToDisk, DBType, PaceRecovery,
PaceRecoveryRate, RollbackOnConnect, ReconnectDelay])

Parameters:

DSN

Required. Text identifying the database to connect to.
This can be a DSN (data source name) or it could be a
connection string containing a fileDSN parameter such
as: "filedsn = C:\VTScada\Access.dsn; dbq =
c:\testdb1.mdb"

UserName

Optional. An optional parameter providing the user
name for database access.

If both the Username and Password are missing from
the function call, a dialog box will prompt the operator
to provide values for these parameters.

Password

Optional parameter for providing the password, if
required, for database access. See note for UserName.

ConnectTimeout

Optional numeric parameter specifying the length of
time the module will wait for a valid database con-
nection to be made.
Defaults to 30 if missing or invalid

ExecutionTimeout

Optional parameter specifying in seconds, the length
of time the method will wait for a database command
to execute. The parameter, UseDriverTimeout must be
true for this parameter to have any effect.
Defaults to 60.

IdleTime

Optional parameter specifying in seconds, the length
of time will wait with no database communication
before closing the connection.
Defaults to 600 if missing or invalid

CheckBackupTime

Optional numeric parameter specifying the length of
time between checks for cache files left behind failed
log attempts.
Defaults to 300 if missing or invalid

DisconnectOnError

Optional Boolean parameter indicating whether the
ODBC connection should be terminated after any exe-
cution error occurs.
Defaults to FALSE (0) if missing or invalid.

HandleError

Optional parameter that can be any of:
• an error handle object,
• an array of errors,
• a Boolean value. TRUE to disconnect or false to
indicate no disconnect.
Defaults to false, meaning 'no disconnect'.

UseDriverTimeout

Optional Boolean value which may be set to true if
ODBC driver in use supports timeouts.
If so, then the execution timeout limit (Exe-
cutionTimeout) is handed to the ODBC functions.
Defaults to FALSE (0) if missing or invalid.

MirrorToDisk

Optional Boolean value. If true, this specifies that every
write should go to disk.
Defaults to FALSE (0) if missing or invalid.

DBType

Optional numeric value, indicating the type of this DB
connection. Defaults to 0 if missing or invalid.

DBType Meaning

0 MS SQL

1 MS Access

2 Oracle

3 MySQL

4 SyBase

PaceRecovery

Optional, Boolean value. Set to TRUE (non-zero) to
pace the recovery of logs using the value in the fol-
lowing parameter.
Defaults to TRUE (1) if missing or invalid.

PaceRecoveryRate

Optional. Any numeric expression that will set the time
in seconds for recovery of logs. The preceding para-
meter, PaceRecovery must be set to true.
Defaults to 0.1 if missing or invalid.

RollbackOnConnect

Optional. Any Boolean expression. If set to TRUE (non-
zero) a rollback will be done on connect.
Defaults to TRUE (1) if missing or invalid.

ReconnectDelay

Optional numeric expression to set the time to wait for
reconnect on a failed connect.
Defaults to 5 if missing or invalid.

Comments: This module is a member of the ODBCManager
Library, and must therefore be prefaced by
\ODBCManager\, as shown in "Format" above.
The only way to ensure that a long running (or
faulty) query does terminate is to set appropriate
values for both the parameters ExecutionTimeout
and UseDriverTimeout.

AddContributor

Description: Adds a contributor to a container.

Returns: Nothing

Usage: Script Only.

Function Groups: Containers and Contributors

Related to: DeleteContributor | GetContributors | PContributor |

Format: AddContributor(HandleName, ArrayName, CountName,
ContainerObj, ContributorObj, IndexAddress, Value, Coun-
tIncrement);

Parameters:

HandleName

Required. Any expression that evaluates to the name
of the handle variable in the container module.

ArrayName

Required. Any expression that evaluates to the name
of the variable in the ContainerObj parameter, that
holds an array of values to which the contributor is to
be added.
The ArrayName parameter may be invalid if there is no
such array in the container.

CountName

Required. Any expression that evaluates to the name
of the variable in the ContainerObj parameter, that
holds a count of the current number of this type of con-
tributor.
CountName may be invalid if no such variable exists in
the ContainerObj. Not all contributors need to be coun-
ted.
Note that CountIncrement determines the initial
change in the count and the contributor must maintain
the count.

ContainerObj

Required. Any expression that evaluates to the object
value of the container tag module.

ContributorObj

Required. Any expression that evaluates to the object
value of the new contributor to add to the container.

IndexAddress

Required. Any expression that evaluates to the address
pointer of the variable holding the contributor index.

Value

Required. Any expression that evaluates to the current

numeric value to set in the container's ArrayName
array.
Value may be Invalid. Value may also be updated at
any time by the contributor by scoping into the
ArrayName array in the container, and setting the
array element at the index that will be set in the vari-
able pointed to by IndexAddress.

CountIncrement

Required. Any expression that evaluates to the
numeric value that will be added to the variable in the
container that has the same name as CountName.
CountIncrement's value is usually a "1" or a "0", indic-
ating whether or not the contributor is actively con-
tributing its value. The contributor will increment or
decrement the value of the CountName variable as the
corresponding state of the contributor changes.

Comments: This function can be called from the contributor.

AddEditorText

Description: Inserts a text string into a text editor.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Editor

Related to: CurrentLine | Editor | ForceEvent | GoToOffset |
 MakeEditor | SetEditMode

Format: AddEditorText(Editor, Text)

Parameters:

Editor

Required. Any expression that evaluates to an editor
value that was created by the MakeEditor function.
If this is not an editor type value, then the function will

do nothing.

Text

Required. Any expression that evaluates to the text to
insert into the text editor.

Comments: The text will be broken into lines based on carriage returns
or line feeds or both.

Example:

AddEditorText(AlarmLog, "Reason for alarm:");

This example inserts the text "Reason for alarm" into the text editor iden-
tified in the variable AlarmLog.

AddModule

Description: Adds a new module to an existing module and returns the
value of the newly created module.

Warning: This function may cause irrecoverable alteration of your
application. It should be used only by advanced pro-
grammers.

Returns: A new module value

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Advanced Module

Related to: AddOptional | AddParameter | AddState | AddStatement |
 AddVariable | CreateModule | FirstState

Format: AddModule(Parent, Name, Reserved, Attrib, Class, VarTex-
tSize, DocFileName)

Parameters:

Parent

Required Any expression that returns a module value.
Specifies the parent module of the new module.

Name

Required. Any text expression providing a name for
the new module.

Reserved

Reserved for future use. Should be set to 0.

Attrib

Required. Any numeric expression giving the
module's attribute bits as follows:

Attrib Bit No. Attribute

0 – No special attributes

1 0 Reserved – set to 0

2 1 Queued

4 2 Reserved – set to 0

8 3 Reserved – set to 0

16 4 Reserved – set to 0

32 5 Reserved – set to 0

64 6 Reserved – set to 0

128 7 Reserved – set to 0

256 8 Reserved – set to 0

512 9 Protected

Class

Required. Any numeric expression in the range 0 to
65535, giving the class for the new module.

VarTextSize

Required. Any numeric expression giving the length of
the variable declaration for the new module (i.e.
NewMod MODULE { a new module };).

DocFileName

Required. Any text expression giving the file name of

the new module's definition document.

Comments: None.

AddOptional

Description Adds a new statement to an action script and returns its
own error code.

Warning This function may cause irrecoverable alteration of your
application. It should be used only by advanced pro-
grammers.

Returns A new module value

Usage Script Only.

Function Groups Compilation and Online Modifications, States

Related to: AddVariable | GetStatement

Format AddOptional(NewStatement, Destination, Location, Tex-
tSize)

Parameters

NewStatement

Required. Any expression that returns a statement
value. This is the value of the new script statement to
be added.

Destination

Required. Any code value expression. Destination is
the action that will receive NewStatement.

Location

Required. Any numeric expression giving the location
of NewStatement within the script.

TextSize

Required. Any numeric expression giving the length of
NewStatement's text in characters.

Comments The function returns "0" if successful and a non-0 value if it

fails. AddOptional is disabled in the run time version of
VTS; it will do nothing and returns Invalid.

AddParameter

Description: Adds an existing variable as a module parameter and
returns the number of parameters in the module.

Warning: This function may cause irrecoverable alteration of your
application. It should be used only by advanced pro-
grammers.

Returns: Numeric... the number of parameters in a module.

Usage: Script Only.

Function Groups: Compilation and Online Modifications, Advanced Module

Related to: ConstCount | NumParms | SetOneParmText |
 SetParameter | SetParmText | AddVariable

Format: AddParameter(Variable, Position)

Parameters:

Variable

Required. Any expression that returns a variable value
such as AddVariable(…).
This variable will become a parameter in the module
where it is defined.

Position

Required. Any numeric expression giving the position
in the parameter list where Variable will be inserted.
Position 1 is the first parameter.
Inserting a variable past the end of the list will append
the variable to the parameter list.

Comments The return value of AddParameter is the number of para-
meters in the module after the addition, or "-1" if it failed.
Caution: Attempting to insert a variable in the parameter
list twice may result in undefined behavior.

AddPrivToUser

(Security Manager Library)

Description: A subroutine to grant a privilege to a user.

Returns: Numeric (via the first parameter)

Usage: Script Only.

Function Groups: Security

Related to:

Format: \SecurityManager\AddPrivToUser(PtrReturnCode, User-
name, Privilege[, HaveLock])

Parameters:

PtrReturnCode

Required. A pointer to a variable that will be
used for the return code.

PtrReturnCode Meaning

1 Privilege added

2 Denied. The calling context
does not have the Manager sys-
tem privilege.

3 Privilege is not valid. No action
taken.

4 The user does not exist. No
action taken,

6 The application cannot be
edited.

UserName

Required. Any expression for the name of the user
account to create.

Password

Required. Any expression for the password of the user
account to create.

Privilege

Any numeric expression for the privilege to grant to
the user. Set the value negative for system privileges
and positive for application privileges.

AppPrivileges

Optional. Any numeric expression for the bit-wise set
of application privileges. If missing or invalid, no
application properties are granted.

AltID

Optional. Any expression for the alternative logon iden-
tifier.

AutoLogoff

Optional. Any numeric expression for the user-specific
logoff time (specified in seconds).

PWDate

Optional. The password creation date in days since
January 1, 1970.

HaveLock

Optional Boolean expression. Set to true if we have the
WC lock. Defaults to 0 or FALSE.

Comments: May only be called from a user-context that has the Man-
ager system privilege. The return value of the function is
the object value of the launched worker module. This will
be set to Invalid when the operation has completed and
may be used to discover when that occurs.
Use of this function requires an understanding of the
VTScada security system and the system privileges. Please
refer to System Privileges in the chapter Security Manager
Service.

AddRead

Description: Add a read request.

Returns: Nothing

Usage: Script Only.

Function Groups: Memory I/O

Related to: DelRead

Format: VTSDriver\AddRead(Address, N, Value, Rate[, Ori-
ginalAddr, DisablePolling)

Parameters:

Address

Required. Any expression for the address or array of
text addresses from which to get the data.

N

Required. Any expression for the number of elements
to retrieve.
If Address is an array, N should be the number of items
in the arrays.

Value

Required. A pointer to the destination for the read
data. If Address is an array, Value should also be an
array of pointers to the data destination.

Rate

Required. Any numeric expression for the update rate,
measured in seconds.

OriginalAddr

For use only by the Driver Multiplexer. Set Invalid in all
other instances. The original address string specified
in the I/O tag before being parsed into an value that is
fit for the Address parameter of AddRead. For
example, the original address may be {40001}{42001},

but the address given to the subordinate driver would
be 40001.

DisablePolling

Primarily for use by the Driver Multiplexer. In general,
should be set to Invalid for other drivers. Any numeric
expression, setting a rate value for which Polling will
be disabled. Polls will then only be performed by a call
to Driver\PollAll() or by setting the Read module’s Trig-
ger.

Comments: This module is called by a tag to add a request to
read a specific range of memory and set the res-
ulting read data into the variable pointed to by the
third parameter. The pointer may be a simple vari-
able for one element read, an array if more than
one element is requested, or an object reference.
Use of an object for the Value parameter, rather
than an array, allows a synchronous way of report-
ing new data. The object must be a module with a
subroutine named NewData. NewData will have the
following parameters:

Address

Required. The original address that AddRead was
called with. Should be an array if Data is an array.

TimeStamp

Required. The timestamp of the data, in UTC. Should
be an array if Data is an array.

Data

Required. Any numeric expression for the update rate,
measured in seconds. May be an array of arbitrary
size.

Attribute

Optional. Auxiliary data value - rarely used.

ServiceSync

Optional Boolean. TRUE when NewData is being called
because the service is synchronizing, rather than when
the driver reported new data.

The NewData callback may only be called if RefreshData res-
ulted in a value change (affected by Propag-
ateOnlyOnDataChange). If Data is an array, and only
element [i] changed, then the TimeStamp array is used to
indicate changes. A valid TimeStamp[i] means that Value[i]
and Attribute[i] are valid. Invalid TimeStamp[i] means that
Value[i] and Attribute[i] will be invalid since they have not
changed.

Example:

{ SetDefaultSetpoints }
(
)
[
Var;

]
Init [
If (Variable("PumpStationSimulator")\Ready == 1) Main;
[
Variable("PumpStationSimulator")\Driver\Addread(40001, 1,

&Var, 1);
]

]
Main [
If Watch(0, Var);
[
...

]

AddressEntry

Description: Checks whether the attached driver has an AddressAssist
module and uses that if available. Otherwise, presents a
standard edit field into which the I/O address may be
entered.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | PAreaSelect | PCheckBox | PContributor |
 PDroplist | PEditfield | PPageSelect | PRadioButtons |
 PSecBit | PSelectObject | PSpinbox | PTypeToggle

Format: \DialogLibrary\AddressEntry(X1, Y1, X2, Y2, Var,
IODevice, SupportedData, FunctionType, Title, FocusID[,
Trigger, DrawBevel, BGColor, FGColor])

Parameters:

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the object and
its label. The smaller of X1 and X2 will always be to the
left

Y1

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the object. The smaller of Y1 and Y2 will always be the
top.

X2

Required. Any numeric expression giving the X
coordinate on the screen of the side of the object and
its label opposite to X1.

Y2

Required. Any numeric expression giving the Y
coordinate on the screen of the top or bottom of the
object, whichever is the opposite to Y1.

Var

Variable to be set by AddressEntry

IODevice

Any expression for the name of the I/O device driver
being used.

SupportedData

A bitwise expression, indicating the data type.

Bit Meaning when set

0 Digital

1 Analog

2 Text

FunctionType

Any Boolean expression, indicating whether the func-
tion should be read (0) or write (1).

Title

Any text expression to use as the title for the field.

FocusID

Any numeric expression for the focus number of this
graphic. If this value is 0, the field will display its cur-
rent setting, but will not be able to be opened (i.e. its
value cannot be changed), and will appear disabled
(grayed-out).

Trigger

A parameter whose value is derived from ZEditField
and can therefore be set to "0" (internal buffer
changed), "1" ("Enter" key pressed), or "2" (focus lost).
If this information is not required and the next para-
meter is used, a value of invalid or a constant may be
substituted.

DrawBevel

Any logical expression. If TRUE, a bevel is drawn
around the graphic.

BGColor

Optional. Any numeric expression for the background
VTScada Color Palette of the control. No default value.

FGColor

Placeholder for the foreground color of the control.
Not currently implemented.

Comments: none

AddState

Description: Adds a new state to an existing module and returns its
state value.

Warning: This function may cause irrecoverable alteration of your
application. It should be used only by advanced pro-
grammers.

Returns: State value

Usage: Script Only.

Function Groups: Compilation and Online Modifications, States

Related to: AddOptional | AddStatement | AddVariable | FirstState

Format: AddState(Module, Name, Reserved, Size)

Parameters:

Module

Required. Any expression that returns a module value.

Name

Required. Any text expression giving the name of the
new state.

Reserved

Reserved for future use. Should be set to 0.

Size

Required. Any numeric expression giving the length of
the state definition text, measured in characters.

Comments: None

AddStatement

Description: Adds a new statement to an existing state and returns its
own error code.

Warning: This function may cause irrecoverable alteration of your
application. It should be used only by advanced pro-
grammers.

Returns: Error code (0 = success, non-zero = failure)

Usage: Script Only.

Function Groups: Compilation and Online Modifications, States

Related to: AddVariable | MakeDAG | Compile

Format: AddStatement(Statement, Destination, TextSize)

Parameters:

Statement

Required. Any expression that returns a statement
value. Commonly generated with the Compile func-
tion.

Destination

Required. Any expression that returns a code value.
This indicates where to insert the new statement. If no
statement is present in the code value, the new state-
ment will be appended.

TextSize

Required. Any numeric expression giving the length of
the statement text, measured in characters.

Comments: AddStatement doesn't affect the .SRC file; it affects the
expected location of items in the .SRC file. Both must be
updated in unison.
The return value is 0 if successful and non-zero if the func-
tion fails.
AddStatement is disabled in the run time version of VTS; it

will do nothing and return invalid.

AddUser

(Security Manager Library)

Description: Adds a user to the system, specifying name, password,
privileges, etc.

Returns: Numeric (via the first parameter)

Usage: Script Only.

Function Groups: Security

Related to:

Format: \SecurityManager\AddUser(PtrReturnCode, Username,
Password[, SysPrivileges, AppPrivileges, AltID,
AutoLogoff, PWDate, HaveLock])

Parameters:

PtrReturnCode

Required. A pointer to a variable that will be
used for the return code.

PtrReturnCode Meaning

1 User added

2 Denied. The calling context
does not have the Manager sys-
tem privilege.

3 User already exists. No action
taken.

6 The application cannot be
edited.

UserName

Required. Any expression for the name of the user
account to create.

Password

Required. Any expression for the password of the user
account to create.

SysPrivileges

Optional. Any numeric expression for the bit-wise set
of system privileges to be granted to the new user. If
missing or invalid, no system privileges are granted.

AppPrivileges

Optional. Any numeric expression for the bit-wise set
of application privileges. If missing or invalid, no
application properties are granted.

AltID

Optional. Any expression for the alternative logon iden-
tifier.

AutoLogoff

Optional. Any numeric expression for the user-specific
logoff time (specified in seconds).

PWDate

Optional. The password creation date in days since
January 1, 1970.

HaveLock

Optional Boolean expression. Set to true if we have the
WC lock. Defaults to 0 or FALSE.

Comments: May only be called from a user-context that has the Man-
ager system privilege. The return value of the function is
the object value of the launched worker module. This will
be set to Invalid when the operation has completed and
may be used to discover when that occurs.
Use of this function requires an understanding of the
VTScada security system and the system privileges. Please
refer to System Privileges in the chapter Security Manager
Service.

AddVariable

Description: Adds a new variable to an existing module and returns its
variable value.

Warning: This function may cause irrecoverable alteration of your
application. It should be used only by advanced pro-
grammers.

Returns: Variable

Usage: Script Only.

Function Groups: Compilation and Online Modifications, Variable

Related to: DeleteVariable | MakeNonShared | MakeNonPersistent |
 MakePersistent | MakeShared | SetDefault |
 SetVariableClass | SetVariableText

Format: AddVariable(Module, Name, Reserved, Attrib, Class, Per-
sistentSize, VarTextSize, NumDimensions, ArrayElem,
ArraySize)

Parameters:

Module

Required. Any expression that returns a module value.

Name

Required. Any text expression that gives the name of
the new variable.

Reserved

Reserved for future use. Set to 0.

Attrib

Required. Any numeric expression giving the
variable attribute bits as follows:

Attrib Bit No. Attribute

1 0 Array

2 1 Shared

4 2 Persistent

8 3 Module

16 4 Parameter

32 5 Constant

64 6 (Obsolete) Reserved – set to 0

128 7 (Obsolete) Reserved – set to 0

256 8 Temporary *

512 9 Protected

1024 10 Variable is an instance variable (see com-
ments)

A variable cannot be both persistent and tem-
porary, since a persistent variable is stored on
disk, and a temporary variable exists only while
VTScada is running or until the application is
recompiled.
* Note: Temporary variables should be used only
by advanced users, since recompiling the applic-
ation destroys them.

Class

Required. Any numeric expression in the range 0 to
65535, giving the variable class number for the new
variable.

PersistentSize

Required. Any numeric expression giving the number
of bytes of storage allocated in the .VAL persistent vari-
able file for this variable.
For array types, set this to the byte size of the largest
array element (normally 8 bytes for numeric values).
For arrays containing text, enter the character length
of the longest string element.
Use a valid 0 if this isn't a persistent variable.

VarTextSize

Required. Any numeric expression giving the length of
the variable declaration text in characters.
This parameter is ignored for temporary variable
types.

NumDimensions

Required. Any numeric expression that gives the num-
ber of array dimensions for the variable.
NumDimensions should be "0" for a simple variable.

ArrayElem

Required. Any array element giving the starting ele-
ment in the array. The subscript for the array may be
any numeric expression.
If NumDimensions is 0, ArrayElem is ignored. I
f NumDimensions is 1, this specifies the starting index
for the array.
If NumDimensions is greater than 1, this is element of
an array of starting indices for each dimension of the
multidimensional array.

ArraySize

Required. Any numeric expression specifying the size
of the array.
If NumDimensions is 0, ArraySize is ignored.
If NumDimensions is 1, this specifies the number of ele-
ments in the array.
If NumDimensions is greater than 1, this is an array of
sizes for each dimension of the array.

Comments: This function doesn't affect the .SRC file; it affects the
expected location of items in the .SRC file. Both must be
updated in unison.
The return value is the new variable added. If the variable
already existed, it will remain unchanged and the return
value will be Invalid.
Bit 10 (1024) of the Attrib parameter specifies that the vari-

able is an instance variable. An instance variable is a tem-
porary variable that gets added to a single instance of a
module, rather than all instances of a module. If you spe-
cify this bit, then you must have passed an object (module
instance) into the first parameter. Instance variables can-
not also have the attributes Shared, Persistent, Module, or
Parameter.

Example:

If 1 Main;
[
IfThen(! Valid(FindVariable(varName, Self(), 0, 1))
{ Variable doesn't exist },
AddVariable(Self() { Create variable as part of this module },

varName { Name of new variable },
0 { Reserved },
1 { Variable is type array },
0 { Class },
0 { Variable not persistent },

20 { Name is 20 chars long },
1 { Var is 1 dimensional array },
0 { Array starting index },
220 { Number of elements in array }));

]

In the example above, the statement checks to see whether or not a cer-
tain (array) variable exists; if it does not, the statement creates a 1 dimen-
sional array (named VarName) with 220 elements.

AdjustArray

Description: Changes the array information for a variable.

Warning: This function removes existing information from the array.

Returns: Nothing

Usage: Script Only.

Function Groups: Array, Compilation and On-Line Modifications

Related to: ArrayOp1 | ArrayOp2 | New

Format: AdjustArray(Variable, NumDimensions, Start, Size)

Parameters:

Variable

Required. Variable is any expression for the array to
adjust.

NumDimensions

Required. Any numeric expression that gives the num-
ber of dimensions for the variable's multidimensional
array.

Start

Required. Can be either a numeric expression or an
array specifying the start for each of the dimensions.
If Start is a numeric expression, each of the dimen-
sions will start at that value.
If Start is an array, then the Nth element in the array
will correspond to the start of the Nth dimension (i.e.
dimension 2 will start at start[2]).

Size

Required. Can be either a numeric expression or an
array specifying the size of each of the dimensions.
If Size is a numeric expression, each of the dimensions
will be the size of that value.
If Size is an array, then the Nth element in the array will
correspond to the size of the Nth dimension (i.e.
dimension 2 will have a size of Size[2]).

Comments: This statement takes a variable and gives it the array attrib-
utes specified by the parameters provided. It can also be
used to take an array and make it a simple variable by spe-
cifying the number of dimensions as "0". Caution should
be taken, as all information in the array will be lost when
this statement is executed, even if the result is no change
in the array's attributes.

Example:

elements[0] = 4;
elements[1] = 5;
...
AdjustArray(OldVariable, 2, 1, elements);

In this code example, the variable OldVariable is changed into a two-
dimensional array with 4 rows and 5 columns. The elements for both the
rows and columns will start numbering at 1 (as per the third parameter).
This is the same as declaring:

OldVariable[1, 4][1, 5];

AdjustCode

Description: Adjusts the offsets and sizes of items stored in the .RUN file
within the document file.

Warning: This function may cause irrecoverable alteration of your
application. It should be used only by advanced pro-
grammers.

Returns: Nothing

Usage: Script Only.

Related to: GetModuleText | GetOneParmText | GetParmText |
 GetStateText | GetTransitText | GetVariableText |
 SetModuleText | SetOneParmText | SetParmText |
 SetStateText | SetTransitText | SetVariableText |
 TextOffset | TextSize

Function Groups: Compilation and Online Modifications, Advanced Module

Format: AdjustCode(Value, Type, Offset, Size)

Parameters:

Value

Required. The value must be a code value or a Vari-
able. This identifies the module, state, statement, or
variable to adjust.

Type

Required. Any numeric expression that explicitly spe-

cifies the VTScada Value Types - Numeric Reference.

Offset

Required. Any numeric expression that specifies the
starting point for the code adjustment.

Size

Required. Any numeric expression giving the number
of bytes by which to shift all offset values following this
entry in the .RUN file.

Comments: This statement enables you to adjust a .RUN file while
VTScada is running. If a change is to be made to the .SRC
file while the application is running, this code change must
also be written into the .RUN file, so that the .RUN and .SRC
files will remain synchronized. AdjustCode essentially cre-
ates a space into which the applicable information may be
inserted; Offset is the point for the insertion; and Size is the
size of the inserted block. All code offsets that follow the
inserted block are increased by Size to allow for the new
location of the old code, and all items that contain the
newly inserted block have their size increased by Size. For
example, if the newly inserted block was going to have a
variable definition written to it, and it was contained inside
of a module, the module's size would increase by Size.
Note that this function does not actually write any changes
into the file; rather, it makes room for the changes to be
written by another function.

AlignSelected

Note: Deprecated. Do not use in new code.

Description: Aligns selected graphic objects.

Returns: Nothing

Usage: Script Only.

Function Groups: Graphics

Format: AlignSelected(Object, Mode, Side)

Parameters:

Object

Required. Any object expression giving the module
instance where the selected objects are found. They
will be aligned as specified by the Mode and Side para-
meters (defined below).

Mode

Required. Any numeric expression that specifies
how the objects will be aligned. The possible val-
ues are provided in the following table:

Mode Alignment Type

0 Align

1 Stretch

2 Size

3 Space

4 Tile

5 Equal space between

Side

Required. Any numeric expression that specifies
what side will be used when aligning objects.
This also specifies the direction for equal or
even spacing.

Side Meaning

0 Left

1 Aligns on vertical center line

2 Right

3 Top

4 Aligns on horizontal center line

5 Bottom

Comments: This statement is used by the GUI tool bar alignment but-
tons.

Example:

AlignSelected(FindVariable("Graphics", Self(), 0, 1)
{ Find the module's object pointer },

1, 2 { Stretch the right side to align it });

Related Functions:
 FindVariable | Self

AlternateIdCheck

Security Manager Module

Description: Searches the accounts for an account whose AltID matches
the parameter value.

Returns: String

Usage: Script Only.

Related to: AlternateLogoff | AlternateLogon | Authenticate | LogOff |
QuietLogon | UserCredChange | UserLogonDialog

Format: \SecurityManager\AlternateIdCheck(AltID [, ReturnName]);

Parameters:

AltID

The alternate ID to search for in the user accounts.

ReturnName

Optional. A Boolean. If TRUE, returns the account
name. If FALSE or Invalid, returns the account ID.

Comments: Returns either the account name, account ID or Invalid if
no matching alternate ID was found.

AlternateIDCheck does not log the user in – it only verifies
whether the ID is recognized.

AlternateLogoff

Security Manager Module

Description Synonym for LogOff().

Returns Nothing

Usage Script Only.

Related to: AlternateIdCheck | AlternateLogon | Authenticate | LogOff |
QuietLogon | UserCredChange | UserLogonDialog

Format \SecurityManager\AlternateLogoff()

Parameters None

Comments None

AlternateLogon

Security Manager Module

Description Either creates, or attempts to log in using an alternate ID
value. See comments.

Returns Boolean

Usage Script Only.

Related to: AlternateIdCheck | AlternateLogoff | Authenticate | LogOff |
QuietLogon | UserCredChange | UserLogonDialog

Format \SecurityManager\AlternateLogon(AltID, Logon)

Parameters

AltID

The plaintext alternate ID use.

Logon

Flag, TRUE to stop set of AltID

Comments This module call has two modes of operation.

If the SecurityManager user modification dialog is open
and Logon is invalid or FALSE, the AltID string is inter-
preted as the Alternate ID value for the new or existing user
account being configured. The intent here is for devices
such as swipe card readers to be used to provide the altern-
ate ID.

If the SecurityManager user modification dialog is not open
or if Logon is TRUE, attempts to log on the user whose
AltID string matches the supplied parameter.

Returns TRUE if the accept/attempt action was successful,
otherwise returns FALSE.

AMax

Description: Array maximum. This function returns the maximum
value in a sub-range of a numeric array.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Array, Generic Math

Related to: AMin| Array Functions

Format: AMax(ArrayElem, N)

Parameters:

ArrayElem

Required. A numeric array element. The subscript(s)
for the array may be any numeric expression, spe-
cifying the starting point for the array maximum
search.

N

Required. Any numeric expression giving the number
of array elements to use starting at the element given
by the first parameter.
If N extends past the upper bound of the lowest array
dimension, this computation will "wrap-around" and
resume at element 0 until N elements have been pro-
cessed.

Comments: AMax ignores invalid array entries. It only returns invalid if
the array subscript is invalid, N is invalid, or if all of the
array entries in the specified range are invalid. If pro-
cessing a multidimensional array, the usual rules apply to
decide which dimension should be examined.

Example:

highVal = AMax(trendData[0] { Start at element 0 },
100 { Search through 100 elements });

The above example sets highVal to the highest value of trendData ele-
ments 0 to 99. Since this function ignores invalid array elements, highVal
will be some valid value unless all elements 0 to 99 are invalid.

AMin

Description: Array minimum. This function returns the minimum value
in a sub-range of a numeric array.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Array, Generic Math

Related to: AMax| Array Functions

Format: AMin(ArrayElem, N)

Parameters:

ArrayElem

Required A numeric array element. The subscript(s)

for the array may be any numeric expression, spe-
cifying the starting point for the array minimum
search.

N

Required Any numeric expression giving the number
of array elements to use, starting at the element given
by the first parameter.
If N extends past the upper bound of the lowest array
dimension, this computation will "wrap-around" and
resume at element 0 until N elements have been pro-
cessed.

Comments: AMin ignores invalid array entries. The function only
returns invalid if the array subscript is invalid, N is invalid,
or if all of the array entries in the specified range are
invalid. If processing a multidimensional array, the usual
rules apply to decide which dimension should be
examined.

Example:

low = AMin(trendData[0] { Start at element 0 },
100 { Search through 100 elements });

The example above sets low to the lowest value of trendData elements 0
to 99. Since this function ignores invalid array elements, low will be
some valid value unless all elements 0 to 99 are invalid.

And

Description: Returns the bit-wise AND of its two parameters as a 32-bit
unsigned integer.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Bitwise Operation

Related to: Or | Not | XOr | Boolean Logic Operators

Format: And(A, B)

Parameters:

A

Required. Any numeric expression for the first para-
meter, which is truncated to a 32-bit unsigned num-
ber.

B

Required. Any numeric expression for the second para-
meter, which is truncated to a 32 bit unsigned num-
ber.

Comments: The parameters and the result can be up to 32 bits long. If
either argument is invalid, the result is invalid.

Example:

result = And(0b1010, 0b1100);

This example sets the variable result to 0b1000.

AppIsRunning

Description: Reports whether the application has been started and the
start-up process is complete. (All tags are running, etc.)

Returns: Boolean

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Configuration Management

Related to: AppIsStarted | AppIsStarting | Start | IsAppEditable | GetAp-
pInstance | GetLoadedAppInstance | GetOEMLayer

Format: \LayerRoot\AppIsRunning()

Parameters: None

Comments: The similar functions, AppIsStarting and AppIsStarted, will
return TRUE before this function will. \LayerRoot may be

acquired using one of GetAppInstance, GetLoadedAp-
pInstance or GetOEMLayer.

Examples:

IF 1 NextState;
[
 IsVTSApp = Valid(LayerRoot\OEMGUID);
 IfThen(IsVTSApp && LayerRoot\AppIsRunning()),
 ...
)
]

AppIsStarted

Description: Returns TRUE if the application has been started.

Returns: Boolean

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Configuration Management

Related to: AppIsRunning | AppIsStarting | Start | GetAppInstance |
GetLoadedAppInstance | GetOEMLayer

Format: LayerRoot\AppIsStarted()

Parameters: none

Comments: "Started" is a different state than "Running". Use care when
deciding whether to use this function or AppIsRunning.
Like Start, this is typically called on another Layer, rather
than one’s own layer, which is presumably running.
The Layer object can be acquired using GetAp-
pInstance, GetLoadedAppInstance or GetOEMLayer.

Examples:

IF 1 NextState;
[
 IfThen(LayerRoot\AppIsStarted()),
 ...
)
]

AppIsStarting

Description: Returns TRUE if the application is in the process of starting.

Returns: Boolean

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Configuration Management

Related to: AppIsStarted | Start | AppIsRunning | GetAppInstance |
GetLoadedAppInstance | GetOEMLayer

Format: LayerRoot\AppIsStarting

Parameters: none

Comments: Checks whether a call to Start() is being processed in the
application specified by LayerRoot.
The Layer object can be acquired using GetAp-
pInstance, GetLoadedAppInstance or GetOEMLayer.

Examples:

IF 1 NextState;
[
 IfThen(LayerRoot\AppIsStarting()),
 ...
)
]

ApplyChangeSetFile

Description: Apply a named ChangeSet to an application layer.

Warning: This function should be used by advanced users only. Irre-
vocable alteration of your application may occur

Returns: Object (module reference)

Usage: Script Only.

Function Groups: Configuration Management

Related to: DirectApply | GetAppInstance | GetLoadedAppInstance |

GetOEMLayer

Format: Layer\ApplyChangeSetFile(User, Comment, FileName, pEr-
ror, SuppressError, RSema, Superior)

Parameters:

User

Required. The account name, to which the changes
will be attributed.

Comment

Required. A comment to be applied to the revision.

FileName

Required. The full path to the ChangeSet file.

pError

Required. A pointer to a value in which the
status of the operation will be stored as a
numeric value. Defined error codes are as fol-
lows:

Code Meaning

0 Success / No errors

1 Unsupported file version

2 Checksum error

3 File truncated

SuppressError

Optional Boolean. Set to TRUE if the error dialogs are to
be suppressed. Defaults to FALSE.

RSema

Optional repository semaphore.

Superior

Optional Boolean. Set to TRUE if the ChangeSet's
changes should take precedence in the event of a con-
flict.

Comments: The act of applying a ChangeSet file may produce unex-
pected results. Use with caution.
The Layer object can be acquired using GetAp-
pInstance, GetLoadedAppInstance or GetOEMLayer.

Examples:
none.

Arc

Note: Deprecated. Do not use in new code.

Description: Draws an arc on the screen.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: Circle | GUIArc | GUIPie

Format: Arc(X, Y, Radius, Angle1, Angle2, Width, Color)

Parameters:

X

Required. Any numeric expression giving the X
coordinate of the center of the arc on the screen.

Y

Required. Any numeric expression giving the Y
coordinate of the center of the arc on the screen.

Radius

Required. Any numeric expression giving the radius of
the arc specified in units of X screen coordinates.

Angle1

Required. Any numeric expression giving the starting
angle of the arc specified in radians. An angle of 0 lies
on the X axis to the right of the center of the arc.

Angle2

Required. Any numeric expression giving the ending
angle of the arc specified in radians.

Width

Required. Any numeric expression giving the line
width for the arc. The width is specified in terms of X
screen coordinates. Any width less than 1 screen pixel
is treated as a 1 pixel arc.

Color

Required. Any numeric expression giving one of the
reserved VTScada Color Palette values for the arc.

Comments: The Arc statement has been superseded by the GUIArc
function and is maintained for backwards compatibility
only.
The arc is drawn in a counterclockwise direction from the
Angle1 to Angle2.
As of version 11, this is now drawn in the same z-order as
other graphics, making it similar to the z-graphics func-
tions.

Example:

Arc(500, 500 { X and Y coordinates },
100 { Radius in screen coordinates },
0 { Starting angle in radians - 3 o'clock },
4.71 { Ending angle in radians - 6 o'clock },
10 { Arc line thickness in screen coordinates },
15 { Color is white });

ArrayDimensions

Description: Returns the number of dimensions in an array.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Array

Related to: ArraySize | ArrayStart| Array Functions

Format: ArrayDimensions(Array)

Parameters:

Array

Required Any array variable.

Comments: The ArrayDimensions function is useful for writing intel-
ligent parametrized modules. The module can determine
how many dimensions there are in an array that is passed
to it.
Note that ArrayDimensions will not drill down into nested
array structures; that is to say, if a 3 dimensional array is
created, and a 2 dimensional array is stored in each of its
elements, ArrayDimensions will return a value of 3, not 5.
This is because the data stored in different array elements
does not need to be of the same type - one element could
contain an array while another element could contain a
simple value.

Note: An Invalid will be returned if a simple value is handed to ArrayDi-
mensions().

Example:

x[10][3];
...
y = New(3, 0, 10);
numDimX = ArrayDimensions(x);
numDimY = ArrayDimensions(y);
In this example, NumDimX will have a value of 2, while NumDimY will
have a value of 3.

ArrayOp1

Description: Performs a mathematical operation on an array with
respect to a scalar value.

Returns: Nothing

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Array

Related to: ArrayOp2 | ArraySize | FFT| Array Functions| WhileLoop

Format: ArrayOp1(ArrayElem, N, Scalar, OpCode[, MaskElement])

Parameters:

ArrayElem

Required. Any array element giving the starting point
for the array operation. The subscript for the array
may be any numeric expression. If processing a mul-
tidimensional array, the usual rules apply to decide
which dimension should be used.

N

Required. Any numeric expression giving the number
of array elements to compute. N will be limited to the
minimum of (N, Source length, Destination length).
If the starting point given by the first parameter is not
the first element, and therefore N extends past the
upper bound of the lowest array dimension, this com-
putation will "wrap-around" and resume at the first ele-
ment. Since N is automatically limited by the smallest
array dimension, no element will be processed twice.

Scalar

Required. Any numeric expression giving the scalar
quantity used in the array computation.

OpCode

Required. Any numeric expression giving the
operation number to perform as follows (note
that A is the array element, and S is Scalar):

OpCode Operation OpCode Operation

0 A = S (S may
be invalid)

17 A = XOR(A,S)

1 A = A + S 18 A = Pow(S,A)

2 A = A - S 19 A = Exp(S*A)

3 A = S - A 20 A = S * Log
(A)

4 A = A * S 21 A = S * Ln(A)

5 A = A / S 22 A = Sin(S *
A)

6 A = S / A 23 A = Cos(S*A)

7 A = A % S 24 A = Tan
(S*A)

8 A = Min(A,S) 25 A = S * ASin
(A)

9 A = Max(A,S) 26 A = S * ACos
(A)

10 A = A < S 27 A = S * ATan
(A)

11 A = A <= S 28 A = S * Sqrt
(A)

12 A = A==S 29 A = S * Abs
(A)

13 A = A >= S 30 A = (Index
of A) + S

14 A = A > S 31 A = (Index
of A) * S

15 A = AND(A,S) 32 A = S *
Round (A)

16 A = OR(A,S) 33 Valid(A) !=
Valid(S) ||

PickValid
(A != S, 0)

MaskElement

Optional. The starting element in an array of TRUE and
FALSE values, specifying which elements in array, A
will be operated upon. The ArrayOp function will only
apply to element A[i] if Mask[starting element + i] is a
valid TRUE.

Comments: The ArrayOp1 statement is useful for large amounts
of repetitive computation. While this can be done by
executing a script repeatedly using WhileLoop, this
ArrayOp1 statement is much faster. Complex com-
putations may be broken down into a series of
simple steps and handled by multiple ArrayOp1 and
ArrayOp2 statements. If text arrays are used, each
text value will be converted to a number before the
numerical operations are performed. The resulting
array is converted back to text.
Mode 33 will compare for differences. It does a
more thorough comparison than a simple A != B.

Example:

If 1 Main;
[
 ArrayOp1(pumpTrend[10] { Starting element },

50 { Number of elements to use },
x + y { Number to use in computation },
0 { Assign result to the element });

 ArrayOp1(sequentNums[0] { Starting element (beginning) },
10 { Number of elements to use },
1 { Number to use in computation },
30 { Assign sequential numbers });

 ArrayOp1(evenNums[0] { Starting element (beginning) },
101 { Number of elements to use },
2 { Number to use in computation },
31 { Assign multiples of number });

]

In this example, the first statement sets elements 10 through 59 of
pumpTrend to the result of x + y, the second statement sets elements 0
through 9 of sequentNums to the numbers 1 through 10, and the third
statement sets elements 0 through 100 of evenNums to the even num-
bers from 0 to 200.

ArrayOp2

Description: Performs a mathematical operation on an array with
respect to another array.

Returns: Nothing

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Array

Related to: ArrayOp1 | ArraySize | FFT| Array Functions| WhileLoop

Format: ArrayOp2(Array1Element, Array2Element, N, OpCode[,
MaskElement])

Parameters:

Array1Element

Required. Any array element giving the starting point
for the array operation in the destination array.
The subscript for the array may be any numeric expres-
sion. If processing a multidimensional array, the usual
rules apply to decide which dimension should be used.

Array2Element

Required. Any array element giving the starting point
for the array operation in the source array.
The subscript for the array may be any numeric expres-
sion.

N

Required. Any numeric expression giving the number
of array elements to compute. N will be limited to the

minimum of (N, Source length, Destination length).
If the starting point given by the first parameter is not
the first element, and therefore N extends past the
upper bound of the lowest array dimension, this com-
putation will "wrap-around" and resume at the first ele-
ment. Since N is automatically limited by the smallest
array dimension, no element will be processed twice.

OpCode

Required. Any numeric expression giving the
operation number to perform as follows (note
that A is an element of Array1 and B is an ele-
ment of Array2):

OpCode Operation OpCode Operation

0 A = B 17 A = XOR(A,B)

1 A = A + B 18 A = Pow(A,B)

2 A = A - B 19 A = Exp(B*A)

3 A = B - A 20 A = B * Log(A)

4 A = A * B 21 A = B * Ln(A)

5 A = A / B 22 A = Sin(B * A)

6 A = B / A 23 A = Cos(B * A)

7 A = A % B 24 A = Tan (B *
A)

8 A = Min
(A,B)

25 A = B * ASin
(A)

9 A = Max
(A,B)

26 A = B * ACos
(A)

10 A = A < B 27 A = B * ATan
(A)

11 A = A <= B 28 A = B * Sqrt(A)

12 A = A==B 29 A = B * Abs(A)

13 A = A >= B 30 A = (Index of
A) + B

14 A = A > B 31 A = (Index of
A) * B

15 A = AND
(A,B)

32 A = B * Round
(A)

16 A = OR(A,B) 33 Valid(A) !=
Valid(B) ||

PickValid(A
!= B, 0)

MaskElement

Optional. The starting element in an array of
TRUE and FALSE values, specifying which ele-
ments in array, A will be operated upon. The
ArrayOp function will only apply to element A[i]
if Mask[starting element + i] is a valid TRUE.

Comments: The ArrayOp2 statement is useful for large amounts of
repetitive computation. While this can be done by execut-
ing a script repeatedly using WhileLoop, the ArrayOp2
statement is much faster. Complex computations may be
broken down into a series of simple steps and handled by
multiple ArrayOp1 and ArrayOp2 statements. If text arrays
are used, each text value will be converted to a number
before the numerical operations are performed. The res-
ulting array is converted back to text.
Mode 33 will compare for differences. It does a more thor-
ough comparison than a simple A != B.

Example:

If 1 Main;
[
 ArrayOp2(xArray[3] { Starting element in xArray },

yArray[3] { Starting element in yArray },
50 { Perform operation on 50 elements },
4 { xArray element x yArray element });

]

The example above sets each element in xArray to the product of that ele-
ment with a corresponding element in yArray, beginning at element 3
and ending at element 52. In other words:

xArray[n] = xArray[n] * yArray[n]

for n = 3 to 52.

ArraySize

Description: Returns the number of elements in an array dimension.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Array

Related to: ArrayDimensions | ArrayStart | Array Functions

Format: ArraySize(Array[, Dimension])

Parameters:

Array

Required. Any array variable.

Dimension

Optional. Any numeric expression that gives the array
dimension to measure starting at 0 (the left-most
dimension in a multi-dimensional array). Defaults to
zero.

Comments: If Array is a variable rather than an array, return value will
be invalid.
This function is useful for writing intelligent parametrized
modules. The module can determine how many elements
there are in an array that is passed to it.

Example:

q[10];
...
size = ArraySize(Q);

In this example, Size will receive the value 10.

ArrayStart

Description: Returns the first element in an array dimension

Returns: Numeric

Usage: Script or steady state.

Related to: ArrayDimensions | ArraySize| Array Functions

Function Groups: Array

Format: ArrayStart(Array, Dimension)

Parameters:

Array

Required. Any array variable.

Dimension

Required. Any numeric expression that gives the array
dimension to measure starting at 0.

Comments: The ArrayStart function is useful for writing intelligent para-
metrized modules. The module can determine the first
index in an array that is passed to it.

Example:

q[1, 10][2, 20];
...
start = ArrayStart(Q, 1);

Start will receive the value 2.

ArrayToBuff

Description: Returns a buffer containing the numeric data from an
array.

Returns: Numeric Buffer

Usage: Script or steady state.

Related to: ArrayStart | ArraySize | BuffRead | BuffToArray |
 BuffToParm | BuffToPointer | BuffWrite | GetByte |
 MakeBuff | ParmToBuff | PointerToBuff | SetByte| Array
Functions

Function Groups: Array, String and Buffer.

Format: ArrayToBuff(ArrayElem, N, Option, Size, Skip [,BadData])

Parameters:

ArrayElem

Required. Any array element giving the starting point
for the array conversion. The subscript for the array
may be any numeric expression. If processing a mul-
tidimensional array, the usual rules apply to decide
which dimension should be used.
Note: The array must contain numeric data only.

N

Required. Any numeric expression giving the number
of array elements to convert starting at the element
given by the first parameter. If N extends past the
upper bound of the lowest array dimension, this com-
putation will "wrap-around" and resume at element 0,
until N elements have been processed.

Option

Required. Any numeric expression that specifies
the format of the buffer write, using the fol-
lowing table of formats:
Note: For Options 7 and 9, the data is written as
appropriate binary format.

Option Buffer Format

0 Unsigned binary (low byte first)

1 Signed binary (low byte first)

2 BCD (binary coded decimal - low byte
first)

3 ASCII octal (high byte first)

4 ASCII decimal (high byte first)

5 ASCII hex (high byte first)

6 ASCII floating point (high byte first)

7 IEEE float/double (low byte first)

8 <obsolete>

9 Allen-Bradley PLC/3 floating point

10 VAX single precision floating point

Size

Required. Any numeric expression giving the
number of digits in each datum; it has a dif-
ferent meaning for each option as follows:

Size
Size Mean-

ing
 Size Range

Binary
types

Number of
bits

1 – 32 bits

BCD Number of
4-bit digits

1 – 8 digits

ASCII
types

Number of
bytes

1 – 32 bytes

Float
types

Precision 1 for single precision, 2
for double precision.

Skip

Required. Any numeric expression giving the
number of buffer bits/digits/bytes to skip after
writing each non-floating point element. For
floating point types, this parameter must be set
to 0.

BadData

Optional. A parameter that designates how
invalid data is to be handled, according to the
following table. Defaults to 0 if missing or
invalid.

BadData Invalid Data Type

0 Output to buffer as invalid values

1 Causes buffer to be invalid

2 Output to buffer as valid 0s

Comments: This function may only be used with arrays containing
numeric data. It is useful for writing I/O drivers and saving
arrays of data in RAM with a fraction of the memory
requirement.

Example:
In the following example, assume that array x is a one-dimensional array
containing the values 4.5, invalid, and 200:

If ! Valid(buff);
[
buff = ArrayToBuff(x[0] { Starting element },

3 { Number of elements to process },
7 { Type - IEEE floating point },
1 { Single precision },
0 { Skip is ignored },
2 { Use 0 for each invalid value });

BuffRead(buff { Buffer to read },
0 { Starting offset },
"%3b%3b%3b" { Type IEEE floating point binary },
a1, a2, a3 { Variables to hold the values });

]

This code produces a formatted buffer called buff that holds 3 float val-
ues (written in binary format), each corresponding to an element in the
array. The second value in the array is invalid - in the buffer, it will be a
valid 0. The values of a1, a2 and a3 then will be 4.5, 0 and 200 respect-
ively.

ASin

Description: Returns the trigonometric arc sine in radians.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Trigonometric Math

Related to: ACos | ATan | Cos | Sin | Tan

Format: ASin(X)

Parameters:

X

Required. Any numeric expression in the range –1 to
+1.

Comments: The returned angle is in radians. To convert an angle from
radians to degrees, divide by \pi/ 180 or (approximately)
0.0174533.

Example:

radAngle = ASin(1);
degAngle = radAngle / \pi / 180;

The value of degAngle will be 90.

ATan

Description: Returns the trigonometric arc tangent in radians.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Trigonometric Math

Related to: ACos | ASin | Cos | Sin | Tan

Format: ATan(X)

Parameters:

X

Required. Any numeric expression.

Comments: The returned angle is in radians. To convert an angle from
radians to degrees, divide by \pi / 180 or (approximately)
0.0174533.

Example:

radAngle = ATan(1);
degAngle = radAngle / \pi / 180;

The value of degAngle will be 45.

AudioFileLength

(System Library)

Description: Returns the length of a RIFF format Wave file in seconds.

Returns: Numeric

Usage: Script or steady state.

Related to:

Function Groups: Speech and Sound

Format: \System\AudioFileLength(Filename)

Parameters:

Filename

Required. Any expression for the full name of a .wav
file for which you want to find the audio play length.

Comments: This module is a member of the System Library, and must
therefore be prefaced by \System\, as shown in the

"Format" section. If you are developing a script application,
use "System\..." rather than "\System\..." in the function
call.
Returns invalid if the file does not exist, or if the length can-
not be determined.

Example:

PlayingTime = AudioFileLengh(AlarmMessage.wav);

Authenticate

Security Manager Module

Description Authenticates the Namespace, UserName and Password.

Returns Boolean

Usage Script Only.

Function Groups: Security

Related to: AlternateIdCheck | AlternateLogoff | AlternateLogon |
LogOff | QuietLogon | UserCredChange | UserLogonDialog

Format \SecurityManager\Authenticate(UserName, PassWord
[,Namespace, Privilege, Device, DontLog]);

Parameters

UserName

The username to authenticate with.

Password

The password to validate against the given UserName.

Namespace

Optional. The namespace of the user. Defaults to
none.

Privilege

Optional. A privilege that the account must pass a
SecurityCheck with. Defaults to none.

Device

Optional. Name of the device that is making the
request. Defaults to none. Only used for security log
messages.

DontLog

Optional. A Boolean. If TRUE, the result of the
Authenticate request will not be logged in the security
event log. Defaults to FALSE.

PtrAccountID

Optional. A pointer to a variable that the AccountID of
the user will be stored in.

Comments If the authentication fails, a failure event is recorded in the
security event log and FALSE is returned.
If the authentication succeeds, TRUE is returned and the
AccountID of the user is written into the variable addressed
by the PtrAccountID parameter.
If Privilege is valid, the Privilege is used in a SecurityCheck
and the result of the SecurityCheck is returned.

AValid

Description: Returns the number of valid elements in an array sub-
range.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Array.

Related to: AMax | AMin | ArrayOp1 | ArrayOp2 | FiltHigh | FiltLow
| FitOffset | FitSlope | Mean | SDev | Sum| Valid |
 Variance |

Threaded: No.

Format: AValid(ArrayElem, N)

Parameters:

ArrayElem

Required. An array element. The subscript(s) for the
array may be any numeric expression and specify the
starting point for the array search.
If processing a multidimensional array, the usual rules
apply to decide which dimension should be used.

N

Required. Any positive numeric expression giving the
number of array elements to use, starting at the ele-
ment given by the first parameter. If N extends past
the upper bound of the lowest array dimension, this
computation will "wrap-around" and resume at ele-
ment 0, until N elements have been processed.

Comments: AValid is not made invalid by invalid array entries. This
function is useful in conjunction with the statistical array
functions.

Example:

numValid = AValid(data[0] { Starting element },
100 { Number of elements to search });

The example above finds the number of array elements with valid values,
by examining elements 0 to 99.

B Functions
The sections that follow identify all VTScada functions beginning with "B".

Ball

Note: Deprecated. Do not use in new code.

Description: Draws a filled circle on the screen.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: Circle | Ellipse | GUIEllipse

Format: Ball(X, Y, Radius, Foreground, Pattern, Background)

Parameters::

X

Required. Any numeric expression giving the X
coordinate of the center of the ball on the screen.

Y

Required. Any numeric expression giving the Y
coordinate of the center of the ball on the screen.

Radius

Required. Any numeric expression giving the radius of
the ball specified in units of X screen coordinates.

Foreground

Required. Any numeric expression giving the fore-
ground VTScada Color Palette of the ball.

Pattern

Required. Any numeric expression giving the hatch pat-
tern to use to fill the ball. The valid hatch style num-
bers are from 1 to 25 inclusive. A Pattern of 1 is a solid
ball (for other patterns, please refer to Fill Patterns).

Background

Required. Any numeric expression giving the back-
ground VTScada Color Palette for the hatch pattern
used to fill the ball.
This value is only significant if the Pattern parameter is
not equal to 1 (solid).

Comments:

This statement has been superseded by the GUIEllipse function and is main-
tained for backwards compatibility only.
As of version 11, this is now drawn in the same z-order as other graphics,
making it similar to the z-graphics functions.

Example:

Ball(20, 80 { Center },
50 { Radius },
11 { Cyan foreground },
21 { Checkered pattern },
0 { Black background });

This draws a cyan and black checkered ball in the upper left portion of
the screen.

Bar

Note: Deprecated. Do not use in new code.

Description: Draws a filled bar on the screen.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: Box | GUIRectangle | ZBox | Scale

Format: Bar(X1, Y1, X2, Y2, Foreground, Pattern, Background)

Parameters:

X1

Required. Any numeric expression giving the X
coordinate one side of the bar on the screen (either left
or right).

Y1

Required. Any numeric expression giving the Y
coordinate of either the top or bottom of the bar on
the screen.

X2

Required. Any numeric expression giving the X
coordinate of the side of the bar opposite to X1 on the
screen (either left or right).

Y2

Required. Any numeric expression giving the Y
coordinate of either the top or bottom of the bar,
whichever is the opposite to Y1.

Foreground

Required. Any numeric expression giving the fore-
ground VTScada Color Palette of the bar.

Pattern

Required. Any numeric expression giving the hatch pat-
tern to use to fill the bar. The valid hatch style num-
bers are from 1 to 25 inclusive. A Pattern of 1 is a solid
bar. For valid pattern numbers, please refer to Fill Pat-
terns).

Background

Required. Any numeric expression giving the back-
ground color for the hatch pattern used to fill the bar.
This value is only significant if the Pattern parameter is
not equal to 1 (solid).

Comments
This statement has been superseded by the GUIRectangle and ZBar state-
ments, and is maintained for backwards compatibility only.
As of version 11, this is now drawn in the same z-order as other graphics,
making it similar to the z-graphics functions.

Note: It is recommended that you use bars without hatch patterns for
animation, as solid bars are drawn faster.

Example:

Bar(700, 30, 740, 60 { Coordinates outlining the bar },
2 { Dark green foreground },

4 { Striped hatch pattern },
10 { Bright green background });

This example draws a small bar in the upper right corner of the screen
using a two-tone green striped hatch pattern.

Bar(10, 600 { X and Y coordinates of lower left corner },
200 Scale(temperature, 0, 150, 100, 500)
{ Make upper right corner move with temp },
4, 1, 0 { Solid red color });

The example above displays a vertical bar graph of temperature. Note
that the Y2 coordinate is dependent on a scale of temperature. Every
time the value of temperature changes, the Bar will redraw itself to the
new upper right corner. The Scale function transforms the temperature
(0 to 150) to screen coordinates (100 to 500). However, if temperature
should go below 0 or above 150, the bar will still be drawn to the cor-
responding screen coordinates (above 100 or below 500). To limit the
action of the moving bar, try the following:

Bar(10, 600 { X and Y coordinates of lower left corner},
200, Scale(Limit(temperature, 0, 150), 0, 150, 100, 500)
{ Make upper right corner move with temperature},
4, 1, 0 { Solid red color });

This limits the value of temperature used in the scale (it does not limit
the value of the temperature variable itself).

Base64Decode

(System Library)

Description: Performs a Base64 decode of a buffer.

Returns: Buffer

Usage: Script Only.

Function Groups: Encryption

Related to: Base64Encode | Hash

Format: \System\Base64Decode(Buffer[, Offset, isMIME]);

Parameters:

Buffer

Required. The encoded value.

Offset

Optional numeric. Offset into the buffer, at which to
start decoding. Defaults to zero if invalid.

isMIME

Optional Boolean. If TRUE, relaxes the constraint
regarding characters that aren't in the base64 alpha-
bet, per RFC2045. Defaults to FALSE if invalid.

Comments: This function complies with IETF RFC4648 and
RFC2045 .
Returns Invalid if the input buffer is invalid, or if
IsMime is TRUE and the buffer contains invalid char-
acters as per RFC2045.

Examples:
none

Base64Encode

(System Library)

Description: Performs a Base64 encode of a buffer.

Returns: Buffer

Usage: Script Only.

Function Groups: Encryption

Related to: Base64Decode | Hash

Format: \System\Base64Encode(Buffer);

Parameters:

Buffer

Required. The information to be encoded.

Comments: none.

Examples:

EncodedResult = \System\Base64Encode(SomeBuffer);

Beep

Description: Causes a tone to sound on the computer's internal
speaker.

Returns: Nothing

Usage Script or steady state.

Function Groups: Speech and Sound

Related to: Sound

Format: Beep(Frequency)

Parameters::

Frequency

Required. Any numeric expression giving the fre-
quency to be output to the speaker.

Comments:
The minimum frequency is 1190000 / 65535 ~= 18.16. If the frequency is
set below the minimum frequency or invalid, the speaker will turn off.

Note: Within an Anywhere Client session, this function does nothing.

Example:

If MatchKeys(2, "on");
[
Beep(2000) { A 2kHz tone };

]
If MatchKeys(2, "off");
[
Beep(0) { No tone };

]

The example above results in a 2000 Hz sustained beep sounding when
the user types "on" until the user types "off".

Bevel

(System Library)

Description: Draws a titled beveled box.

Returns: Nothing

Usage Steady State only.

Function Groups: Graphics

Related to: TextBox | Edit

Format: \System\Bevel(X1,Y1, X2, Y2 [,Title, AlignTitle, Color])

Parameters:

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the bevel. The
smaller of X1 or X2 will always be the left side.

Y1

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the bevel. The smaller of Y1 or Y2 will always be the
top edge.

X2

Required. Any numeric expression giving the X
coordinate on the screen of the side of the bevel oppos-
ite to X1.

Y2

Any numeric expression giving the Y coordinate on the
screen of the top or bottom of the bevel, whichever is
the opposite to Y1.

Title

Optional. Any text expression to be used as a title
embedded in the bevel. The default value is a null text
string.

AlignTitle

Optional. Any logical expression. If true (non-0) the

top of the title will be aligned with the top of the
defined area, if false (0) the bevel will be aligned with
the top of the area and the title will protrude past the
top.
The default value is true.

Color

Optional. Any numeric expression giving the
index of the VTScada Color Palette to be dis-
played under the title.
Note that this will affect the area immediately
under the title (i.e. it does not affect the area
inside the bevel). No default value is provided.

Comments:
Bevel is a member of the System Library, and must therefore be prefaced by
"\System\", as shown in the "Format" section above. If you are developing a
script application, use "System\..." rather than "\System\..." in the function
call.
For any optional parameter that is to be set, all optional parameters pre-
ceding the desired one must be present, although they may be invalid.

Example:

\System\Bevel(10, 10, 110, 40, "Description");

BinIP2Text

(RPC Manager Library)

Description: Returns a text representation of a specified binary IP in a
printable format.

Returns: Text

Usage: Script Only.

Function Groups: Network, String and Buffer

Related to: TextIP2Bin

Format: \RPCManager\BinIP2Text(BinIP)

Parameters:

BinIP

Required. The Binary representation of the IP to be con-
verted to a printable format.

Comments:
This subroutine is a member of the RPC Manager's Library, and must there-
fore be prefaced by \RPCManager\, as shown in the "Format" section. If the
application you are developing is a script application, the subroutine call
must be prefaced by System\RPCManager\, and the System variable must
be declared in AppRoot.src.
Subroutine call.

Bit

Description: Returns the on/off status of a bit in a number.

Returns: Boolean

Usage Script or steady state.

Function Groups: Bitwise Operation

Related to: And | SetBit

Format: Bit(Value, BitNumber)

Parameters:

Value

Required. Any numeric expression giving the number
containing the bit to be tested.

BitNumber

Required. Any numeric expression in the range
of 0 to 31 giving the bit number to be tested
within the number specified by the Value para-
meter.
Bit 0 is the least significant bit. Any value out-
side the range of 0 to 31 will result in a false res-

ult for Bit.

Comments:
Bit returns true (1) if the indicated bit is 1, and false (0) if the indicated bit is
0.

Example:

motorFault = Bit(motorStatus, 0);

The example above sets motorFault to the value of the least significant
bit (LSB) of motorStatus.

BitmapInfo

Description: Returns information about an image.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Graphics

Related to: Crop | MakeBitmap

Format: BitmapInfo(BitmapVal, Attribute)

Parameters:

BitmapVal

Required. Any expression that returns an image value
such as MakeBitmap()

Attribute

Required. Any numeric expression that identifies the
information to be returned by this function, as per the
following table:

Attribute Information returned

0 Bitmap width in pixels

1 Bitmap height in pixels

Comments:

BitmapInfo can be used to automate a module that displays images in
response to a change in the image.

Example:

pumpWidth = BitmapInfo(pumpBitmap, 0);

The example displayed above sets pumpWidth to the width of the image
value pumpBitmap.

Blend

System layer

Description: Returns an aRGB color value that is a given percentage
between two specified colors.

Returns: aRGB color string

Usage: Steady State only.

Function Groups: Color

Related to:

Format: \System\ColorTools\Blend(Color1, Color2, Ratio)

Parameters:

Color1

Required. Any text expression giving the aRGB
value of the first color.

Color2

Required. Any text expression giving the aRGB value of
the second color.

Ratio

Optional. Any numeric expression for a value between
0 and 1. The larger the Ratio, the closer the resulting
color will be to Color1. Default = 0.5

Comments: Returns an aRGB value for a color that is a blend of
Color1 and Color2. By default, the values will be

averaged, but any ratio between the two colors can
be specified. Blend is especially useful for creating
accent colors in dialog boxes.

Example:

LineColor = PickValid(\System\ColorTools\Blend(TextColor, BGColor,
0.1), TextColor);

Sets the color of an accent line to be similar to a preset background
color but with 10% of the preset text color.

Related Information:

BlockDecrypt

(System Library)

Description: Decrypts a value that was encrypted using the Block-
Encrypt function.

Returns: String

Usage: Script Only.

Function Groups: Encryption

Related to: BlockEncrypt | Decrypt | Hash

Format: \System\BlockDecrypt(CipherValue, Key);

Parameters:

CipherValue

Required. The string that was encrypted using the
BlockEncrypt function

Key

Required string. The key value that was used for
encryption.

Comments:

Examples:

DecodedResult = \System\BlockDecrypt(SomeEncryptedValue, SameKey);

BlockEncrypt

(System Library)

Description: Uses encryption to encode a VTScada value into a Base64
string.

Returns: String

Usage: Script Only.

Function Groups: Encryption

Related to: BlockDecrypt | Encode | Base64Encode | Hash

Format: \System\BlockEncrypt(PlainValue, Key);

Parameters:

PlainValue

Required. The information to be encoded.

Key

Required string. The key value to be used for encryp-
tion.

Comments: The resulting string will be different each time it is
encoded, even if the same key is used.

Examples:

EncodedResult = \System\BlockEncrypt(SomeValue, SomeKey);

BlockWrite

Description: Writes a block of data to a stream.

Returns: Nothing

Usage: Script Only.

Function Groups: Stream and Socket

Related to: FWrite | PipeStream | SWrite

Format: BlockWrite(Stream, Data [, ByteLimit])

Parameters:

Stream

Required. Any expression that returns a stream value.

Data

Required. Any text or stream expression that specifies
the block of data to write to Stream.

ByteLimit

Optional Any numeric expression giving the max-
imum number of bytes copied from a stream.

Comments:
BlockWrite is more efficient than writing a block of data character-by-char-
acter. It is especially useful for named pipe streams when the intent is to
send a block of bytes as a single message, rather than as a series of single-
character messages (which is the result of using SWrite with the "%s" format
option). If the second parameter is a stream value, the entire stream will be
written to the first stream value.

Example:

if 1 NextState;
[
 stream = BuffStream("") { Open the first stream };
 SWrite(stream { Write to first stream },

"%s %d %s" { Format for the data },
"Test number: ", testNum, "is complete" { The data to

write });
 file = FileStream("TestStatus" { Open second stream });
 Seek(stream, 0, 0) { Rewind the stream });
 BlockWrite(file, stream { Write from stream to file });
 CloseStream(stream);
]

The BlockWrite function can be used to copy files as shown in the fol-
lowing example:

BlockWrite(FileStream ("File2.ext"), FileStream ("File1.ext"));

When used in a manner similar to the example shown above, the Block-
Write statement is particularly useful in copying files (the DOS equivalent

of "copy file1.ext file2.ext"), except in cases where File2 is larger than
File1. In cases where File2 is larger than File1, the result (File2) will be its
original size. All the data from File1 will overwrite the beginning portion
of the data in File2, with the remainder of the data originally contained
in File2 remaining untouched.
If you require an exact copy of File1 (rather than the File1 data appended
with the remaining File2 data), you can use an FWrite command to delete
the destination file before calling BlockWrite.

Boolean

(System Library)

Description: Takes a valid Boolean test and returns the numeric equi-
valent.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Logic Control

Related to: Boolean Logic Operators | Case | Cond | IF | IfElse| IfOne
| IfThen | PickValid

Format: \System\Boolean(Variable)

Parameters:

Variable

Required. The variable whose value is to be converted.

Comments:
This module is a member of the System Library, and must therefore be pre-
faced by \System\, as shown in the "Format" section. If you are developing a
script application, use "System\..." rather than "\System\..." in the function
call.
The return value from this module is 1 if Variable contains a valid Boolean
true of any case ("true", "t", "yes", "y", "on") and 0 otherwise.

Example:

Var = PickValid(System\Boolean(Var), 0);

Box

Note: Deprecated. Do not use in new code.

Description: Draws an empty box on the screen.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: Box | GUIRectangle | ZBox | ZBar

Format: Box(X1, Y1, X2, Y2, Style, Width, Color)

Parameters:

X

Required. Any numeric expression giving the X
coordinate of one side of the box on the screen. The
smaller of X1 and X2 will always be the left side.

Y1

Required. Any numeric expression giving the Y
coordinate of either the top or bottom of the box on
the screen. The smaller of Y1 and Y2 will always be the
top edge.

X2

Required. Any numeric expression giving the X
coordinate of the side of the box opposite to X1 on the
screen (either left or right)..

Y2

Required. Any numeric expression giving the Y
coordinate of either the top or bottom of the box,
whichever is the opposite to Y1.

Style

Required. Any numeric expression giving the line style
for the box wall. Valid line styles are from 1 to 10

inclusive. A line style of 1 is a solid line.

Width

Required. Any numeric expression giving the width of
the box wall in units of X screen coordinates. The
width is always rounded to result in an odd number of
pixels on the screen. The minimum width displayed
will be 1 pixel.

Color

Required. Any numeric expression giving the VTScada
Color Palette of the box.

Comments:
Box has been superseded by the GUIRectangle and ZBox statements, and is
maintained for backwards compatibility only.
As of version 11, this is now drawn in the same z-order as other graphics,
making it similar to the z-graphics functions.

Example:

Box(700, 500, 780, 580 { Bounding box },
1, 0 { Solid line style, one pixel wide },
9 { Bright blue color });

The example above draws a bright blue box in the lower right-hand
corner of the screen.

Brush

Description: Returns a brush value.

Returns: Numeric

Usage: Steady State only.

Function Groups: Color, Graphics

Related to: Pen | GUIPie | GUIEllipse

Format: Brush(Foreground, Background, Pattern)

Parameters:

Foreground

Required. Any numeric expression giving the
foreground color of the brush pattern. Any of
the following may be used:

l a palette index color

l a system color

l -1 (transparent)

l an RGB string in the format, "<RRGGBB>"

Background

Required. Any numeric expression giving the back-
ground color of the brush pattern. If there is a solid pat-
tern, this parameter is ignored.
Any of the following may be used:

l a palette index color

l a system color

l -1 (transparent)

l an RGB string in the format, "<RRGGBB>"

Pattern

Required. Any numeric expression giving the
hatch Fill Patterns to use.
A 0 is an invisible pattern, and a 1 is a solid pat-
tern. The maximum style value is 25.

Comments:
Brush values are used in layered graphics statements that paint areas (such
as GUIPie or GUIEllipse).
This function may not appear in a script.

Example:

 newStyle = Brush(12 { Red },
14 { Yellow },
25 { Brick pattern });

The example above creates a brush composed of red bricks outlined in
yellow.

BuffOrder

Description: Reverses the order of groups of bytes in a buffer, and
returns a new (rearranged) buffer.

Returns: Buffer

Usage: Script or steady state.

Function Groups: String and Buffer

Related to: BuffRead | BuffWrite | Replace | Reverse | ParmToBuff |
 BuffToParm

Format: BuffOrder(Buffer, Offset, Size, Increment, N)

Parameters:

Buffer

Required. Any text or buffer expression to be
reordered.

Offset

Required. Any numeric expression giving the initial
position within the buffer for the ordering, starting at
0. Offset must be greater than or equal to 0.

Size

Required. Any numeric expression greater than 0, giv-
ing the size of each group of bytes. Bytes within a
group will remain in their original order. The portion of
the original buffer that will be re-ordered must be
evenly divisible into groups of Size.

Increment

Required. Any numeric expression greater than 0, giv-
ing the number of groups of Size bytes to be
reordered. Re-ordering is done to the Size-groups
within Increments, not across Increments.

N

Required. Any numeric expression giving the total

number of Increment-groups to reverse.

Comments:
BuffOrder is part of the driver toolkit. The return value is a buffer containing
all bytes specified in the Buffer parameter with groups of bytes reversed. Off-
set + Size * Increment * N must be no greater than the length of Buffer.
Returns Invalid if any parameter does not meet its requirements.
BuffOrder is useful for altering buffers for use with the ParmToBuff or
BuffToParm functions.

Example:

 buff1 = BuffOrder("0123456789" { Buffer },
0 { Starting offset },
1 { Size of group },
10 { groups in shuffle },
1 { Number of repetitions });

In this example, Buff1 will be equal to "9876543210".

buff2 = BuffOrder("0123456789" { Buffer },
2 { Starting offset },
1 { Size of group },
2 { Groups in shuffle },
4 { Number of repetitions });

 In this example, Buff2 will be equal to "0132547698".

BuffRead

Description: Reads values from a formatted buffer and returns the num-
ber of values not read.

Returns: Numeric

Usage: Script Only.

Function Groups: String and Buffer

Related to: BuffOrder | BuffWrite | FRead | GetByte | SRead | SubStr

Format: BuffRead(Buffer, Offset, Format, V1, V2, V3, …)

Parameters:

Buffer

Required. Any text or buffer expression to read.

Offset

Required. Any numeric expression giving the initial buf-
fer position for the read, starting at 0.

Format

Required. Any text expression giving the format
of how the values (Vn parameters) are to be
read.
This format is similar, but not identical, to the C
language format string for the scanf function,
whereby each of the % format specifications
assigns a value to one of the Vn parameters in
the statement in the order in which each
appears in the list.
Note that like a standard text string, these
format specifiers must also be enclosed by
double quotes. If a format specification appears
for which there are no remaining V parameters,
the format specification value is read and dis-
carded.

For the % format specifications, the following
form applies (where the [] indicates optional ele-
ments):
%[*][width]type

Where…

% is mandatory;
The optional asterisk * causes the read to occur
as per the format specification, but suppresses
any assignment to the Vn parameters; and
width is mandatory, specifying the maximum
number of characters to read.
The specifications for type are listed in the fol-
lowing table:

Note: Note: Format strings are case insens-
itive. Additionally, specifying a character for a
type that is not in this list results in all the
characters following the % up to that point to
be read exactly as they appear in the Format
string and discarded.

Type Meaning

Nb Binary format, where n is a number
indicating the type of value (see below)

c Single ASCII character (byte)

d Signed decimal integer

e Signed exponential

f Signed floating point

g e or f formats

i Signed decimal integer

l Line of characters terminated by a car-
riage return, line feed, or both

n Present offset in the buffer

o Unsigned octal

s Text string

u Unsigned decimal integer

x Unsigned hex integer using "abcdef"

znnn Escape character where nnn is the 3-
digit ASCII code

nb, Binary type For the format specification of
%nb, where n specifies the type of number, n
must be a single digit from one of the following
choices. All are low-byte-first.

n value Type

0 Byte

1 Short integer (2 bytes, low byte first)

2 Long integer (4 bytes, low bytes first)

3 IEEE single precision float (4 bytes)

4 <obsolete>

5 IEEE double precision float (8 bytes)

6 <obsolete>

7 Binary unsigned short (2 bytes, low
byte first)

8 Unsigned 32-bit integer

c, ASCII character type: Unlike BuffWrite this
type deals with characters in a string; each char-
acter being equal to one byte. Unlike the %s
option, which reads only up to the first white-
space character, the %c option reads the number
of characters/bytes specified by its width and is
not terminated by any particular character. If no
width is specified, a single character is read.

d, Signed decimal integer

e, Signed exponential

f, Signed floating point

g, e or f formats

i, Signed decimal integer type: This option nor-
mally reads a decimal integer; however, if a lead-
ing "0b" is encountered, the number will be
interpreted as binary. If a leading "0" (zero only)
is encountered, the number will be interpreted
as octal. If a leading "0x" is encountered, the
number will be interpreted as hexadecimal.

l, Line of characters: This option reads a line of
characters terminated by a carriage return, a
line feed, or both (in either order). The carriage
return and line feed will be discarded, and the
next character read will be the first character on
the next line. The maximum number of char-
acters read is 4096 (or less if the width option is
used).

n, Buffer offset: This option does not read a
value, but returns the present offset in Buffer
and can be useful in subsequent reads.

o, Unsigned Octal

s, Text string type: Text in the string is read up

until a white-space character is encountered, or
the specified width has been read, whichever is
smaller. Square brackets enclosing a character,
group of characters, or a caret and a group of
characters used in the format string reads
strings not delimited by spaces. This is a sub-
stitute for the %s format specification. The input
is read up to the first character that does not
appear inside the square brackets (note that this
is case-sensitive). A dash may be used to specify
a range of characters. For example, the fol-
lowing format specifier:
% [A-Fa-f]
will read a string up to the first which is not an
A, B, C, D, E, or F both upper and lower case.

The caret symbol ^. If the first character inside
the square brackets is a caret (^), the read pro-
gresses up to, but not including, the first char-
acter that appears inside the square brackets:
%[^X-Z]
This would read a string up to, but not includ-
ing, the first X, Y or Z (upper-case only); if the
string were terminated by an X, the next char-
acter read would be that X. Inside the square
brackets, the backslash is used as an escape
character - any character following a backslash
(such as a caret, dash, or backslash) is taken as
that character without special meaning. For
example:
%[^X-Z\^]
would behave as described previously, except
that the string would now be read up to but not

including the first X, Y, Z, or ^.
Since format specifications for the Vn para-
meters are indicated by a percentage sign, to
read (and discard) an actual percentage sign as
part of the text string, precede it with a back-
slash character (i.e. \%). Also, since the back-
slash character is used in this manner, as well as
with special control characters such as line feed,
carriage return and form feed, to read and dis-
card a backslash, use two backslash characters
(i.e. \\).

x, Hexadecimal characters: the %x option reads
the number of characters/bytes specified by its
width and is not terminated by any particular
character. If no width is specified, it will con-
tinue reading all bytes that can be recognized as
hexadecimal characters. For example, given the
string "…= 3D", %[^=]=%2x would read the
hedadecimal value, 3D (decimal value, 61).

znnn, Escape characters: This specifies an
escape character that will be thrown away when
read, where nnn is a 3-digit number giving the
ASCII character code of the escape character.
This option is generally used as the sole format
specifier that reads an entire string, spaces
included, discarding every single occurrence of
an escape character, or the first occurrence of
every pair of escape characters. For example, if
the string to be read looked like:

abXc dXXfghiXXXjXXXXkl mX Xn o

and the format specifier indicated that the ASCII
code for 'X' (88) was to be the escape code:

%25z088

then the variable that this was read into would
contain:

abc dXfghiXjXXkl m n o

Notice that for each occurrence of X, the char-
acter immediately following it is saved, even if it
is itself an escape character. Then the next
occurrence of the escape character is discarded,
with the character following it being saved,
regardless of what it is, and so on. The width
field specifies the maximum number of bytes to
place in the output string; if this number is smal-
ler than the input string (less the offending
escape characters), the string will be truncated.
If no width is specified, a single character will be
read.

Control characters: In order to encode certain
control characters as part of the Format para-
meter, one of two methods may be used. The
first is to use a backslash character followed by
one of the single character codes listed below to
produce the desired result. Please note that the
letters must be lower case.

 Code Meaning

 \b Backspace

 \f Form Feed

 \n Line Feed

 \r Carriage Return

 \t Horizontal Tab

 \v Vertical Tab

 In addition to the predefined codes, an altern-
ate form may be used:

\nnn: where nnn is a three digit integer in the
range of 0 to 255 specifying a certain ASCII char-
acter. If the number contains less than three
digits, the leading spaces must be padded with
zeroes; this is not the case with the previously
listed single character control characters. For
example, to include the one byte ASCII character
G in the output, you could place its decimal equi-
valent of 71 in the Format string as \071.

V1, V2, V3
Optional. Parameters specifying the variables to
be read in the form described by the Format
parameter.
Expressions are not allowed.
Each of the Vn parameters is read in the order in
which each appears in the parameter list. V1 has
the format given by the first % sequence in the
Format parameter, V2 has the second, and so
forth.

Comments:

In early versions of VTS (WEB), there was a numeric leading parameter, N.
This should not be included in any new code.
The strings read by this function may be part of an I/O driver (such as a
message packet), or entered from the keyboard (such as a command-
line-interpreter interface). The return value is optional and is the num-
ber of Vn parameters not read; this can be used as an error flag.

Example:

If ! Valid(wellLevel);
[
BuffRead(fileData { Source buffer to read from },

0 { Starting offset, in characters },
"%f%d/%d/%d" { Format string },
wellLevel { First variable - read by %f },
sampleDay { Second variable - read by %d },
sampleMonth { Third variable - read by %d },
sampleYear { Fourth variable - read by %d });

]

The example shown above reads a floating point variable and 3 integers.
The slash characters "/" must be present in the fileData buffer; they will
be read and ignored. If the slash characters "/" are missing, reading will
be terminated when one is missed; all variables after that point will be
set invalid. If fileData contained:

"12.3 28/09/92"

wellLevel would be set to 12.3, sampleDay to 28, sampleMonth to 9, and
sampleYear to 92. If it is desired to skip a single character, use the "%*c"
option (read character and discard).

BuffStream

Description: Returns an in-memory read/write (expanding) buffer
stream.

Returns: Buffer

Usage: Script Only.

Function Groups: Stream and Socket, String and Buffer

Related to: BuffRead | BuffWrite | CloseStream | GetStreamLength |

 PeekStream | Seek | ShiftStream | SRead | StreamEnd |
 SWrite

Format: BuffStream(Buffer)

Parameters:

Buffer

Required. Any text or buffer expression. This serves as
the initial content of the stream.

Comments:
This function returns a stream with the contents of Buffer. The pointer at
which an action (read or write) begins will be at the start of the stream. Writ-
ing to this stream can overwrite or expand (or both,) the size of this initial
stream. In-memory stream can be considerably faster to work with than
disk-based streams. Streams can be easier to work with than their older
text-buffer counterparts.

Example

stream = BuffStream("0123456789");

In this example, the variable stream would contain "0123456789".

BuffToArray

Description: Reads an array from a formatted buffer containing numer-
ical data and returns the number of elements read.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Array, String and Buffer

Related to: ArrayToBuff | BuffToParm | BuffToPointer

Format: BuffToArray(ArrayElem, N, Buffer, Offset, Option, Size,
Skip)

Parameters:

ArrayElem

Required. Any array element giving the starting point
in the destination array where the data is to be stored.
The subscript for the array may be any numeric expres-
sion.

N

Required. Any numeric expression giving the number
of array elements to read, starting at the element given
by the first parameter. If N extends past the upper
bound of the array dimension, this computation will
"wrap-around" and resume at element 0, until N ele-
ments have been processed.

Buffer

Required. Any text or buffer expression to read. The
data stored in the buffer must be numeric.

Offset

Required. Any numeric expression giving the starting
buffer position for the read in characters (bytes), start-
ing at 0.

Option

Required. Any numeric expression that specifies
the format of the buffer read. This can be one
of:

Option Buffer format

0 Unsigned binary (low byte first)

1 Signed binary (low byte first)

2 BCD (binary coded decimal) (low byte
first)

3 ASCII octal (high byte first)

4 ASCII decimal (high byte first)

5 ASCII hex (high byte first)

6 ASCII floating point (high byte first)

7 IEEE float/double (low byte first)

8 <obsolete>

9 Allen-Bradley® PLC/3 floating point

10 VAX single precision floating point

For Options 7 and 9, the data is read as appropriate
binary format.

Size

Required. Any numeric expression giving the
number of digits in each datum; it has a dif-
ferent meaning for each option, as indicated
below.

Size Size Meaning Size Range

Binary
types

Number of bits 1 – 32 bits

BCD Number of 4-bit
digits

1 – 8 digits

ASCII types Number of bytes 1 – 32
bytes

Float types Precision
1 for single precision,
2 for double pre-
cision.

Skip

Required. Any numeric expression giving the number
of buffer units to skip after each element is read. Units
are bits for Options 0 and 1, BCD digits for type 2, and
characters or bytes for all others.

Comments:
BuffToArray may only be used with buffers containing numeric data.
Illegal characters embedded in the ASCII string stop further interpretation
and are ignored. If an illegal character or the end of a buffer is encountered
before a valid number, the remaining array elements are set to invalid.
The return value is the number of array elements read.

Example:

BuffToArray(data[0] { Starting array element },
100 { No. of elements to read from buffer },
response { Text expression to read },
0 { Starting offset in buffer, in chars },
2 { Read BCD format },
4 { 4 BCD characters is 2 bytes },
0 { Don't skip anything });

This example reads 100 BCD format numbers into array elements 0 to
99. Each BCD number has 4 digits, which occupy 2 buffer bytes.

BuffToHex

(System Library)

Description: Convert a buffer of text data to a string of hexadecimal val-
ues representing the ASCII code of each character in the
buffer.

Returns: Text

Usage: Script Only.

Function Groups: String and Buffer

Related to: WkStaInfo

Format: \System\BuffToHex(BinaryBuffer)

Parameters:

BinaryBuffer

Required. The buffer that is to be converted to a hexa-
decimal string.

Examples:

\System\BuffToHex("ABCD")

…will return "41424344"

\System\BuffToHex(10)

…will return "3031". 10 is interpreted as the string "10", not the numeric,
decimal value.

\System\BuffToHex(Concat(MakeBuff(1, 0xFF),
MakeBuff(1, 0x00),
MakeBuff(1, 0xAA)))

…will return "FF00AA"

MachineIDString = \System\BuffToHex(WkStaInfo(3));

…will return a hexadecimal representation of the workstation's unique
identifier.

BuffToParm

Description Convert buffer of numeric data to parameters. This func-
tion reads module parameters from a formatted buffer con-
taining numerical data and returns the number of data
items read.

Returns Numeric

Usage Script Only.

Function Groups String and Buffer, Compilation and On-Line Modifications

Related to: BuffToArray | Parameter | ParmToBuff

Format BuffToParm(Object, Index, Buffer, Offset, N, Option, Size,
Skip)

Parameters

Object

Required. The object value of the module containing
the destination parameters.

Index

Required. Any numeric expression giving the first para-
meter to read, starting at 1.

Buffer

Required. Any text or buffer expression to read.

Offset

Required. Any numeric expression giving the starting
buffer position for the read in characters (bytes), start-
ing at 0.

N

Required. Any numeric expression giving the number
of parameters to read from the buffer. If there are
fewer actual parameters than N specifies, this function
continues to the last parameter and then stops.

Option

Required. Any numeric expression that specifies
the format of the buffer read. This can be one
of:

Option Buffer format

0 Unsigned binary (low byte first)

1 Signed binary (low byte first)

2 BCD (binary coded decimal) (low byte
first)

3 ASCII octal (high byte first)

4 ASCII decimal (high byte first)

5 ASCII hex (high byte first)

6 ASCII floating point (high byte first)

7 IEEE float/double (low byte first)

8 <obsolete>

9 Allen-Bradley® PLC/3 floating point

10 VAX single precision floating point

For Options 7 and 9, the data is read as appropriate
binary format.

Size

Required. Any numeric expression giving the
number of digits in each datum. Size is meas-
ured in different ways for each format option
(specified in previous parameter), as indicated in
the following table:

Option Size Meaning Size Range

Binary
types

Number of bits 1 – 32 bits

BCD Number of 4-bit 1 – 8 digits

digits

ASCII
types

Number of bytes 1 – 32 bytes

Float
types

Precision 1 for single pre-
cision
2 for double pre-
cision

Skip

Required. Any numeric expression giving the number
of buffer units to skip after each element is read.
Units are bits for Options 0 and 1, BCD digits for type
2, and characters or bytes for all others.

Comments:
This function may only be used with buffers containing formatted numeric
data. It reads the buffer, and places the data into module parameters.
Normally, the module parameters will be variables. If a parameter is not a
variable, then nothing will be assigned to that parameter, and this statement
reads the next datum and continues on to the next parameter (if any). Illegal
characters that are imbedded in the ASCII string stop further interpretation
and are ignored. If an illegal character or the end of a buffer is encountered
before a valid number, the remaining parameters are set to invalid.
The return value is the number of data read; this can be used as an error
check (non-zero indicates an error).
This function is typically used in an I/O driver module to convert serial port
or shared RAM data to VTScada variables.

Example:
In this example, suppose that a module is started with the statement
(a.k.a. module call):

ReadIEEE(1, "PLC", 2, x, y, z);

and that the module ReadIEEE contains the following script:

If 1 Main;
[
BuffToParm(Self() { Data goes in this module's parms },

4 { Start at parm 4 (skip first 3) },
response { Formatted buffer to be read },
12 { Skip first 12 characters, 0 to 11 },
NParm(Self()) - 3
{ Compute number of parms to read },
7 { Format is IEEE floating point },
2 { Double precision },
1 { Skip 1 byte between each double });

]

This example reads IEEE double precision numbers from a buffer and
places them in the module ReadIEE's parameters. The bytes 0 to 11 of
response are skipped. Bytes 12 to 19 are converted from IEEE format and
placed in x. Byte 20 is skipped (the skip parameter indicates 1 byte).
Bytes 21 to 28 are converted and placed in y. Byte 29 is skipped. Bytes 30
to 37 are converted and placed in z. Reading ceases, (NParm(Self) - 3
equals 3, or three parameters have been read).

BuffToPointer

Description Converts a buffer of numeric data to array of pointers. This
function reads from a formatted buffer containing numeric
data, writes to locations specified by an array of pointers,
and returns the number of elements read.

Returns Pointer array

Usage Script Only.

Function Groups Array, String and Buffer

Related to: BuffToArray | BuffToParm | New | PointerToBuff

Format BuffToPointer(ArrayElem, N, Buffer, Offset, Option, Size,
Skip)

Parameters

ArrayElem

Required. Any array element giving the starting point
in the pointer array. The subscript for the array may be
any numeric expression.

N

Required. Any numeric expression giving the number
of items to read. If N extends past the upper bound of
the array dimension, this computation will "wrap-
around" and resume at element 0, until N elements
have been processed.

Buffer

Required. Any text or buffer expression to read.

Offset

Required. Any numeric expression giving the starting
buffer position for the read in characters (bytes), start-
ing at 0.

Option

Required. Any numeric expression that specifies
the format of the buffer read. This can be one
of:

Option Buffer Format

0 Unsigned binary (low byte first)

1 Signed binary (low byte first)

2 BCD (binary coded decimal) (low byte
first)

3 ASCII octal (high byte first)

4 ASCII decimal (high byte first)

5 ASCII hex (high byte first)

6 ASCII floating point (high byte first)

7 IEEE float/double (low byte first)

8 <obsolete>

9 Allen-Bradley® PLC/3 floating point

10 VAX single precision floating point

For Options 7 and 9, the data is read as appro-

priate binary format.

Size

Required. Any numeric expression giving the
number of digits in each datum. Size is meas-
ured in different ways for each format option
(specified in previous parameter), as indicated in
the following table:

Option Size Meaning Size Range

Binary
types

Number of bits 1 – 32 bits

BCD Number of 4-bit
digits

1 – 8 digits

ASCII
types

Number of bytes 1 – 32 bytes

Float
types

Precision 1 for single pre-
cision,
2 for double pre-
cision.

Skip

Required. Any numeric expression giving the number
of buffer units to skip after each element is read.
Units are bits for Options 0 and 1, BCD digits for type
2, and characters or bytes for all others.

Comments:
This function may only be used with buffers containing formatted
numeric data. Illegal characters that are imbedded in the ASCII string
stop further interpretation and are ignored. If an illegal character or the
end of a buffer is encountered before a valid number, the remaining ele-
ments are set to invalid. As each item is read from the buffer, the result
is stored to the location pointed to by the element of the array. If an ele-

ment is invalid, or doesn't contain a pointer, then nothing happens and
processing continues with the next item/element.
The return value is the number of array elements read. This may be used
as an error check - if the return value is not zero, then one or more array
elements were not read.

Example:
Assume that the pointer array has been initialized as shown:

destination[0] = &stationFlow;
destination[1] = &stationPower;
destination[2] = &stationIntruder;
destination[3] = &stationOK;
destination[4] = &stationPressure;

Now execute the statement:

BuffToPointer(dDestination[0] { Starting element },
5 { No. of elements to read },
rResponse { Text expression to read },
0 { Starting offset in buffer },
2 { Read BCD format },
4 { 4 BCD characters is 2 bytes },
0 { Don't skip anything });

This reads 5 BCD format numbers into variables pointed to by elements 0
to 4. Each BCD number has 4 digits, which occupy 2 buffer bytes. This
will set the variables stationFlow, stationPower, stationIntruder, sta-
tionOK, and stationPressure to the values read from the buffer.

BuffWrite

Description: Writes formatted values to a buffer and returns the number
of values not written.

Returns: Numeric

Usage: Script Only.

Function Groups: String and Buffer

Related to: BuffRead | FWrite | SetByte | SWrite | ArrayToBuff |
 MakeBuff

Format: BuffWrite([N,] Buffer, Offset, Format, V1, V2, V3, …)

Parameters:

Buffer

Required. Any text or buffer expression to be written.
The buffer must already exist.
Buffers are created by certain functions, such as
ArrayToBuff or MakeBuff, or by assignment of a text
string such as "Hello." BuffWrite writes to an existing
buffer, which is faster than creating a new buffer.
Writing to an empty buffer has no effect.

Offset

Required. Any numeric expression giving the starting
buffer position in characters or bytes for the write,
starting at 0.

Format

Required. Any text expression giving the format
of how the values (Vn parameters) are to be writ-
ten. This format is similar, but not identical, to
the C language format string for the printf func-
tion, whereby each of the Vn parameters in the
statement is assigned to a % format spe-
cification in the order in which each appears in
the list.
Note that like a standard text string, these
format specifiers must also be enclosed by
double quotes.
If a format specification appears for which there
are no remaining V parameters, the format spe-
cification characters themselves are output to
the stream exactly as they appear in the Format.
For the % format specifications, the following
form applies (where the [] indicates optional ele-
ments):

%[-][+][SPACE][#][width][.precision]type
where
% (percent sign) is mandatory;
- (minus sign) causes the data to be left jus-
tified within the field (for binary types b and
ASCII character types c, this option is ignored);
+ (plus sign) causes positive numbers to be pre-
faced with a + sign (negative numbers are unaf-
fected). This allows easy alignment of positive
and negative numbers in a printed column of
numbers. For binary types b and non-numerical
types, this option is ignored;
space represents the single space character, and
is similar to the [+] option but places a single
space rather than a plus sign in front of positive
numbers (negative numbers are still unaffected).
This allows alignment of a column of numbers
without having to show all signs. For binary
types b and non-numerical types, this option is
ignored;
(hash mark) When used with the o , x , or X
format, the # flag prefixes any nonzero output
value with 0, 0x, or 0X, respectively.
width is a number that specifies the minimum
number of characters to output. Numbers that
require more characters than specified by the
width value are truncated on output. If the num-
ber of characters in the number or string is less
than width, blanks will be added to the left or
right, depending upon whether the output is left
or right justified (i.e. whether or not the [-]
option has been specified) until the width is
reached. For binary types b and ASCII character

types c, this option is ignored;
precision has a different meaning for each of
the type options as follows:

l Integer types d, l, u, o, x, and X precision spe-
cifies the minimum number of digits to output. If
the number contains fewer digits, leading zeroes
will be added to the left of the number. If pre-
cision is 0, omitted, or if the decimal point
appears without a number following it, the pre-
cision defaults to 1. The number is not trun-
cated.

l Floating point types e and E precision specifies
the number of digits after the decimal point. The
last digit is rounded. The default precision in this
case is 6. If the precision is 0 or if the decimal
point appears without a number following it, no
decimal point appears in the output.

l Floating point type f precision specifies the num-
ber of digits after the decimal point. The last digit
is rounded. The default precision is 0. If the pre-
cision is explicitly 0, no decimal point is output.
If a decimal point is output, at least one digit will
be placed before the decimal point.

l Floating point types g and G precision specifies
the maximum number of significant digits to be
output. If no precision is specified, all significant
digits are written.

l String type s precision specifies the maximum
number of characters of the string to be output.
If the string contains more characters than spe-
cified by the precision, the string is truncated
and only the first characters are written. If the
precision is not specified, all of the string char-
acters are output.

l ASCII character type c The precision option is
ignored.

l Binary type b The precision option is ignored.
x unsigned hex integer using "abcdef"
znnn Escape character where nnn is the 3-digit
ASCII code
type is mandatory. The type specification must
be one of those listed below.
Note: The case of the letter is important. Spe-
cifying a character for the type that is not in this
list will result in all the characters following the
% up to that point to be output exactly as they
appear in the Format string.

Type Meaning

nb Binary format, where n is a number indic-
ating the type of value (see below).

c Single ASCII character (byte)

d Signed decimal integer

e Signed exponential; exponent key is "e".

E Signed exponential; exponent key is "E".

f Signed floating point.

g e or f format, whichever is shorter.

G E or f format, whichever is shorter.

h Handle to a window.

i Signed decimal integer.

o Unsigned octal integer.

p Pointer to a buffer.

s Text string.

u Unsigned decimal integer.

x Unsigned hex integer using "abcdef".

X Unsigned hex integer using "ABCDEF".

nb, Binary type For the format specification of
%nb, where n specifies the type of number, n
must be a single digit from one of the following
choices. All are low-byte-first.

n Value Type

0 Byte, unsigned

1 Signed short integer (2 bytes)

2 Signed long integer (4 bytes)

3 IEEE single precision float (4 bytes)

4 <obsolete>

5 IEEE double precision float (8 bytes)

6 <obsolete>

7 Unsigned short integer (2 bytes)

8 Unsigned long integer (4 bytes)

Note: Other options such as width and precision
do not apply to the b type.
c, ASCII character type: This type is not rep-
resentative of a single character in a string, but
rather, represents single byte ASCII characters.
Input values (the Vn parameter to which this
format specification applies) must be integers in
the range of 0 to 255 in order for the output to
be a valid ASCII equivalent character. Strings are
not acceptable input values. Note that the %c

format specifier behaves differently when used
in an output statement such as BuffWrite than
when used in an input statement, such as
BuffRead.
d, Signed decimal integer:
e, Signed exponential: Exponent key is “e”
E, Signed exponential: Exponent key is “E”
f, Signed floating point
g, e or f formats: Whichever is shorter
G, E or F formats: Whichever is shorter
h, Window handle type: This type is used for
building structures to be handed to DLLs and
should be used by advanced users only.
p, Buffer pointer type: This type is also used
for building structures to be handed to DLLs
and should be used by advanced users only.
s, Text string type:
Plain text Text in the Format parameter is writ-
ten exactly as it appears, with three exceptions:

l Percentage sign (%) Since format specifications
for the Vn parameters are indicated by a per-
centage sign, to include an actual percentage
sign as part of the Format parameter, precede it
with a backslash character (i.e. \%).

l Backslash character (\) Since this is used to indic-
ate special control characters such as line feed,
carriage return, and form feed, to write a back-
slash as part of the Format parameter, use two
backslash characters (i.e. \\).

l Quotation marks (") The entire test string is
delimited by quotation marks, so to include a set
of quotation marks as part of the Format para-
meter, use a set of quotations marks (i.e. "").

Control characters In order to encode certain
control characters as part of the Format para-
meter, one of two methods may be used. The
first is to use a backslash character followed by
one of the single character codes listed below to
produce the desired result (notice that the let-
ters must be lower case):

Code Meaning

\b Backspace

\f Form feed

\n Line feed

\r Carriage return

\t Horizontal tab

\v Vertical tab

\nnn In addition to the above predefined codes,
\nnn may be used, where nnn is a three digit
integer in the range of 0 to 255 specifying a cer-
tain ASCII character. If the number contains less
than three digits, the leading spaces must be
padded with zeroes; this is not the case with the
previously listed single character control char-
acters. For example, to include the one byte
ASCII character G in the output, you could place
its decimal equivalent of 71 in the Format string
as \071.
u, Unsigned decimal integer,
x, Unsigned hex integer using “abcdef”
X, Unsigned hex integer using “ABCDEF”
Offset is any numeric expression giving the start-
ing buffer position in characters or bytes for the

write, starting at 0.

Comments:
In early versions of VTS (WEB), there was a numeric leading parameter, N.
This should not be included in any new code.
If one of the values to be written is outside of the range of the type indicated
by the format specifier, a 0 is written. If the value to be written is invalid,
nothing is written for most format specifiers, with the exception of %nb,
which will write a 0 in the place of the invalid. Invalidity of the output values
does not preclude execution of this function.
This function returns the number of Vn parameters not written to the buffer;
a 0 return value indicates success. Variables that contain invalid values that
were not written due to their invalidity do not increment this count. An
invalid return value indicates an error with one of the parameters.
This function can be used to format strings for display, or for message pack-
ets as part of the driver toolkit.

Example:

If ! Valid(buff);
[
buff = MakeBuff(100, 0) { Create the buffer };
BuffWrite(buff { Buffer },

 0 { Starting offset },
 "A=%3.2d\r\nB=%6.2f\r\n%8.3s\r\n%c\r\n\033" { Format
string },
 2, 2/3, "finished", 33 { Values to be written });
]

This would set buff as follows :

A= 02
B= 0.67
fin
!
!

BuildDelete

(ODBC Manager Library)

Description: Builds SQL Delete statements based on arrays of field
names and values. Made to be called as a subroutine only.

Returns: Text (the SQL statement)

Usage: Script Only.

Related to: BuildInsert | BuildSelect | BuildUpdate

Format: \ODBCManager\BuildDelete(TableName, WhereFields,
WhereOperators, WhereValues, WhereSQLDataTypes,
WhereAND, dbType)

Parameters:

TableName

Required. Any text expression for the table name to
delete records from.

WhereFields

Required. May be a simple value or a one-dimensional
array. Provides the field names for the WHERE selec-
tion clause

WhereOperators

Required. May be a simple value or a one-dimensional
array. Provides the operators for the WHERE selection
clause

WhereValues

Required. Any SQL data type. May be a simple value or
a one-dimensional array. Values for the WHERE selec-
tion clause

WhereSQLDataTypes

Required. Values indicating the data type of the insert
values. Should be a simple value or an array matching
the WhereFields parameter. Refer to Data Type Codes
used in the ODBC Manager for a list of the value codes.

WhereAND

Required. Any expression that evaluates to a Boolean
true or false.
If set to true (non-zero) then the components of the

WHERE clauses are to be ANDed together.
If false (0) an OR is used between the sub clauses.

dbType

Required numeric value, indicating the type of this DB
connection.

DBType Meaning

0 MS SQL

1 MS Access

2 Oracle

3 MySQL

4 SyBase

Comments:
This module is a member of the ODBCManager Library, and must therefore
be prefaced by \ODBCManager\, as shown in "Format" above.
If the WhereFields parameter is invalid, the SQL statement returned will be
"DELETE FROM [Tablename]". The ExecuteQuery function includes a check
that will prevent a delete statement without a where clause from running.

BuildFullName

Description If a namespace and namespace delimiter are being used,
returns the full, namespace-qualified name of the spe-
cified account.

Returns String

Usage Script Only.

Related to: GetAccountID | GetAccountInfo | GetGroupName |
GetFullName | GetUserName | IsLoggedOn | IsSecured |
IsSuspended | SecurityCheck | UIErrorToText | See also,
"Security NameSpaces" in the VTScada Programmer's
Guide.

Format BuildFullName(AccountName [, GroupName]);

Parameters

AccountName

The name of an account to generate the full name for.

GroupName

The name of a namespace (group) to use when build-
ing the full name.

Comments If the configuration setting NameSpaceDelimiter is valid,
returns the full, namespace-qualified name of the specified
account.
If the GroupName parameter is Invalid or not specified, or
if the account is a member of the root namespace, or the
configuration setting NameSpaceDelimiter is Invalid, the
return value is the account name, as passed in.

BuildInsert

(ODBC Manager Library)

Description: Builds SQL Insert statements based on arrays of field names
and values. Made to be called as a subroutine only.

Returns: Text or ODBCQuery structure.

Usage: Script Only.

Related to: BuildDelete | BuildSelect | BuildUpdate

Format: \ODBCManager\BuildInsert(TableName, InsertFields,
InsertValues, SQLDataTypes, dbType)

Parameters:

TableName

Required. The name of the table into which data will be
inserted.

InsertFields

Required. May be a simple value or a one-dimensional
array. Field names matching the InsertValues array of
data to be inserted

InsertValues

Required. Any SQL data type. May be a simple value or
a one-dimensional array. Provides the new value(s) for
the fields in the matching InsertFields parameter.

SQLDataTypes

Required. Values indicating the data type of the insert
values. Should be a simple value or an array matching
the InsertFields parameter. Refer to Data Type Codes
used in the ODBC Manager for a list of the codes.

dbType

Required numeric value, indicating the type of this DB
connection.

DBType Meaning

0 MS SQL

1 MS Access

2 Oracle

3 MySQL

4 SyBase

Comments:
This module is a member of the ODBCManager Library, and must therefore
be prefaced by \ODBCManager\, as shown in "Format" above.
Returns the SQL INSERT statement as a text string, unless long binary data is
involved, in which case an ODBCQuery structure is returned. The format of
the structure is as follows:

ODBCQuery STRUCT [
QueryString;
Parameters;

];

BuildSelect

(ODBC Manager Library)

Description: Builds SQL selection queries using supplied field names
and values. Made to be called as a subroutine only.

Returns: Text (the SQL query)

Usage: Script Only.

Related to: BuildInsert | BuildDelete | BuildUpdate

Format: \ODBCManager\BuildSelect(SelectFields, TableName,
WhereFields, WhereOperators, WhereValues,
WhereSQLDataTypes, WhereAND, OrderFields, Qualifier)

Parameters:

SelectFields

Required. Text array of field Names to read

TableName

Required. May be a simple value or a one-dimensional
array. The name(s) of the table(s) that will be queried.

WhereFields

Required. May be a simple value or a one-dimensional
array. Field names for WHERE clause

WhereOperators

Required. May be a simple value or a one-dimensional
array. Operators for WHERE clause

WhereValues

Required. Any SQL data type. May be a simple value or
a one-dimensional array. Values for WHERE clause

WhereSQLDataTypes

Required. Values indicating the data type of the insert
values. Should be a simple value or an array matching
the WhereFields parameter.
Refer to Data Type Codes used in the ODBC Manager
for a list of the codes.

WhereAND

Required. Can be any expression that evaluates to a
Boolean true or false.
If set to true (non-zero) then the components of the
WHERE clauses are to be ANDed together.

If false (0) an OR is used between the sub clauses.

OrderFields

Required. May be a simple value or a one-dimensional
array. Provides the field names for ORDER BY clause

Qualifier

Required. SQL Qualifier such as "top 100", "unique", etc

Comments:
This module is a member of the ODBCManager Library, and must therefore
be prefaced by \ODBCManager\, as shown in "Format" above.

BuildUpdate

(ODBC Manager Library)

Description: Builds SQL UPDATE statements using supplied field names
and values. Made to be called as a subroutine, but will func-
tion as a called module.

Returns: Text

Usage: Script Only.

Related to: BuildInsert | BuildSelect | BuildDelete

Format: \ODBCManager\BuildUpdate(TableName, UpdateFields,
UpdateValues, SQLDataTypes, WhereFields,
WhereOperators, WhereValues, WhereSQLDataTypes,
WhereAND, dbType)

Parameters:

TableName

Required. Any expression for the name of the table to
be updated.

UpdateFields

Required. May be a simple value or a one-dimensional
array. Provides the field names to be updated

UpdateValues

Required. Any SQL data type. May be a simple value or

a one-dimensional array. Provides the new values for
the fields

SQLDataTypes

Required. Values indicating the data type of the update
values. Should be a simple value or an array matching
the UpdateFields parameter. Refer to Data Type Codes
used in the ODBC Manager for a list of the numeric
codes.

WhereFields

Required. Any expression or array of the field names
for WHERE clause

WhereOperators

Required. May be a simple value or a one-dimensional
array. Operators for WHERE clause

WhereValues

Required. May be a simple text value or a one-dimen-
sional array of text. Values for WHERE clause

WhereSQLDataTypes

Required. Values indicating the data type of the insert
values. Should be a simple value or an array matching
the WhereFields parameter. Refer to Data Type Codes
used in the ODBC Manager for a list of the numeric
codes.

WhereAND

Required. Can be any expression that evaluates to a
Boolean true or false. If set to true (non-zero) then the
components of the WHERE clause are to be ANDed
together. If false (0) an OR is used between the sub
clauses.

dbType

Required numeric value, indicating the type of this DB
connection.

DBType Meaning

0 MS SQL

1 MS Access

2 Oracle

3 MySQL

4 SyBase

Comments:
This module is a member of the ODBCManager Library, and must therefore
be prefaced by \ODBCManager\, as shown in "Format" above. Returns the
SQL UPDATE statement as a text string unless binary parameters are
involved, in which case an ODBCQuery structure is returned. The format of
the structure is as follows:

ODBCQuery STRUCT [
QueryString;
Parameters;

];

C Functions
The sections that follow identify all VTScada functions beginning with
"C".

Call

Description: Starts an instance of the module specified by its first para-
meter.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Basic Module

Related to: FindVariable | Self

Format: Call(Module [,Parm1, Parm2, Parm3, …])

Parameters:

Module

Required. Any expression for the module that is to be
started.

Parm1, Parm2, Parm3, …

Optional. Expressions to be passed to the module that
is being started.

Comments: The additional parameters that are specified are passed to
the started module as parameters to the call.

Example:

ZEditField(10, 40, 110, 10, mod, 32, 0, 1);
If Valid(mod) && ! Valid(x);
[
x = FindVariable(mod, Self(), 0, 1);

]
...
Call(x);

This section of code enables the user to enter a module name into the
edit field, which will then be located by the script and started by the Call
statement. Notice that in this particular example, no parameters are
passed to the module, however, more edit fields could be created to
accept variables or values to use as parameters to the module by enter-
ing them in the Call statement.

CalledInstances

Description: Returns the object values of module instances that are
called by a particular module.

Returns: Object(s)

Usage: Script Only.

Function Groups: Advanced Module, Compilation and On-Line Modi-
fications

Related to: ChildInstances | Self | GetInstance | Instance |
 NumInstances | Valid

Format: CalledInstances(Object [Options])

Parameters:

Object

Required. An object value of the module instance for
which to get the number of called instances.

Options

Optional. Any numeric expression that defines
which modules are to be included in the
returned set.
The value for this parameter is formed by
adding together the values from the following
table:

Options
Bit Num-

ber
Description

1 0 Include all modules, even if
they are in the same window
as their caller; false to only
include (root) modules for
modules in separate win-
dows.

2 1 Recurse into called modules
of called modules; false to
only include modules dir-
ectly called by the Object
parameter.

4 2 Group all instances of the
same module into an array
and store that array of

object values in the element
of the returned array,
instead of the object value.

Comments: The return value is an array of objects which are called
from Object. If no instances are called from Object, Invalid
is returned.

Example:

i = -1;
...
If i == -1;
[
numCalled = CalledInstances(Self());
i++;

]
If Valid(numCalled[i]);
[
Slay(numCalled[i], 0);
i++;

]

The first If statement and script creates an array of object values to all
instances called by the current module; the second If and script slays all
of these instances. Notice that in the case of the first script, the action
trigger must be based on i rather than on a Valid test of numCalled; if
this were not the case and ! Valid(numCalled) was used instead, then, if
there were in fact no instances called from this module, CalledInstances
would return Invalid, and an "if one" (infinite loop) condition would
occur.

Caller

Description: Takes a given object value for a module and returns the
object value of the module by which it was called.

Returns: Object

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Basic Module

Related to: FindVariable | Self

Format: Caller(Object)

Parameters:

Object

Required. An object value that specifies the instance
whose caller is desired.

Example:

obj = Caller(Self());

This assigns the pointer to the caller of the current module to variable
Obj.

CallerID

Description: Takes a specified modem stream and returns the caller ID
from the telephone system.

Returns: Text

Usage: Script Only.

Function Groups: Modem

Related to:

Format: CallerID(ModemStream)

Parameters:

ModemStream

Required. The modem stream from which you wish the
caller ID returned.

Comments: A modem that supports caller ID as provided by the local
phone service is required.

CancelCall

Modem Manager

Description: This subroutine removes a queued call or abandons a call
that is in-progress.

Usage: Script Only.

Related to: MakeCall

Format: \ModemManager\CancelCall(Tag [, HangUp, NoCancel,
Silent]);

Parameters:

Tag

Any text expression that identifies the tag that ori-
ginally requested the call.

HangUp

An optional Boolean parameter that specifies whether
or not to hang-up on an active call. The default is to
allow an active call to proceed.

NoCancel

An optional Boolean parameter that, if set, will remove
the call from the internal queue, but not terminate the
call.

Silent

An optional Boolean parameter indicating the logging
is not required if set TRUE.

Comments: As described under MakeCall, once a tag has requested
that a call be made, the Modem Manager takes respons-
ibility for the control of the call, and indicates progress in
the tag's DataPort variable. If the tag decides at any point
before the Modem Manager has completed (or abandoned)
the call that it no longer requires the call, then the tag
must call CancelCall.

CanEditDoc

Description: Returns an indication as to whether or not the document

for the given module can be edited.

Warning: This function should be used by advanced programmers
only.

Returns: Boolean

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: ResyncDoc

Format: CanEditDoc(Module [, ErrCode])

Parameters:

Module

Required. Any module value that specifies the doc-
ument that you wish to modify.

ErrCode

Optional. Is set to a non-zero value when
CanEditDoc returns a 1. The return value is a col-
lection of 3 bits:

ErrCode Bit No. Description

1 0 TRUE if not available (001)

2 1 TRUE if read only (010)

3 2 TRUE if file is out of sync
(100)

Comments: This function returns true if the document for the given
module can be modified. The function will check to see if
the date and time for the document file match that of the
run file. It will return false if the document does not exist, if
the dates and times are out of sync, or if the document is
"Read Only".

Example:

If Watch(1, CurrentWindow());
[
IfElse(CanEditDoc(CurrentWindow()),

editFlag = 1,
editFlag = 0);

]

This script will be executed as soon as its state becomes active, and then
every time the mouse moves over a new window; the flag called editFlag
will indicate whether or not editing can be done in the window that the
mouse is over.

CaptureImage

Description: Creates an image handle from a GUIStretch operation

Returns: Bitmap handle

Usage: Script Only.

Function Groups: Graphics

Related to: SaveImage |

Format: CaptureImage(Object, Left, Bottom, Right, Top);

Parameters:

Object

The object whose image is being captured

Left

The left coordinate of the capture.

Bottom

The bottom coordinate of the capture.

Right

The right coordinate of the capture.

Top

The top coordinate of the capture.

Comments: Creates an image capture of anything drawn by the object

or its children within the provided (optional) coordinates.
This image is stored in a bitmap handle identical to the out-
put of the MakeBitmap function, meaning that it can be
modified, displayed or saved.

Examples:

{ GUIStretch calling a module }
GUITransform(296, 736, 469, 563,
 1, 1, 1, 1, 1 { Scaling },
 0, 0 { Movement },
 1, 2 { Visibility, Reserved },
 0, 0, 0 { Selectability },
 Obj = MyModule("GUIStretch of MyModule"));

{ Capture an image of the module every second }
If TimeOut(1, 1);
[
 CapturedImage = CaptureImage(Obj);
]

CaptureSettings

Description: Gathers a single property value or an accumulated section
and returns the result in a tabular format.

Returns: Object

Usage: Script Only.

Function Groups: Configuration Management

Related to: GetINIProperty |

Format: LayerRoot\CaptureSettings(Section, ValueName, pResult,
CallerHasLock)

Parameters:

Section

Required. The name of the section where the property
will be found.

ValueName

Required. The name of the property to return. Set to
Invalid to retrieve the entire section.

pResult

Required. A pointer to a variable, in which the
retrieved property or properties will be returned.

CallerHasLock

Boolean. Set to TRUE if the caller holds the semaphore.

Comments: This function gathers settings data from an active cache
that keeps up-to-date inheritance information across all
ancestor layers back to the setup.INI file for the VTScada
System layer. This is the preferred method for inquiring
about the current value of a setting that is not stored in a
"Code" object variable ("Code" variables are created for set-
tings in the [SYSTEM], [LABELS], and [AREAS] sections).
This is an asynchronous operation which in most cases
executes very quickly, its return value is an object which
becomes invalid when the op completes. The caller must
not slay itself while this object is valid.

Comments are not included in the output, but hidden val-
ues are. The settings accumulation is stored in a Layer-
level variable named CaptureCache. This variable is
refreshed on the next call after a settings file changed as
reported by LayerSettingsMod\LayerNotify via the Recap-
tureSettings flag. If this flag isn't set then CaptureSettings
simply reads the requested value from the cache without
acquiring the lock. The check is performed in a critical sec-
tion to prevent result corruption due to settings changes on
other threads.

Examples:

EmailProperties = \LayerRoot\CaptureSettings("System", "OutBoundE-
mailSettings", &EmailSettings, 0);

Case

Description: Selects one of a set of parameters for execution and

returns its return value.

Returns: Numeric

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Logic Control

Related to: ?: (If Else) | Cond | Execute | IfElse | IfThen

Format: Case(Index, P0, P1, P2)

Parameters:

Index

Required. Any numerical expression giving the para-
meter number to execute. If this value is 0, the para-
meter executed is P0.

P0, P1, P2, …

Required. The statements, one of which will be
executed as specified by the value of Index.
At most one statement is executed. These parameters
are typically Execute statements.

Comments: The return value of this function is the return value of the
parameter executed, or invalid if no parameter is
executed.

Example:

If 1 Main;
[
Case(pumpNum { Number varies from 0 to 3 },

{ 0 }pumpDesc = "Pump 0",
{ 1 }Execute(pumpDesc = "Pump 1", Diesel = TRUE),
{ 2 }pumpDesc = "Pump 2",
{ 3 }pumpDesc = "Pump 3");

]

This sets the pumpDesc variable according to pumpNum and in the
second case, uses the Execute function to accomplish more than one task
based on the value of pumpNum. If setting pumpDesc was all that
needed to be done, the statement could have been shortened to:

If 1 Main;
[
pumpDesc = Case(pumpNum,

{ 0 } "Pump 0",
{ 1 } "Pump 1",
{ 2 } "Pump 2",
{ 3 } "Pump 3");

]

Cast

Description Takes a value and returns a different type of value, if pos-
sible.

Returns Numeric

Usage Script or steady state.

Function Groups Compilation and On-Line Modifications, Variable

Related to: ValueType

Format Cast(Val, Type)

Parameters

Val

Required. Any variable name.

Type

Required. A VTScada Value Types - Numeric Reference
indicating what type of value should be returned.

Comments This function performs a type-cast, changing one type of
value to another. Note that values that are converted to
integers are truncated, rather than rounded.
If a stream longer than 65,523 characters is cast to a text
string, it will be truncated at 65,523 characters.

Example:

xFloat = 2.61;
xInt = Cast(xFloat, 1);

The value of xInt will be set to 2.

Ceil

Description: Returns the smallest integer greater than or equal to a num-
ber (the ceiling).

Returns: Numeric

Usage: Script or steady state.

Function Groups: Rounding Math

Related to: Int | Step

Format: Ceil(X)

Parameters:

X

Required. Any numeric expression for which the ceil-
ing should be determined.

Comments: This function performs function similar to that of the Int
function, except that it goes to the next highest number.

Example:

a = Ceil(1.00);
b = Ceil(1.01);
c = Ceil(1.99);

The values of a, b and c will be 1, 2 and 2 respectively.

Change

Description: Returns a true when the value of the first parameter
changes by at least the value of the second parameter.

Returns: Boolean

Usage: Steady State only.

Function Groups: Variable

Related to: DeadBand | Edge | Latch | Toggle | Save

Format: Change(Value, MaxLimit)

Parameters:

Value

Required. Any numeric expression giving the value to
check for the change.

MaxLimit

Required. Any numeric expression giving the amount
by which Value must change for the function to be
true. The change in Value must be strictly greater than
MaxLimit for the Change function to be true.
If MaxLimit is less than zero, the function will always
be true.

Comments: The change specified by MaxLimit is the absolute value of
the change so the Value is checked for an increase or
decrease by this amount.
The initial value used in the comparison for the change is
the value when the function is first executed upon entering
a state or when the parameters become valid. This initial
value is reset by functions that reset their parameters (i.e.
Latch, Toggle, and Save) and by action triggers.
Note that Value must change from a valid value to another
valid value; changing to or from an invalid value does not
trigger a Change.

Example:

Save(0, 0, 0, 0, 1, 0, 0 { Save 1 float value to disk },
1000 { Number of records },
50 { Buffer 50 records },
"G:\DATA\SETPT.DAT" { file name },
Change(sp, 0) { Trigger - any changes in sp },
sp { Setpoint value to log });

This shows how to use a Change function as a trigger for a Save state-
ment to log data whenever the datum changes; notice that by using a 0
as the MaxLimit value, all changes no matter how small are registered.
When the Save statement is triggered (when data are logged), the Change
statement is reset to wait for another change.
An example of how Change is used is as an action trigger follows:

If Change(x, 0.5);
[
...

]

The script will execute once every time x changes by more than 0.5. The
Change function is reset when it is used in a action trigger and it
becomes true. Suppose the following happens to x:

x (initial value) = 3.4
x (changes to) = 3.5 -> Nothing happens yet
x (changes to) = 3.9 -> Action triggers, script executes,
Change is reset

Change now waits for x < 3.4 or x > 4.4

x (initial value) = 4.1
x (changes to) = 4.2 -> Nothing happens yet
x (changes to) = 5.1 -> Action triggers, script executes,
Change is reset

Change now waits for x < 4.6 or x > 5.6

Related Information:
See: "Latching and Resetting Functions" in the VTScada Programmer's
Guide

ChangePersistentSize

Description: Changes the space allocated in the persistent value (.VAL)
file for a variable.

Warning: This function should be used by advanced programmers
only since irrevocable alteration of your application may
occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Variable

Related to: AddVariable | FindVariable | MakeNonPersistent |
 MakePersistent | PersistentSize

Format: ChangePersistentSize(Variable, Size)

Parameters:

Variable

Required. Any expression for the variable value. This
value is usually returned from a call to AddVariable or
FindVariable.

Size

Required. The new size for the persistent variable.

Comments: This statement will only work on variables that are already
persistent. It will adjust the size of allocated space in the
persistent value (.VAL) file for the owning module.

Example:

If 1 Main;
[
ChangePersistentSize(FindVariable("runningHrs",

Self(), 0, 1), 40);
]

This changes the persistent size for the variable runningHrs (if it was
already defined as persistent).

CharCount

Description: Returns the number of bytes in a section of a buffer that
matches a search character.

Returns: Numeric

Usage: Script or steady state.

Function Groups: String and Buffer

Related to: Locate | Replace

Format: CharCount(Buffer, Offset, N, Match)

Parameters:

Buffer

Required. Any text expression giving the buffer to
search.

Offset

Required. Any numeric expression giving the starting
buffer position for the CharCount, starting at 0.

N

Required. Any numeric expression giving the number
of bytes to include in the search.

Match

Required. Any numeric expression giving the byte (usu-
ally an ASCII code) for which to search. Match must be
in the range of 0 to 255.

Comments: Offset + N must be less than or equal to the buffer length,
or the return value will be invalid.

Example:

num = CharCount("abcdefABCDEFc" { Search buffer },
0 { Start of the buffer },
13 { Search the entire buffer },
0x63 { Find the character "c" });

Num is set to 2 (the two lower case "c"s match but the upper case "C"
doesn't).

CheckBox

(System Library)

Description: Draws a check box with (optional) label.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: Droplist | GridList | Listbox | Spinbox

Format: \System\CheckBox(X1, Y1, X2, Y2, Variable [, Label,
BoxOnLeft, Alignment, FocusID, BGColor, FGColor])

Parameters:

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the check box
and its label. The smaller of X1 and X2 will always be to
the left

Y1

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the check box. The smaller of Y1 and Y2 will always be
the top.

X2

Required. Any numeric expression giving the X
coordinate on the screen of the side of the check box
and its label opposite to X1.

Y2

Required. Any numeric expression giving the Y
coordinate on the screen of the top or bottom of the
check box, whichever is the opposite to Y1.

Variable

Required. The variable whose value is toggled by the
check box.

Label

Optional. Any text expression to be used as a label
with the check box. The default value is a blank label.

BoxOnLeft

Optional. Any logical expression. If true (non-0) the
check box will appear to the left of the label.
If false (0) it will be to the right.
The default value is true.

Alignment

Optional. Any numeric expression that sets the
alignment of the check box and its label accord-

ing to one of the following options:
The default value is 0.

Value
Horizontal Align-

ment
Vertical Align-

ment

0 Left Top

1 Right Top

2 Full Top

3 Left Centered

4 Right Centered

5 Full Centered

6 Left Bottom

7 Right Bottom

8 Full Bottom

FocusID

Optional. Any numeric expression for the focus num-
ber of this graphic.
If this value is 0, the check box will display its current
setting, but will not be able to be set and will appear
grayed out. The default value is 1.

BGColor

Optional. Any numeric expression for the background
color of the control. No default value.

FGColor

Placeholder for the foreground color of the control.
Not currently implemented.

Comments: This module is a member of the System Library, and must
therefore be prefaced by \System\, as shown in the
"Format" section. If you are developing a script application,
use "System\..." rather than "\System\..." in the function

call.
The variable must be initialized to 0 or 1 or the check box
will not be able to be toggled.
The size of the check box is constant, with X1, Y1and X2,
Y2 defining the position of the check box and its label.
For any optional parameter that is to be set, all optional
parameters preceding the desired one must be present,
although they may be invalid.

Examples:

System\CheckBox(90, 220, 160, 205 { Location of check box },
visibility { Variable to change },
"Visible Switch" { Label },
0 { Box not on left },
5 { Full, center align },
4 { Focus ID });
System\CheckBox(90, 220, 160, 205 {

Location of check box },
transparency { Variable to change },
"Transparent" { Label },
Invalid { Use default },
0 { Left, top align });

{ Use default focus ID }

CheckFileExist

(System Library)

Description: This subroutine checks for the existence of the specified
file.

Returns: Boolean

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: File I/O

Related to: CheckPathExist | CopyDir

Format: System\CheckFileExist(FileName)

Parameters:

FileName

Required. Any expression for the name of the file

whose existence you wish to verify.

Comments: This subroutine checks for the existence of the file spe-
cified by FileName. It returns 1 if the specified file exists,
or 0 if the specified file does not exist.

CheckPathExist

(System Library)

Description: This subroutine checks for the existence of the specified
path.

Returns: Boolean

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: File I/O

Related to: CheckFileExist | CopyDir

Format: System\CheckPathExist(Path)

Parameters:

Path

Required. Any expression for the path whose existence
you wish to verify.

Comments: This subroutine checks for the existence of the path spe-
cified in Path. It returns 1 if the specified path exists, or 0 if
the specified path does not exist.

CheckTagGroup

Description: Returns TRUE or FALSE according to whether a tag is in the
specified group.

Returns: Boolean

Usage: Script Only.

Function Groups: Variable

Related to:

Format: \CheckTagGroup(TagModule, TagGroup)

Parameters:

TagModule

Required. A tag type module or instance.

TagGroup

Required. The name of the tag group to check.

Comments: If the tag is a member of the group, the function will
return, TRUE. A list of groups can be found in the topic,
Tag Groups.

Examples:

IfThen(\CheckTagGroup(TagModule, "Analogs"),
 ...
);

ChildDocs

Description: Gets the module values for the root and all descendent
modules that match the conditions defined by the second
parameter. May also be called as "Child_Docs".

Returns: Pointer to a one dimensional array

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: ModuleFileName | RUNFileName

Format: ChildDocs(Module [, Filter])

Parameters:

Module

Required. The module to search.

Filter

Optional. Any numeric expression that defines
which modules are to be included in the
returned set. Filter is formed by adding together
the values from the following table. Defaults to
2 if missing or invalid.

Filter
Bit
No.

Description

1 0 Include all modules, even if they are
in the same file as their parent;
false to only include modules with
external files (subject to bits 2 and
5).

2 1 Recurse into submodules; false to
include only immediate children.

4 2 Include only modules whose .RUN
files are out of sync with their .SRC
files.

8 3 Include the root module in the list,
subject to bits 2 and 5.

16 4 Don't recurse if the module is
added to the list.

32 5 Include only modules whose .SRC
file exists (i.e. not just a .RUN file).

Comments: This function is used by the compiler subsystem. It returns
a pointer to a single dimensioned array.

Example:

If 1 Main;
[

AllList = ChildDocs(Scope(Self(), "Graphics"), 1 + 2 + 8);
]

The variable allList will be set to an array containing all module values
that are ancestors of module Graphics, including Graphics itself.

ChildInstances

Description Returns the object values of module instances that are chil-
dren of a particular module instance (i.e. all objects whose
parent is a specified object).

Returns Object array

Usage Script Only.

Function Groups Basic Module

Related to: CalledInstances | GetInstance | Instance | NumInstances
| Self | Valid

Format ChildInstances(Object [, Options])

Parameters

Object

Required. An object value of the module instance for
which to get the number of child instances.

Options

Required. Any numeric expression that defines
which modules are to be included in the
returned set. Options is formed by adding
together the values from the following table:

Options
Bit Num-

ber
Description

1 0 Include all modules, even if
they are in the same window
as their caller; false to only
include (root) modules for
modules in separate win-
dows.

2 1 Recurse into child module
instances of children; false
to only include modules
whose immediate parent is
the module instance ref-
erenced by the Object para-
meter.

4 2 Group all instances of the
same module into an array
and store that array of
object values in the element
of the returned array,
instead of the object value.

Comments The return value is an array of objects that are called from
Object. If no instances are called from Object, Invalid is
returned.

Example:

i = -1;
...
If i == -1;
[
numKids = ChildInstances(Self());
i++;

]
If Valid(numKids [i]);
[
Slay(numKids[i], 0);
i++;

]

The first If statement and script creates an array of object values to all
instances that are children of the current module; the second If and
script slays all of these instances. Notice that in the case of the first
script, the action trigger must be based on i rather than on a Valid test of
numKids; if this were not the case and !Valid(numKids) was used instead,
then, if there were in fact no child instances of this module,

ChildInstances would return invalid, and an "if one" (infinite loop) con-
dition would occur.

Circle

Note: Deprecated. Do not use in new code.

Description: Draws a circle on the screen.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: Arc | Ball | Box | Ellipse | GUIEllipse

Format: Circle(X, Y, Radius, Color, Width)

Parameters:

X

Required. Any numeric expression giving the X
coordinate for the center of the circle on the screen.

Y

Required. Any numeric expression giving the Y
coordinate for the centre of the circle on the screen.

Radius

Required. Any numeric expression giving the radius of
the circle specified in units of X screen coordinates.

Color

Required. Any numeric expression giving the color of
the circle.

Width

Required. Any numeric expression giving the width of
the circle wall in units of X screen coordinates. The
width is always rounded to result in an odd number of
pixels on the screen. The minimum width displayed
will be 1 pixel.

Comments: This statement has been superseded by the GUIEllipse func-
tion and is maintained for backwards compatibility only.
As of version 11, this is now drawn in the same z-order as
other graphics, making it similar to the z-graphics func-
tions.

Example:

Circle(XLoc(), YLoc() { Center coordinates follow mouse },
100 { Radius in screen coordinates },
11 { Light cyan color },
1 { Line width in screen coordinates });

This draws a circle around the mouse cross-hairs that moves wherever
the mouse is moved.

CleanModule

Description: Removes the flag that marks when a module that has been
changed programmatically and would therefore have its
changes saved to disk were this flag not cleared.

Returns: Nothing

Usage: Script Only.

Function Groups: Advanced Module

Related to:

Format: CleanModule(Module)

Parameters:

Module

Required. Any expression giving a module to clean.

Comments: When a module's code is changed through VTScada script
(for example, by using a function such as AddVariable) a
flag is set in the engine to indicate that the associated
script file must be updated before shutdown. This function
clears that flag, preventing the update.
This function can be used to make transitory code changes

(such as, by the Expression Manager) or to reverse code
changes that have been undone (page editing).

Note: This function requires a module handle as its sole parameter
such as the return value of a LoadModule function.

Example:

X = LoadModule(…);
{ … module is modified by code … }
CleanModule(X);

ClearModule

Description Deletes the contents (all variables and states) of a module
without removing the module itself.

Warning This function may cause irrecoverable alteration of your
application. It should be used only by advanced pro-
grammers

Returns Nothing

Usage Script Only.

Function Groups Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: ClearState | DeleteModule

Format ClearModule(Module)

Parameters

Module

Required. Any expression giving a module to clear.

Comments If there are any instances of the module running, ClearMod-
ule does nothing and returns.

ClearState

Description: Deletes all of the statements in a state.

Warning: This function may cause irrecoverable alteration of your

application. It should be used only by advanced pro-
grammers.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, States

Related to: ClearModule | DeleteState

Format: ClearState(State)

Parameters:

State

Required. Any expression giving the code value of the
state to delete.

Comments: This statement is used to delete the contents of a state
without removing the state itself or altering the document
file.

ClearVarMetaData

Description: The opposite of SetVarMetaData, this statement removes
all metadata associated with a variable.

Returns: Nothing

Usage: Script Only.

Function Groups: Dictionary

Related to: GetVarMetadata | SetVarMetadata

Format: ClearVarMetadata(Var)

Parameters:

Var

Required. Any expression giving the variable whose
metadata base value is to be removed.

Comments: none

Click

Description: Returns an indication of whether or not the mouse pointer
is within a specified screen area and a particular button
combination is being pressed.

Returns: Boolean

Usage: Steady State only.

Function Groups: Graphics, Locator, Window

Related to: LocSwitch | Pick | SetXLoc | SetYLoc | Target |
 WinLocSwitch | WinXLoc | WinYLoc | XLoc | YLoc

Format: Click(X1, Y1, X2, Y2, Button)

Parameters:

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the screen area
("target").

Y1

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the screen area ("target").

X2

Required. Any numeric expression giving the X
coordinate on the screen of the side of the "target"
opposite to X1.

Y2

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the "target", whichever is the opposite to Y1.

Button

Required. Any numeric expression giving the loc-
ator button combination that will cause the Click

function to return a true value when the locator
cursor is within the "target" screen area. The
codes for this parameter are as follows:

Button Button Locator

0 No buttons

1 Right button

2 Middle button

3 Right and middle buttons

4 Left button

5 Left and right buttons

6 Left and middle buttons

7 All three buttons

If the value is:
l multiplied by 8:

the meaning for multiple buttons pressed
becomes "OR", rather than "AND". For example,
to accept any button on a 2 or 3 button mouse,
use 56 (8 * 7); to accept the left mouse button,
regardless of whether or not the right button is
pressed, use 32 (8 * 4).

l increased by 64:
the function will become true when the mouse
buttons are released, rather than when they are
pressed.

l increased by 128:
the buttons must be double-clicked

Comments: This function returns true if the locator position is
within the boundaries of the "target" as defined by
(X1,Y1) - (X2,Y2), and the locator button value
matches the Button parameter. If the locator is not

installed, the function will return false (0).
The Click function is a level sensitive function,
which means that the mouse button(s) must be
pressed when the function is executed or it will
return false. This means that a brief press of a
mouse button with the cursor in the correct target
area might not be picked up by the Click function if
the system is heavily loaded. Use the Pick() function
for action triggers, rather than Click().

Note: If Click is used as an action trigger it will not
reset; the action will continue to trigger as fast as
possible as long as the Click is true. This is dif-
ferent from Pick, which would trigger once and be
reset by the action trigger.

Example:

Box(100, 500, 500, 100 { Coordinates for the box },
1 { Solid style },
5 { Width in screen coordinates },
Cond(Click(100, 500, 500, 100, 56 { Color depends on click }),

12 { Color is red when clicked },
7 { Color is light gray otherwise })

);

This draws a blue box on the screen. If the mouse button is inside the
square and any button combination is held down, the box will turn white.
If the mouse should move outside the box, or if all buttons are released,
the Box color will turn back to gray. Note that the Box coordinates and
the coordinates for the Click function are the same by choice - they are
not required to match. That is, the coordinates in the Box specify where
to draw the box, and the coordinates in the Click specify where to look
for a mouse click.

ClientSocket

Description: Opens a client WinSock-compliant socket stream and
returns a stream value, or a numeric error code.

Returns: Varies – see comments

Usage: Script Only.

Function Groups: Stream and Socket

Related to: CloseStream | ServerSocket | SocketAttribs |
 SocketServerEnd | SocketServerStart | SocketWait |
 SRead | SWrite | TCPIPReset

Format: ClientSocket(Protocol, Host, Service, TransmitLen,
ReceiveLen, Flush[,ProtocolFilters, InboundPortOrStream,
IPOut, PortOut)

Parameters:

Protocol

Required. Any numeric expression giving the protocol
to be used. This must be a valid 0 for TCP/IP protocol
or a valid 1 for a UDP protocol.

Host

Required. Any text expression giving the host name or
TCP/IP address to connect.

Service

Required. Either any text expression giving the service
name to connect, or any numeric expression giving
the port number with which to connect.

TransmitLen

Any numeric expression for the number of bytes to buf-
fer when transmitting. The value must be a signed long
integer, where only positive values are useful.
If the application is running on a operating system of
Windows 7 / Server 2008 R2, or later, and the value is
set to zero, then Windows will manage the appropriate
buffer size for the link speed and latency.
If you set the buffer size, the value should match or be
larger than the largest message that is expected.

A high bandwidth / high latency link will require a lar-
ger size in order to achieve optimum efficiency, but
the exact size can be determined only by empirical test-
ing.

ReceiveLen

Required. Any numeric expression for the maximum
number of bytes to buffer by VTScada when receiving.
Additional buffering will be handled by WinSock.
The value must be a signed long integer, where only
positive values are useful.
If the application is running on a operating system of
Windows 7 / Server 2008 R2, or later, and the value is
set to zero, then Windows will manage the appropriate
buffer size for the link speed and latency.
If you set the buffer size, the value should match or be
larger than the largest message that is expected.
A high bandwidth / high latency link will require a lar-
ger size in order to achieve optimum efficiency, but
the exact size can be determined only by empirical test-
ing.

Flush

Required. Any logical expression. If true, the transmit
buffer will be flushed (transmitted) after each write to
the stream.
This normally should be false to reduce network traffic
by allowing the driver to group smaller packets into a
single larger packet.

ProtocolFilters

Optional. A 2-dimensional array rrepresenting a
stack of engine protocol filters and their para-
meters. These filters are used to process or
modify data before transmission or after recep-
tion. No default is provided.
Example:

PFilter = New(2);
PFilter[0] = New(2);
PFilter[0][0] = "SSL";
PFilter[1] = New(2);
PFilter[1][0] = "NULL";
PFilter[1][1] = "";

InboundPortOrStream

Optional. Used only in connection with a UDP con-
nection.
If set, this should be an existing UDP stream as
returned from a ServerSocket, for the same remote IP
as is being connected to.
Incoming UDP datagrams on the ServerSocket stream
will continue to be received, but the stream can also be
used for datagram transmission. If
InboundPortOrStream is not a stream, it is interpreted
as a local port number on which to listen for inbound
datagrams.
The stream returned by ClientSocket can be used, in
both cases, for datagram transmission and reception.

IPOut

Optional Used to identify the IP of the network inter-
face card from which to transmit UDP datagrams.
LocalIP s of use on multi-homed machines to identify
the physical IP binding to use. No default is provided.

PortOut

Optional. Used to identify the local port from which to
transmit UDP datagrams No default is provided.

Com-
ments

This function will return its (integer) socket number when the
socket is created but not yet connected, a stream value when
the connection is made, or a short integer error code. If the
socket connection is lost (server shutdown) the stream is
closed and set invalid (no error code returned).

Error Code Description

10061 Cannot connect to Host at port number spe-
cified

11004 Cannot find requested host

The client socket function has a slightly different behavior, depending on
whether the connection is made via TCP or UDP. The difference is
explained in the following two diagrams.

Client Sockets on TCP:

1. A ClientSocket statement runs and returns an integer value.

2. An outbound connection is made.

3. When the connection is established, the stream is triggered.

4. The stream trigger causes the value returned from 1 to become a stream
value.

l If the connection attempt fails at any point, the value returned from 1 will
become a negative integer, representing an error code

Client Sockets on UDP:

1. A ClientSocket statement runs and returns a stream value.

2. Stream writing statements are used to write data to the stream

3. A UDP datagram is issued to the target device each time a write is done by
script code.

Example:

Init [
If 1 Main;
[
client = ClientSocket(0 { TCP/IP protocol },

"WServer" { Host },
20000 { Port number },
1024, 1024 { Buffering },
1 { Flush after writes });

]
]
Main [
{ If stream connection lost, retry connection }
If TimeOut(! Valid(client), 2) Init;
{ Exit if return value valid and not a stream }
If ValueType(client) != 8 Error;
{ Read stream data as received or on demand with "r" key }
If GetStreamLength(client) > 0 || MatchKeys(2, "r");
[
SRead(client, Concat("%", Concat(GetStreamLength(client),

"c")), data);
]

{ Write stream data to server every second }
If TimeOut(1, 1);
[
SWrite(client, "%s", Concat(" Hello World ",

Time(Seconds(), 3)));
]
{ Close stream if window closed, then stop }
If WindowClose(Self());
[

CloseStream(client);
Slay(Self(), 1) ;

]
{ Display received data and connection status }
ZText(10, 150, data, 2, 0);
ZText(200, 100, Cond(ValueType(client) == 8,
"Connected", "Not Connected"), 10, 0);

]
Error [
{ Display error code }
ZText(100, 130, Concat("Client error code : ", client),

10, 0);
]

ClipboardGet

Description: Returns the current contents of the system clipboard as a
string. This function enables an application to perform text
"paste" operations.

Returns: Text

Usage: Script Only.

Function Groups: Clipboard, String and Buffer

Related to: ClipboardPut

Format: ClipboardGet()

Parameters: None

Comments: This function can be used to obtain the current contents of
the clipboard as a string. If the clipboard does not contain
a textual value, then the function will return invalid.

ClipboardPut

Description: Set the current contents of the system clipboard to a
string. This function enables an application to perform text
"copy" or "cut" operations.

Returns: Nothing

Usage: Script Only.

Function Groups: Clipboard, String and Buffer

Related to: ClipboardGet

Format: ClipboardPut(String)

Parameters:

String

Required. Any text expression that will be copied to
the system clipboard.

Comments: This function can be used to set the current contents of the
clipboard. If the parameter is not a text expression, then
the contents of the clipboard are left unchanged; otherwise
the current contents of the clipboard are overwritten.

CloseStream

Description: Closes and flushes any type of open stream and returns its
own error code.

Returns: Boolean

Usage: Script Only.

Function Groups: Stream and Socket

Related to: BuffStream | FileStream | PipeStream | StreamEnd

Format: CloseStream(Stream)

Parameters:

Stream

Required. Any expression that returns a stream value.

Comments: The return value is true if the stream were successfully
closed; invalid otherwise.This function closes the stream
passed to it.
If the stream is invalid, or the stream is already closed,
nothing happens.

Example:

If GetStreamLength(stream) == 0 && ! Valid(closeOK);
[
closeOK = CloseStream(stream);

]

This example checks to see if the stream has any data in it, and if it is
empty and has not already been closed, closes it, setting closeOK to 1 if
the stream were closed and invalid otherwise.

Cls

Description: Clears the screen and sets its background color.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Color, Graphics, Window

Related to: GetSystemColor

Format: Cls(Color)

Parameters:

Color

Required. Any numeric expression giving the color to
which the screen should be set.
You may use any of the following methods to
specify the color:

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

Note that Cls will ignore the alpha channel if
you provide the color as an <AARRGGBB>
string, since the background color of a window
cannot have an alpha value that is different from
the window itself.

Comments: This statement sets the background color for the

window that the function is executed within. It will
clear the screen but any layered graphics such as
GUI or Z-graphic functions will be redrawn.
The description of the color parameter mentions
that Cls will ignore alpha (transparency) values.
Note also that you cannot set the background color
of windows that use their background as a trans-
parency mask (bit 18 set in the Style parameter).
Cls will work on both workstations and on internet
clients.

Example:

Cls(1);

This sets the window background color to dark blue.

CodeText

Description: Returns information (usually the source code text), match-
ing the given code value.

Warning: For use by advanced programmers only.

Returns: Varies (see 2nd parameter).

Usage: Script Only.

Function Groups: Advanced Module

Related to: SetCodeText

Format: CodeText(CodeVal[, Type])

Parameters:

CodeVal

Required. Any code value giving the statement or func-
tion within a statement whose text to be read.

Type

Optional numeric expression. Controls what will be
returned by the function according to the following
table:

Type Description

0 default. Return the text for the expres-
sion.

1 Return the offset in the file for the start
of the expression.

2 Return the size (number of bytes) of the
expression.

Comments: Returns the source code text, offset or size for the
provided code value. Typically followed by a SetCodeText
call, which would then update the source code with new
text.

ColorSelect

(System Library)

Description: Color Selection Tool. This module draws a color selection
button and its accompanying display area.

Returns: Nothing

Usage: Steady State only.

Function Groups: Color, Graphics

Related to:

Format: \System\ColorSelect(X1, Y1, X2, Y2, Color [, BtnLabel,
BtnOnLeft, Standard, VertAlign, FocusID, OpenDialog,
NoTrans, BGColor, FGColor, ShowIndex])

Parameters:

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the button or

color display area. The smaller of values X1 and X2 will
always be the left side.

Y1

Any numeric expression giving the Y coordinate on the
screen of either the top or bottom of the button and
color display area. The smaller of values Y1 and Y2 will
always be the top.

X2

Required. Any numeric expression giving the X
coordinate on the screen of the side of the button or
color display area opposite to X1.

Y2

Required. Any numeric expression giving the Y
coordinate on the screen of the top or bottom of the
button and color display area, whichever is the oppos-
ite to Y1.

Color

Required. The variable whose value is set to the index
of the chosen colore.

BtnLabel

Optional. Any text expression to be used as a label on
the color selection button. No default if missing or
Invalid.

BtnOnLeft

Optional Any logical expression. If true (non-0) the
button will appear to the left of the color display area,
If false (0) it will be to the right. The default value is
true.

Standard

Optional Any logical expression, If true (non-0) the
button and color display area will be standard system
size. If false (0) they will be sized to fit their boundaries

and VertAlign will be ignored. The default value is true.

VertAlign

Optional Any numeric expression that sets the
vertical alignment of the button and display area
according to one of the following options:

Value Vertical Alignment

0 Top

1 Center

2 Bottom

If Standard is true, this parameter is ignored.
The default value is 0, top alignment.

FocusID

Optional Any numeric expression for the focus num-
ber of the button. If this value is 0, the current value of
Color will still be displayed, but it will not be able to be
set because the button will appear grayed out. The
default value is 1.

OpenDialog

Optional Any logical expression. If true (non-0) the
dialog will be open. If false (0), it will be closed. The
default is true.

NoTrans

Optional Enables you to turn off the transparent color
option. If NoTrans is set to true (1), then the trans-
parent color option will be turned off.
If NoTrans is set to false (0), then the transparent color
option will be turned on. (The transparent color option
is set within the color selection dialog using the "Trans-
parent" (or "Transparent Brush" or "Transparent Pen")
check box.)
No default value is provided.

BGColor

Optional. Any numeric expression for the background
color of the control. No default value.

FGColor

Placeholder for the foreground color of the control.
Not currently implemented.

ShowIndex

Optional. Color index is shown when TRUE. Defaults to
TRUE if not specified.

Comments: This module is a member of the System Library, and
must therefore be prefaced by \System\, as shown
in the "Format" section. If you are developing a
script application, use "System\..." rather than "\Sys-
tem\..." in the function call.
If the button and display area are set to be standard
size, the button size will remain a constant size
(101 x 31 pixels) regardless of the boundaries of
the defined area, but the display area will vary
between a minimum (square) size to a maximum
length equal to the length of the button, depending
on the size of the bounding area. Once the max-
imum display area size has been reached, the but-
ton and area will be fully justified to cover the
entire width of the defined area (the vertical align-
ment will be set by the value of VertAlign).
For any optional parameter that is to be set, all
optional parameters preceding the desired one
must be present, although they may be invalid.

Examples:

System\ColorSelect(10, 300, 210, 200 { Location of btn/display },
MyColor { Variable storing color },

"Set Pipe Color" { Button label },
1 { Button on left },
1 { Standard sizing },

1 { Center btn/display },
3 { Focus ID of button });

Combine

Description: Performs a Merge2 operation with automated conflict res-
olution and change priority.

Returns: Merge buffer

Usage: Script Only. (always called as a subroutine)

Function Groups: Configuration Management

Related to: Diff | Merge2 | Merge

Format: \LayerRoot\Combine(Source, Diff1, Diff2, SrcPath, pFail)

Parameters:

Source

Required. The buffer or stream to be modified

Diff1

Required. High priority diff to merge to Source.

Diff2

Required. Low priority diff to merge to Source.

SRCPath

Required. Full file path for the origin of the Source buf-
fer.

pFail

Required. Pointer to a variable in which an error mes-
sage will be returned.

Comments: This module must be called as a subroutine.
This function is guaranteed to return a result, how-
ever it will discard changes if unable to merge them
without conflict. It is the recommended method for
combining different change paths against standard
VTScada file types (settings files, source files, tag

files, etc.).
Changes from the high priority diff are treated pref-
erentially to changes from the low priority diff when
resolving conflicts. If the operation fails then the
result will be the original buffer modified by the
high priority diff only. Failure is indicated by the
pFail parameter being set to a value other than
zero; Typically a string detailing the type of failure.
Notes:

l All Tag file conflicts are resolvable, Combine does
not fails on tags.

l Conflicts of Adjacency (where two change regions
share an edge but do not overlap) are resolved for all
non-tag files.

l Simultaneous Addition Conflicts (where two pure
addition changes coincide) are resolved for Page,
Menu, Setting, and PageNote files.

l Specific segments of AppRoot files are parsed and
rebuilt allowing for all types of conflicts to be
resolved, these are additionally checked for duplicate
entries, which are removed.

The results of conflict resolution are passed to the
Mend function in order to generate complete
merged file buffers. This module returns a simple
merge of the high priority diff and the source buffer
should conflicts occur and conflict resolution fail. In
this case *pFail is set to an error string that
describes the failure in a human-readable form.

COMClient

Description: Instantiates COM objects that do not possess a user inter-
face.

Returns: COM client interface

Usage: Script or steady state.

Function Groups: COM

Related to: ActiveX | ActiveX | COMEvent | COMStatus | Caller

Format: COMClient(ObjectIdentifier [, ObjectContext, EventSearchS-
cope, EventParent, EventCaller])

Parameters:

ObjectIdentifier

Required. Specifies a unique identifier for the
object to be instantiated. It may take one of the
following forms:

l a text string representing a ProgID (e.g.
"Excel.Application").

l a textual GUID, in registry format (e.g. "
{00020812-0000-0000-C000-
000000000046}").

l a binary GUID (e.g. the result from "GetGUID(1,
00020812-0000-0000-C000-000000000046)").

ObjectContext

Optional. If present, this object specifies the con-
texts in which it is permissible to instantiate the
COM object.
A subset of values taken from the CLSCTX enu-
meration is supported. Possible values are:

l CLSCTX_INPROC_SERVER (1): The COM object is
instantiated in the VTScada process (i.e. by a
DLL).

l CLSCTX_LOCAL_SERVER (4): The COM object is
instantiated in a separate process (i.e. by an
.exe, but only on the same machine upon which
VTScada is running.

l CLSCTX_SERVER (13): Any of the above. This is
the default and permits the COM object to be
instantiated wherever the "class factory" (which
performs object instantiation) sees fit.

EventSearchScope

Optional May be any expression that yields a
module value or object value. If present, this
parameter specifies the scope in which to search
for event subroutines. No default value is
provided.

EventParent

Optional. May be any expression that yields an object
value. If present, specifies the context that is used to
resolve scope for event subroutines.
If absent or Invalid, defaults to Self().

EventCaller

Optional. May be any expression that yields an object
value. If present, specifies an "auxiliary" context for
event subroutines. An event subroutine can retrieve
this value using Caller(Self()).
If absent or Invalid, defaults to Self().

Comments: COMClient instantiates a COM object. Generally this state-
ment is used to instantiate COM objects that do not pos-
sess a user interface. If the object does display a user
interface, then the user interface will appear in a window
created and owned by the object. It is more usual to use
the ActiveX statement to create a COM object that has a
user interface.
If the statement succeeds, a COM client interface is
returned, allowing subsequent access to the object. If the
statement fails, Invalid is returned.

EventSearchScope specifies the location where the event
subroutines for this COM object instance may be found.
Each event subroutine is named after the corresponding
event produced by the default outgoing interface for the
COM object. If the COM object generates an event for
which an event subroutine cannot be found, the COM
object is informed that event handling for that event is not
implemented.
When an event subroutine is run in response to an incom-
ing event from the object, the parent and caller for the sub-
routine are as specified by EventParent and EventCaller.
The event subroutine may update any of its parameters,
and any that are defined as [in, out] or [out]; these will be
returned to the COM object on completion of the event sub-
routine. The event subroutine should return an integer
value, which is returned to the COM object as the result of
the event. A value of 0 indicates the event completed suc-
cessfully.
If the COM object to be instantiated is an inproc server
object (i.e. it is a DLL) then it must be a 64-bit COM server
for 64-bit VTScada and a 32-bit COM server for 32-bit
VTScada. If it is instantiated out-of-process (i.e. it is an
.EXE) then either 32-bit VTScada or 64-bit VTScada can
work with either 32-bit or 64-bit COM servers.
If used in a script, the COM object will remain instantiated
until the last reference to that object has been invalidated.
You assign the return value of the COMClient script state-
ment to a variable, and the COM object will remain instan-
tiated as long as that variable or any other variable holds a
copy of the COM Client Interface handle. Only when the
last copy of the COM Client Interface handle has been des-
troyed will the COM object be destroyed.
If used in a steady-state statement, the COM object will
only remain instantiated while the steady-state statement
is still running; in other words, a change of state or destruc-

tion of the module instance that is running the statement
will cause the COM object to be destroyed. Any variables
that hold a handle to the COM Client Interface will be inval-
idated at that time.

COMEvent

Description: Sets an event subroutine context for an existing COM cli-
ent interface.

Returns: Text

Usage: Script Only.

Function Groups: COM

Related to: ActiveX | COMClient | COMEvent | COMStatus

Format: COMEvent(COMClientInterface [, EventSearchScope,
EventParent, EventCaller])

Parameters:

COMClientInterface

Required. A COM client interface handle returned from
a COMClient or ActiveX statement.

EventSearchScope

Optional May be any expression that yields a Module
or an object value. If present, specifies the scope in
which to search for event subroutines. No default
value is provided.

EventParent

Optional May be any expression that yields an object
value. If present, specifies the context that is used to
resolve scope for event subroutines. If absent or
Invalid, defaults to Self().

EventCaller

Optional May be any expression that yields an object
value. If present, specifies an "auxiliary" context for

event subroutines. An event subroutine can retrieve
this value using Caller(Self()). If absent or Invalid,
defaults to Self().

Comments: The COM client interface specified as the first parameter
may or may not already have an event subroutine context
associated with it. This function supplies a new context
that destructively replaces any existing context. Use of this
function enables dynamic modification of the event sub-
routine context. The context may also be dynamically set if
the COMClient or ActiveX function is being run in steady
state, by simply changing the parameters of the steady-
state statement. It is more usual to use this function for
COM client interfaces that are created by a script state-
ment.

EventSearchScope specifies the location where the event
subroutines for this COM object instance may be found.
When an event subroutine is run in response to an incom-
ing event from the object, the parent and caller for the sub-
routine are as specified by EventParent and EventCaller.

CommaFormat

(System Library)

Description: Returns a number as text with embedded commas.

Returns: Text

Usage: Script or steady state.

Function Groups: Math - Generic Functions, String and Buffer

Related to: FormatNumber | Format

Format: \System\CommaFormat(Color)

Parameters:

Value

Required. Any integer expression giving the value to
be formatted.

Comments: Note that this function is part of the System library and
must be preceded by \System\. This function will not
format floating point numbers - the decimal point will be
treated as a digit.

Example:

\System\CommaFormat(123456);

Returns "123,456".

CommandLine

Description: Returns any command line arguments as a text string.

Returns: Text

Usage: Script Only.

Function Groups: Software and Hardware

Related to: Version | SerialNum

Format: CommandLine()

Parameters: None

Comments: None

Example:
If VTScada was started from the Windows Program Manager "Run" option
with:

VTS5 User423 Stn62

then any application with the following line:

Text(10, 10, CommandLine(), 12, 0);

would print out in the upper left hand corner of the window:

User423 Stn62

Commission

(Alarm Manager module)

Description: Commission the alarm by adding it to the Configured list,
or modify an existing alarm's configuration.

Returns: Nothing

Usage: Script Only.

Function Groups: Alarm

Related to: Decommission | GetAlarmConfiguration | EvaluateAlarm

Format: \AlarmManager\Commission(AlarmObj, CfgStructure[,
Value, ValueTimestamp, SuppressConfigEvent, AlarmDB,
MachineID)

Parameters:

AlarmObj

Required. The alarm object. Normally, the unique ID of
the tag within which the alarm is being commissioned.

CfgStructure

Required. A structure of alarm configuration para-
meters. Normally obtained by a call to \AlarmMan-
ager\GetAlarmConfiguration.

Value

Optional numeric. Current value to evaluate, based on
the new configuration.

ValueTimestamp

Optional UTC timestamp of the value. Defaults to the
current time.

SuppressConfigEvent

Optional Boolean. If TRUE, no transaction record will
be stored for this call to Commission. Should be used
for alarm parameters that may be updated often due to
being set by tag values or expressions rather than con-

stants. Defaults to FALSE.

AlarmDB

Optional name or object. The alarm database to be
used for this alarm. Not necessary if the alarm object is
valid.

MachineID

Optional. The workstation ID to be associated with the
alarm. Defaults to the current workstation.

Comments: Commission should be used when creating an
alarm, or when updating that alarm's configuration.
It will always generate a new call to EvaluateAlarm
with the given value of the trigger, evaluating that
against the current setpoint and comparison func-
tion.
Commission will store the alarm's object and its
Root value in a dictionary of alarm names. This
gives an efficient look-up table to get an alarm
object.
After an alarm has been commissioned, further calls
to this function will update that record in the alarm
database. A call to \AlarmManager\Evaluate is made
automatically as part of each call to Commission.
Note: For the sake of creating efficient code, com-
mission should never be used as a substitute for
EvaluateAlarm. Use commission only when creating
or changing alarm configuration, not when handing
new values to the alarm to be evaluated against the
setpoint.

Example:
The following would typically be found in a tag's Refresh state. This
alarm will activate when the tag's value becomes 1.

IfElse(Valid(Name), Execute({ create or obtain the configuration
structure for this alarm }
 Cfg = \AlarmMan-
ager\GetAlarmConfiguration(UniqueID);

{ update the property values in that
structure }
 Cfg\Name = UniqueID;
 Cfg\Area = Area;
 Cfg\Priority = PriorityValue;
 Cfg\Setpoint = 1;
 Cfg\Function = \AlarmManager\ALM_FUNC_
EQUAL;

{ ... other configuration properties as
required ... }

{ commission, or update the commission
of, the alarm }
 \AlarmManager\Commission(Root, Cfg,
Value);
);
);

Related Information:
See: "Alarm API Structure Definitions" in the VTScada Programmer's
Guide for Alarm configuration structures

CommitEditedFiles

Description: This function compiles and commits edited files if the com-
pile succeeds.

Returns: Object (which becomes Invalid upon completion)

Usage: Script Only.

Function Groups: Configuration Management

Related to: EditFile | DirectApply

Format: LayerRoot\CommitEditedFiles(User, Comment,
AlreadyHasLock[, ReloadOnFailure, pFail, RSema, Sup-
pressAudit])

Parameters:

User

Required. The user performing work on the repos-
itory's working copy.

Comment

Required. Text that will be stores with the repository
commit.

AlreadyHasLock

Required. Boolean indicating whether we already have
a working copy lock.

ReloadOnFailure

Optional Boolean. If set TRUE, then if the files cannot
be integrated into a running system, the files are rever-
ted and no reloading of the reverted files is performed.
If set FALSE, then the reverted files are reloaded.
This can be set to false when you are sure that none of
the changes being committed have been integrated
into a running application.
Defaults to TRUE.

pFail

Optional pointer to a Boolean. Set TRUE upon failure.

RSema

Optional repository semaphore. If provided, it is essen-
tial that you also have the working copy lock.

SuppressAudit

Optional Boolean. Set TRUE to suppress the audit the
commit. This is typically done because you are guar-
anteed to do another commit before you give up the
WC lock.
Defaults to FALSE.

Comments: This helper function manages the Working Copy
files by applying a set of file changes indicated in
prior EditFile calls.
Typically the caller will have the working copy lock
and this call is made using only the first three para-
meters, with the third parameter set TRUE. This
operation returns an object that becomes invalid

upon completion.
If the compile does not succeed, this function will
revert the compilation changes. By the time this
launched module terminates, the Modified dic-
tionary is always emptied.
This module launches a worker module into the
Layer so that the operation is not interrupted by
this module's caller being slain.

Compile

Description: Compiles text and creates a new function; its type of return
value is determined by its input parameters.

Warning: This function may cause irrecoverable alteration of your
application. It should be used only by advanced pro-
grammers.

Returns: Varies

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications

Related to:

Format: Compile(FuncNames, OpCodes, Number, Module, Script,
Sense, Stream, ClassBuffer, NumClass, TStateBuffer, TAc-
tionBuffer, NumTokens, CStateBuffer, CActionBuffer,
CDataBuffer, Error, ParserStack, LineCount, Column,
Count)

Parameters:

FuncNames

Required. Any array expression for the function names
list.

OpCodes

Required. Any array expression for the Operational
Codes that correspond to the names in FuncNames.

Number

Required. Any numeric expression for the number of
FuncNames/OpCodes pairs.

Module

Required. Any expression that returns a module value.
This is the context where the compile takes place.

Script

Required. Any logical expression. If true, the text will
be compiled as a script statement. If false, it will be
compiled as a normal statement.

Sense

Required. Any logical expression. If true, this state-
ment will be compiled as case-sensitive, otherwise,
this will be case-insensitive.

Stream

Required. Any expression for the input stream to read.

ClassBuffer

Required. Any text expression that provides the token-
izer look-up table.

NumClass

Required. Any numeric expression for the number of
character classes in the tokenizer state table.

TStateBuffer

Required. Any expression for the tokenizer state table.
The tokenizer begins in state 0.

TActionBuffer

Required. Any two-dimensional array expression for
the tokenizer action table.

NumTokens

Required. Any numeric expression for the number of
tokens in the compiler table.

CStateBuffer

Required. Any text expression for the compiler state
table. The compiler begins in state 0.

CActionBuffer

Required. Any text expression for the compiler action
table.

CDataBuffer

Required. Any two-dimensional array expression for
the compiler data table.

Error

Required. Must be a variable into which the res-
ulting error code will be stored. The error code
may be any of the following:

Error Description

0 No error.

-1 Operation code in OpCode table is not
defined.

-2 Parameter must be a constant.

-3 Too many parameters.

-4 Compiler table index past the end of
the table.

-5 Token type is < 0 or > max_token.

-6 illegal attempt to add op code from
built-in function.

-7 Op code array entry is invalid.

-8 Illegal attempt to add variable para-
meter.

-9 Too many parameters.

-10 Illegal radix in compiler data table.

-11 Illegal digit in integer.

-12 Illegal action in CActionBuffer.

-13 No function specified.

-14 Not enough parameters.

-15 Does not have a single parameter.

-16 Compiler stack is too deep (> 1000)

-17 Infinite loop detected.

-18 Suspending and exiting at the same
time.

ParserStack

Required. Any stack used to govern the compile.

LineCount

Required. Must be a variable. The current line (number
of carriage returns) will be stored here.

Column

Required. Must be a variable. The current column will
be stored here.

Count

Required. Must be a variable. The number of char-
acters processed is stored here.

Comments: This function is used when compiling text statements. The
syntax of the statements is described by the table para-
meters that are not fully described here. This function com-
piles text to create a new function, but doesn't add the new
function.

COMPort

Description: Opens a serial port and handles all interrupts and asyn-

chronous events for that serial port, including trans-
mission, reception, and control. It returns its own error
code.
Please note that the SerialStream function is generally pre-
ferred in many situations; however, ComPort continues to
be supported.

Returns: Numeric

Usage: Steady State only.

Function Groups: Serial Port

Related to: ActiveX | SerCheck | SerialStream | SerIn | StrLen |
 SerOut | SerRcv | SerRTS | SerSend | SerString |
 SerStrEsc | SerWait

Format: ComPort(Port, ReceiveLen, TransmitLen, Baud, DataBits,
StopBits, Parity, RTS, XOnXOff, Obsolete, Obsolete, Con-
trol,0,0,0,0,0,0,0,0,0)

Parameters:

Port

Required. Any numeric expression giving the serial
port number to be used.
For COM1, Port = 1;
For COM2, Port = 2.
The valid range for Port is 1 to MaxComPorts (a vari-
able storing the maximum number of Windows serial
ports available. As of the release date of VTS 9.1, this
is 4096).

ReceiveLen

Required. Any numeric expression giving the size of
the receive buffer in bytes. ReceiveLen must be in the
range 2 to 32 766.
If more bytes are received than can fit in the receive
buffer before your application removes them using Ser-
Rcv or a similar WEB function, the additional data will

be lost.

TransmitLen

Required. Any numeric expression giving the size of
the transmit buffer in bytes. TransmitLen must be in
the range 2 to 32 766.
The buffer must be large enough to hold the max-
imum number of bytes pending transmission at any
instance.

Baud

Required. Any numeric expression giving the baud
rate. Baud must be in the range 10 to 115 200, and
must divide evenly into 115 200 with no more than
2.5% error.

DataBits

Required. Any numeric expression giving the number
of data bits per character. DataBits must be 5, 6, 7, or
8.

StopBits

Required. Any numeric expression giving the number
of stop bits per character. StopBits must be 1 or 2.

Parity

Required. Any numeric expression giving the parity
checking to use (as follows)

Value Parity

0 No parity

1 Odd parity

2 Even parity

3 0 Stick (space parity)

4 1 Stick (mark parity)

RTS

Any numeric expression that gives the RTS buffer con-
trol method.
RTS is on while transmitting. When a transmission is
complete, RTS is off. This is usually used to control the
transmitters on RS-422/485 ports.
This parameter has no effect if the automatic RTS con-
trol is selected in the Control parameter.
Acceptable values of the RTS parameter are as follows:

Value RTS Method

0 Force RTS off

1 Force RTS on

2 Half-duplex operation (Windows NT
only)

3 Controlled by SerRTS function

If this parameter is 2, the SerRTS function can
set its value, however, regardless of SerRTS, the
RTS control line will be asserted when data is
sent.
If the SerRTS is called to change the RTS line
while data is being transmitted, the RTS line will
not change when the last byte is sent.
If SerRTS is not executed while the data is trans-
mitted, the RTS line will be cleared after the last
byte is transmitted.

XOnXOff

Required. Any logical expression. If true (non-0), soft-
ware flow control is to be used. If false (0), flow control
software is not used.

Obsolete

No longer used, but is maintained for backward com-
patibility with previous versions of VTScada. Set to 0.

Obsolete

No longer used, but is maintained for backward com-
patibility with previous versions of VTScada. Set to 0.

Control

Any numeric expression that specifies the handling
procedure for the clear to send (CTS), carrier detect
(CD), and data set ready (DSR) input lines, and the data
terminal ready (DTR) output line on the serial port. The
value must be in the range 0 to 63. The desired action
is the sum of the following values:

Value Bit No. Control

1 0 DTR on (otherwise DTR is off)

2 1 Enable CTS control

4 2 Enable CD control

8 3 Enable DSR control

16 4 Enable RTS/CTS control

32 5 Enable DTR/DSR control

l If bit 1, CTS control, is set data will only be trans-
mitted if the CTS signal is on. If CTS control is dis-
abled, the CTS line is ignored.

l If bit 2, CD control, is set data will only be trans-
mitted when the CD signal is on. If CD control is
disabled, the CD line is ignored.

l If bit 3, DSR control, is set data will only be trans-
mitted when the DSR signal is on. If DSR control
is disabled, the DSR line is ignored.

l If bit 4, RTS/CTS control, is set the CTS control
behaves as described above, and the RTS line will
be held high until the receive buffer reaches 75%
full. It will then go low, indicating to the other
device to stop transmitting data. The RTS line will

go high again when the receive data buffer drops
below 25% full. This is known as hardware flow
control. RTS/CTS control enabled overrides the
RTS parameter.

l If bit 5, DTR/DSR control, is set the DSR control
behaves as described above, and the DTR line
will be held high until the receive buffer reaches
75% full. It will then go low, indicating to the
other device to stop transmitting data. The DTR
line will go high again when the receive data buf-
fer drops below 25% full. This is known as hard-
ware flow control. DTR/DSR control enabled
overrides bit 0, DTR on option.

l bits 6 through 14: Obsolete. No longer used, but
maintained for backward compatibility with pre-
vious versions of VTScada. Set to 0.

Obsolete x 9

Required. Nine parameters following Control are obsol-
ete, but must be included for the function to compile.
Normally set to 0's.

Comments: This statement has been superseded by the SerialStream
function and is maintained for backwards compatibility
only.
This function is part of the driver toolkit and must be active

Value Meaning

0 No error

1 Out-of-range error in one of the parameters

2 Port already in use or not available

5 Access denied

31 General failure

87 Invalid parameter

The return value is an error code having one of the fol-
lowing meanings:

Value Meaning

0 No error

1 Out-of-range error in one of the parameters

2 Port already in use or not available

5 Access denied

31 General failure

87 Invalid parameter

A ComPort function must be active for serial port
communications. None of the driver toolkit func-
tions (anything beginning with Ser... , such as Ser-
Send) will work without a ComPort function.
Make sure that VTScada's mouse (if it is serial) is on
a different port, because the mouse and ComPort
can interfere. Also make sure that no other hard-
ware or software is interfering with the serial port
hardware interrupts (IRQ4 for COM1:, IRQ3 for
COM2:). Network cards often use IRQ4, which will
cause a problem with a mouse or ComPort on
COM1.
Before writing a communications driver for
VTScada, it is important to understand some gen-
eral data communications concepts (such as head-
ers, checksums, packets, etc.) as well as the
particular protocol you wish to use. It is a good idea
to understand how fixed modules may be used to
provide semaphores and queues (so that modules
designed to read packets can queue up for their
turns to use the serial port, and prevent collisions).

Example:

ComPort(2 { COM2: },
1024 { Buffer 1024 bytes of received data },
1024 { Buffer 1024 bytes of transmitted data },
9600 { Baud rate },
8 { Data bits per byte },
1 { Stop bit per byte },
0 { No parity bit },
1 { Force RTS on },
0, 0, 0 { Obsolete parameters },
3 { Control: DTR On, CTS control enabled },
0, 0, 0, 0, 0, 0, 0, 0, 0 { Obsolete parameters });

This example opens COM2: for use with serial port functions. These func-
tions should use 2 as their Port parameter.

Compress

Description: Eliminate invalid array entries.

Returns: Nothing

Usage: Script Only.

Function Groups: Array

Related to: ArrayOp1 | ArrayOp2 | AValid | Filter

Purpose: This statement moves all of the valid array entries to the
first part of the array, maintaining the order of the valid ele-
ments.

Format: Compress(ArrayElem, N)

Parameters:

ArrayElem

Required. Any array element giving the starting point
for the array search. The subscript for the array may
be any numeric expression.If processing a mul-
tidimensional array, the usual rules apply to decide
which dimension should be examined.

N

Required. Any numeric expression giving the number

of array elements to use starting at the element given
by the first parameter.
If N extends past the upper bound of the array dimen-
sion, this computation will "wrap-around" and resume
at element 0, until N elements have been processed.

Comments: None

Example:

Init [
If 1 Main;
[
x[0] = 4;
x[1] = Invalid;
x[2] = 5;
x[3] = 6;
x[4] = Invalid;
x[5] = 3;
Compress(x[0], 6);

]
]

This will result in the first 4 elements of array x being set to 4, 5, 6 and 3
respectively, with the last 2 elements being set invalid.

COMStatus

Description Returns the last status information that occurred for a spe-
cified COM client interface.

Returns Varies

Usage Script Only.

Function Groups COM

Related to: ActiveX | COMClient | COMEvent

Format ComStatus(COMClientInterface [, Options])

Parameters

COMClientInterface

Required. A COM client interface handle returned from
a COMClient or ActiveX statement.

Options

Optional. Any numeric expression. Set to 0 to return
the Windows API error code.
Set to 1 to return a text message representation of the
Windows API error code.
Defaults to 0 if missing or Invalid.

Comments The value returned indicates the success or failure of the
last operation attempted through the specified COM client
interface.
Depending on the Options parameter, this function returns
either the Windows API error code or a text value con-
taining an ASCII representation of the error code. There is
no guarantee that all error codes can successfully be trans-
lated into a text representation.

Concat

Description: Returns the text value that is the concatenation of all the
text parameters.

Returns: Text

Usage: Script or steady state.

Function Groups: String and Buffer

Related to: StrCmp | StrICmp | StrLen | SubStr

Format: Concat(String1, String2[, String3, ...])

Parameters:

String1, String2, String3

A minimum of two parameters are required May be
any expressions that give the text values to add to the
resulting string.

Comments: This function takes all of the characters of the first para-
meter and appends all of the characters of the second para-
meter to the end of this string. It will then take all of the

characters of the next parameter and append them to the
result. This will continue until there are no more para-
meters.
Since the text strings are delimited by quotation marks, to
include a set of quotation marks as part of the resulting
string, you must use two sets of quotation marks (see
example).

Example:

ZText(10, 10, Concat("The maximum is ", maxValue,
" and the minimum is ", minValue), 2, 0);

This statement displays the 2 strings and 2 values as a single line of
(white) text in the window.

ZText(10, 10, Concat("""Hello"", said the ", animal), 12, 0);
ZText(10, 10, Concat("""", "Hello", """", ", said the ", animal),

12, 0);

 These two statements will display the exact same line of text on the
screen. If animal is the string "cat", the text that they display will be:

"Hello", said the cat

Cond

Description: Returns the result of one of two expressions depending
upon the result of a conditional expression.

Returns: Varies

Usage: Script or steady state.

Function Groups: Logic Control

Related to: Case | IfElse | IfThen

Format: Cond(Condition, Value1, Value2)

Parameters:

Condition

Required. Any numeric expression giving the con-
ditional value to use for the test. If Condition is true

(i.e. not equal to zero), the value of the Value1 para-
meter is returned.
If Condition is false (i.e. equal to zero), the value of the
Value2 parameter is returned.
If Condition is invalid, the return value is invalid.

Value1

Required. Any expression whose value is returned if
the Condition parameter is true.

Value2

Required. Any expression whose value is returned if
the Condition parameter is false.

Comments: This function will return either Value1 or Value2 based on
the truth of Condition. This means that the function may
return a valid result even if one of the Value parameters is
invalid (i.e. the one not selected). If Cond is executed in a
script, and the Condition parameter selects one of the para-
meters, the other is not evaluated (unless Condition is
invalid, and then neither parameter is evaluated). If Cond is
executed in a state, both Value1 and Value2 are evaluated,
but only one result is returned. Cond may be used on the
left side of an assignment; in that case, Value1 and Value2
may be variables, and one of Value1 and Value2 will
receive the assignment (depending on the Condition para-
meter).
This function can be used extensively to change screen
images based upon variable values. For example, it can be
used to change a color of a bar if it is used within the Bar
statement in the Foreground color parameter.
The return value is optional.

Example:

y = Cond(x == 3, 4, 5);

Y will be set invalid if x is invalid. If x is 3, y will be 4. Otherwise y will be
5.

Cond(x == 3, a, b) = 6;

If x is invalid, nothing happens. If x is 3, a will be set to 6, otherwise b
will be set to 6.

Configure

(VoiceTalk Module)

Description Is used to define how a speech stream will sound and
where it will be heard.

Returns Numeric

Usage Script Only.

Function Groups Speech and Sound

Related to: GetDevices | GetVoices | Reset | ShowLexicon | Speak |
 SpeakToFile | VoiceTalk

Format VoiceTalkStream\Configure([Voice, Device, Rate, Volume])

Parameters

VoiceTalkStream

Required. A speech stream returned from VoiceTalk.

Voice

Optional Specifies the name of the voice in which to
speak. This should be one of the voice names returned
from a VoiceTalk\GetVoices call, or Invalid to not
change the voice.

Device

Optional Specifies where to play back the voice. This
can either be a system device ID (), or the name of a
device (such as returned from a call to
VoiceTalk\GetDevices()).
-1 is the default – usually speaker audio

Rate

Optional Specifies the speed at which the voice is to
speak. Normal speed is "0". Valid values are from –10

(very slow) to 10 (very fast). The default is "0".

Volume

Optional Specifies the volume at which the voice is to
speak. Valid values are from 0 (silent), to 100 (full
speaker volume). The default is 100.

Comments A speech stream can be configured to sound differently by
changing the rate and volume parameters. To configure
output to go to another device, such as a modem, change
the Device parameter.
If a voice or device is specified which is not valid for this
stream, or a problem is encountered while trying to
change the stream configuration, the stream will be left
unchanged.
"VTSFileOutput" is a valid device name. When used, the
Speak() module will no longer work, but the SpeakToFile()
module can be used to speak a phrase into a .wav file.
This return value is the Windows error code for the prob-
lem encountered, or zero if there was no problem.

Note: Will compile and work once if called from Steady State – this is
not recommended practice.

ConnectToMachine

(RPC Manager Library)

Description: This subroutine increments the usage count on the spe-
cified workstation and forces RPC Manager to attempt to
establish a connection with the specified workstation if it is
not already connected. Subroutine call only.

Returns: Socket node (warning - see note in comments)

Usage: Script Only.

Function Groups: Network

Related to: DisconnectFromMachine | GetServer | GetServersListed |
 GetStatus | IsClient | IsPotentialServer | IsPrimaryServer

| Register (RPC Manager) | Send | SetRemoteValue

Format: \RPCManager\ConnectToMachine(Workstation)

Parameters:

Workstation

Required. Any text expression giving the name or IP
address of the workstation to which the connection is
to be made.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
While the usage count of the workstation is non-zero, RPC
Manager will continue to attempt to establish a connection
to the remote workstation.
It is critical that each ConnectToMachine call should be
paired with a DisconnectFromMachine call; if the number of
ConnectToMachine calls exceeds the number of Dis-
connectFromMachine calls, the RPC Manager will not
behave as expected and disconnection from the remote
workstation may be impeded. An unexpectedly positive
value for the Srv value in the socket's entry in the RPC Dia-
gnostics Window may be an indication of a Con-
nectToMachine/DisconnectFromMachine mismatch.
This subroutine doesn't return a (reliable) socket node (i.e.
may go invalid). Also, it isn't a socket, it is a socket node
instance.

Example:

If ! tryToOpen;
[

tryToOpen = 1;
sNode = \RPCManager\ConnectToMachine("TestMachine");

]
If sNode\socketOpen Continue;

This code snippet opens a socket to the workstation called TestMachine
and waits until the connection has been established before continuing.

Related Functions:
You may also refer to "RPC Manager Service" for a listing of Service Con-
trol Methods, RPC Methods, and Deprecated RPC Methods.

ConstCount

Description: Returns the number of constant parameters in a function.

Warning: This function should be used by advanced user only.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modification, Advanced Module

Related to: Compile | FWrite | Save

Format: ConstCount(OpCode)

Parameters:

OpCode

Required Any numeric expression for the opcode of
the function.

Comments: This function is used by the compiler to compile functions
such as FWrite and Save.

ConvertTimeStamp

Description: Converts a time stamp from one time zone to another.

Returns: Numeric (double)

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Time and Date

Related to: TimeZone | TimeZoneList

Format: ConvertTimeStamp(Timestamp, SourceTZ, InDST, DestTZ)

Parameters:

Timestamp

Required The timestamp (in seconds) to be converted
since midnight of January 1, 1970. The timestamp
parameter is limited to a minimum of 0, and a max-
imum of 34359738367. Values outside this range will
cause Invalid to be returned.

SourceTZ

Required. The name of the time zone from which
Timestamp originated. The name must be a name in
the list returned by the TimeZoneList function. May
also be a structure – see Comments.
If Invalid, or not a valid time zone name, then UTC is
used as the source time zone. If set to "0", the local
time zone is used.

InDST

Required. A flag that indicates whether daylight
savings time (DST) was in use in the source time
zone at the time indicated by Timestamp.
This flag is only used for the period at the end
of DST where a local time may appear twice.
If true (non-0), DST is in effect. If false (0), DST
is not in effect.
If invalid, the default value is false.
If the source time zone does not observe DST
(as is the case with values stored using UTC,
which is everything that the Historian saves),
then this flag has no effect.

DestTZ

Required The name of the time zone to which
Timestamp is to be converted. The name must be a

name in the list returned by the TimeZoneList function.
May also be a structure – see comments.
If invalid, or not a valid time zone name, then UTC is
used as the destination time zone. If set to "0", the
local time zone is used.

Comments: The function returns the converted timestamp as a
number indicating the number of seconds since mid-
night of January 1, 1970. The SourceTZ and DestTZ
parameters must use names as returned by the
TimeZoneList function.
The function uses the time zone information in the
registry to determine local time zone bias, DST bias,
and starting and ending dates of DST. If the inform-
ation in the registry is incorrect, then it may be
updated using the TZEdit tool available from
Microsoft.
Both the SourceTZ and DestTZ parameters may be
provided as structures. These structures will have
two members

l StdTimeZone – a string that represents the standard
name for the time zone

l ObservesDST – a Boolean, where 0 indicates that the
time zone does not observe daylight savings time
and a 1 indicates that it does

The purpose of this structure is to handle systems
that are set to a time zone that does normally
observe DST, but the users have configured Win-
dows™ to not adjust for daylight savings time. This
structure is the same as that used by option 3 of the
TimeZone function.

Example:

Init [
If 1 Main;

[
{ Convert from UK to Atlantic Standard Time }
Timestamp = ConvertTimeStamp(CurrentTime(), "GMT Standard Time",

0, "Atlantic Standard Time");
]

]

To convert the timestamp stored in SomeStartTime to GMT time:

TimeStamp = ConvertTimeStamp(SomeStartTime, TimeZone(3), 0, Invalid);

ConvertToDbDate

(ODBC Manager Library)

Description Provides a conversion of a date value into the format used
by the indicated database.

Returns The date value, converted to the specified database format

Usage Script only.
May be used in optimized Tag Parameter Expressions.

Related to: ConvertToDbTime | ConvertToDbTimeStamp

Format \ODBCManager\ConvertToDbDate(dbType, ValueIn[,
NoDelimiters])

Parameters

dbType

Required numeric value, indicating the type of this DB
connection.

DBType Meaning

0 MS SQL

1 MS Access

2 Oracle

3 MySQL

4 SyBase

ValueIn

Required. Numeric time value expressed in days since
January 1, 1970

NoDelimiters

Optional. Any Boolean expression. If this parameter
evaluates to true (non-zero), then text delimiters will
be suppressed in the output value.
Defaults to true

Comments This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.

ConvertToDbTime

(ODBC Manager Library)

Description: Provides a conversion of a time value into the format used
by the indicated database.

Returns: The time value, converted to the specified database format

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Related to: ConvertToDbDate | ConvertToDbTimeStamp

Format: \ODBCManager\ConvertToDbTime(dbType, ValueIn[,
NoDelimiters])

Parameters:

dbType

Required numeric value, indicating the type of this DB
connection.

DBType Meaning

0 MS SQL

1 MS Access

2 Oracle

3 MySQL

4 SyBase

ValueIn

Required. Numeric time value expressed in seconds
since midnight

NoDelimiters

Optional. If this parameter evaluates to true (non-
zero), then text delimiters will be suppressed in the out-
put value. Defaults to true

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.

ConvertToDbTimeStamp

(ODBC Manager Library)

Description: Provides a conversion of a timestamp value into the format
used by the indicated database.

Returns: The time value, converted to the specified database format

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Related to: ConvertToDbTime | ConvertToDbDate |

Format: \ODBCManager\ConvertToDbTime(dbType, ValueIn[,
NoDelimiters])

Parameters:

dbType

Required numeric value, indicating the type of this DB
connection.

DBType Meaning

0 MS SQL

1 MS Access

2 Oracle

3 MySQL

4 SyBase

ValueIn

Required. Numeric value expressed as a VTScada
timestamp

NoDelimiters

Optional. If this parameter evaluates to true (non-
zero), then text delimiters will be suppressed in the out-
put value. Defaults to true

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.

ConvertToVTSDate

(ODBC Manager Library)

Description: Provides a format conversion of a date value from that
used by the indicated database to the format used by
VTScada.

Returns: The date value, converted to the standard VTScada format

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Related to: ConvertToVTSTime

Format: \ODBCManager\ConvertToVTSDate(dbType, ValueIn)

Parameters:

dbType

Required numeric value, indicating the type of this DB

DBType Meaning

0 MS SQL

1 MS Access

2 Oracle

3 MySQL

4 SyBase

DBType Meaning

0 MS SQL

1 MS Access

2 Oracle

3 MySQL

4 SyBase

ValueIn

Required. Date value as used by the indicated data-
base.

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.

ConvertToVTSTime

(ODBC Manager Library)

Description: Provides a format conversion of a time value, from that
used by the indicated database, to that used by VTScada

Returns: The time value, converted to the standard VTScada format

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Related to:

Format: \ODBCManager\ConvertToVTSTime(dbType, ValueIn)

Parameters:

dbType

Required numeric value, indicating the type of this DB
connection.

DBType Meaning

0 MS SQL

1 MS Access

2 Oracle

3 MySQL

4 SyBase

ValueIn

Required. Time value as used by the indicated data-
base.

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.

ConvertToVTSTimeStamp

(ODBC Manager Library)

Description: Provides a format conversion of a time value from that
used by the indicated database into a VTScada time stamp
format

Returns: The time and date value, converted to a VTScada
timestamp

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Related to: BuffRead | ConvertToVTSTime | ConvertToVTSDate

Format: \ODBCManager\ConvertToVTSTime(dbType, ValueIn[,
FormatStr])

Parameters:

dbType

Required numeric value, indicating the type of this DB
connection.

DBType Meaning

0 MS SQL

1 MS Access

2 Oracle

3 MySQL

4 SyBase

ValueIn

Required. Time and date value as used by the indicated
database.

FormatStr

Optional. Provides a format to use. Please refer to the
BuffRead function for a description of the formatting
options

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.

Coordinates

Note: Deprecated. Do not use in new code.

Description: Sets the VTScada screen coordinate limits (also called
"world coordinates") used by the graphics functions.

Returns: Nothing

Usage: Script Only.

Function Groups: Graphics, Window

Related to: CoordToPixel | Window

Format: Coordinates(Left, Bottom, Right, Top)

Parameters:

Left

Required. Any numeric expression giving the x screen
coordinate of the left side of the window.

Bottom

Required. Any numeric expression giving the y screen
coordinate of the Bottom side of the window.

Right

Required. Any numeric expression giving the x screen
coordinate of the Right side of the window.

Top

Required. Any numeric expression giving the y screen
coordinate of the Top of the window.

Comments: Left cannot equal Right, and Top cannot equal Bottom.
Left, Right, Top, and Bottom can be any floating point val-
ues including fractions. When this statement changes
coordinate limits, all active graphics statements are auto-
matically redrawn. It may be useful for setting screen
coordinates to match device coordinates, or to ensure the
screen coordinates are set correctly when working with dif-
ferent video modes.
If you wish to set to pixel coordinates you may do so using
this statement or it may be simpler to set the window
option to pixel.

Example:

Coordinates(0, 349, 639, 0);

This sets the screen coordinates such that (320,175) is the center of the
screen. If VTScada is running in EGA resolution (640 x 350) then one
screen coordinate is the same as one pixel.

CoordToPixel

Description: Takes a specified coordinate pair within a given window

and returns the overall, onscreen pixel location.

Returns: Numeric

Usage: Script Only.

Function Groups: Graphics, Window

Related to: Coordinates

Format: CoordToPixel(Object, CoordX, CoordY, Option)

Parameters:

Object

Required. The window context that the coordinates are
taken from.

CoordX

Required. Any numeric expression giving the x-
coordinate to convert.

CoordY

Required. Any numeric expression giving the y-
coordinate to convert.

Option

Required. Any numeric expression specifying the con-
verted coordinate to return, where 0 returns the con-
verted x-coordinate, and 1 returns the converted y-
coordinate.

Comments: This function's return value is determined by the Option
parameter.

Example:

If 1 Main;
[
xPixel = CoordToPixel(Self(), xCoord, yCoord, 0);
yPixel = CoordToPixel(Self(), xCoord, yCoord, 1);

]

This converts the point specified by the user coordinates (xCoord,
yCoord) in the current module to screen coordinates (pixel location).

CopyDir

(System Library)

Description: This subroutine recursively copies a directory's files and
sub-directories down through the entire directory tree.

Returns: Nothing

Usage: Script Only.

Function Groups: File I/O

Related to: CheckFileExist | CheckPathExist | GridList

Format: \System\CopyDir(Destination, Source)

Parameters:

Destination

Required. Any text expression giving the directory into
which the source directory is to be copied. This dir-
ectory must already exist.

Source

Required. Any text expression giving the directory to
be copied.

Comments: This subroutine is a member of the System Library, and
must therefore be prefaced by \System\, as shown in the
"Format" section. If you are developing a script application,
use "System\..." rather than "\System\..." in the function
call.

Example:

System\CopyDir("C:\OEMApp", "App1");

CopyIn

Description: Copies data from an absolute RAM address and returns a
buffer.

Returns: Buffer

Usage: Script Only.

Function Groups: Memory I/O

Related to: CopyOut | MemIn | MemOut

Format: CopyIn(Address, Length)

Parameters:

Address

Required. Any numeric expression giving the absolute
RAM address to start to copy. Typically the address is
specified using the colon (:) operator.

Length

Required. Any numeric expression giving the number
of bytes to copy.

Comments: This function requires that the VTSIO driver be installed.
Please refer to the topic, Communicating Directly With
Hardware for more details.
A buffer is returned that is a copy of RAM at Address.

Example:

buff = CopyIn(0x1859@0x0000, 256);

This creates a 256 byte text buffer which is a copy of the real-mode RAM
bytes at segment 1859 (hex), offset 0 to offset FF (hex).

CopyObjects

Description: Copies the code for selected drawing objects and returns it
in a buffer.

Returns: Buffer

Usage: Script Only.

Function Groups: Graphics

Related to: PasteObjects

Format: CopyObjects(EditFAB)

Parameters:

EditFAB

The window where the dragging/drawing of the object
is done.

CopyOut

Description: Copies data from a buffer to an absolute RAM address.

Returns: Nothing

Usage: Script Only.

Function Groups: Memory I/O

Related to: CopyIn | MemIn | MemOut

Format: CopyOut(Buffer, Address, Length)

Parameters:

Buffer

Required. Any text or buffer expression containing
data bytes to copy.

Address

Required. Any numeric expression giving the absolute
RAM address to start to copy.

Length

Required. Any numeric expression giving the number
of bytes to copy.

Comments: This function requires that the VTSIO driver be installed.
Please refer to the topic, Communicating Directly With
Hardware for more details.
A buffer is written to RAM at Address. If fewer than Length
bytes are in the buffer, the copy will stop when the end of
the buffer is reached.

Example:

CopyOut(x, 0x1859:0x0000, 256);

This would copy the first 256 bytes from the text variable x to real-mode
RAM segment 1859 (hex) offset 0 to offset FF (hex), unless x is shorter
than 256 bytes.

CopyRecords

(ODBC Manager Library)

Description: Copy record(s) from a database and inserts the values back
into the same table with the desired change to one field. It
will destroy any existing records with the same name.
Should be run as a called module, waiting for completion.
Do not call as a subroutine.

Usage: Script Only.

Returns: An error code if one results from the action, otherwise 0.

Related to:

Format: \ODBCManager\CopyRecords(DSN, TableName,
KeyField, OrgKeyValue, CopiedKeyValue, Username,
Password [, TransactionObj])

Parameters:

DSN

Required. Data source name of the database to use

TableName

Required. Table name to read and write in both data-
bases

KeyField

Required. Field name to use for the SQL WHERE clause

OrgKeyValue

Required. Key values of the records when complete

CopiedKeyValue

Required. Key values of the records to copy

Username

Required. User name for database access

Pass

Required. Password for database access

TransObj

Required. Value of transaction object

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.

Cos

Description: Returns the trigonometric cosine of an angle in radians.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Trigonometric Math

Related to: ACos | ASin | ATan | Sin | Tan

Format: Cos(Angle)

Parameters:

Angle

Required. Any numeric expression giving the angle in
radians.

Comments: The returned value is a number in the range of -1.00 to
+1.00. To convert an angle from degrees to radians mul-
tiply by \pi / 180 or (approximately) 0.0174533.

Example:

x = Cos(180 * \pi / 180);

The value of x will be - 1.

CoverageSnapshot

Description: Captures the areas in a VTScada source file which have not
executed along with summary statistic for each module in
the file to extract code coverage information.

Returns: Struct

Usage: Script Only.

Function Groups: Advanced Module

Related to:

Format: CoverageSnapshot(Module, [Reset])

Parameters:

Module

Required. A VTScada module. The data returned will
be for the source file which contains that module.
Information for all of the modules in the same source
file will be included in the returned value. The module
need not be the root module of the source file.

Reset

Optional Tells the function to reset all of the code cov-
erage counters to 0 immediately after the statistics are
collected.
A true value indicates that the reset should be done
and a false (0) indicates that it should not be done. The
default value is 1.

Comments: The VTScada interpreter engine keeps counters for
every module, variable, state, statement and func-
tion parameter. All of these counters start at 0
whenever VTScada starts. Every time one of these
internal structures is executed, its corresponding
counter is incremented.
The CoverageSnapshot function searches through

the code for a given VTScada script source file and
locates all of the counters which are still 0. These
represent the areas of the code that have not
executed since VTScada started or at least since the
last reset.
CoverageSnapshot returns a list of all these areas of
the code that haven’t executed. The list is in the
form of starting and ending byte offsets in the
source file. The list excludes constants the declar-
ation of TEST modules and FIXTURES.
The structure returned is

FileCoverage Struct [
Children { Dictionary of child module names.

The values are
either a pointer to Child Struct or

a file name.
File name is used if not in the

same source file.
File names are relative to VTScada

installation directory.};
List { Pointer to an UncoveredList Struct

};
FileSize { Number of bytes in the file. Will be

invalid if the
first parameter of the function

refers to a module
which is not the root module in the

file and the
parent of the module is invalid. };

TimeStamp { File time for the file };
Class { Variable class defined for the root

module
In the file. };

];

The referenced structures are:

Child Struct [
Begin { Byte offset from the beginning of

the source file for
module definition };

End { Last byte offset for the module
definition };
Children { Dictionary as defined in FileCover-

age Struct };
Class { Variable class defined for the

module };
];

UncoveredList Struct [
Begin { Offset to start of uncovered code

in source file };
End { Offset to last byte of uncovered

code in range };
Mode { 0 for code, 1 for variables

};
Next { Pointer to next UncoveredList for

the file };
]

The UncoverList is ordered in increasing Begin off-
sets with none of the Begin/End areas overlapping
in the list.

CRC

Description: Returns the cyclic redundancy check (CRC) value for a buf-
fer.

Returns: Numeric

Usage: Script or steady state.

Function Groups: String and Buffer

Related to: CRCTable

Format: CRC(Buffer, Offset, Length, Table, Start)

Parameters:

Buffer

Required. Any text expression for which to generate a
CRC.

Offset

Required. Any numeric expression giving the offset
from 0 in the buffer where the CRC calculation will
start.

Length

Required. Any numeric expression giving the number
of buffer bytes to include in the CRC. Length must not
be greater than 65500.

Table

Required. A text expression giving a CRC look-up
table buffer. The length of the table buffer must be a
multiple of 256 plus 1.
A table can be generated automatically with the CRCT-
able function.

Start

Required. Any numeric expression giving the initial
value for the register used in the CRC calculation.
This is 0 for Allen-Bradley® protocols, and FFFF Hex
for Modicon®.

Comments: CRC is a driver toolkit function.

Example:

checkSum = CRC(response { Text buffer },
0 { Start of the buffer },
20 { Number of bytes },
CheckTable { Look-up table buffer },
0 { Use Allen-Bradley™ protocols });

This gets the checksum for bytes 0 to 19 of the text buffer response,
using the CheckTable CRC look-up table, and an initial accumulator
value of 0.

CRCTable

Description Returns a buffer containing a CRC table.

Returns Buffer

Usage Script or steady state.

Function Groups String and Buffer

Related to: CRC | CRCTable

Format CRCTable(Polynomial, Length, Shift)

Parameters

Polynomial

Required. A long expression that gives the bit pattern
of the generating polynomial. For Allen-Bradley® and
Modicon®, Polynomial = 0b1000000000000101,
which corresponds to the expression:
x^16 + x^15 + x^2 + 1
To determine the value of Polynomial for a given gen-
erator expression, drop the highest order term, and
represent each term present by a 1 in the bit position
equal to its exponent.
For example, x^16 + x^12 + x^5 + 1 would have a
Polynomial value of 0b0001000000100001. The first 1
corresponds to x^12, the second to x^5, and the last
to 1 (which is x^0). This polynomial is used by the
XMODEM protocol.

Length

Required. Any numeric expression giving the byte
length of the CRC accumulator register (usually 2 or
4). The CRCTable buffer returned is 256 * Length + 1
bytes long.

Shift

Any numeric expression that is 0 for right-shifted CRC
calculations (such as Allen-Bradley® or Modicon®),
and 1 for left-shifted CRC calculations (such as
XMODEM).

Comments This function is part of the driver toolkit.

Example:

checkTable = CRCTable(0b1000000000000101
{ Polynomial: x^16 + x^15 + x^2 + 1 },
2 { 16 bit CRC register },
0 { Right-shifted CRC calculations });

This generates a CRC look-up table for use with the CRC function.

CreateModule

Description: Creates a new module and returns a pointer to it.

Returns: Pointer

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: AddModule | DeleteModule

Format: CreateModule(FileName)

Parameters:

FileName

Required. Any text expression giving the name of the
.SRC file that contains this module's definition.

Comments: This function creates a module that has no parent.

Example:

If 1 Main;
[
myMod = CreateModule("pump.SRC");
]

CriticalSection

Description: Marks a section of a module as a critical section and will
not allow interruption of its execution by other threads.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Basic Module

Related to: Execute

Format: CriticalSection(Statement1, Statement2, [Statement3, …])

Parameters:

Statement1, Statement2, Statement3, …

Required. Any expressions to be executed. Any num-
ber of parameters may be used.

Comments: This statement works in a manner similar to Execute, but
on the threaded level.

Example:

If 1 Main;
[
IfThen(Valid(level),

CriticalSection(temp = a,
a = b,
b = temp));

]

Crop

Description: Modifies an existing image, producing a new one that dis-
plays a sub-section of the original.

Returns: Image handle

Usage: Script or steady state.

Function Groups: Graphics, Window

Related to: BitmapInfo | GUIBitmap | GUIButton | ImageArray |
 ImageSweep | MakeBitmap | ModifyBitmap

Format: Crop(OrigBMP, Left, Top, Width, Height)

Parameters:

OrigBMP

Required. The original image to be cropped. This must
be a valid image object, created with the MakeBitmap
statement.

Left

Required. Any expression for the number of pixels
from the left side of the original image to set to be the

left side of the new image. "0" will start at the same
place as the original image.

Top

Required. Any expression for the number of pixels
from the top of the original image to set to be the top
of the new image. "0" will start at the top of the original
image.

Width

Required. Any expression for the number of pixels
wide the new image will be. The new image will be
enforced to be at least 1 pixel wide, even if Width is set
to less than 1 pixel.

Height

Required. Any expression for the number of pixels
high the new image will be. The new image will always
be at least 1 pixel height, even if Height is set to less
than 1 pixel.

Comments: This function allows for the enlargement of parts of an ori-
ginal image, without requiring that the entire image be
drawn. It also uses very little memory, and is very fast, as
compared to calls to creating a file from a disk file each
time.
There are no restrictions on how large the new image may
be, so it can be larger (in any dimension) than the original.
If this is the case, the extra space will be filled with black
pixels. Values for Left and Top that are less than zero (0)
are therefore permitted. Width and Height should be given
a value of at least one "1", but may be as large as desired.
Any transparency in the original image is preserved in the
cropped image.
Cropping can be cumulative, so that you can take the out-
put of one crop function and use that as input to another.
The result is that the left and top of the new transform are

equivalent to the sum of the values in each of the original
transforms. However, since width and height are in pixels,
the number of pixels specified each time is exactly how
large the resulting image will be.
The image resulting from a call to Crop() can be used any
place that an image may be used, such as in a call to GUIBit-
map or GUIButton.

Example:

img = Crop(MakeBitmap("TANKS.BMP", 0), 10, 10, 50, 50);
GUIBitmap(250, 150, 350, 50 { position },
1, 1, 1, 1, 1 { scaling },
0, 0 { trajectory, rotation },
1, 0 { visibility },
0, 1, 1 { selectability },
img { image });

This example displays a 50x50 pixel subsection beginning 10 pixels
from the left and 10 pixels from the top of the original image,
"TANKS.BMP". It is then displayed in a 100x100 pixel square on the
screen. Any place the color was black (index 0) in the image will be
shown as transparent.

If Watch(1, BitmapFile);
[
img = MakeBitmap(BitmapFile);
imgWidth = BitmapInfo(img, 0);
imgHeight = BitmapInfo(img, 1);

]
img2 = Crop(img, imgWidth*0.25, imgHeight*0.25,

imgWidth*0.5, imgHeight*0.5);

This example creates and stores an image in img2 which is the middle
section of the original image.

CrossReference

Description: Returns a linked list of structures representing all ref-
erences to a specified variable or module.

Returns: Linked list of structures

Usage: Script Only.

Function Groups: Advanced Module

Related to:

Format: CrossReference(ModuleToSearch [, WhatToFind, Context])

Parameters:

ModuleToSearch

Required. Module value which is the root of the static
module tree to search. May also be an array of module
values.
If the next parameter (ModuleToFind) is invalid, then
only the variable references which are not within the
scope of this module are returned, i.e. external ref-
erences.

WhatToFind

Optional. May be either a module or a variable to
search for. If invalid, all references to all variables
(whether they may contain modules or otherwise) out-
side the specified scope tree are returned.

Context

Optional. Instance of a module that indicates what
scope ModuleToSearch would run in, were it to run.
(Note that ModuleToSearch does not need to be run-
ning when CrossReference is called.)
If invalid, only the static scope will be searched.

Comments: Context must be valid where scoping needs to be resolved
as shown in the example. In this example, it is necessary to
determine if the Draw module referred to is the correct one
based up on the module value of the actual Draw variable
stored in Tag23’s module.

Example:
Assume that there is page named MyPage whose only line is the fol-
lowing:

Variable("Tag23")\Draw(Variable("Flow")\Value * 10, 57)

Further, assume that Tag23 is of type MyTagType
Then, to look for all references to MyTagType's Draw method inside a par-
ticular page, use:

CrossRefData = CrossReference(\MyPage, \ MyTagType \Draw, \Code);

You could then expect the following to be true.

CrossRefData\Reference == FindVariable("Draw", \MyTagType, 0, 0)

CrossRefData\DAG == the code value for the Call to the Draw method
CrossRefData\Begin == the number of bytes from the beginning of the

Function to the beginning of the text "Draw".
CrossRefData\End == the number of bytes from the beginning of the

Function to the end of the text "Draw".
CrossRefData\Next = Invalid, assuming there are no other references

to MyTagType’s Draw method on the page.

If you wanted to find all the external references in a section of code (i.e.
all references to values that aren’t actually declared in the MyPage mod-
ule), then you could use the function like so:

CrossRefData = CrossReference(\MyPage, Invalid, \Code);

You would expect the linked list in CrossRefData to have nodes for each
of the following: Tag23, Draw, Flow, and Value since they are all vari-
ables that were not declared in MyPage.
If, for example, the CrossReference code was not able to find a variable
called Flow in \Code, then the Reference value for that node in the
CrossRefData would be the text "Flow" rather than a variable value for
Flow. This is because there simply wasn’t a variable named Flow declared
in the app. The node for Value would also have the text "Value" instead
of a variable value, because if it cannot find the variable for Flow, it fol-
lows that it won't find Flow\Value.
The linked list of structures, as returned by this function, are ordered
such that the Begin fields are in strictly descending order for each unique
file. This is because, if the list is processed in the order returned then
multiple search and replace processes done within the same file will not
interfere with each other .

All structures for a given file are consecutive in the linked list. In other
words, the last reference in the source file will be the first one on the
list.
The following tasks can be facilitated without the need to run the code
being examined:

l Changing the name of a variable or module

l Moving a variable/module to a different scope

l Removing references to a deleted variable/module

l Giving a cross-reference to locations where a variable/module is referenced

l Re-ordering the parameters to a module

l Locating all variable/module references in a higher scope

CurrentLine

Note: Deprecated. Do not use in new code.

Description: Returns the text string that is the current line in an editor.

Returns: Text

Usage: Script or steady state.

Function Groups: Editor

Related to: AddEditorText | Editor | ForceEvent | GoToOffset |
 MakeEditor | SetEditMode

Format: CurrentLine(Editor)

Parameters:

Editor

Required. Any expression that returns an editor value
that was created by the MakeEditor function. If this
isn't an editor type value, or if it is invalid, nothing hap-
pens.

Example:

If ZButton(10, 40, 110, 10, "Copy", 1, 0);
[

lineToCopy = CurrentLine(myEditor);
]

CurrentTime

Description: Returns the number of seconds, in local or UTC time, since
midnight of January 1, 1970 (where "midnight" is 00:00).

Returns: Numeric (double)

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Time and Date

Related to: Now | Seconds | Today | TimeArrived

Format: CurrentTime([TimeType])

Parameters:

TimeType

Any expression that evaluates to a 0 or 1. When 0, it
indicates that time returned should be local time.
If set to 1, indicates that the current UTC time should
be returned.
Defaults to 0 if missing or Invalid.

Comments: This function solves the problem encountered when
using Seconds together with Today to determine the
current date and time, when the time is within a
fraction of a second of midnight.
This function assumes that "midnight" on January 1,
1970 is 00:00, rather than 24:00 on a 24-hour
clock.
The returned value is accurate to three decimal
points (milliseconds).

Example:

If ! Valid(RightNow);
[
RightNow = CurrentTime();

]

This assigns the current time in seconds since midnight on January 1,
1970 to the double variable rightNow.

CurrentWindow

Description: Returns the application window over which the mouse
cursor rests.

Returns: Object Value

Usage: Steady State only.

Function Groups: Locator, Window

Related to: ActiveWindow | WinLocSwitch | WinXLoc | WinYLoc |
 Window

Format: CurrentWindow()

Parameters: None

Comments: The return value is the object value of the module instance
running in the window that the mouse cursor is over; this
is not necessarily the active window. If more than one mod-
ule instance is running in that window, the return value will
be the highest scope module instance running in that win-
dow; which should either call, or be the parent or ancestor
of, all other module instances in that window.
Unlike the ActiveWindow function, CurrentWindow will
recognize and return the object value of the root module
instance in child windows when the mouse passes over
them.
This function is useful for things like status lines, or help
windows; it only works on windows that belong to
VTScada.

Example:

obj = CurrentWindow();
winX = WinXLoc(obj);
winY = WinYLoc(obj);
winB = WinLocSwitch(obj);

This shows how to get information about the mouse in another window.
This window is determined to be the window the mouse is passing over.
WinX and winY have the mouse location (which works like XLoc and
YLoc), and winB has the current mouse button combination (like
LocSwitch).

D Functions
The sections that follow identify all VTScada functions beginning with
"D".

Date

Description: Returns a text string giving the date that corresponds to
the number of days since January 1, 1970.

Returns: Text

Usage: Script or steady state.

Function Groups: Time and Date

Related to: DateNum | Day | Month | Now | Time | Today | Year

Format: Date(Day, DateForm [, Flags])

Parameters:

Day

Required. Any numeric expression giving the number
of days since January 1, 1970. This is a "Julian" style
date. The function, Today() is commonly used.

DateForm

Required. Any numeric or text expression selecting the
format for the date format. If DateForm is numeric, the

format for the date will be interpreted according to the
standard predefined Date Codes.
If DateForm is a text value, it is interpreted as a date
formatting string. Please refer to the Date Formatting
Strings in the appendix. Note that these key stings are
case sensitive.

Note: In the event that the DateForm para-
meter does not resolve to either a numeric or
text value, the system-configured date format,
as specified through the Windows Control
Panel, is used. In this case, the Flags para-
meter is used to select from a number of
options for the date.

Flags

An optional parameter that is only used in the
event that the DateForm parameter does not
resolve to a numeric or a text value. The Flags
parameter may be set as follows to adjust the
format of the date.

Flags Description

1 Generate the configured short form of
the date (e.g. "29/03/04").

2 Generate the configured long form of
the date (e.g. "29 March 2004").

8 Generate the configured year/month
format (e.g. March 2004). Please note
that this option is only available on Win-
dows 2000/XP

Comments: This function is primarily used to convert dates
from historical data files to a format that is more
easily readable. The Julian style date is used since it

gives an easy method of calculating the time
between dates and it is compact for historical
records.
If Date is used with a predefined date code, then the
result will always be in English, regardless of any
system settings.
If Date is used with a format string, such as "dd
MMMM yyyy", then the result will be in the user's loc-
ale. For example, "25 Febrero 2014"

Example:

ZText(10, 590, Date(Today(), 4), 15, 0);

This displays today's date in the lower left of the screen.

DateNum

Description: Returns the number of days since January 1, 1970 for a
given date.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Time and Date

Related to: Date | Day | Month | Today | Year

Format: DateNum(Day, Month, Year)

Parameters:

Day

Required. Any numeric expression giving the day of
the month for the date.

Month

Required. Any numeric expression giving the month
number for the date. January is month 1.

Year

Required. Any numeric expression giving the year of
the date. The full four-digit date must be used.

Comments: This function performs the inverse function to the Day,
Month, and Year functions. No checks are done to verify
that the parameters are in a valid range.

Example:

numDays = DateNum(16, 08, 1997);

NumDays is set to 8394, which is the number of days between 1 January
1970 and 16 August 1997.

DateSelector

Description: Displays a calendar, from which operators can select a
date.

Returns: Timestamp (within a parameter).

Usage: Steady State only.

Function Groups: Time and Date, Graphics

Related to: Date | DateNum | Today

Format: DateSelector(ShowSelector, Left, Top, ptrNewDate)

Parameters:

ShowSelector

Numeric. Used as a flag to enable and disable the dis-
play of the selector. Also used as a return value: 0
indicates that a date was selected, -1 indicates that the
operator closed the dialog without selecting a date

Left

Any numeric expression specifying the location of the
left edge of the calendar

Top

Any numeric expression specifying the location of the

top edge of the calendar.

ptrNewDate

A pointer to a variable holding a timestamp value. The
returned date from the calendar will be found here.
You may also use this to hand an initial date to the cal-
endar, to be displayed when ShowSelector becomes
true

Comments: The function returns an object variable of itself upon start-
ing, in case the calling module requires it.
You can monitor the value of ShowSelector, after making it
true to show the calendar, in order to know whether the
operator selected a date (ShowSelector becomes 0) or
closed the calendar without choosing a new date
(ShowSelector becomes -1).
Note that the value within ptrNewDate is a timestamp in
seconds, not a date value in days.

Examples:

If !Valid(StartDate);
[
 StartDate = Today() * 86400;
]
If GUIButton(0, 1, 1, 0,
 1 - (MID - 60), TOP + 47,
 Split, 1 - (TOP + 17),
 1, 0, 0, 1, 0,
 68, 2, 0,
 \ButtonFace, \ButtonHighlight, \ButtonShadow, \But-
tonTextColor,
 0, 0,
 "Change", "Change", _DialogFont,
 2, 1, 0);
[
 ShowCalendar = 1;
]
\DateSelector(ShowCalendar, LHS, TOP + 60, &StartDate);

Day

Description: Returns the day of the month for a given date number.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Time and Date

Related to: Date | DateNum | Month | Today | Year

Format: Day(Date)

Parameters:

Date

Required. Any numeric expression giving the number
of days since January 1, 1970.

Comments: This function works in conjunction with the Month and
Year functions to decompose a date into the cor-
responding day, month and year.

Example:

firstDate = Day(DateNum(25, 12, 1992));

This causes firstDate to be set to 25.

DBAdd

Description: Executes in its own thread to add a record to a VTScada
database and returns an indication of parameter errors.

Returns: Numeric

Usage: Script Only.

Function Groups: Database and Data Source

Related to: DBAdd | DBGetStream | DBListGet | DBListSize |
 DBRemove | DBSystem | DBTransaction | DBUpdate |
 DBValue

Threaded: Yes

Format: DBAdd(DBSysVal, IDKey, DefaultEvent, EventCode [,
FieldVal])

Or
DBAdd(DBSysVal, IDKey, DefaultEvent, EventCode [,
FieldVal1, FieldVal2, FieldVal3, …])

Parameters:

DBSysVal

Required. The database value to use. This is the return
value from a DBSystem call.

IDKey

Required. Any text expression that uniquely identifies
the record to be created.

DefaultEvent

Required. Any text expression containing one
byte for each list in the system. Any missing
bytes or bytes with values not included in the
list provided, default to "do nothing to the list".
Note that there is one byte for each list in the
system.

Text Value Default Event

+ Add to list

<space> Do nothing to list

EventCode

Required. Any variable in which the event code
for the function is returned. This parameter may
be used to indicate completion of the function,
as it will not be set to a valid value until exe-
cution is complete. It has one of the following
meanings:

EventCode Meaning

0 New record added

1 Record already existed. it was

updated

2 Error occurred – record not
added

EventCode may be replaced by a constant or
Invalid if it is not required. This parameter will
not be set if there is a parameter error (see com-
ments)

FieldVal

(or FieldVal1, FieldVal2, FieldVal3, …)
One or more parameters that are an array or a list of
values for each field. FieldVal (or FieldVal1, FieldVal2,
FieldVal3, …) will be set to Invalid if not specified, if
insufficient parameters are specified to fill each field in
the new database record, or if the parameter is an
array with insufficient entries to fill each field in the
database.

Comments: This function executes in the thread created by the DBSys-
tem call, so it will not block other statements from execut-
ing. This does mean, however, that the timing for
EventCode becoming valid (marking that the statement
has finished executing) is unpredictable and should there-
fore be checked for validity prior to executing other state-
ments that rely on this statement's results.
The return value for this function indicates if any of its key
parameters (DBSysVal, IDKey, DefaultEvent, or any
required FieldVal) are illegal. It will immediately return a
value of false (0) unless a key parameter was illegal, in
which case it will return true (1). Note that the return value
only signals completion of the function's execution if it is
true, otherwise the function will continue executing in the
thread created for it.
If the record that is to be added already exists (i.e. its
IDKey duplicates one already in the system), the field val-

ues of the pre-existing record are updated by those
defined in the FieldVal parameter(s).
If the database file has its read-only attribute set when this
function is executed, it will be cleared automatically by exe-
cution of the function.

Example:

alarmDB = DBSystem("", "", 0, 0, 32 { key }, -3 { pressure },
3 { level }, -3 { temperature });
If Valid(AlarmDB) && ! added;
[
added = 1;
DBAdd(AlarmDB { Database to use },

"Tank_697" { ID key },
"+" { Add to list },
event { Var to get event code },
pressure, level, temperature

{ Field values }));
]

DBDropList

(ODBC Manager Library)

Description: Populates a droplist using the results of an SQL query on a
given database.

Format: \ODBCManager\DBDropList(X1, Y1, X2, Y2, DSN,
UserName, Password, SQLQuery, Title, LocFocusID, Init,
Var[, DrawBevel, AlignTitle, AddInvalid, InvalidText])

Returns: Numeric

Usage: Script Only.

Function Groups: Database and Data Source

Related to: Droplist |

Parameters:

X1

Required. Screen coordinates of the left side of drop
list

Y1

Required. Screen coordinates of the top of list

X2

Required. Screen coordinates of the right side of the
list

Y2

Required. Screen coordinates of the bottom of list

DSN

Required. DSN of the database to query

UserName

Required. The user name in the database for authen-
tication.

Password

Required. The password in the database for authen-
tication.

SQLQuery

Required. An SQL query that returns either one or two
columns. The first column is used for droplist display,
the second (if it exists) provides the matching value for
each entry in the list.

Title

Required. The title for the drop list

LocFocusID

Required. Numeric expression for the focus number
of this graphic. If this value is 0, the droplist will dis-
play its current setting, but will not be able to be
opened (i.e. its value cannot be changed) and will
appear grayed out. The default value is 1.

Init

Required. Any expression for the initial value displayed
in the field

Var

Required. A variable whose value will be set by this
droplist

DrawBevel

Optional. If true (non-0) a bevel is drawn around the
droplist. If false (0) no bevel is drawn. The default
value is false

AlignTitle

Optional. If true (non-0) the title is included in the cal-
culation for vertical alignment. If false(0) it is added to
the droplist after it (and its bevel if one exists) has been
vertically aligned. The default is true

AddInvalid

Required. If true an entry with an invalid value will be
added at the top of list.

InvalidText

Required. Used with AddInvalid to provide the text to
be displayed for the item at the top of the list.

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.

DBGetStream

Description: Converts a database to a stream, and returns an indication
of parameter errors.

Returns: Numeric

Usage: Script

Function Groups: Database and Data Source, Stream and Socket

Related to: DBAdd | DBInsert | DBListGet | DBListSize | DBRemove |
 DBSystem | DBTransaction | DBUpdate | DBValue

Threaded: Yes

Format: DBGetStream(DBSysVal, Stream [, Timestamp])

Parameters:

DBSysVal

Required. The database value to use. This is the return
value from a DBSystem call.

Stream

Required. Any variable in which the stream containing
the database will be returned.

Timestamp

Optional. An optional parameter that is any numeric
expression indicating the earliest timestamp to include
in the stream. Only database records with date/time
values greater than or equal to this parameter will be
returned.

Comments: The return value for this function indicates if its key para-
meter (DBSysVal) is invalid

If DBSysVal is valid, DBGetStream will immediately return a
value of false (0).
If DBSysVal is invalid, DBGetStream will not perform the
required operation, and will instead immediately return a
value of 1.

Note that the return value only signals completion of the
function's execution if it is true.
Since the value of the Stream parameter is created from a
database's file, the DBSystem function that created the data-
base had to have a valid first parameter (the file name in
which the database contents are stored).
If the database file has its read-only attribute set when this
function is executed, it will be cleared automatically by exe-
cution of the function.

Example:

db = DBSystem("", "", 0, 0, 32 { key }, -3 { pressure },
3 { level }, -3 { temperature });
If Valid(db) && ! done;
[
done = 1;
DBGetStream(db { Database to use },
result { Returned stream value });

]

DBGridList

(ODBC Manager Library)

Description: Populates a grid list using the results of a database query

Format: \ODBCManager\DBGridList(DSN, UserName, Password,
SelectQualifier, Fields, Tables, WhereFields,
WhereOperators, WhereValues, WhereAndFlag,
UserQuery, ColName, ColFormat, ColCellWidth,
RowHeight, TitleHeight, ExtDisplayRef,
AutoResizeWidths, OrderBy, LockFirstColParm, SortParm,
SelectedRowParm, SelectedColParm, Horiz, Vert,
Refresh, DataPtr)

Returns: Numeric

Usage: Script Only.

Function Groups: Database and Data Source

Related to: GridList

Parameters:

DSN

Required. Datasource name to query.

UserName

Required. The user name in the database for authen-
tication.

Password

Required. The user name in the database for authen-
tication.

SelectQualifier

Required. SQL selection qualifier, such as "top 100"
etc.

Fields

Required. An array of field names to query for

Tables

Required. An array of tables to query from

WhereFields

Required. An array of fields named for SQL WHERE
clause

WhereOperators

Required. An array of Operators for the SQL WHERE
clause

WhereValues

Required. An array of Array of values for the SQL
WHERE clause

WhereAndFlag

Required. Set 1 for AND of where fields, reset for OR

UserQuery

Required. Overrides Fields, Tables, & Where when
defined

ColName

Required. Text array of titles for displaying data

ColFormat

Required. Text array of format qualifiers for each of
the values.

ColCellWidth

Required. Array giving the size to use for the cells
columns

RowHeight

Required. Height of the data rows. Set to invalid to use
the defaults.

TitleHeight

Required. Height of the column titles. Set to invalid to
use the defaults.

ExtDisplayRef

Required. Object value of where ColFormat modules
located

AutoResizeWidths

Required. Automatically resize the widths to fit the
available space

OrderBy

Required. Field names for ORDER BY clause only used

LockFirstColParm

Required. TRUE to lock column 0 while horizontal
scrolling

SortParm

Required. Enables grid list sorting

SelectedRowParm

Required. 0 - based value of row of selected item

SelectedColParm

Required. 0 - based value of column of selected item

Horz

Required. Horizontal scroll position

Vert

Required. Vertical scroll position

Refresh

Required. Set flag to re-query data

DataPtr

Required. Pointer to data read from db in [Col][Row]

format

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.

DBInsert

Description: Identical to DBAdd, except that it will not modify an exist-
ing record. Executes in its own thread to add a record to a
VTScada database and returns an indication of parameter
errors.

Returns: Numeric

Usage: Script Only.

Function Groups: Database and Data Source

Related to: DBAdd | DBGetStream | DBListGet | DBListSize |
 DBRemove | DBSystem | DBTransaction | DBUpdate |
 DBValue

Threaded: Yes

Format: DBInsert(DBSysVal, IDKey, DefaultEvent, EventCode [,
FieldVal])
Or
DBInsert(DBSysVal, IDKey, DefaultEvent, EventCode [,
FieldVal1, FieldVal2, FieldVal3, …])

Parameters:

DBSysVal

Required. The database value to use. This is the return
value from a DBSystem call.

IDKey

Required. Any text expression that uniquely identifies
the record to be created.

DefaultEvent

Required. Any text expression containing one
byte for each list in the system. Any missing
bytes or bytes with values not included in the
list provided, default to "do nothing to the list".
Note that there is one byte for each list in the
system.

Text Value Default Event

+ Add to list

<space> Do nothing to list

TimeStamp

Required. The time to be used for all lists that the new
record is a member of. Current time will be used if this
field is invalid.

EventCode

Required. Any variable in which the event code
for the function is returned. This parameter may
be used to indicate completion of the function,
as it will not be set to a valid value until exe-
cution is complete. It has one of the following
meanings:

EventCode Meaning

0 New record added

2 Error occurred – record not added

EventCode may be replaced by a constant or
Invalid if it is not required. This parameter will
not be set if there is a parameter error (see com-
ments)

FieldVal

(or FieldVal1, FieldVal2, FieldVal3, …)
One or more parameters that are an array or a list of

values for each field. FieldVal (or FieldVal1, FieldVal2,
FieldVal3, …) will be set to Invalid if not specified, if
insufficient parameters are specified to fill each field in
the new database record, or if the parameter is an
array with insufficient entries to fill each field in the
database.

Comments: This function executes in the thread created by the DBSys-
tem call, so it will not block other statements from execut-
ing. This does mean, however, that the timing for
EventCode becoming valid (marking that the statement
has finished executing) is unpredictable and should there-
fore be checked for validity prior to executing other state-
ments that rely on this statement's results.
The return value for this function indicates if any of its key
parameters (DBSysVal, IDKey, DefaultEvent, or any
required FieldVal) are illegal. It will immediately return a
value of false (0) unless a key parameter was illegal, in
which case it will return true (1). Note that the return value
only signals completion of the function's execution if it is
true, otherwise the function will continue executing in the
thread created for it.

If the database file has its read-only attribute set when this
function is executed, it will be cleared automatically by exe-
cution of the function.

Example:

alarmDB = DBSystem("", "", 0, 0, 32 { key }, -3 { pressure },
3 { level }, -3 { temperature });
If Valid(AlarmDB) && ! added;
[
added = 1;
DBInsert(AlarmDB { Database to use },

"Tank_697" { ID key },
"+" { Add to list },
event { Var to get event code },
pressure, level, temperature

{ Field values }));
]

DBListGet

Description: Executes in its own thread to retrieve certain records from
a list in a VTScada database and returns an indication of
parameter errors.

Returns: Numeric

Usage: Script Only.

Function Groups: Database and Data Source

Related to: DBAdd | DBInsert | DBGetStream | DBListSize |
 DBRemove | DBSystem | DBTransaction | DBUpdate |
 DBValue

Threaded: Yes

Format: DBListGet(DBSysVal, Result, Orientation, List, Start, Num-
ber, Method [, Events, IDKey, Filters, Sort, StartTime,
StopTime, FieldVals])
(Note that FieldVals may be an array or a series of para-
meters: Field1, Field2, etc.)

Parameters:

DBSysVal

Required. The database value to use. This is the return
value from a DBSystem call.

Result

Required. A variable in which the resulting array will be
stored. The dimension of the array will match the num-
ber of fields requested.

Orientation

Required. Any logical expression that denotes the ori-
entation of the resultant array. If true (non-0) each
record retrieved forms its own row, with each column
representing a field. If false (0), the reverse holds true.

This means that with Orientation set to 1, if 5 fields
were requested in the FieldVals parameter(s), the res-
ultant array would be R[n][5], where n is the number of
matching records found.

List

Required. Any numeric value or array of numeric
values that define(s) the list(s) to search.

Value List

-1 Entire database

0 Transaction log

Number, starting at
1

The specific list number

The database and transaction log cannot be com-
bined with other lists.

Start

Required. Any numeric expression for the first match
to include, beginning at 0.

Number

Required. Any numeric expression for the maximum
number of matches to return.

Method

Required. Any numeric expression that determ-
ines what elements to include in the list. This
parameter is one or a combination of the fol-
lowing values

Method
Bit
No.

Method Description

0 - No filtering (include everything)

1 0 Event filtering

2 1 ID key filtering

4 2 Record value filtering

8 3 Sort as per the Sort parameter

16 4 Limits the records returned to
the times supplied in the
StartTime and StopTime para-
meters

32 5 Pull records starting from the cur-
rent offset or record position in
the file. Applies only to VTScada
database log files and only if they
are not sorted.

The filtering/sorting parameters follow (in the
specified order), with only those that are applic-
able being included. If the bit for a certain type
of filtering has been set, a parameter cor-
responding to that option must exist. If a bit is
not set, the parameter corresponding to that
option should not be included. Setting it to
invalid is not acceptable. If a Sort is requested,
but the Sort Options parameter is passed in as
invalid, then the function will behave as if a sort
had not been requested.
Notes for bit 5: do not use a number of
matches to skip, even though this would work
properly. (That is, starting from the existing pos-
ition in the log file, n matches would be
skipped.) Care must be taken, since if some-
thing else changes the current position in the
file (a transaction or another DBListGet), then
you may not get the records you are expecting.

After the initial DBListGet, subsequent DBListGet
calls can set bit 5, adding a value of 32 to the
method, to use the offset as it was left by the
last pull.

Events

Optional. Used for filtering the records in the
list and should only be included if Method des-
ignates event filtering (1). This value is a text
string containing one byte for each list in the
system. Any missing bytes default to all for that
list, while bytes with values not included in the
following list default to no matches (i.e. nothing
will be found).
Note that there is one byte for each list in the
system, not for each list that has been selected
by the List parameter.
If the transaction log is being used (List = 0),
the following codes are compared with the Event
field of each record

Events Added to List
Removed
from List

No
Changes

0 none (nothing is
ever selected)

1 or + √

2 or - √

3 √ √

4 or
<Space>

√

5 √ √

6 √ √

7 or * √ √ √

If one of the lists is being used (List > 0), the fol-
lowing codes are used:

Value Added to List

0 or 4 None (nothing is ever selected)

1, 5, or + On the list

2, 6, or - Not on the list

3, 7, or * All (everything is selected)

IDKey

Optional. Used for designating the record(s) to use and
should only be included if Method designated ID key fil-
tering. It is any text expression and can contain the
wildcard characters "*" and "?".

Filters

Optional. Designates the record(s) to use to fil-
ter the resulting list by using logical ANDing
and ORing and checking for field matches. It
should be included only if Method designated
record value filtering.
At its simplest, this parameter may hold a 1-
dimensional array with 2 or 3 numeric elements.

Element Description

0 Field to use (-1 filters on date/time
values. -2 filters on ID key)

1 Limiting value

2 Comparison value

If (and only if) you are creating an alarm filter
that is specifically for use only with the alarm
name field (\AlarmNameField -2), then two addi-

tional parameters are required, having the fol-
lowing values. This allows the translation of the
alarm UniqueID, which is held in the record, to
the friendly name used in the search string.

Element Value

3 \VTSDB

4 \AlarmSeparatorString

The comparison value is a numeric value or
expression that indicates the type of com-
parison to be made, and may be omitted if
desired. In this case, the comparison will be
taken to mean "is equal to". Valid values for this
third element are as follows:

Comparison
Value

Comparison
Case

Sensitive

0 Equal to no

1 Greater than no

2 Less than no

3 Specified by wildcard
(field value is text)

no

4 Not equal to no

5 Less than or equal to no

6 Greater than or equal to no

7 Opposite of wildcard spe-
cification (field value is
text)

no

8 Equal to yes

9 Greater than yes

10 Less than yes

11 Specified by wildcard
(field value is text)

yes

12 Not equal to yes

13 Less than or equal to yes

14 Greater than or equal to yes

15 Opposite of wildcard spe-
cification (field value is
text) yes

16 Is the specified bit set? 20
(16 + 4) for not-set.

no

Note that the comparison values of 3, 7, 11, and
15 are only useful when the field value is a text
string. For example, if you want to get only
those entries whose value starts with "d", the
field value should be "d*", and the comparison
value should be 3. If you want all entries that
don't start with "d", the field value should still
be "d*", with a comparison value of 7.
If a more detailed filtering criterion is required,
a 2-dimensional array may be used, where addi-
tional rows are added, each with the same ele-
ments as the first ([n][0] is field number, [n][1] is
limiting value, [n][2] is comparison type). All
rows will then be ANDed together to form the fil-
tering statement. Once again, the third column
may be omitted entirely, however, if it exists it
must have valid values in all rows.
The most detailed filtering array occurs when an
ORing of field specifications is also required. In
this case, this parameter is a 1-dimensional

array, where each element contains a pointer to
an array as described previously. The elements
in each AND array will be ANDed together, then
the results from these ANDed arrays will be
ORed.
VTScada differentiates between the various
options for this parameter by checking its first
element. If it is not a pointer, then the para-
meter is assumed to contain a single AND array
directly (i.e. no OR is performed). It should only
be included if Method designated record value
filtering.

Sort

Optional. Used for defining the type of sort to
be done. Currently, only the bin type of sort is
supported where, in a single pass through the
array, records are grouped together based on
having the same value in the specified field. Sort-
ing may only be performed on numeric data.
This parameter is a 1-dimensional array (not
one that is created via a New function call),
whose elements have the following meanings

Element Description

0 Method of sorting (1) for bin sort

1 Field number to sort on

2 Flag indicating descending order sort

3 Number of values (bins) to use. Valid
range is 1 to 1024

4 Lower limit (start) of range

In the case of elements 3 and 4, if the third ele-

ment is 6, for example, and the fourth element
is 5, all records whose specified field has a value
from 5 (lower limit) through to 10 (includes 6
elements) will be sorted, while all others will be
discarded.

StartTime

Optional. Specifies the oldest record in the file to be
used, in the case that bit 4 is set in Method.

StopTime

Optional. Specifyies the newest record in the file to be
used, in the case that bit 4 is set in Method.

FieldVals / FieldValN

Optional. A parameter or series of parameters
that is either an array or a list of values that
indicate which field(s) for which data is reques-
ted. If omitted, all fields are returned in their
default order. Field numbers range from 1 to
255. The valid values for this parameter are

FieldVals Field Type Attribute

-2 ID key

-1 Date/time value

0 Event/status for record

1 or more Field value

Note: In the case of an array, it must be a static
array – a dynamically declared array (one that is
created via a New function call), it will not work
here.

Comments: This function executes in the thread created by the
DBSystem call, so it will not block other statements
from executing. This does mean, however, that the

timing for Result becoming valid is unpredictable
and should therefore be checked for validity prior to
being used.

The return value for this function indicates if any of
its key parameters (DBSysVal, Orientation, List,
Start, Number or Method) are invalid.

If all of the key parameters are valid, DBListGet will
immediately return a value of false (0).
If any of the key parameters are invalid, DBListGet
will not perform the required operation, and will
instead immediately return a value of 1.
If the database uses lists then the list parameter
may be greater than 0 to select values that appear
on that list. For example, when retrieving alarms
from their db instance, the following values can be
used

Value List

1 Active alarm list

2 Unacknowledged alarm list

3 Disabled alarm list

For information about the standard alarm lists in
VTScada see "Alarm Manager Service".
Note that the return value only signals completion
of the function's execution if it is true, otherwise
the function will continue executing in the thread
created for it.
The dimension of Result will depend on the number
of fields requested.
If the database file has its read-only attribute set

when this function is executed, it will be cleared
automatically by execution of the function.

Example:

dbVal = DBSystem("c:\vts5\app6\equip.db", "", 0, 0, 64 { key },
3 { field 1 }, -2 { field 2 }, -3 { field 3 });
If Valid(dbVal) && ! retrieved;
[
retrieved = 1;
DBListGet(dbVal { Database value },

final { Resultant array },
0 { Orientation },
1 { Use entire database },
0 { Include from first match on },
20 { Number of matches to get },
2 { Method - filter by ID key },
{ Events parameter not required }
"Motor*" { Match with ID key },
{ Filters/Sort parameters not required }
2 { Get ID key field },
2 { Get field 2 also });

]

If there is any doubt as to the validity of the parameters and further state-
ments rely on final becoming valid, the following version of the script
might be more appropriate.

If Valid(dbVal) && ! retrieved;
[
retrieved = 1;
IfThen(DBListGet(dbVal, final, 0, -1, 0, 20, 2,

"Motor*", -2, 2),
final = 0;
);

]

DBListSize

Description: Executes in its own thread to retrieve the size of a certain
list in a VTScada database and returns an indication of
parameter errors.

Returns: Boolean

Usage: Script Only.

Function Groups: Database and Data Source

Related to: DBAdd | DBInsert | DBGetStream | DBListGet | DBRemove
| DBSystem | DBTransaction | DBUpdate | DBValue

Threaded: Yes

Format: DBListSize(DBSysVal, Result, List, Method [, remaining
parameters vary according to Method value])

Parameters:

DBSysVal

Required. The database value to use. This is the return
value from a DBSystem call.

Result

Required. A variable in which the resulting 1 or 2
dimensional array will be stored.

List

Required. Any numeric value or array of numeric
values that define(s) the list(s) to search

List List Description

-1 Entire database

0 Transaction log

Number, starting at 1 The specific list number

The database and transaction log cannot be com-
bined with other lists.

Method

Required. Any numeric expression that determ-
ines how filtering is done. This parameter is one
or a combination of the following values

Method Bit No. Method Description

0 - No filtering (include
everything)

1 0 Event filtering

2 1 ID key filtering

4 2 Record value filtering

8 3 Place holder for future use

16 4 A supplied date range should
be used for filtering.
.

Note that the ability to filter for a supplied date
range applies only to VTScada database log
files. An example of the format of the supplied
date range can be found in the Examples section
of this topic.
The filtering parameters follow (in the specified
order), with only those that are applicable being
included.

Events

Optional. Used for filtering the records in the
list and should only be included if Method des-
ignated event filtering. This value is a text string
containing one byte for each list in the system.
Any missing bytes default to all for that list,
while bytes with values not included in the fol-
lowing list default to no matches (i.e. nothing
will be found). Note that there is one byte for
each list in the system, not for each list that has
been selected by the List parameter.
If the transaction log is being used (List = 0),
the following codes are compared with the Event
field of each record

Value Added to List
Removed
from List

No
Changes

0 none (nothing is

ever selected)

1 or + Ö

2 or - Ö

3 Ö Ö

4 or
<Space>

Ö

5 Ö Ö

6 Ö Ö

7 or * Ö Ö Ö

If one of the lists is being used (List > 0), the fol-
lowing codes are used:

Value Added to List

0 or 4 None (nothing is ever selected)

1, 5, or + On the list

2, 6, or - Not on the list

3, 7, or * All (everything is selected)

IDKey

Optional. Used for designating the record(s) to use and
should only be included if the parameter Method des-
ignates ID key filtering. This is any text expression and
can contain the wildcard characters "*" and "?".

Filters

Optional. Designates the record(s) to use to fil-
ter the resulting list by using logical AND or, OR
and checking for field matches. It should only be
included if the parameter Method designates
record value filtering.
At its simplest, this parameter may hold a 1-
dimensional array with 2 or 3 numeric elements

Filters Description

0 Field to use (-1 filters on date/time val-
ues)

1 Limiting value

2 Comparison value

If (and only if) you are creating an alarm filter
that is specifically for use only with the alarm
name field (\AlarmNameField -2), then two addi-
tional parameters are required, having the fol-
lowing values. This allows the translation of the
alarm UniqueID, which is held in the record, to
the friendly name used in the search string.

Element Value

3 \VTSDB

4 \AlarmSeparatorString

The comparison value is a numeric value or
expression that indicates the type of com-
parison to be made, and may be omitted if
desired. In this case, the comparison will be
taken to mean "is equal to". Valid values for this
third element are as follows:

Value Comparison
Case

Sensitive

0 Equal to no

1 Greater than no

2 Less than no

3 Specified by wildcard (field
value is text)

no

4 Not equal to no

5 Less than or equal to no

6 Greater than or equal to no

7 Opposite of wildcard spe-
cification (field value is text)

no

8 Equal to yes

9 Greater than yes

10 Less than yes

11 Specified by wildcard (field
value is text)

yes

12 Not equal to yes

13 Less than or equal to yes

14 Greater than or equal to yes

15 Opposite of wildcard spe-
cification (field value is
text) yes

16 Is the specified bit set? 20 (16 + 4)
for not-set.

no

Note that the comparison values of 3, 7, 11, and
15 are only useful when the field value is a text
string. For example, if you want to get only
those entries whose value starts with "d", the
field value should be "d*", and the comparison
value should be 3. If however, you want all
entries that don't start with "d", the field value
should still be "d*", with a comparison value of
7.
If a more detailed filtering criterion is required,
a 2-dimensional array may be used, where addi-

tional rows are added, each with the same ele-
ments as the first ([n][0] is field number, [n][1] is
limiting value, [n][2] is comparison type). All
rows will then be ANDed together to form the fil-
tering statement. Once again, the third column
may be omitted entirely, however, if it exists it
must have valid values in all rows.
The most detailed filtering array occurs when an
ORing of field specifications is also required. In
this case, this parameter is a 1-dimensional
array, where each element contains a pointer to
an array as described previously. The elements
in each AND array will be ANDed together, then
the results from these ANDed arrays will be
ORed.
VTScada differentiates between the various
options for this parameter by checking its first
element. If it is not a pointer, then the para-
meter is assumed to contain a single AND array
directly (i.e. no ORing is performed). It should
only be included if Method designated record
value filtering.

Comments: This function executes in the thread created by the DBSys-
tem call, so it will not block other statements from execut-
ing. This does mean, however, that the timing for Result
becoming valid is unpredictable and should therefore be
checked for validity prior to being used.
The return value for this function indicates if any of its key
parameters (DBSysVal, List, or Method) are invalid.
If all of the key parameters are valid, DBListSize will imme-
diately return a value of false (0).
If any of the key parameters are invalid, DBListSize will not
perform the required operation, and will instead imme-

diately return a value of 1.
If no filter being used at all, the function reports the num-
ber of records stored in the header of the underlying
formatted file class, rather than counting records one by
one.
Note that the return value only signals completion of the
function's execution if it is true, otherwise the function will
continue executing in the thread created for it.
If the database file has its read-only attribute set when this
function is executed, it will be cleared automatically by exe-
cution of the function.
For information about the standard alarm lists in VTScada
see "Alarm Manager Service".

Example:

db = DBSystemDBSystem(dbFile, "", 0, 0, 64 { key }, -3 { field 1 });
If Valid(db) && ! gotSize;
[
gotSize = 1;
DBListSize(db { Database to use },
size { Resultant value },
2 { List number to use },
0 { Method - include everything }
{ Events parameter not required }
{ IDKey parameter not required }
{ Filters parameter not required });

]

If there is any doubt as to the validity of the parameters and further state-
ments rely on size becoming valid, the following version of the script
might be more appropriate.

If Valid(db) && ! gotSize;
[
gotSize = 1;
IfThen(DBListSize(db , size, 2, 0),
size = 0;
);

]

If filtering for a supplied date range:

DBListSize(DBLogVal, MatchingRecords, 0 { Log list }, 16 { date
range method}, ClientTime, ServerTime)

DBRemove

Description: Executes in its own thread to remove a record from a
VTScada database and returns an indication of parameter
errors.

Returns: Numeric

Usage: Script Only.

Function Groups: Database and Data Source

Related to: DBAdd | DBInsert | DBGetStream | DBListGet | DBListSize |
 DBSystem | DBTransaction | DBUpdate | DBValue

Threaded: Yes

Format: DBRemove(DBSysVal, IDKey [, EventCode])

Parameters:

DBSysVal

Required. The database value to use. This is the return
value from a DBSystem call.

IDKey

Required. Any text expression used for designating the
record(s) to delete. Can contain the wildcard char-
acters "*" and "?".

EventCode

Optional. Any variable in which the event code
for the function is returned. This parameter may
be used to indicate completion of the function,
as it will not be set to a valid value until exe-
cution is complete. It has one of the following
meanings

EventCode Meaning

0 Record(s) deleted

1 Error occurred – record(s) not

deleted

EventCode will not be set if there is a parameter
error (see comments).

Comments: This function executes in the thread created by the DBSys-
tem call, so it will not block other statements from execut-
ing. This does mean, however, that the timing for
EventCode becoming valid (marking that the statement
has finished executing) is unpredictable and should there-
fore be checked for validity prior to executing other state-
ments that rely on this statement's results.
The return value for this function indicates if any of its key
parameters (DBSysVal or IDKey) are invalid. It will imme-
diately return a value of false (0) unless a key parameter
was invalid, in which case it will return true (1). Note that
the return value only signals completion of the function's
execution if it is true, otherwise the function will continue
executing in the thread created for it.
If the database file has its read-only attribute set when this
function is executed, it will be cleared automatically by exe-
cution of the function.

Example:

myDB = DBSystem(dbFile, "", 0, 0, 64 { key }, 10 { field 1 });
If Valid(myDB) && ! killed;
[
killed = 1;
DBRemove(myDB { Database to use },

"Digital*" { ID key },
eCode { Event code returned });

]

DBSystem

Description: Creates a VTScada database and returns its value. The
maximum field length is 65,523 characters. If the field
length is longer than 65,523 characters, the DBSystem call
will return invalid.

Returns Numeric

Usage: Steady State only.

Function Groups: Database and Data Source

Related to: DBAdd | DBInsert | DBGetStream | DBListGet | DBListSize
| DBRemove | DBTransaction | DBUpdate | DBValue

Format: DBSystem(DBFile, DBTransFile, MaxTrans, NumLists,
IDKeySize, FieldAttribs)
Or
DBSystem(DBFile, DBTransFile, MaxTrans, NumLists,
IDKeySize, FieldAttrib1, FieldAttrib2, FieldAttrib3)

Parameters:

DBFile

Required. A text expression giving the file in which to
store the database information. If this parameter is
invalid or is a null text string (""), no file is created and
the database is reconstructed every time the system
starts. DBFile can be an array containing 1 or 2 file
names or streams. On startup, the second stream will
be brought into sync with the first. The first is only
read to initialize the database system. Both streams are
maintained while the system is running.
Note that the value for this parameter may not be
changed while the DBSystem call is active (i.e. the file
cannot change) - any changes will be ignored.

DBTransFile

Required. A text expression giving the file in which
transactions are logged. If this parameter is invalid or
is a null text string (""), no file is created and no trans-
action logging is done. Unlike the DBFile parameter,
the value of this parameter may be changed even while
the DBSystem function is active (i.e. the file is
dynamic).

MaxTrans

Required. Any numeric expression giving the max-
imum number of transactions to be stored in the trans-
action log file.

NumLists

Required. Any numeric expression giving the number
of memory lists to be maintained. The valid range is
from 0 to 255.

IDKeySize

Required. Any expression that designates the max-
imum length for the ID key. This affects the size of the
files and the database stored in memory.

FieldAttribs

Required. Either an array or a series of parameters that
defines what type and size the fields are. The number
of parameters or array entries determines how many
fields there are. The valid field types are

FieldAttribs Field Type Attribute

-4 Indicates a
VTScada
value field.

Any VTScada value
may be written, but
will only go into the
in-memory copy of
the database. The disk
record will have a
zero length field.

-3 Double
precision
float

(8 bytes)

-2 Long
integer

(4 bytes)

-1 Short
integer

(2 bytes)

0 Indicates a
Status
field

.

1 or more Text (number defines
length)

Comments: This function is not threaded, however, it creates a thread
inside of which the database value referring to the data-
base system requested is accessed. All other database func-
tions (those beginning with "DB"), except for DBValue, do
not create their own thread, but will execute in the thread
created by this function. This thread will exist for as long
as the DBSystem statement remains active (i.e. until a state

change occurs). For this reason, the state containing the
DBSystem call must remain active until all other database
statements have finished executing. The statement
responsible for a state change should therefore trigger
only when all results from all statements accessing this
database are valid.

Note: WARNING: There must only be one DBSystem function acting on a
file at any given time, whether the file is used as the DBFile or the
DBTransFile parameter. If more than one DBSystem function is affecting
the same file, it may become corrupted, even if one of the database
handles is only used to read information from the database.

The database system produced by this function con-
sists of three primary parts

l A memory database

l A transaction log file

l From 0 - 255 user specified lists
The memory database, as the name implies, is
stored only in memory, and is created at the exact
moment when the DBSystem function is first
executed. The database value returned by this func-
tion remains valid as long as the statement is active.
The records in the database have three or more
fields as follows:

l The IDKey field - a unique text identifier for the
record.

l The Status field - a series of bytes, one for each of the
user specified lists, that indicates which lists the
record is part of.

l Any other additional fields which have been des-
ignated to exist by the user.

For each ID key there is only one record in the data-
base. This is not the case with the transaction log

(discussed later in this topic). In the case of the data-
base that is used to maintain the VTScada alarm sys-
tem, each alarm has a single record in the database.
Although the database is not considered to be a list,
it is loosely described as one in such statements as
DBListGet, where a value of -1 for the List parameter
will use the database rather than one of the user spe-
cified lists.
The transaction log is a log file that is saved to disk.
For this reason, the larger it becomes the longer it
takes to access records from the transaction log. The
fields of the transaction log's records are similar to
those stored in the database:

l The IDKey field - a unique text identifier for the point
associated with the record.

l The Event field - a series of bytes, one for each of the
user specified lists, that indicates the event or trans-
action that has just occurred.

l The Time field - a float value that gives the time of the
event, or a user written time value.

l Any other additional fields which have been des-
ignated to exist by the user.

Like the database, it is not really considered a list,
however in the DBListGet statement, a value of 0 in
the List parameter will use the transaction log rather
than one of the user specified lists.
The log file differs from the memory database in
that for each ID key, there may exist none, one or
many records that use the same key. This is because
every transaction done by means of the DBTrans-
action statement is stored in a record in the trans-
action log.
The lists used by the database system are virtual

lists, which means that they do not exist as actual
entities of the system, but rather are composed of
the records belonging to the database. The Status
field of each record in the database will have exactly
the same number of bytes as there are lists. This
field will designate which list or lists the record is a
member of. In the case of the VTScada alarm system,
there are three lists, the active, unacknowledged and
disabled alarm lists.
If the user wishes to use this database system simply
as a storage device, rather than in a complicated
series of lists and transactions like the VTScada
alarm system, the NumLists parameter in this func-
tion may be set to 0 - no lists will be created. Also,
the DBTransFile parameter may be set to invalid,
thus disabling transaction logging and causing the
transaction log file to not be created.
If the database file has its read-only attribute set
when this function is executed, it will be cleared
automatically by the function becoming active.

Example:

dbSysVal = DBSystem(dbFile { Name of database file },
"" { No transaction log },
0, 0 { No log, no lists },
65 { No. of chars in key },
16, 1 { No. of chars in fields 1, 2 },
3 { Field 3 is float },
1 { Field 4 is short (integer) });

DBTrace

Description: This is a trace engine that records live data to a SQL data-
base.

Returns: Numeric

Usage: Steady State only.

Function Groups: Database and Data Source

Related to: See: Trace Viewer Application in the VTScada Pro-
grammer's Guide.

Format: DBTrace(FileName, FriendlyName, MyTrigger)

Parameters:

FileName

Required. The name (not the path or extension) of the
database file to which DBTrace should record trace
data.

FriendlyName

Required. A name for this trace instance that is more
meaningful to users.

MyTrigger

Required. The address of the trigger variable that
enables this trace.

Comments: DBTrace writes the actual data to the database (using a sep-
arate thread) and maintains a live communication buffer
with the Trace Viewer.
DBTrace provides a number of methods that allow the
trace to define the format of the main table, plus additional
tables for filtering and conversion of values to user-mean-
ingful names. Information about these methods are avail-
able upon request.

Do not launch this module, rather, launch the constructor
(to create the thread).

DBTransaction

Description: Executes in its own thread to perform a transaction on a
VTScada database and returns an indication of parameter
errors.

Returns: Numeric

Usage: Script Only.

Function Groups: Database and Data Source

Related to: DBAdd | DBInsert | DBGetStream | DBListGet | DBListSize
| DBRemove | DBSystem | DBUpdate | DBValue

Threaded: Yes

Format: DBTransaction(DBSysVal, IDKey, Event, EventCode [,
Timestamp, FieldVals])
Or
DBTransaction(DBSysVal, IDKey, Event, EventCode [,
Timestamp, FieldVal1, FieldVal2, FieldVal3, …])

Parameters:

DBSysVal

Required. The database value to use. This is the return
value from a DBSystem call.

IDKey

Required. Any text expression that designates the
record to use. It can contain the wildcard characters "*"
and "?".

Event

Required. Any text expression containing on byte for
each list in the system. Any missing bytes or bytes with
values not included in the following list default to "do
nothing to list". Note that there is one byte for each list
in the system, not for each list that has been selected
by the List parameter.

Text Value Event

+ Add to list

- Remove from list

<space> Do nothing to list

EventCode

Required. Any variable in which the event code for the
function is returned. This parameter may be used to
indicate completion of the function, as it will not be set
to a valid value until execution is complete. It has the
following meaning

Value Meaning

0 Record exists and was updated

1 Record did not exist and was added

2 Error occurred

EventCode may be replaced by a constant or
Invalid if it is not required.
This parameter will not be set if there is a para-
meter error (see comments)

Timestamp

Optional. Defines the time to record for the event. If
this value is invalid or omitted, the transaction time
defaults to the current time. If it is negative, the data-
base file will be updated with the absolute value of this
parameter and the transaction log will not be updated.

FieldVals

Required when adding a new record, otherwise,
optional. This takes the form of either an array or a list
of values. In either case, this is data that is to be writ-
ten to the database.
When writing to an existing record, the values
provided will over-write the values in matching fields.
When creating a new record, all fields must be defined.

Comments: This function executes in the thread created by the DBSys-
tem call, so it will not block other statements from execut-

ing. This does mean, however, that the timing for
EventCode becoming valid (marking that the statement
has finished executing) is unpredictable and should there-
fore be checked for validity prior to executing other state-
ments that rely on this statement's results.
The return value for this function indicates if any of its key
parameters (DBSysVal, IDKey or Event) are invalid. It will
immediately return a value of false (0) unless a key para-
meter was invalid, in which case it will return true (1). Note
that the return value only signals completion of the func-
tion's execution if it is true, otherwise the function will con-
tinue executing in the thread created for it.
If the user attempts to add a record to a list on which it
already exists, that record's time and position on the list
will be updated unless the new time is 0, in which case no
change will occur.
If the database file has its read-only attribute set when this
function is executed, it will be cleared automatically by exe-
cution of the function.

Example:

db1 = DBSystemDBSystem(dbFile, "", 0, 0, 64 { key }, 10 { field 1 },
1 { field 2 }, -3 { field 3 });
If ValidValid(db1) && ! done;
[
done = 1;
DBTransaction(db1 { Database to use },

"Motor_425" { ID key },
"--+" { Subtract from lists 1 and 2,
add to list 3 },
code { Event code },
CurrentTime() { Time of the event },
FieldValues { Array of values for fields });

]

DBUpdate

Description: Executes in its own thread to update a VTScada database
from a given stream and returns an indication of para-
meter errors.

Returns: Numeric

Usage: Script Only.

Function Groups: Database and Data Source

Related to: DBAdd | DBInsert | DBListGet | DBGetStream | DBListSize
| DBRemove | DBSystem | DBTransaction | DBValue

Threaded: Yes

Format: DBUpdate(DBSysVal, Stream [, EventCode])

Parameters:

DBSysVal

Required. The database value to use. This is the return
value from a DBSystem call.

Stream

Required. Any stream value created from the contents
of a database. This results from a DBGetStream state-
ment.

EventCode

Required. An optional variable in which the event code
for the function is returned. This parameter may be
used to indicate completion of the function, as it will
not be set to a valid value until finished executing. It
has the following meaning

Value Meaning

0 Database successfully updated

1 Update failed

EventCode may be replaced by a constant or
Invalid if it is not required.
This parameter will not be set if there is a para-
meter error (see comments)

Comments: This function executes in the thread created by the DBSys-
tem call, so it will not block other statements from execut-
ing. This does mean, however, that the timing for
EventCode becoming valid (marking that the statement
has finished executing) is unpredictable and should there-
fore be checked for validity prior to executing other state-
ments that rely on this statement's results.

The return value for this function indicates if any of its key
parameters (DBSysVal or Stream) are invalid. It will imme-
diately return a value of false (0) unless a key parameter
was invalid, in which case it will return true (1). Note that
the return value only signals completion of the function's
execution if it is true, otherwise the function will continue
executing in the thread created for it.

Since the value of the Stream parameter is created from a
database, the DBSystem statement that created the data-
base had to have a valid first parameter (the file name in
which the database contents are stored). Do not attempt to
access the database file directly via a FileStream statement
if any DBSystem functions referencing this file are active,
since the results may be unpredictable.

This function is useful to synchronize the database setup
on two machines over a network. It allows a secondary
machine to load the file from the first, thus duplicating its
attributes precisely.
If the database file has its read-only attribute set when this
function is executed, it will be cleared automatically by exe-
cution of the function.

Example:

oldDB = DBSystem(oldFile, "", 0, 0, 32 { key }, 2 { field 1 },
3 { field 2 });

newDB = DBSystem(newFile, "", 0, 0, 32 { key }, 2 { field 1 },

3 { field 2 });
If Valid(newDB) && ! gotStream;
[
gotStream = 1;
DBGetstream(newDB, stream);

]
If Valid(oldDB) && Valid(stream) && ! updated;
[
updated = 1;
DBUpdate(oldDB { Database to update },

stream { Database from which to update },
code { Event code holder });

]

DBValue

Description: Returns a certain value retrieved from a VTScada database.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Database and Data Source

Related to: DBAdd | DBInsert | DBListGet | DBListSize | DBRemove |
 DBSystem | DBTransaction | DBValue

Format: DBValue(DBSysVal, IDKey, FieldNumber[, ListNum])

Parameters:

DBSysVal

Required. The database value to use. This is the return
value from a DBSystem call.

IDKey

Required. Any text expression that designates the
record to use. It can contain the wildcard characters "*"
and "?".

FieldNumber

Required. Any numeric expression that indicates the
field for which data is requested. Valid values for
FieldNumber are as follows

Value Meaning

-1 A timestamp is required. A ListNum para-
meter must be supplied, specifying which list
the timestamp is to be retrieved from.

0 Event code for the record

1 to
255

 Indicates which piece of the record's
data you wish to retrieve.

ListNum

Optional numeric. When FieldNumber is -1, spe-
cifying that a timestamp is required, then that
timestamp will be taken from the numbered list
in the DB system matching this parameter. The
numbered lists start at zero.
See: DBSystem for related information.

Comments: Unlike most of the other database statements, this function
is not threaded. Execution of all other statements will wait
until this statement has completed execution and returned
its result.
If no records matching IDKey are found, the return value
will be Invalid.
If the database file has its read-only attribute set when this
function is executed, it will be cleared automatically by exe-
cution of the function.

Example:

myDB = DBSystem(dbFile, "", 0, 0, 16 { key }, 2 { field 1 },
3 { field 2 });

If Valid(DBValue(myDB { Database to use },
"Motor_67" { ID key },
1 { Field to get value from }) Next;

[

...
]

DDE

Description: Returns the value of the data for a specific item from a DDE
server program. This function is a DDE client.

Returns: Varies

Usage: Steady State only.

Function Groups: DDE

Related to: DDEPoke | DDEShareAdd | DDEShareDel | SetDDEServer

Format: DDE(Program, Topic, Item[, Error, Trigger, pollTimeOut])

Parameters:

Program

Required. Any text expression giving the name of the
program which is the DDE server. This does not con-
tain the .EXE extension. This is usually the same as the
root file name of the executable file, but may be dif-
ferent as in the case of Microsoft Word for Windows
6.0 which uses the name "MSWord".
For NetDDE, the program name is of the form "\\Com-
puter\NDDE$" where "Computer" is the name of the
computer where the DDE server program is running.

Topic

Required. Any text expression giving the DDE topic
name within the server. For a VTScada server the topic
name is usually the name of the window. For Microsoft
Excel, the topic is the spreadsheet name.
For NetDDE, the topic name is the DDE share name set
up in the Windows [ddeshares] section of the
SYSTEM.INI file. This configuration section relates a net-
work share name to a program name and individual
topic in the DDE server. The SYSTEM.INI must be con-
figured in the DDE server to enable NetDDE.

Item

Required. Any text expression giving the location or
name of the value to retrieve.

Error

Optional. A variable that will be set when an error
occurs. Values may be as follows: 0=OK, -1=DDE is
stopping, -2=FAILED

Trigger

Optional. If present, this indicates a "COLD" link as
opposed to a "HOT" link (i.e. you have to poll the
server to get an update, rather than it pushing updates
to you).
When set to 1, this triggers a poll. The trigger is then
reset.

pollTimeOut

Optional. If this is a COLD link (see Trigger) then
pollTimeOut is the value in seconds of the time out for
the poll.

Comments: This sets up a DDE client. Once the link is established, the
return value of the function will change whenever the value
in the DDE server changes.

Example:

cellValue = DDE("Excel", "Sheet1", "R1C1");

Upon execution of this statement, cellValue will contain the value of the
cell in row 1, column 1 of the Excel spreadsheet called "Sheet1".

DDEPoke

Description: Sends a value for a specific item to a DDE server program.

Returns: Boolean

Usage: Steady State only.

Function Groups: DDE

Related to: DDE | DDEShareAdd | DDEShareDel | SetDDEServer

Format: DDEPoke(Program, Topic, Item, Value)

Parameters:

Program

Required. Any text expression giving the name of the
program which is the DDE server. This does not con-
tain the .EXE extension. This is usually the same as the
root file name of the executable file, but may be dif-
ferent as in the case of Microsoft Word for Windows
6.0 which uses the name "MSWord".
For NetDDE, the program name is of the form "\\Com-
puter\NDDE$" where "Computer" is the name of the
computer where the DDE server program is running.

Topic

Required. Any text expression giving the DDE topic
name within the server. For a VTScada server the topic
name is usually the name of the window. For Microsoft
Excel, the topic is the spreadsheet name.
For NetDDE, the topic name is the DDE share name set
up in the Windows [ddeshares] section of the
SYSTEM.INI file. This configuration section relates a net-
work share name to a program name and individual
topic in the DDE server. The SYSTEM.INI must be con-
figured in the DDE server to enable NetDDE.

Item

Required. Any text expression giving the name or loc-
ation of the value to send.

Value

Required. Any expression for the value to be sent. If
this value is invalid, a null value (null text string) will be
sent to the DDE server program.

Comments: Once the link is established, new data will be sent to the
server whenever Value changes. The return value is true
(1) if successful and false (0) otherwise.

Example:

success = DDEPoke("Excel", "Sheet1", "R1C1", "Connected");

Upon successful execution of this statement, the Excel spreadsheet
called "Sheet1" will contain the word Connected in row 1, column 1, and
success will have a value of 1. If the DDEPoke is not successful, success
will be 0 and the Excel cell will retain its previous contents.

DDEShareAdd

Description: Adds a new DDE share name to the SYSTEM.INI file or the
registry and returns its own error code.

Returns: Numeric

Usage: Script Only.

Function Groups: DDE

Related to: DDE | DDEPoke | DDEShareDel | SetDDEServer

Format: DDEShareAdd(Object, ShareName, Password)

Parameters:

Object

Required. Any object expression giving the module
instance whose variables' value will be shared.

ShareName

Required. Any text expression that gives the DDE share
name other DDE enabled programs use to access the
variables in Object.

Password

Required. Any text expression that gives the password
required to access this DDE share name. If this is

invalid, no password is required.

Comments: The return value of this function is true if successful, false
if unsuccessful, and invalid if not attempted (i.e. invalid
parameters).

DDEShareDel

Description Deletes a DDE share name from the SYSTEM.ini file or the
registry and returns its own error code.

Returns Boolean

Usage Script Only.

Function Groups DDE

Related to: DDE | DDEPoke | DDEShareAdd | SetDDEServer

Format DDEShareDel(ShareName)

Parameters

ShareName

Required. Any text expression that gives the DDE share
name.

Comments The return value of this function is true if successful, false
if unsuccessful, and invalid if not attempted (i.e. invalid
parameters).

DeadBand

Description: Returns the previous value of the first parameter until it
changes by an amount specified by the second parameter.

Returns: Numeric

Usage: Steady State only.

Function Groups: Rounding Math

Related to: Change | PID

Format: Deadband(Value, Delta)

Parameters:

Value

Required. Any numeric expression giving the value
whose changes are to be limited to amounts no less
than Delta.

Delta

Required. Any numeric expression giving the lower
limit of the change in Value that will allow the function
value to change. If Delta is less than or equal to 0, the
function will always return Value.

Comments: When the function is first called, its value will be that of its
first parameter Value. After that, the value will remain at
this initial value until the difference between Value and the
function value is greater than or equal to Delta. At this
point, the function value will assume the new value of
Value. This has the effect of ignoring all changes in Value
which are less than Delta. This is useful for ignoring "noise"
in values such as analog inputs. Since VTScada performs
calculations based upon changes in values, this function
may be used in certain situations to minimize the number
of irrelevant value changes and thereby reduce the fre-
quency of calculations and improve performance. This
function may also be used by PID to eliminate noise in the
process value parameter and therefore avoid making fre-
quent minor output changes which are irrelevant.

The change specified by Delta is the absolute value of the
change so a positive or negative change in Value will be
treated equally. Delta should be always greater than zero.

Example:

ztext(500, 100 { X, Y coordinates },
Format(0, 2, DeadBand(pressure, 5)) { Displayed value },
0, 0);

This displays the value of variable, "pressure" on the screen. However,
the display is only updated when pressure changes by more than 5
(higher or lower) from the last update.

Related Information:
See: "Latching and Resetting Functions" in the VTScada Programmer's
Guide

Debugger

(System Library)

Description: Starts the VTScada debugger.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications

Related to:

Threaded: Yes

Format: \System\Debugger([Status, ViewModule, TxtAppName,
MtSdView, Restrict])

Parameters:

Status

Optional. Any numeric expression giving the enabled
status of the window in which the debugger is dis-
played, as follows. The default value is 1 - Enabled.

Status Meaning

0 Disabled

1 Enabled

2 Enabled, bring to front

3 Enabled, reload ViewModule, then
bring to front

ViewModule

Optional. An object value selecting the current module
or object to debug. No default value.

TxtAppName

Optional. Any text expression to be appended to the
title bar of the debugger window. No default value.

MtSdView

Optional. Any logical expression. If true (non-0) the
module tree and state diagram buttons are displayed
on the debugger, if false (0), neither will be displayed.
The default is false.

Restrict

Optional. Any logical expression. If true (non-0)
VTScada system windows may not be selected for
debugging, if false (0) any window may be selected by
the debugger, including itself. The default is true.

Comments: This module is a member of the System Library, and must
therefore be prefaced by \System\, as shown in the
"Format" section. If you are developing a script application,
use "System\..." rather than "\System\..." in the function
call.
For any optional parameter that is to be set, all optional
parameters preceding the desired one must be present,
although they may be invalid.

Decode

(System Library)

Description: Returns the plain value of a cipher that is the result of the
Encode function.

Returns: String

Usage: Script Only.

Function Groups: Encryption

Related to: Encode | BlockDecrypt | Base64Decode | Hash | Unpack

Format: \System\Decode(CipherValue[, UnpackDictionary, Key,
HashKey);

Parameters:

CipherValue

Required. The information to be decoded.

UnpackDictionary

If a dictionary was used to pack the information as part
of the encoding, the mirror of that dictionary must be
provided to unpack the information.
See notes and example in the Unpack function.

Key

Optional string. Must be included if the CipherValue
was encrypted using a key, in which case this value
must match the key that was used in the Encode func-
tion.

HashKey

Optional string. Must be included if the CipherValue
was protected from tampering with a Hash value, in
which case this value must match the Hash that was
used in the Encode function.

Comments: none

Examples:

Decommission

(Alarm Manager module)

Description: Decommission an alarm by name.

Returns: Nothing

Usage: Script Only.

Function Groups: Alarm

Related to: Commission

Format: \AlarmManager\Decommission(AlarmName)

Parameters:

AlarmName

Required text. The alarm name. Typically, the unique
id of the alarm tag, or the tag containing built-in
alarms.

Comments: An alarm tag that is deleted without being decom-
missioned is referred to as an orphaned alarm.
VTScada will removed orphaned alarms auto-
matically, but it is better practice to specifically
decommission the alarm

Example:
The following would typically be found in a tag's Refresh state.

IfElse(Valid(Name), Execute(
{ ... Alarm commissioning code ... }

);
{ Else }

 IfThen(Valid(Parm[#Name]),
 \AlarmManager\Decommission(Root\UniqueID);
);
);

Decrypt

Description: The Decrypt function decrypts data previously encrypted
using the Encrypt function. It is the VTScada analog of the
CryptoAPI CryptDecrypt call.

Returns: Text

Usage: Script Only.

Function Groups: Cryptography

Related to: DeriveKey | Encrypt | ExportKey | GenerateKey |
 GetCryptoProvider | GetKeyParam | ImportKey |
 SetKeyParam

Format: Decrypt(Key, CipherText, Final [, Reserved, Flags, Error])

Parameters:

Key

Required. The handle to the key to use to decrypt the
data.

CipherText

Required. A text string that contains the cipher text to
be decrypted.

Final

Required. A parameter that specifies whether this is the
last section in a series being decrypted. Final is set
TRUE for the last or only block and FALSE if there are
more blocks to be decrypted

Reserved n/a

An optional parameter which should be set to 0. If omit-
ted or invalid, then the value 0 is used.

Flags

Optional. An optional parameter specifying the flags to
be passed to CryptDecrypt. If omitted or invalid then
the value 0 is used.

Error

Required. An optional variable in which the error code
for the function is returned. It can have the following
meanings:

Value Meaning

0 Key successfully imported.

1 Key, CipherText or Final parameters invalid.

x Any other value is an error from CryptDecrypt.

Comments: The plain text is returned as a text string. If an error
occurs, the return value is invalid.

Example:

[
PlainText2;

]
Init [
If 1 Main;
[
PlainText2 = Decrypt(Key4, CipherText1, 1, 0, 0);

]
]

DefaultNamingContext

Description: Returns the string value of the LDAP default naming con-
text for the host machine domain.

Returns: Text

Usage: Steady State only.

Function Groups: Security

Related to:

Format: DefaultNamingContext()

Parameters: None

Comments: If the host machine is unable to contact the domain
controller invalid is returned, otherwise a string of
the form "dc=example,dc=com" is returned
This function is useful only for Active Directory oper-
ations.
Note that this function may take some time to com-
plete and will block the caller until it does. Other
threads in the VTScada system will continue to run
while this function is executing.

DefaultPrinter

Description: Returns the Windows™ default printer.

Returns: Handle

Usage: Script Only.

Function Groups: Printer

Related to: Redirect

Format: DefaultPrinter()

Parameters: None

Comments: This function is used primarily in conjunction with
the Redirect statement, which permanently redirects
the resources of the system. The only way to return
to the original default printer without knowing its
source in advance is by using this function as illus-
trated in the "Example" section.

Example:

If MatchKeys(2, "p") { When letter "p" is pressed };
[
str1 = DefaultPrinter() { Store the default printer };
Redirect("DEF:", newPrinter) { Select different printer };
PrtScrn() { Output screen to printer };
Redirect("DEF:", str1) { Restore original printer };

]

In this script, the default printer is saved before redirecting printing to
another printer. This allows the original printer to be restored as the
default when the custom printing is concluded.

Deflate

Description: Compresses/decompresses a buffer of data using the
DEFLATE algorithm, and returns the com-
pressed/decompressed data.

Returns: Numeric

Usage: Script Only.

Function Groups: String and Buffer

Related to:

Format: Deflate(InputBuffer, Decompress [, DeflateHandle, MaxDe-
compressedLength, FlushMode, CompressionLevel,
Format])

Parameters:

InputBuffer

Required. Any expression that will yield a buffer of
data to be compressed or decompressed. This can be
a string, a buffer, or a stream.

Decompress

Required. A Boolean value. If set to true (non-zero),
the data in the InputBuffer is decompressed. If set to
false (zero), the data in InputBuffer is compressed.

DeflateHandle

Optional. A variable that holds an existing deflate
handle or is to receive a new deflate handle (see the
"Comments" section for further details).

MaxDecompressedLength

Optional. Specifies the maximum length of the decom-
pressed output (see the "Comments" section for further
details).

FlushMode

Optional. Indicates the type of flushing that the
encoder should use when processing the data. Values

FlushMode ZLib Value

0 Z_NO_FLUSH

2 Z_SYNC_FLUSH

3 Z_FULL_FLUSH

4 Z_FINISH

Effective use of this parameter requires an
understanding of the ZLib library (www.g-
zip.org/zlib). The default value is Z_SYNC_
FLUSH which is appropriate for continuous,
stream mode type operations. For a single
encoding, as in a file or a web page, then Z_
FINISH is likely to be more appropriate. It is not
normally necessary to specify a flush value for
decompress but, if one is specified, it will be
used.

CompressionLevel

Optional. Indicates the level of aggressiveness of the
encoder. Values range between 0 and 9 with typical val-
ues being

CompressionLevel ZLib Value

0 Z_NO_COMPRESSION

1 Z_BEST_SPEED

9 Z_BEST_COMPRESSION

-1 Z_DEFAULT_
COMPRESSION

The default value used by VTScada is Z_BEST_
COMPRESSION which should be fine for most
applications. Z_DEFAULT_COMPRESSION
requests a default compromise between speed
and compression (equivalent to level 6). Again,
it is not necessary to specify this on decom-
pression as the decoder can determine the
encoding scheme used.

Format

http://www.gzip.org/zlib
http://www.gzip.org/zlib

Optional. Indicates the type of compression to use.
ZLib is more intended for streams, while GZip for files.
Both are simply wrappers around the actual deflated
data. Raw Deflate can be used to obtain or process just
the deflated data without the ZLib or GZip overhead.
Values are

Format Compression Type

0 ZLib (default)

1 GZip

2 Raw Deflate

Comments: Compression/decompression is performed using an imple-
mentation of the DEFLATE algorithm (RFC 1951).
The DEFLATE algorithm is a dictionary-based compression
technique, suitable for many types of data. A dictionary-
based algorithm needs to include dictionary tokens in the
output buffer, so compression of small buffers can give
poor results.

The DeflateHandle parameter is an opaque quantity that
identifies an existing dictionary, or, if the variable it iden-
tifies does not hold an existing deflate handle, is set to a
new deflate handle on return from the statement. Sup-
plying the same deflate handle for successive calls to
Deflate results in the existing dictionary being used and
augmented on successive calls. This usually improves com-
pression significantly.

If you make a series of calls to Deflate, using the same
deflate handle to decompress, then you must make a series
of calls in the same sequence, with the initial call obtaining
a new deflate handle, and subsequent calls using the
newly-acquired deflate handle (see the "Example" section
for further details).

MaxDecompressedLength is useful when you already know
the size of the decompressed data (usually because you
recorded it before compression was performed). While this
parameter is not necessary, its use reduces the memory
required to decompress the data.

The default size of MaxDecompressedLength is 65536
bytes. Expanding data larger than this size will cause the
output to be clipped unless a larger value is provided in this
parameter.

Example:

If 1 Done;
[
CompressedData = Deflate("Mary had a little lamb", 0{compress});
OriginalData = Deflate(CompressedData, 1{decompress});

]

In the above example, OriginalData will hold "Mary had a little lamb",
after the second call to Deflate.

If 1 Done;
[
CompressHandle = DecompressHandle = Invalid;
CompressedData = Deflate("Mary had a little lamb", 0{compress},

CompressHandle);
OriginalData = Deflate(CompressedData, 1{decompress},

DecompressHandle);
CompressedData = Deflate("Mary had a little lamb", 0{compress},

CompressHandle);
OriginalData = Deflate(CompressedData, 1{decompress},

DecompressHandle);
CompressedData = Deflate("Mary had a little lamb", 0{compress},

CompressHandle);
OriginalData = Deflate(CompressedData, 1{decompress},

DecompressHandle);
]

In this example, OriginalData will still hold "Mary had a little lamb" after
each call to Deflate, however successive use of the same dictionary will
result in later compressions of the string being more efficient (i.e. smal-
ler). This is because the second and third compressions do not need to
send dictionary tokens in the output stream, as the tokens are
"remembered" in DecompressHandle. This technique allows highly

efficient "stream-oriented" continuous compression, so long as the com-
pressed data is fed into Deflate in exactly the same order as it was com-
pressed. Note that separate handles need to be used for both
compression and decompression, and that these handles will both be ini-
tialized on the first call to Deflate in which they are used.

DeleteAccount

Security Manager Module

Description Removes an account.

Returns Object value

Usage Script Only.

Related to: AddAccount | ModifyAccount

Format \SecurityManager\DeleteAccount (NewAccountData
[, PtrReturnCode, HaveLock]);

Parameters

NewAccountData

Required. An AccountData structure, a single dimen-
sion array of AccountData structures or a dictionary of
AccountData structures identifying the account(s) to
delete.

PtrReturnCode

Optional. A pointer to a value that will contain one of
the defined result codes at the conclusion of the oper-
ation.

HaveLock

Optional. A Boolean value that indicates whether the
working copy lock is held by the calling code. Default
FALSE.

Comments To use this API, the calling code must be running in a secur-

ity session that has Manager privilege.
Deleting an account is an asynchronous operation. If the
asynchronous operation was not attempted, due to detec-
tion of an error, the return value will be Invalid. If the asyn-
chronous operation is attempted, the return value will be
an object value. The object value will become Invalid when
the asynchronous operation completes. At that time (or
when the method returns Invalid), the value addressed by
PtrReturnCode can be examined to determine the status of
the operation. The contents of the value addressed by
PtrReturnCode is undefined until the method returns
Invalid.
A single account can be deleted by supplying a single
AccountData structure in NewAccountData. Multiple
accounts can be deleted in one operation by providing a
single dimension array or dictionary of AccountData struc-
tures in NewAccountData.
The result code returned in the value addressed by
PtrReturnCode will be a scalar value if a single structure
was supplied in NewAccountData. If an array of structures
or a dictionary of structures was supplied, a single dimen-
sion array of the same size as NewAccountData will be
returned in the value addressed by PtrReturnCode, each ele-
ment containing the result code for the corresponding
NewAccountData element.
Deleting an account requires a working copy write lock. If
such a lock is held by the calling code, the HaveLock para-
meter must be set to TRUE. Otherwise omit this parameter
or set it to FALSE. If the calling code holds a read lock on
the working copy, this must be released before DeleteAc-
count can complete its operation.
The AccountData structure(s) provided must have the
AccountID member set to an existing account ID. All other
members are ignored.

DeleteArrayItem

Description: Deletes an element from a single-dimension, dynamically-
allocated array and returns the modified array.

Returns: Array

Usage: Script Only.

Function Groups: Array

Related to: InsertArrayItem | New

Format: DeleteArrayItem(Array, Index)

Parameters:

Array

Required. Any array variable that has been created via
a New function call. This should be a single dimension
array or unexpected results may occur.

Index

Required. Any numeric expression giving the element
in the array to delete. If out of range, then the original
array will be returned.

Comments: This function supersedes the System Library's
DeleteListItem.
This function is intended for use on dynamically allocated
arrays, that is, arrays that have been created via the New
function. If used with an array that has been statically
declared, unless otherwise specified in the Array para-
meter, the first element of the array will be used. If this ele-
ment contains a dynamically allocated array, the deletion
of the specified element will be performed on this array.

Example:

If 1 Next;
[
Data = DeleteArrayItem(Data, ArraySize(Data, 0) - 1);

]

This statement deletes the last element in the array called Data.

DeleteContributor

Description: Removes a contributor from a container.

Returns: Numeric

Usage: Script Only.

Function Groups: Containers and Contributor

Related to: AddContributor | GetContributors | PContributor

Format: DeleteContributor(HandleName, ArrayName, CountName,
ContainerObj, ContributorObj, CountIncrement);

Parameters:

HandleName

Required. The name of the handle variable in the con-
tainer module.

ArrayName

Required. The name of the variable in the ContainerObj
that holds an array of values from which to delete the
contributor. This parameter may be invalid if there is
no such array in the container.

CountName

Required. The name of the variable in the ContainerObj
that holds a count of the current number of this type of
contributor. This parameter may be invalid if no such
variable exists in the ContainerObj. Not all contributors
need to be counted. The CountIncrement determines
the initial change in the count and the contributor
must maintain the count.

ContainerObj

Required. The object value of the container tag mod-
ule.

ContributorObj

Required. The object value of the contributor to delete.

CountIncrement

Required. This value will be subtracted from the vari-
able in the container that has the name of CountName.
This value is usually a "1" or a "0", indicating whether
or not the contributor is actively contributing its value
now. The contributor will increment or decrement the
value of the CountName variable as the corresponding
state of the contributor changes.

Comments: This function can be called from the contributor.

DeleteModule

Description: Deletes a module from the system.

Warning: This function should be used by advanced users only. Irre-
vocable alteration of your application may occur

Returns: Numeric (see table in comments)

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: ClearModule | DeleteOptional | DeleteState |
 DeleteStatement | DeleteVariable

Format: DeleteModule(Module[, IgnoreSource])

Parameters:

Module

Required. Any expression that gives the module value
of the module to delete.

IgnoreSource

If true, the function will not modify any source file.
Also, will not check that .SRC and .RUN files are in sync

and therefore will not return a value of 3.
Defaults to FALSE if invalid or not specified.

Com-
ments:

This statement deletes a module from the system, as well as removing
its code from the document file, if certain conditions hold. There must
not be any running instances of this module. All of the variables in the
module must only be referenced within that module. That is, none of
the variables can be referenced outside of the module which they are
in. Module itself must not be referenced in any other module at all.
This function returns values as follows

Return
Value

Meaning

0 Module successfully deleted.

1 Module not deleted, there are instances of it
running.

2 Module not deleted, module is externally ref-
erenced.

3 Module not deleted, run files are out of sync.

DeleteOptional

Description: Deletes a statement from an action script.

Warning: This function should be used by advanced users only. Irre-
vocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, States

Related to: DeleteModule | DeleteState | DeleteStatement |
 DeleteVariable

Format: DeleteOptional(Action, Position)

Parameters:

Action

Required. Any expression that gives the VTScada Value
Types - Numeric Reference of the action.

Position

Required. Any numeric expression giving the state-
ment number in the script to delete, beginning with 1.

Comments: The corresponding text for the deleted statement is
removed from the document file.
This statement is disabled in the run time version of
VTScada. It will do nothing.

DeletePrivFromUser

(Security Manager Library)

Description: Removes a privilege from the specified username.

Returns: Numeric (via the first parameter)

Usage: Script Only.

Function Groups: Security

Related to:

Format: \SecurityManager\DeletePrivFromUser(PtrReturnCode,
Username, Privilege[, HaveLock])

Parameters:

PtrReturnCode

Required. A pointer to a variable that will be used for
the return code.

PtrReturnCode Meaning

1 Privilege deleted.

2 Denied. The calling context
does not have the Manager
system privilege.

3 The privilege is not valid – no
action taken.

4 The specified user does not
exist – no action taken.

6 The application cannot be
edited.

UserName

Required. Any expression for the name of the user
account to modify.

Privilege

Required. Any numeric expression for the privilege to
be denied. Use a negative value for a system privilege
and a positive value for an application privilege.

HaveLock

Optional Boolean expression. Set to true if we have the
WC lock. Defaults to 0 or FALSE.

Comments: May only be called from a user-context that has the Man-
ager system privilege. The return value of the function is
the object value of the launched worker module. This will
be set to Invalid when the operation has completed and
may be used to discover when that occurs.
Use of this function requires an understanding of the
VTScada security system and the system privileges. Please
refer to System Privileges in the chapter Security Manager

Service.

DeleteState

Description: Deletes a state from a module.

Warning: This function should be used by advanced users only. Irre-
vocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, States

Related to: ClearState | DeleteModule | DeleteOptional |
 DeleteStatement | DeleteVariable

Format: DeleteState(State)

Parameters:

State

Required. Any expression that gives the code value of
the state.

Comments: The corresponding text for the deleted state is removed
from the document file.

DeleteStatement

Description: Deletes a statement from a state.

Warning: This function should be used by advanced users only. Irre-
vocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, States

Related to: DeleteModule | DeleteOptional | DeleteState |
 DeleteVariable

Format: DeleteStatement(Statement)

Parameters:

Statement

Required. Any expression that gives the code value of
the statement.

Comments: The corresponding text for the deleted statement is
removed from the document file.
This statement is disabled in the run time version of
VTScada. It will do nothing.

DeleteUser

(Security Manager Library)

Description: Removes a specified user name from the system.

Returns: Numeric (via the first parameter)

Usage: Script Only.

Function Groups: Security

Related to:

Format: \SecurityManager\DeleteUser(PtrReturnCode, Username[,
HaveLock])

Parameters:

PtrReturnCode

Required. A pointer to a variable that will be used for
the return code.

PtrReturnCode Meaning

0 User does not exist. No action
taken.

1 User deleted.

2 Denied. The calling context
does not have the Manager
system privilege.

6 The application cannot be
edited.

UserName:

Required. Any expression for the name of the user
account to delete.

HaveLock:

Optional Boolean expression. Set to true if we have the
WC lock. Defaults to 0 or FALSE.

Comments: May only be called from a user-context that has the Man-
ager system privilege. The return value of the function is
the object value of the launched worker module. This will
be set to Invalid when the operation has completed and
may be used to discover when that occurs.
Use of this function requires an understanding of the
VTScada security system and the system privileges. Please
refer to System Privileges in the chapter Security Manager
Service.

DeleteVariable

Description: Deletes a variable from a module.

Warning: This function should be used by advanced users only. Irre-
vocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Variable

Related to: DeleteModule| DeleteOptional| DeleteState |
 DeleteStatement

Format: DeleteVariable(Variable[, IgnoreSource])

Parameters:

Variable

Required. Any expression that gives the variable value
to delete.

IgnoreSource

An optional Boolean expression. If true, the function
will ignore out-of-sync source files and not attempt to
make any source file changes. The result is convenient
deletion of non-temporary variables without having
the function modify the corresponding source code.
Defaults to FALSE.

Comments: If IgnoreSource is FALSE or not provided then the cor-
responding text for the deleted variable is removed from
the source file. However, this is only true if the variable is
not a temporary variable, and only if the files are in sync.
DeleteVariable will fail if there are any references to the
variable to be deleted.

DelPageFromApp

Description: Deletes a system page from an application.

Warning: This function should be used by advanced users only. Irre-
vocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Window

Related to:

Format: \DelPageFromApp(PageName);

Parameters:

PageName

Required. The text name of the page to delete.

Comments: In versions of VTS prior to 8.1, this subroutine was a part of
the page manager and therefore was called using the
format \PageManager\DelPageFromApp(…). With version
8.1, the page manager is no longer a part of VTScada and
the function can simply be called using \DelPageFromApp
() as shown in the "Format" section above.

DelRead

Description: Is called by a tag to delete an existing read request, as cre-
ated by an AddRead.

Returns: Nothing

Usage: Script Only.

Function Groups: Memory I/O

Related to: AddRead

Format: VTSDriver\DelRead(Address, Value, Rate)

Parameters:

Address

Required. The address from which to get the data.

Value

Required. A pointer to the destination for the read
data.

Rate

Required. The update rate in seconds.

Comments: DelRead() can only delete a single item. The module
searches ReadList (a linked list of ReadBlocks) for the node
whose info vars match those of the item to be deleted. It
then looks for the matching rate, then the specific request
as identified by Value (the address of the tag's RawValue)
and removes it from the list.

Deriv

Description: Returns the derivative (rate of change) of a value.

Returns: Numeric

Usage: Steady State only. See: Rules for Usage.

Function Groups: Generic Math

Related to: Intgr | PID

Format: Deriv(Value, Time)

Parameters:

Value

Required. Normally, the name of a variable holding a
numeric value for which the derivative will be taken.

Time

Required. Any numeric expression giving the max-
imum time in seconds between derivative function
updates.

Comments: This function takes the change in the Value parameter
between two successive evaluations and divides by the
elapsed time interval between these evaluations. If the
Value changes from invalid to valid, it will take two eval-
uations before the function's result becomes valid. This
function is the inverse of Intgr.
The time parameter is necessary because of VTScada's eval-
uation method of not doing any calculations unless neces-
sitated by a change in a parameter. This means that if the

Value remains unchanged, the Deriv function will be recal-
culated after the time interval specified by the Time para-
meter and return 0.
This function is often used in control functions such as PID
loops where it makes up the "D" in the "PID".

Example:

LevelROC = Deriv(Level, 0.1);

Assuming that Level is updated to show a changing value, this will set
LevelROC to the rate of change of that level.

DeriveKey

Description: Generates a cryptographic session key from a seed value.

Returns: Handle

Usage: Script Only.

Function Groups: Cryptography

Related to: Decrypt | Encrypt | ExportKey | GenerateKey |
 GetKeyParam | ImportKey | SetKeyParam

Format: DeriveKey(CSPHandle, AlgID, Seed [, Flags, Error])

Parameters:

CSPHandle

Required. The handle of a CSP to use to generate the
key.

AlgID

Required. Identifies the algorithm for which the key is
to be generated. Values for this parameter vary
depending on the CSP used, and are defined in
WinCrypt.h

Seed

Required. A text string to use as a seed.

Flags

Optional. Specifies the flags to be passed to
CryptGenKey. If omitted or invalid, then the value "0" is
used.

Error

Optional. A variable in which the error code for the
function is returned. The error codes are as follows

Error Meaning

0 Key successfully generated

1 CSPHandle or AlgID parameters invalid

X Any other value is an error from
CryptGenKey.

Comments: DeriveKey guarantees that when the same CSP and
algorithms are used, the keys generated from the same
seed are identical. The base data can be a password or any
other user data. A handle to the key or key pair is
returned. This handle can then be used as needed with any
Crypto API function requiring a key handle. It is the
VTScada analog of the Crypto API CryptDeriveKey call.

The return value for this function is a handle to the Key. If
an error occurs, then the return value is Invalid. A key has
a value type of 37. If cast to text, then the hexadecimal
value of the algorithm ID will be returned.

Example:

[
Key1;
Constant CALG_RC4 = 0x6801;
Constant KEY_SIZE = 40;
Constant Password = "A secret password";

]
Init [
If 1 Main;
[
{ Make a key }
Key1 = DeriveKey(CSP, CALG_RC4, Password, KEY_SIZE << 16);

]
]

DialogInitPos

(System Library)

Description: Attempts to position a dialog so that it is not started bey-
ond the left, right, top, or bottom of the visible screen.

Returns: Nothing

Usage: Script Only.

Function Groups: Graphics

Related to:

Format: \System\DialogInitPos(XPosPtr, YPosPtr [, DefaultXPos,
DefaultYPos, DlgWidth, DlgHeight])

Parameters:

XPosPtr

Required. A pointer to the dialog's X-position variable.
The X-position will be modified by this function if the
dialog is beyond the left or right edge of the screen.

YPosPtr

Required. A pointer to the dialog's Y-position variable.
The Y-position will be modified by this function if the
dialog is beyond the top or bottom edge of the screen.

DefaultXPos

Optional. Any numeric expression giving the default
X-position to use if the value of the XPosPtr is Invalid. It
is also the X-position that will be used if the dialog is
beyond the right edge of the screen and Width is
Invalid. Default is 0.

DefaultYPos

Optional. Any numeric expression giving the default
Y-position to use if the value of the YPosPtr is Invalid. It
is also the Y-position that will be used if the dialog is

beyond the bottom edge of the screen and Height is
Invalid. Default is 0.

Width

Optional. Any numeric expression giving the width of
the dialog.

Height

Optional. Any numeric expression giving the height of
the dialog.

Comments: This module is a member of the System Library, and must
therefore be prefaced by \System\, as shown in the
"Format" section. If you are developing a script application,
use "System\..." rather than "\System\..." in the function
call.

Calling this function before starting a Window() call will
reposition a dialog's starting position so it will not be
drawn entirely off-screen. This is only necessary if the dia-
log's X- or Y-coordinates are retained. The width and
height of the dialog are optional. If provided, the dialog
will be prevented from being drawn partially beyond the
bottom/right edge of the screen. Otherwise only the
top/left corner of the dialog will be guaranteed to be
drawn on-screen. There is no return value.

Dictionary

Description: Creates a database-like storage structure that provides effi-
cient addition, retrieval and removal of information linked
to key values.
Keys can be any data type although integers and strings
are recommended. Values can be any data type including
another dictionary.

Returns: Dictionary

Usage: Script Only.

Function Groups: Dictionary, Variable

Related to: MetaData | DictionaryCopy | DictionaryRemove |
 GetNextKey | GetKeyCount | HasMetaData | IsDictionary
| ListKeys | RootValue

Format: Dictionary([case] , [root]);

Parameters:

Case

Optional. A Boolean indicating whether the keys in the
dictionary are to be case sensitive.
TRUE == Not Case Sensitive (default)
FALSE == Case Sensitive

Root

Optional text value. Numeric values will be cast to text.
If not provided, the dictionary will have no root value.
(default: Invalid)

Example:

X = Dictionary(0, 5);
X["A"] = 42;
X["B"] = 86;
X["C"] = 99;

DictionaryCopy

Description: Create a new dictionary with contents identical to an exist-
ing dictionary. It is expectd that this function will be used
rarely, since in most cases it will be more efficient to hand
off a reference to a dictionary rather than build a duplicate
of it.
In the case of a complex dictionary that contains other dic-
tionaries within it, the optional Boolean parameter, deep,
controls whether the copy should also contain the sub dic-
tionaries, as does the original, or if it should contain copies
of those dictionaries.

Returns: Dictionary

Usage: Script Only.

Function Groups: Dictionary, Variable

Related to: Dictionary | MetaData | DictionaryRemove | GetNextKey
| GetKeyCount | HasMetaData | IsDictionary | ListKeys |
 RootValue

Format: NewDictionary = DictionaryCopy(dictionary[, deep, acyc-
lic, lock]);

Parameters:

Dictionary

Required. The name of the dictionary.

Deep

Optional. A Boolean that causes all linked dictionaries,
if any, to be copied as well. Defaults to FALSE

Acyclic

Optional. A Boolean indicating that cyclic links within
the dictionary structure should not be included in the
copy. Defaults to FALSE

Lock

Optional. A Boolean indicating that the contents of the

dictionary copy are to be constant. Defaults to FALSE

DictionaryRemove

Description: Removes a key / value pair from a dictionary, providing a
means to regain memory space and remove data that is no
longer needed.

Returns: Nothing

Usage: Script Only.

Function Groups: Dictionary

Related to: Dictionary | MetaData | DictionaryCopy | GetNextKey |
 GetKeyCount | HasMetaData | IsDictionary | ListKeys |
 RootValue

Format: DictionaryRemove (dictionary, key);

Parameters:

Dictionary

Required. The name of the dictionary.

Key

Required. The name of the key to be removed.

Diff

Description: Compares two buffers and generates a third buffer con-
taining formatted instructions describing how the first buf-
fer can be modified so that it will match the second. This
will perform a delimited difference unless the ChunkSize
parameter is set to 1 or greater.

Returns: Invalid (result returned in second parameter)

Usage: Script Only.

Function Groups: String and Buffer

Related to:

Threaded: Yes

Format: Diff(ResultBuffer, CompletionCounter, Buffer1, Buffer2,
[Delimiter, Chunk Size, Clip Length, Edge Length, MaxVari-
ance, PointCap])

Parameters:

ResultBuffer

Required. Any expression that resolves to the variable
to be set to the output buffer. This buffer is created
asynchronously and should be checked for valid data
before use.
The content of this buffer will be an instruction set for
transforming the contents of Buffer1 into a duplicate of
the contents of Buffer2. A detailed description of this
instruction set is provided in the Comments section.

Completion Counter

Required. Any expression that resolves to a variable
containing a numeric value or Invalid.
If a numeric variable, the value will be incremented at
the instant that Diff is called. It will then be decre-
mented after the Result Buffer has been populated. The
same variable can be used to monitor any number of
simultaneous, asynchronous Diff operations.
If this parameter is set to Invalid then the Diff operation
will be performed synchronously. The function won't
return until the Result Buffer is populated.

Buffer1

Required. Any expression that returns the first buffer.
This is the buffer that is intended to be modified by the
instructions returned.

Buffer2

Required. Any expression for the second buffer. This is
the buffer that the first buffer would resemble were the
returned instructions applied.

Delimiter

Optional. The bytes used to delimit lines in text buffers
(or records in any sort of delimited buffer). Multiple
delimiters can be specified by passing an array of text
strings.
If not otherwise specified, the default is an array con-
taining typical text file line endings (newline, carriage
return or a combination of the two characters in either
order).
Can accept either a single string or an array of strings

ChunkSize

Optional. The number of bytes to compare as a unit in
a binary buffer. Must be set to 1 or greater to enable a
binary diff (a delimited diff is performed by default).
Unless the contents of the buffers are guaranteed to
align to a given number of bytes it is recommended
that this be set to 1 to enable binary diffs. Defaults to
0.

ClipLength

Optional. This numeric value is an optimization. It
indicates how long a string of matches (i.e. both buf-
fers having identical contents) will become before the
function decides that it has found an optimal instruc-
tion set and will discard competing sets.
If Diff returns sub-optimal instructions you should
increase this value. Lower values will reduce the exe-
cution time of the function at the cost of the quality of
the output. Higher values increase output quality but
decrease speed.
Sub-optimal instruction sets will result if strings of
matches having the given length can occur randomly
within the two buffers. Defaults to 20.

EdgeLength

Optional. Another numeric optimization, best set to
twice the ClipLength. Causes the elimination of instruc-
tion sets that are estimated to require at least
EdgeLength more instructions than the best set at any
point during the search.
Sub-optimal instruction sets will result if the estimate
is inaccurate by an amount greater than this value.
Lower EdgeLength values will reduce the execution
time of the function at the cost of the quality of the out-
put. Higher values will increase output quality but
decrease speed. Defaults to 40.

MaxVariance

Optional. Sets a maximum variance, as measured by
the number of items changes in the same way. If the
DIFF strays from an exact match by MaxVariance by a
given number of data adds or deletes, execution will
stop.
A mixture of adds and deletes will cancel each other
out. When set to a value smaller than the default, files
with lots of small modified areas will pass while files
with a single modification, larger than this variance,
will fail.
Defaults to 1,000,000.

PointCap

Optional. Sets a cap on the number of points that will
be searched within the buffers. In effect, this value
serves to cause a timeout when comparing extremely
large buffers that are almost completely different.
Defaults to 1,000,000,000.

Comments: This function will return Invalid on failure. Otherwise, the
return value is a buffer of zero or more binary records.
Each record will consist of at least two 32-bit words, con-
taining instructions in the following form.

The highest bit of the first word indicates whether this is a
delete instruction or an add instruction. 0 means "delete"
while 1 means "add". The remaining 31 bits of the first
word (taken as a 31-bit unsigned integer) contain the num-
ber of bits to be affected by this operation.
The second word, taken as a 32-bit unsigned integer, indic-
ates the offset of the operation. That is the location of the
bytes affected.
If the operation is to add bytes, there will be a binary string
following the second word. These are the bytes to be
added at the specified location.
Since the diff function uses a searching algorithm, and in
particular an incomplete search (that is it tries to find a
solution without exploring all of the possibilities), it will at
any time only have a partial collection of all the possible
solutions to the problem. Each solution is defined as a set
of instructions that modify the source buffer, and each of
these sets requires a different number of instructions to
convert a different region of that buffer. The "best set" is
the one that converts the largest portion of the buffer while
requiring the fewest changes to it, selected from the solu-
tions that have been discovered so far.
The optimization works by eliminating solutions which
appear to be so much worse than the current best set that
they are unlikely to recover, as judged by how many more
changes they require to convert a similar region. The prob-
lem is that a solution which works poorly in one region
may perform much better in the others, so the optim-
ization may cause the "real" best set (the one that's optimal
for the entire buffer) to be overlooked.
The return value will be an empty buffer if Buffer1 and
Buffer2 are identical.

Dir

Description: Performs a search in the given directory and returns an

array of matching file names.

Returns: Array

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: File I/O

Related to: DriveInfo | FileFind | FileDialogBox

Format: Dir(Path, Attributes, Option)

Parameters:

Path

Required. Any text expression that indicates the full
path name for the directory to list. The search is non-
recursive (i.e. it considers only the specified directory,
not any of its sub-directories). Path may include a wild-
card, such as "*.DAT". A known path alias for File-
Related Functions may be provided in the form, :
{KnownPathAlias}.

Attributes

Required. Any numeric expression that gives the attrib-
utes to match on each file listed. Files that don't match
these attributes won't be listed. The Attribute para-
meter may be set as one of the following:

Attribute
Bit
No.

Meaning

0 - Files without attributes

8 3 All files (regardless of attrib-
utes)

... or, it may be constructed by adding together
the numbers from the following table :

Attribute Bit No. Meaning

1 0 Read only

2 1 Hidden

4 2 System

16 4 Sub-directory

32 5 Archive

Option

Required. Any numeric expression giving the type of
text information to generate. All information is placed
in a single text string (which will be stored in an ele-
ment of the array that is created). The information is
written from left to right, with lowest option numbers
first.

Option
Bit
No.

Description

1 0 Short file name

2 1 Full path and file name

4 2 File size

8 3 File last modified date (in text)

16 4 File last modified time (in text)

32 5 File attributes (ADHRS)

64 6 File last modified date/time com-
bination (in seconds since January
1, 1970)

128 7 File creation date (in text)

256 8 File creation time (in text)

512 9 File creation date/time com-
bination (in seconds since January
1, 1970)

The attributes returned as a result of bit 5 being
set are printed as the capital letters A (archive)
D (subdirectory), H (hidden), R (read-only), and S
(system).

Comments: This function returns an array of text values listed in
reverse alphabetical order. Each text value contains the
information specified by Option for each file that matches

both Path and Attributes. If no files are found, the return
value will be set to invalid. Notice that the only difference
between this function and the FileFind function is that
FileFind searches down through the whole directory tree,
while this function looks in the immediate directory only.
If you are looking for a "browse for folder" dialog box,
please refer to the FileDialogBox function.

Example:

If ! ValidValid(datFiles);
[
datFiles = Dir("G:\Research*.DAT" { Path },

0 { All normal files },
1 { Retrieve file name });

]

To display the first entry, try:

ZText(10, 10, datFiles[0], 15, 0);

The result might be something like:

"TEST.DAT"

DirectApply

Description: Applies a set of changes directly to the repository, without
disturbing existing (non-conflicting) changes already on
either branch.

Returns: Module

Usage: Script Only.

Function Groups: Configuration Management

Related to: CommitEditedFiles

Format: LayerModule\DirectApply(AlreadyHasLock,
LocalChangeSet, RSema, pComment)

Parameters:

AlreadyHasLock

Required Boolean. Set TRUE when we already have the

working copy lock.

RSema

Required. Repository semaphore, if already held by the
caller.

CallBack

Required. Module name of the caller performing the
changes.

FileSet

The set of files to be changed, identified using a path
relative to the working-copy.

User

The user ID that is to be applied to the change.

Comment

Any text value that is the comment to be stored in the
version log for this change.

pFail

A pointer to a Boolean. This will be set TRUE on failure.

Comments: This function uses a callback system in order to
acquire a set of changes against the repository tip
versions of a file or group of files (both the local
and deployed versions) and then applies those
changes directly to the local and deployed repos-
itory tips without altering the working copy.

The changes are then applied to the working copy
as a result of the repository update. The primary
purpose of this operation is to allow changes to a
file to be deployed without also deploying any exist-
ing local changes to the same file. The local version
must also be updated such that the file is updated
correctly when the current local and deployed tips

differ – otherwise conflicts could result when the
repository attempts to rationalize the two.

DirectApply is used to distribute operation changes,
notes, security information, and other data for
which it is not appropriate that one machine may be
configured differently than its peers; it should not
be used for normal configuration changes. To make
all configuration changes deploy immediately set
the "Automatically Deploy" flag in the CM Inform-
ation panel.

The callback definition follows:

Callback (
DeployChangeSet { Set of deploy buffers, make

changes to these };
LocalChangeSet { Set of local buffers, make

changes to these };
RSema { Repo semaphore };
pComment { Comment pointer allowing late edit-

ing };
)

This module launches a worker module into the
Layer so that the operation is not interrupted by
this module's caller being slain. In the case that the
current machine is not supporting an open local
branch the LocalChangeSet callback parameter will
be invalid.

Examples:

Disable

Note: Deprecated. Do not use in new code.

(Alarm Manager module)

Description: Use AlarmManager\EvaluateAlarm in all new code.

Told the Alarm Manager to disable an alarm. Dis-
able will also clear any active or unacknowledged
state that might exist.

Returns: 0

Usage: Script Only.

Function Groups: Alarm

Related to: Register (Alarm Manager) | CurrentTime

Format: \AlarmManager\Disable(AlarmObject[, EventTime]);

Parameters:

AlarmObject

Required. The object value for the alarm that was
passed to the Register subroutine that will be disabled.

EventTime

Optional. The time stamp to use when adding this
event to the alarm lists. If invalid or not defined, the
default is CurrentTime().

Comments: The Disable subroutine always returns "0".

DisconnectFromMachine

(RPC Manager Library)

Description: This subroutine disconnects from a workstation by decre-
menting the usage count on the specified workstation and
forcing the RPC Manager to attempt to establish a con-
nection with the specified workstation if it is not already
connected. Subroutine call only.

Returns: Nothing

Usage: Script Only.

Function Groups: Network

Related to: ConnectToMachine | GetServer | GetServersListed |

 GetStatus | IsClient | IsPotentialServer |
 IsPrimaryServer | Register (RPC Manager) | Send|
 SetRemoteValue

Format: \RPCManager\DisconnectFromMachine(Workstation)

Parameters:

Workstation

Required. Any of the name or IPs that can be used to
connect to the workstation.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
When the usage count of the workstation reaches "0", the
RPC Manager will not attempt to re-establish a connection
to the workstation once the current connection is lost.

It is critical that each DisconnectFromMachine call should
be paired with a ConnectToMachine call. If the number of
DisconnectFromMachine calls exceeds the number of Con-
nectToMachine calls, the RPC Manager will not behave as
expected and connection with the remote workstation may
be impeded. A negative value for the Srv value in the
socket's entry in the RPC Diagnostics Window may be an
indication of a Dis-
connectFromMachine/ConnectToMachine mismatch.

Example:

If Valid(sNode) Done;
[
\RPCManager\DisconnectFromMachine(sNode);

]

This closes an existing socket by using its socket value.

.

DLL

Description: Returns a value of a type specified by its parameter from a
call to Microsoft Windows™ dynamic link library using the
C calling convention.

Warning: For use by advanced users only. Great care must be taken
that all parameter values are correct when using this state-
ment, since incorrect usage may cause a system crash.

Returns: varies (see table under ReturnType)

Usage: Script Only.

Function Groups: DLL

Related to: LoadDLL

Format: DLL(DLLName, FuncName, ReturnType, BuffLen, Type1,
Val1, Type2, Val2, …)

Parameters:

DLLName

Required. Any text expression that gives the full path,
file name, and extension of the DLL to load, or the
handle returned from a LoadDLL statement.

FuncName

Required. Any text expression that gives the name of
the function to call in the DLL.

ReturnType

Required. The return type of the DLL function, as
shown in the following table

ReturnType Attribute

0 Void (return value only)

1 16 bit Integer

2 32 bit Integer

3 64 bit Double

4 Pointer

5 HWnd value of VTScada Object

BuffLen

Required. Any numeric expression that gives the
length of the returned buffer, if ReturnType is 4.

Type1, Val1, Type2, Val2, …

Required. Are any expressions that determine the type
of parameter passed to the DLL function, as shown in
the table for the ReturnType parameter. The cor-
responding ValN parameter will be cast as this type
before it is passed to the DLL function.

Comments: This statement allows a wide variety of other routines and
code to be used in an application.

Note: 64-bit VTScada can load only 64-bit DLLs. 32-bit VTScada can
load only 32-bit DLLs.

Note: VTScada Internet Clients can load only 32-bit DLLs regardless of
whether the VTScada server is 32-bit or 64-bit.

DoLoop

Description: Executes a do-while loop in a script.

Returns: Nothing

Usage: Script only.

May be used in optimized Tag Parameter Expressions.

Function Groups: Logic Control

Related to: Case | Cond | IfElse | IfThen | WhileLoop

Format: DoLoop(Function1, Function2, …, Condition)

Parameters:

Function1, Function2, …

Required. Any expression or statement. This is the
body of the loop. All of the Function parameters are
executed in order prior to testing the Condition para-
meter.

Condition

Required. Any logical expression for the loop control.
As long as this is true, the loop will repeat.

Comments: The Function parameters are executed at least once, then
Condition is checked. If Condition is true, the Function
parameters are executed and Condition is executed again.
This repeats until Condition is false.

Note: Great care must be taken with this statement since all other
VTScada statements cannot execute until the loop is complete. This
statement has the potential to lock up the system if the Condition never
becomes false.

Note: While the DoLoop statement has its place in VTScada pro-
gramming, it should be noted that speed can be enhanced by a factor
of approximately 5 through the use of array processing functions
(please refer to "Array Processing" for further details). Array functions
are listed in "Array Functions".

Example:

i = 0;
If 1 Main;
[
DoLoop(x[i] = Concat("Pump ", i),

i++,

i < 10);
]

This loop executes 10 times, assigning a text string to the next element
of x on each iteration.

DragHandle

Description: Drags a graphic object's selected handle.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: DragState (Obsolete)

Format: DragHandle(Object, X, Y, KeepRatio)

Parameters:

Object

Required. Any expression that gives the object value
that defines the selected graphic list to drag.

X

Required. Any numeric expression that is the new X
coordinate of the selected handle(s).

Y

Required. Any numeric expression that is the new Y
coordinate of the selected handle(s).

KeepRatio

Required. Any logical expression. If true (non-zero),
the aspect ratio of the graphic will be preserved during
stretching (online). If false (0), it will not.

DrawArcPath

Description: Draws an arc in any window.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: DrawChordPath | DrawEllipticalPath | DrawPath |
 DrawPiePath

Format: DrawArcPath(Left, Bottom, Right, Top, RotateAngle,
Object, StartX, StartY, EndX, EndY)

Parameters:

Left

Required. Any numeric expression for the left side of
the arc's bounding box.

Bottom

Required. Any numeric expression for the bottom side
of the arc's bounding box.

Right

Required. Any numeric expression for the right side of
the arc's bounding box.

Top

Required. Any numeric expression for the top side of
the arc's bounding box.

RotateAngle

Required. Any numeric expression for the angle of rota-
tion of the arc in degrees. This represents a rotation
about the center of the bounding box. If it is greater
than 0, the arc's shape will still be defined by the pro-
portions of the bounding box, but will no longer be
within its (un-rotated) screen coordinates. Note that
although the arc itself will rotate RotateAngle degrees,
neither of the endpoints for the lines defined by StartX,
StartY, and EndX, EndY will be affected (i.e. the arc will
not 'line up' with the angled lines).

Object

Required. Any expression for the object value that
defines the window in which to draw the arc.

StartX

Required. Any numeric expression for the X coordinate
of an endpoint of a line that defines the starting angle.
The other endpoint is the center of the arc's bounding
box.

StartY

Required. Any numeric expression for the Y coordinate
of an endpoint of a line that defines the starting angle.
The other endpoint is the center of the arc's bounding
box.

EndX

Required. Any numeric expression for the X coordinate
of an endpoint of a line that defines the ending angle.
The other endpoint is the center of the arc's bounding
box.

EndY

Required. Any numeric expression for the Y coordinate
of an endpoint of a line that defines the ending angle.
The other endpoint is the center of the arc's bounding
box.

Comments: This statement is intended for building drawing tools. The
arc is drawn in white and is exclusive OR'ed onto the
screen.

Example:

DrawArcPath(0, 500, 700, 0 { Bounding box for the arc },
0 { No rotation occurs },
Self() { Draw in this module's window },
XLoc(), YLoc() { One angled line follows mouse },
750, 300 { Other line of angle });

This draws an arc on the screen that has a horizontal line at its 0 degree
position and whose second line of its open angle follows the mouse. As

the mouse moves and changes the angle of the two lines, the arc will fol-
low its path, and more or less of it will appear.

DrawChordPath

Description: Draws a chord in any window.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: DrawArcPath | DrawEllipticalPath | DrawPath |
 DrawPiePath

Format: DrawChordPath(Left, Bottom, Right, Top, RotateAngle,
Object, StartX, StartY, EndX, EndY)

Parameters:

Left

Required. Any numeric expression for the left side of
the bounding box.

Bottom

Required. Any numeric expression for the bottom side
of the bounding box.

Right

Required. Any numeric expression for the right side of
the bounding box.

Top

Required. Any numeric expression for the top side of
the bounding box.

RotateAngle

Required. Any numeric expression for the angle of rota-
tion of the chord in degrees. This represents a rotation
about the center of the bounding box. If it is greater
than 0, the chord's shape will still be defined by the pro-

portions of the bounding box, but will no longer be
within its (un-rotated) screen coordinates. Note that
although the chord itself will rotate RotateAngle
degrees, neither of the endpoints for the lines defined
by StartX, StartY, and EndX, EndY will be affected (i.e.
the chord will not 'line up' with the angled lines).

Object

Required. Any expression for the object value that
defines the window in which to draw the chord.

StartX

Required. Any numeric expression for the X coordinate
of an endpoint of a line that defines the starting angle.
The other endpoint is the center of the bounding box.

StartY

Required. Any numeric expression for the Y coordinate
of an endpoint of a line that defines the starting angle.
The other endpoint is the center of the bounding box.

EndX

Required. Any numeric expression for the X coordinate
of an endpoint of a line that defines the ending angle.
The other endpoint is the center of the bounding box.

EndY

Required. Any numeric expression for the Y coordinate
of an endpoint of a line that defines the ending angle.
The other endpoint is the center of the bounding box.

Comments: This statement is intended for building drawing tools. The
chord shape is drawn in white and is exclusive OR'ed onto
the screen. The shape of the object is such that the angle
defined by the two lines forms a flattened side to an ellipse
(if the angle between the lines is less than 180 degrees), or
a sliver that has been cut from the ellipse (if the angle is
greater than 180 degrees).

Example:

DrawChordPath(0, 500, 700, 0 { Bounding box for the chord },
90 { Rotate 90 degrees clockwise },
Self() { Draw in this module's window },
550, 470 { One line of angle },
750, 300 { Other line of angle });

This draws an small chord in the upper right hand corner of the screen,
with its defining angle 90 degrees out of phase in the lower right hand
corner.

DrawEllipticalPath

Description: Draw an ellipse in any window.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: DrawArcPath | DrawChordPath | DrawPath | DrawPiePath

Purpose: This statement draws an ellipse in any window.

Format: DrawEllipticalPath(Left, Bottom, Right, Top, RotateAngle,
Object)

Parameters:

Left

Required. Any numeric expression for the left side of
the bounding box.

Bottom

Required. Any numeric expression for the bottom side
of the bounding box.

Right

Required. Any numeric expression for the right side of
the bounding box.

Top

Required. Any numeric expression for the top side of

the bounding box.

RotateAngle

Required. Any numeric expression for the angle of rota-
tion of the ellipse in degrees. This represents a rotation
about the center of the bounding box. If it is greater
than 0, the ellipse's shape will still be defined by the
proportions of the bounding box, but will no longer be
within its (un-rotated) screen coordinates.

Object

Required. Any expression for the object value that
defines the window in which to draw the ellipse.

Comments: This statement is intended for building drawing tools. The
ellipse is drawn in white and is exclusive OR'ed onto the
screen.

Example:

DrawEllipticalPath(200, 300, 640, 190
{ Bounding box for the ellipse },
65 { Rotate 65 degrees clockwise },
Self() { Draw in this module's window });

This draws a stubby, cigar-shaped ellipse in the center of the screen. It is
situated in a NE-SW orientation.

DrawPath

Description: Draws a polygon in any window.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: DrawArcPath | DrawChordPath | DrawEllipticalPath |
 DrawPiePath | PathDraw

Format: DrawPath(XArray, YArray, N, Object)

Parameters:

XArray

Required. An array element expression. This array spe-
cifies the X coordinates of the path to draw, beginning
with the element specified.

YArray

Required. An array element expression. This array spe-
cifies the Y coordinates of the path to draw, beginning
with the element specified.

N

Required. Any numeric expression for the number of
points (number of array elements) in the path.

Object

Required. Any expression for the object value that
defines the window.

Comments: This statement is intended for building drawing
tools. The polygon is drawn in white and is exclus-
ive OR'ed onto the screen.
Do not confuse DrawPath with the function,
PathDraw()

Example:

DrawPath(xValues[0], yValues[0]
{ Starting coordinates that define polygon },
11 { Figure has 11 vertices },
Self() { Draw in this module's window });

This will draw a 10 sided polygon as defined by the coordinates in the
two arrays.

DrawPiePath

Description: Draws a pie in any window.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: DrawArcPath | DrawChordPath | DrawPath | DrawPiePath

Format: DrawPiePath(Left, Bottom, Right, Top, RotateAngle, Object,
StartX, StartY, EndX, EndY)

Parameters:

Left

Required. Any numeric expression for the left side of
the bounding box.

Bottom

Required. Any numeric expression for the bottom side
of the bounding box.

Right

Required. Any numeric expression for the right side of
the bounding box.

Top

Required. Any numeric expression for the top side of
the bounding box.

RotateAngle

Required. Any numeric expression for the angle of rota-
tion of the pie, in degrees. This represents a rotation
about the center of the bounding box. If it is greater
than 0, the pie's shape will still be defined by the pro-
portions of the bounding box, but will no longer be
within its (un-rotated) screen coordinates. Note that
although the pie itself will rotate RotateAngle degrees,
neither of the endpoints for the lines defined by StartX,
StartY and EndX, EndY will be affected (i.e. the pie will
not 'line up' with the angled lines).

Object

Required. Any expression for the object value that
defines the window.

StartX

Required. Any numeric expression for the X coordinate
of an endpoint of a line that defines the starting angle.
The other endpoint is the center of the bounding box.

StartY

Required. Any numeric expression for the Y coordinate
of an endpoint of a line that defines the starting angle.
The other endpoint is the center of the bounding box.

EndX

Required. Any numeric expression for the X coordinate
of an endpoint of a line that defines the ending angle.
The other endpoint is the center of the bounding box.

EndY

Required. Any numeric expression for the Y coordinate
of an endpoint of a line that defines the ending angle.
The other endpoint is the center of the bounding box.

Comments: This statement is intended for building drawing tools. The
pie is drawn in white and is exclusive OR'ed onto the
screen.

Example:

DrawPiePath(10, 325, 430, 75
{ Bounding box for the pie },
90 { Rotate 90 deg. counter-clockwise },
Self() { Draw in this module's window },
550, 470 { One line of angle },
750, 300 { Other line of angle });

This draws a wedge of pie on the left side of the screen, point upward.

DrawScale

(Meter Parts Library)

Description: Will draw a scale (i.e. tick marks) for a linear or radial type
meter. These marks are images (normally lines) indicating
the major and minor divisions of the entire scale. This func-

tion must be called inside a GUITransform in order to work
properly.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to:

Format: \MeterParts\DrawScale(MajorTickImage, MinorTickImage,
MajorDivisions, MinorDivisions, RelativeSize, LinearScale,
Orientation, MinAngle, MaxAngle, Hue, Saturation, Bright-
ness, Transparency, Contrast, ColorizeHue, Col-
orizeIntensity)

Parameters:

MajorTickImage

Required. The full path to an image file to use as a
major tick mark.

MinorTickImage

Required. The full path to an image file to use as a
minor tick mark.

MajorDivisions

Optional. The number of major divisions in the scale.
The default is 1 major division.

MinorDivisions

Optional. The number of Minor divisions between the
major divisions in the scale. The default is 5 minor divi-
sions.

RelativeSize

Optional. The relative size of the tick marks. If set, the
tick marks will resize independently from the auto-
matic sizing that is done when you resize the trans-
form. Typically the range for this parameter is from 0
to 2, where 2 is double the default size and 0.5 is half

the default size. The default is 1 which is the native
size as scaled with the transform size.

LinearScale

Optional. A flag that, when set to true causes a linear
scale to be drawn. When set to false, a Radial scale will
be created. The default is true.

Orientation

Optional. A flag that is relevant only when drawing a lin-
ear type scale. When set to true the scale will be ori-
ented vertically. When set to false, the scale will be
oriented horizontally. The default is false.

MinAngle

Optional. The angle for the starting position of a radial
type scale. 0 is defined as up or the 12 o’clock pos-
ition. This parameter is relevant only when drawing a
radial type scale. The default is 0.

MaxAngle

Optional. The angle for the ending position of a Radial
type scale. . 0 is defined as up or the 12 o’clock pos-
ition. This parameter is relevant only when drawing a
radial type scale. The default is 90.

Hue

Optional. The Hue translation to perform on the tick
mark image. The image must have color in it already
in order to perform a hue translation. If there is no
color to start with, then changing this value does noth-
ing. You can add color by setting a value for the Col-
orizeHue parameter, described later.
The default is 0, indicating that no hue translation is
done and the indicator is in its native color.

Saturation

Optional. The amount of saturation of the colors in the
tick mark image. A value of 0 will make the image

black and white (no color saturation). A value of 2 pro-
duces a brightly colored (saturated) indicator. The
default is 1 which corresponds to the native saturation
of the indicator image.

Brightness

Optional. An adjustment of the brightness of the tick
mark image. Higher numbers produce a brighter
image. A 0 produces a black image. The default is 1
which corresponds to the native brightness of the tick
mark image.

Transparency

Optional. An adjustment of the opacity of the tick
mark image where 1 means 100% opacity and 0 means
%100 transparent. The default is 1.

Contrast

Optional. An adjustment of the contrast of the colors in
the tick mark image. A value of 0 produces a flat look-
ing image and a value of 2 gives a high contrast
image. The default is 1 which corresponds to the nat-
ive contrast of the image.

ColorizeHue

Optional. A value that works in conjunction with Col-
orizeIntensity. This is the hue of the color that is intro-
duced by colorizing an image. Colorizing an image will
introduce color into an image that previously was
black and white or grayscale. The default value is 0.

ColorizeIntensity

Optional. A value to define how much color to intro-
duce into the image. The default is 0, meaning not to
introduce any color at all into the image.

Comments: This function must be called from within a GUITransform
statement in order for it to work correctly.
The Tick Marks are scaled according to the size of the

transform and the RelativeSize parameter.

Example:

GUITransform(674, 284, 824, 134,
1, 1, 1, 1, 1 { Scaling },
0, 0 { Movement },
1, 0 { Visibility, Reserved },
0, 0, 0 { Selectability },
Variable("Code\MeterParts")\DrawScale("Bitmaps\Meter

Parts\Tick Marks\Large_Thin.png", "Bitmaps\Meter Parts\Tick Mark-
s\Small_Thin.png", 1, 5, 1, 1, 0, 0, 90, 0, 1, 1, 1, 1, 0, 0));

DriveInfo

Description: Returns information about a disk drive.

Returns: Pointer (see comments)

Usage: Script Only.

Function Groups: Software and Hardware

Related to: Dir | FileFind

Format: DriveInfo(Attributes, Option)

Parameters:

Attributes

Required. Any numeric expression which gives the
attributes to match for each drive. Drives that don't
match these attributes won't be listed. The Attributes
parameter is constructed by adding together the num-

Attribute Bit No. Drive Type

1 0 Removable drive (floppy
disk)

2 1 Fixed drive (hard disk)

4 2 Remote drive (network
disk)

8 3 CD-ROM drive

Option

Required. Any numeric expression giving the type of
text information to generate. All information is placed
in a single text string (which will be stored in an ele-
ment of the array that is created). The information is
written from left to right, with lowest option numbers
first.

Option
Bit
No.

Information Type

1 0 Drive type

2 1 Drive letter and colon (e.g. C:)

4 2 Volume name

8 3 Total volume space (in bytes)

16 4 Volume space available (in
bytes) for consumption

Comments: This function will only return information on network
drives that have been assigned drive letters (i.e. those hav-
ing been used in a Windows™ command prompt "net use"
statement or VTScada Redirect statement).

This function returns an array of text values (one element
per drive). Each text value contains the information spe-
cified by Option for each drive that matches Attributes. The
size information is expressed as a text string of a decimal
number of the requested value concatenated with the other

Value Drive Type

0 Removable drive (floppy disk)

1 Fixed drive (hard disk)

2 Remote drive (network disk)

3 CD-ROM drive

Example:

If ! Valid(drives);
[
drives = DriveInfo(6 { All hard and network disks },
3 { Drive type and letter });

]
Table(drives[0] { Start at beginning of array },

ArraySize(drives, 0){ Number of elements in array },
10, 10, 0, 10 { First line point, vertical list },
4, 0, 100 { Text values; min/max chars },
15, 0, 0 { White on black background },
0, 0 { Standard height, no rotation });

This would list the drive types and letters, both fixed and remote, avail-
able on the system in table form in the upper left hand portion of the
screen.

Droplist

(System Library)

Description: Draws a droplist with (optional) title or bevel or both.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: Bevel | CheckBox | ColorSelect | DropTree | GridList |
 HScrollbar | Listbox | RadioButtons | Spinbox | SplitList
| VScrollbar

Format: \System\DropList(X1, Y1, X2, Y2, Data, Title, Index,
FocusID, Trigger, NoEdit, Init, Variable [, DrawBevel, Ver-
tAlign, AlignTitle, Style, BGColor, FGColor])

Parameters:

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the droplist.

Y1

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the (opened) droplist.

X2

Required. Any numeric expression giving the X
coordinate on the screen of the side of the droplist
opposite to X1.

Y2

Required. Any numeric expression giving the Y
coordinate on the screen of the top or bottom of the
(opened) droplist, whichever is the opposite to Y1.

Data

Required. An array of data to be displayed in the
droplist.

Title

Required. Any text expression to be used as a title for
the droplist.

Index

Required. A variable whose value indicates the array
index of the highlighted item in the list. Index can be
set invalid to reset the droplist.

FocusID

Required. Any numeric expression for the focus num-
ber of this graphic. If this value is 0, the droplist will dis-
play its current setting, but will not be able to be
opened (i.e. its value cannot be changed) and will
appear grayed out. The default value is 1.
If this parameter is invalid, keyboard input (such as the
carriage return key) will be ignored.

Trigger

Required. If the droplist is editable, Trigger provides
feedback. While editing, the value will be 0. When edit-

ing is complete (tab, enter or loss of focus) the value
will change to non-zero; 1 if enter is pressed, 2 oth-
erwise.
If this information is not required and the next para-
meter is used, a value of invalid or a constant may be
substituted.

NoEdit

Required. Any logical expression. If TRUE (non-
0) the text displayed in the droplist cannot be
edited directly, if FALSE (0) it can be edited in
the same manner as an editfield.

Note: if the provided variable is declared but
left INVALID (i.e. a C++ BASEVALUE class) then
NoEdit will default to TRUE.
If the NoEdit parameter is set directly to
INVALID (a C++ VALUE class) then NoEdit will
default to FALSE.

Init

Required. Any expression for the initial value displayed
in the field if Index is set to invalid. If NoEdit is true,
then Init must be an element of the data array.

Variable

Required. The variable whose value is set by the
droplist.

DrawBevel

An optional parameter that is any logical expression. If
true (non-0) a bevel is drawn around the droplist, if
false (0) no bevel is drawn. The default value is false.

VertAlign

An optional parameter that is any numeric expression
that sets the vertical alignment of the editfield accord-
ing to one of the following options

VertAlign Vertical Alignment

0 Top

1 Center

2 Bottom

Whether or not the title is included when the ver-
tical alignment is calculated is determined by
the value of AlignTitle. The default value is 0.

AlignTitle

An optional parameter that is any logical expression. If
true (non-0) the title is included in the calculation for
vertical alignment, if false(0) it is added to the droplist
after it (and its bevel if one exists) has been vertically
aligned. The default is true.

Style

Comprised of a combination of bit values to yield the
desired effects.
Bits 0 and 1 define mutually exclusive styles of oper-
ation. They can be set to one of the following values:

Bit Num-
ber

Definition

0 No droplist, rather a listbox with
the selected item above

1 Droplist and editable selection

2 Droplist with non-editable selection

Bits 2 and 3 define input character handling. If
neither is set, input is passed to script code as
typed.

Bit Number Definition

2 Input is converted to all upper-
case.

3 Input is converted to all lower-
case.

Bit 4 controls list sorting.

Bit Number Definition

4 The list is presented in sorted
order to the user.

Bit 8 enables Windows visual styles.
Bit 9 defines and enables exact use of applic-
ation-defined geometry. The default is to per-
form auto-geometry modification to give the
best fit.

Bit Number Definition

9 Enable application-defined geo-
metry.

BGColor

Optional. Any numeric expression for the background
color of the control. No default value.

FGColor

Optional. Any numeric expression for the foreground
color of the control. No default value.

Comments: This module is a member of the System Library, and
must therefore be prefaced by \System\, as shown
in the "Format" section. If you are developing a
script application, use "System\..." rather than "\Sys-
tem\..." in the function call.

The height of the (unopened) droplist is constant,
with X1 and X2 defining its width, and Y1 and Y2
defining its opened height, which may or may not
include the added height of a title and bevel,
depending on the alignment used and if they exist.
Note that if the entire list can be displayed in a smal-
ler area than indicated by Y1 and Y2, the dropped
list height will be decreased accordingly. Droplist
enforces a minimum dropped list size of four rows,
unless the list is smaller in size.

Droplist may not be wrapped in a GUITransform.

Example:

Init [
If 1 Main;
[
Choices = New(4);
Index = 0;
Choices[0] = "Open";
Choices[1] = "Close";
Choices[2] = "On";
Choices[3] = "Off";

]
]

Main [
System\DropList(10, 210, 210, 390 { Boundaries of list },

Choices { Data displayed },
"Match String" { Title },
Index { Highlighted index },
1, 1 { Focus ID, trigger },
0 { Editable field },
"Cancel" { Starting value },
Val { Variable to set },
0 { No bevel },
0 { Align top of list });

]

This shows an editable droplist without a bevel, with the top of the
droplist itself at Y = 210; the title "Pick a String" is above it (i.e. beyond
the top of the defined area). The initial value in the field, and thus the ini-
tial value of Val will be "Cancel"; when the list is first opened, the first
array entry (element 0) will be highlighted. The trigger variable is not
used.

DropTree

(System Library)

Description: Draws a control similar to a Droplist, but rather than a flat
list, a tree of possible selections is displayed.

Returns: Object reference.

Usage: Script Only.

Function Groups: System

Related to: Droplist |

Format: \System\DropTree(Left, Bottom, Right, Top, TreeData,
Title, SelectedKey, FocusID, FTrigger[, DrawBevel,
AlignTitle, DlgRoot, Trigger])

Parameters:

Left

Any numeric expression for the left coordinate of the
tool.

Bottom

Any numeric expression for the bottom coordinate of
the tool.

Right

Any numeric expression for the right coordinate of the
tool.

Top

Any numeric expression for the top coordinate of the
tool.

TreeData

The data to display, in Node array format. The format
is the same as for a call to TreeControl.

Title

Any text expression to be used as a title.

SelectedKey

The key of the selected item. Must be a variable, and
may specify initial selection.

FocusID

Any numeric expression for the FocusID.

FTrigger

The Focus Trigger of the DropTree.

DrawBevel

Optional Boolean. If TRUE (non-0) a bevel is drawn.
Defaults to FALSE.

AlignTitle

An optional parameter that is any logical expression. If
TRUE (non-0) the title is included in the calculation for
vertical alignment. The default is FALSE.

DlgRoot

Optional. The object value of the root dialog. Used for
alignment of the DropTree.
Defaults to the caller if not specified.

Trigger

An optional numeric expression. Initially set to zero (0)
when the DropTree opens.
If the user presses the Escape key or closes the exten-
ded window, then Trigger becomes 1.

Comments: This function allows the use of disabled options -
grayed in appearance and unselectable.
The following set of helper functions is available.
These may be added to the caller of DropTree in
order to add special handling of certain events.

l OnLeftClick(NodeArray)
- Subroutine: The left mouse button was released
over a tree node.

l OnRightClick(NodeArray, X, Y)
- Subroutine: The right mouse button was released
over a node. X and Y are the coordinates of the
mouse.

l OnDoubleClick(NodeArray, X, Y)
- Subroutine: The left mouse button was double-
clicked over a node. X and Y are the coordinates of
the mouse.

l CreateSubTree(NodeKey)
-

l ExpandTreeToNode(NodeKey)
- Recursive Subroutine: Used for SetSelected call,
expands to given node

l Collapse()
- Will traverse the whole tree starting from the
leaves, working towards the root, calling Col-
lapseNodes() on each node.

Related Information:
TreeControl Module in the VTScada Programmer's Guide.

E Functions
The sections that follow identify all VTScada functions beginning with "E".

Edge

Description: Test for a rising or falling edge.

Returns: Boolean

Usage: Steady State only.

Function Groups: Generic Math, Variable

Related to: Change

Format: Edge(Value, Mode)

Parameters:

Value

Required. Any expression giving a numeric status
value to be tested. It is interpreted as true if it is non-
zero, and false if it is zero.

Mode

Required. Dictates whether the change from false to
true or true to false is tested. If it is 0, a true to false (a
falling edge) is tested. If it is 1, a false to true (a rising
edge) is tested.

Comments: Once triggered, the return value will remain true until the
function is reset. Typically, Edge would be used as an
expression in a function such as Latch that will reset its
parameters.

Example 1:

If Edge(Var1 > 2, 1) NextState;

Example 2:

Latch(Edge(Variable("Tag_1")\Value > 10,1),
TimeOut(Watch(0, Value), 2)) ? 1 : 0

When the value of the tag, ‘Tag_1’ changes from less than 10 to greater
than 10, the value of the expression will change to 1.
The change in the expression value will start the Timeout function, which
will reset the expression after 2 seconds and allow the process to repeat
the next time Tag_1’s value increases past 10.

Related Information:
See: "Latching and Resetting Functions" in the VTScada Programmer's
Guide

Edit

(System Library)

Description: Draws an edit field with (optional) title or bevel or both.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: CheckBox | ColorSelect | Droplist | Listbox |
 RadioButtons | Spinbox

Format: \System\Edit(X1, Y1, X2, Y2, Title, Variable [, FocusID,
Trigger, View, DataType, DrawBevel, VertAlign, AlignTitle,
LowLimit, HighLimit, Style, PrefixValue, SuffixValue, BGCo-
lor, FGColor])

Parameters:

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the edit field.

Y1

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the edit field.

X2

Required. Any numeric expression giving the X

coordinate on the screen of the side of the edit field
opposite to X1.

Y2

Required. Any numeric expression giving the Y
coordinate on the screen of the top or bottom of the
edit field, whichever is the opposite of Y1.

Title

Required. Any text expression to be used as a title for
the field.

Variable

Required. A variable whose value is set by the edit
field.

FocusID

Optional. Any numeric expression for the focus num-
ber of this graphic. If this value is 0, the edit field will
display its current setting, but its value will not be able
to be changed and it will appear grayed out. The
default value is 1.

Trigger

Optional. Trigger provides feedback. While editing, the
value will be 0. When editing is complete (tab, enter or
loss of focus) the value will change to non-zero; 1 if
enter is pressed, 2 otherwise.

View

Optional. Indicates how to display the edit field, as fol-
lows

View Display Mode

0 Invisible

1 Normal (color scheme - no graying)

2 Grayed-out (only if FocusID is 0)

This parameter may be used to force an edit

field with a FocusID of 0 to be displayed nor-
mally, rather than allowing it to default to its
grayed color. Note that if the FocusID is not 0,
setting this value as 2 will not force the field to
gray out.
The default value is 2 if FocusID is 0 and 1 oth-
erwise.

DataType

Optional. Any numeric expression giving the type of
data accepted by the edit field as follows

DataType Description

0 Byte (unsigned)

1 Short (2 byte signed)

2 Long (4 byte signed)

3 Double precision floating point (8
byte signed)

4 Text

5 Octal (4 byte unsigned)

6 Hexadecimal (4 byte unsigned)

For types 0 - 2, if the number entered into the
field is prefaced by a "0x" the value is taken to
be hexadecimal format, and if it is prefaced by a
"0" it is considered to be octal. In either case,
the value is converted to decimal format when
return is pressed or the focus is lost.
For type 5, regardless of whether or not the
number entered into the field is prefaced by a
"0" the value is taken to be octal and will be dis-
played as such. The actual type of Variable will
be text.

Type 6, like type 5 will be kept in its declared
format of hexadecimal regardless of whether or
not the number entered into the field is pre-
faced by a "0x". The actual type of Variable will
be text
The default value is 4 - text.

DrawBevel

Optional. Any logical expression. If true (non-0) a
bevel is drawn around the edit field, if false (0) no
bevel is drawn.
If the edit field is beveled, its size will become fixed
and will be the same as that for a droplist. The default
value is false.

VertAlign

Optional. Any numeric expression that sets the vertical
alignment of the edit field according to one of the fol-
lowing options

VertAlign Vertical Alignment

0 Top

1 Center

2 Bottom

Whether or not the title is included when the ver-
tical alignment is calculated is determined by
the value of AlignTitle. The default value is 0.

AlignTitle

Optional. Any logical expression. If true (non-0) the
title is included in the calculation for vertical align-
ment. If false(0) it is added to the edit field after it (and
its bevel if one exists) has been vertically aligned. The
default is true.

LowLimit

Optional. Any expression giving the minimum value or
minimum number of characters to be accepted by the
edit field (depending on the data type).
This value may be a decimal, octal or hexadecimal
value. If this parameter is valid and a value less than
LowLimit is entered in the field (or there are too few
characters, in the case of text value), the variable set
by the field will revert to the previous value. No default

HighLimit

Optional. Any numeric expression giving the
maximum value or maximum number of char-
acters to be accepted by the edit field (depend-
ing on the data type).
• If used for numbers, the default is 255 char-
acters.
• If used for text, the default is 32767 char-
acters.
This value may be a decimal, octal or hexa-
decimal value. If this parameter is valid and a
value greater than HighLimit is entered in the
field (or there are too many characters, in the
case of text value), the variable set by the field
will revert to the previous value. No default

Style

Optional. Comprised of a combination of bit values to
yield the desired effects. Default 0.
Bits 0 and 1 are reserved for bit compatibility
with WinComboCtrl, and should be set to "0".
Bits 2, 3 and 4 define input character handling.
If not set, input is exactly as typed.

Bit Num-
ber

Definition

2 Input is converted to all uppercase.

3 Input is converted to all lowercase.

4 Input is masked. Any characters
typed will appear as asterisks. (use-
ful for password fields)

Bit 5 controls multi-line edit controls.

Bit Num-
ber

Definition

5 Multi-line editing. When set, this bit
causes a typed Enter key to be inter-
preted as "move to the start of the
next line".
Text that contains carriage-return &
line-feed characters has a line break
inserted at each set.

Bits 6 and 8 are reserved.
Bit 2^9 Not used. Height is fixed by constant,
\EditHt or \TEditHt (with title).

PrefixValue

Optional. Indicates the text expression that should be
displayed immediately before (i.e. to the left of) the
editable part of the control. No default.

SuffixValue

Optional. Indicates the text expression that should be
displayed immediately after (i.e. to the right of) the
editable part of the control. No default.

BGColor

Optional. Any numeric expression for the background
color of the control. No default value.

FGColor

Optional. Any numeric expression for the foreground
color of the control. No default value.

Comments: This module is a member of the System Library, and must
therefore be prefaced by \System\, as shown in the
"Format" section. If you are developing a script application,
use "System\..." rather than "\System\..." in the function
call.
The height of the edit field is constant, with X1 and X2
defining its width, and Y1 and Y2 defining the boundaries
in which it is to be confined vertically, which may or may
not include the added height of a title and bevel, depend-
ing on the alignment used and if they exist.
For any optional parameter that is to be set, all optional
parameters preceding the desired one must be present,
although they may be invalid.

Examples:

System\Edit(10, 50 { Top left corner - fixed },
110, 20 { Bottom right corner },
"Description" { Title },
Desc { Var to update }
{ Remainder of parameters not used, so omitted });

System\Edit(20, 110, 120, 70 { Outline of field },
"Name", Name { Title; var to update },
2, DoneFlag { Focus ID, trigger },
Invalid { Default display },
2 { Long integer values },
Invalid { Default of no bevel },
1 { Center the editfield },
1 { Include title in alignment },
Invalid { No minimum value },
100 { Maximum acceptable value });

EditFile

Description: Informs the configuration management system that a file
has been modified in the working copy, typically before
making a call to CommitEditedFiles.

Returns: Nothing

Usage: Script Only.

Function Groups: Configuration Management

Related to: CommitEditedFiles

Format: \LayerModule\EditFile(ModItem[, JustInformSubscribers])

Parameters:

ModItem

Required. A file name, a dictionary of file names, or an
array of names of modified files.
File paths relative to the working copy are recom-
mended. Files outside the working copy cannot be
added.

JustInformSubscribers

Optional Boolean. Set TRUE to not mark the file as mod-
ified. This is useful when switching between repository
revisions.Defaults to FALSE.

Comments: This function must be called only if the caller has the sem-
aphore (working copy lock). The files will be added to the
Modified dictionary so that it is distributed to all sub-
scribers when the transaction is closed.
If a set of files is passed, then the values will also be passed
to the repository. The primary purpose of this is that it
allows for files to be marked as ignored.

Examples:

EditINI

(VTS Library)

Description: Draws an edit field from which a value of an application
property in Settings.Startup may be set.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: EditINICheckBox | ReadINI | ReadSectINI | WriteSectINI

Format: \Library\EditINI(Section, VarName [, Title, DataType,
FocusID, View, DrawBevel, VertAlign, AlignTitle,
UpdateVar, LowLimit, HighLimit])

Parameters:

Section

Required. Any text expression giving the name of the
section in the file. This should not include the square
brackets delimiting the section.

VarName

Required. Any text expression giving the name of the
variable for which the value is to be set.

Title

Optional. Any text expression to be used as a title for
the field. No default.

DataType

Optional. Any numeric expression giving the type of
data accepted by the edit field as follows. No default.

DataType Type

0 Byte (unsigned)

1 Short (2 byte signed)

2 Long (4 byte signed)

3 Double precision floating point (8
byte signed)

4 Text

Note that for types 1 and 2, if the number
entered into the field is prefaced by a "0x", the
value is taken to be a hexadecimal value and is
converted to a decimal value when return is
pressed. The default value is 4.

FocusID

Optional. Any numeric expression for the focus num-
ber of this graphic. If this value is 0, the edit field will
display its current setting, but its value will not be able
to be changed and it will appear grayed out. The
default value is 1.

View

Optional. Indicates how to display the edit field, as fol-
lows:

View Display

0 Invisible

1 Normal (color scheme - no graying)

2 Grayed out (only if FocusID is 0)

This parameter may be used to force an editfield
with a FocusID of 0 to be displayed normally,
rather than allowing it to default to its grayed

color. Note that if the FocusID is not 0, setting
this value as 2 will not force the field to gray
out.
The default value is 2 if FocusID is 0 and 1 oth-
erwise.

DrawBevel

Optional. Any logical expression. If true (non-0) a
bevel is drawn around the editfield, if false (0) no bevel
is drawn. If the editfield is beveled, its size will become
fixed and will be the same as that for a droplist. The
default value is true.

VertAlign

Optional. Any numeric expression that sets the vertical
alignment of the editfield according to one of the fol-
lowing options:

VertAlign Vertical Alignment

0 Top

1 Center

2 Bottom

Whether or not the title is included when the ver-
tical alignment is calculated is determined by
the value of AlignTitle. The default value is 0.

AlignTitle

Optional. Any logical expression. If true (non-0) the
title is included in the calculation for vertical align-
ment. If false (0) it is added to the editfield after it (and
its bevel if one exists) has been vertically aligned. The
default is true.

UpdateVar

Obsolete. The running system is always updated.

LowLimit

Optional. Any expression giving the minimum value or
minimum number of characters to be accepted by the
editfield (depending on the data type).
This value may be a decimal, octal or hexadecimal
value. If this parameter is valid and a value less than
LowLimit is entered in the field (or there are too few
characters, in the case of text value), the variable set
by the field will revert to the previous value. no default:

HighLimit

Optional. Any numeric expression giving the max-
imum value or maximum number of characters to be
accepted by the editfield (depending on the data type).
This value may be a decimal, octal or hexadecimal
value. If this parameter is valid and a value greater
than HighLimit is entered in the field (or there are too
many characters, in the case of text value), the vari-
able set by the field will revert to the previous value.

Comments: This module is a member of the VTS Library and must
therefore be called from within a GUITransform and pre-
faced by \Library\.
The height of the edit field is constant, with the horizontal
boundaries of its calling transform defining its width, and
the vertical boundaries of its calling transform defining its
height (to a minimum size). The height will include the
height of the bevel, but may or may not include the title,
depending on the alignment used.
For any optional parameter that is to be set, all optional
parameters preceding the desired one must be present,
although they may be invalid.

Example:

GUITransform(180, 172, 280, 142,
1, 1, 1, 1, 1 { Scaling },
0, 0 { Movement },
1, 0 { Visibility, Reserved },
0, 0, 0 { Selectability },
Variable("Code\Library")\EditIni("System",

GiveUpCallTimeout",
"Give up", 2, 1, 2, 1,

1, 1,
Invalid, 0, 2000));

This causes an edit box to be displayed with the title "Give up". The oper-
ator may use it to change the value of GiveUpCallTimeout between the
range of 0 and 2000.

EditINICheckBox

(VTS Library)

Description: Draws an edit field check box, with which a value of an
application property in Settings.Startup may toggled
between true and false.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: EditINI | ReadINI | ReadSectINI | WriteSectINI

Format: \Library\EditINIcheck box(Section, VarName [, Title,
BoxOnLeft, Align, FocusID, UpdateVar, EnableIfEditing])

Parameters:

Section

Required. Any text expression giving the name of the
section in the file. This should not include the square
brackets delimiting the section.

VarName

Required. Any text expression giving the name of the
variable for which the value is to be set.

Title

Optional. Any text expression to be used as a title for
the field. No default:

BoxOnLeft

Optional. A Boolean, indicating whether the check box

should be to the left or right of the label. Defaults to
TRUE (box to the left of the label).

Align

Optional. Any numeric expression controlling the align-
ment of the label and the box. Defaults to 3 - Left, ver-
tically centered.

Value Meaning

0 Left, top.

1 Right, top.

2 Full, top.

3 Left, vertically centered.

4 Right, vertically centered.

5 Full, vertically centered.

6 Left, bottom.

7 Right, bottom.

8 Full, bottom.

FocusID

Optional. Any numeric expression for the focus num-
ber of this graphic. If this value is 0, the check box will
display its current setting, but its value will not be able
to be changed and it will appear grayed out. The
default value is 1.

UpdateVar

Obsolete. The running system is always updated.

EnableIfEditing

Obsolete. Will always evaluate to FALSE.
Within the Idea Studio, EditINICheckbox will
always be disabled. Everywhere else, it will be
enabled.

Comments: This module is a member of the VTS Library and must
therefore be called from within a GUITransform and pre-
faced by \Library\.

Example:

GUITransform(495, 375, 595, 345,
1, 1, 1, 1, 1 { Scaling },
0, 0 { Movement },
1, 0 { Visibility, Reserved },
0, 0, 0 { Selectability },

 \Library\EditIniCheckBox("System", "AlarmPopupsEnable",
"Alarm Popups", TRUE, 3, 1, Invalid, FALSE));

This draws a check box that operators may use to enable or disable the
Alarm Popups application property.

Editor

Note: Deprecated. Do not use in new code.

Description Displays an editor on the screen.

Returns Nothing

Usage Steady State only.

Function Groups Editor, Graphics

Related to: AddEditorText | CurrentLine | ForceEvent | GoToOffset |
 MakeEditor | SetEditMode

Format Editor(Left, Bottom, Right, Top, EditorValue, FocusID, Font
[, Info])

Parameters

Left

Required. Any numeric expression that defines the left
hand side of the square area where the editor will oper-
ate.

Bottom

Required. Any numeric expression that defines the bot-
tom of the square area where the editor will operate.

Right

Required. Any numeric expression that defines the
right hand side of the square area where the editor will
operate.

Top

Required. Any numeric expression that defines the top
of the square area where the editor will operate.

EditorValue

Required. An editor value that has been created by
MakeEditor which contains the text contents for the
editor.

FocusID

Required. Any numeric expression giving the focus
number of the graphic. If FocusID is zero, this graphic
cannot receive the input focus.

Font

Required. Any expression that returns a (fixed pitch)
font value. If the font supplied is not fixed pitch, the
system font is used.

Info

Optional. A one-dimensional array where information
on the editor will be recorded, as follows: (no default)

Info Information

0 Current line number

1 Current column number

2 Total number of lines in editor

3 Number of lines in view mode

4 Current block mode (1 – line mode, 2 –
column mode)

Com-
ments

Action Default Keys

Cursor left Cursor left

Cursor right Cursor right

Cursor up Cursor up

Cursor down Cursor down

Enter Enter

Delete the next character Del

Delete the previous character Backspace

Move to start of line Home

Move up one page Page up

Move down one page Page down

Move to start of the editor Shift-Home

Move to end of the editor Shift-End

Move the selection block left one character Shift-Cursor-
Left

Move the selection block right one character Shift-Cursor-
Right

Move the selection block up one line Shift-Cursor-
Up

Move the selection block down one line Shift-Cursor-
Down

Cut the selection block to the clipboard Ctrl-Del or
Ctrl-X

Copy the selection block to the clipboard Ctrl-Ins or
Ctrl-C

Insert text from the clipboard Shift-Ins or
Ctrl-V

Toggle selection line, column mode Ctrl-B

Example:

myEditor = MakeEditor();
ZBox(10, 110, 210, 10, 1);
Editor(10, 110, 210, 10 { Outline of editor },

myEditor { Which editor to use },
3 { Focus ID },
Font("Courier" { Font name },
0, 12 { Character set, height in points },
0 { No rotation },
7 { Weight (somewhat bold) },
0, 1 { Not italicized, fixed pitch })
infoArray { Information on the editor });

These statements create an editor that is displayed in a 100 x 200 area
of the window in the upper left corner. This and other information will be
stored in the array infoArray, whose data will be updated every time that
one of the elements' values changes. Notice that the editor has been out-
lined by a dark blue box, which although not required, makes the bound-
aries of the editor obvious to the user.

Ellipse

Note: Deprecated. Do not use in new code.

Description: Draws an ellipse on the screen.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: Arc | Ball | Circle | GUIArc | GUIChord | GUIEllipse |
 GUIPie

Format: Ellipse(X, Y, XRadius, YRadius, Color, Width)

Parameters:

X

Required. Any numeric expression giving the X
coordinate of the center of the ellipse on the screen.

Y

Required. Any numeric expression giving the Y

coordinate of the center of the ellipse on the screen.

XRadius

Required. Any numeric expression giving the radius of
the ellipse along the X axis specified in units of X
screen coordinates.

YRadius

Required. Any numeric expression giving the radius of
the ellipse along the Y axis specified in units of Y
screen coordinates.

Color

Required. A numeric expression giving the color of the
ellipse.

Width

Required. Any numeric expression giving the width of
the ellipse wall in units of X screen coordinates. The
Width is always rounded to result in an odd number of
pixels on the screen. The minimum width displayed
will be 1 pixel.

Comments: This statement has been superseded by the GUIEllipse func-
tion and is maintained for backwards compatibility only.
As of version 11, this is now drawn in the same z-order as
other graphics, making it similar to the z-graphics func-
tions.

Example:

Ellipse(400, 300 { Screen coordinates of ellipse center },
200 { X radius in screen coordinates },
100 { Y radius in screen coordinates },
6 { Brown color },
20 { Width of elliptical line in pixels });

This displays a brown ellipse in the middle of the screen.

Enable

Deprecated. Do not use in new code. (Alarm Manager module)

Description: Tell the Alarm Manager to enable an alarm. Use the SetEn-
able function for new code.

Returns: 0

Usage: Script Only.

Function Groups: Alarm

Related to: Register (Alarm Manager) | CurrentTime | SetEnable

Format: \AlarmManager\Enable(AlarmObject[, EventTime]);

Parameters:

AlarmObject

Required. The object value for the alarm that was
passed to the Register subroutine that will be enabled.

EventTime

Optional. The time stamp to use when adding this
event to the alarm lists. If invalid or not defined, the
default is CurrentTime().

Comments: The Enable subroutine always returns "0".

EnableHelp

Description: Enables you to enable or disable help file activation when
the F1 key is pressed.

Returns: Nothing

Usage: Script Only.

Function Groups: Help

Related to: Window | SetHelp

Format: EnableHelp(Enable, DefaultFileName)

Parameters:

Enable

Required. Controls whether or not F1 help is activated.

If Enable is set to zero, F1 help activation is disabled. If
Enable is set to 1, F1 help activation is enabled.

DefaultFileName

Required. The name of the Windows help file to be
launched when the user presses the F1 key (if F1 help
is activated using the Enable parameter above), and if
no other help context can be found.
This Windows help file is also the default help file that
will be used when the user presses the Help button on
the VTScada Application Manager (VAM).

Comments: VTScada calls EnableHelp during startup using the settings
of the Setup.ini configuration file variables "F1DisableHelp"
and "WEBHelp" respectively.

Example:

EnableHelp(PickValid(!F1DisableHelp, 1), WEBHelp);

Specify whether F1 help activation is enabled and the name of the default
help file by setting the values of these variables in the Setup.ini con-
figuration file.

Encode

(System Library)

Description: Processes a VTScada string using a configurable selection
of compression, encryption, encoding and secure hashing.

Returns: String

Usage: Script Only.

Function Groups: Encryption

Related to: Decode | BlockEncrypt | Base64Encode | Hash | Pack

Format: \System\Encode(PlainValue[, PackDictionary, Com-
pressed, Key, SaltLength, HashKey, Base64Encoded]);

Parameters:

PlainValue

Required. The information to be encoded. May be any
VTScada value that can be packed.

PackDictionary

Optional dictionary. If present, the information will be
packed. Refer to notes for the Pack function for further
details about this parameter.

Compressed

Optional Boolean. Set TRUE if the value is to be com-
pressed before possible encryption. No compression is
done unless this value is specified as TRUE.

Key

Optional. Key to be used as a seed for encryption.

SaltLength

Optional numeric. Length of salt in bytes to use for
encryption (0-64) Not relevant unless the Key para-
meter is also valid. Defaults to zero.

HashKey

Optional text. If valid, an SHA2-256 hash will be added
to the end of the result to prevent tampering. This
string is used to seed/salt the hash.

Base64Encoded

Optional Boolean. Set true if the result is to be Base64
encoded.

Comments: Note that if Base64 encoding is selected, the time
required to encode and also to decode the inform-
ation will increase by a factor of approximately ten.

Examples:

Encrypt

Description: The Encrypt function encrypts data. The algorithm used to
encrypt the data is designated by the Key parameter. It is
the VTScada analog of the CryptoAPI CryptEncrypt call.

Returns: Text

Usage: Script Only.

Function Groups: Cryptography

Related to: DeriveKey | Decrypt | Encrypt | ExportKey |
 GenerateKey | GetCryptoProvider | GetKeyParam |
 ImportKey | SetKeyParam

Format: Encrypt(Key, PlainText, Final [, Reserved, Flags, Error])

Parameters:

Key

Required. The handle to the key to use to encrypt the
data.

PlainText

Required. A text string that contains the plain text to
be encrypted.

Final

Required. A parameter that specifies whether this is the
last section in a series being encrypted.
Final is set TRUE for the last or only block and FALSE if
there are more blocks to be encrypted

Reserved

An optional parameter that should be set to 0. If omit-
ted or invalid, then the value 0 is used.

Flags

Optional. Specifies the flags to be passed to CryptEn-
crypt. If omitted or invalid then the value 0 is used.
Refer to the Crypo API Encrypt function for the flag list.

Error

Optional. A variable in which the error code for the
function is returned. It has the following meaning: (no
default)

Error Meaning

0 Key successfully imported.

1 Key, PlainText or Final parameters
invalid.

x Any other value is an error from
CryptEncrypt.

Comments: The cipher text is returned as a text string. If an error
occurs, the return value is invalid.

Example:

[
PlainText1 = "abcdefghijklmnopqrstuvwxyz0123456789";
CipherText1;

]
Init [
If 1 Main;
[
CipherText1 = Encrypt(Key3, PlainText1, 1, 0, 0);

]
]

ErrMessage

(ODBC Manager Library)

Description: Returns a text message for the error code handed to it as a
parameter

Returns: Text message for the code provided.

Usage: Script or steady state.

Function Groups: ODBC

Related to:

Format: \ODBCManager\ErrMessage(ErrCode)

Parameters:

ErrCode

Required. A numeric error code for which you want to
obtain the appropriate message.

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.

EvaluateAlarm

(Alarm Manager module)

Description: Passes a new value to an alarm, to be compared to the set-
point.

Returns: Nothing

Usage: Script Only.

Function Groups: Alarm

Related to: Commission

Format: \AlarmManager\Evaluate(AlarmName, Value[, TimeStamp,
Custom, Description])

Parameters:

AlarmName

Required text. The alarm name. Typically, the unique
id of the alarm tag, or the tag containing built-in
alarms.

Value

Required. The new value to be checked against the
alarm setpoint.

TimeStamp

Optional UTC timestamp of the value. Defaults to the
current time.

Custom

Optional structure of custom fields to be logged with

the event.

Description

Customized description, used if it differs from the
description given to Commission.

Comments: EvaluateAlarm should be called every time your
tag's Value changes.

Example:
Every tag that has commissioned an alarm should include the following
line of code within its Refresh state:

{ Evaluate alarm condition }
\AlarmManager\EvaluateAlarm(AlarmName, Value, Timestamp);

Event

Note: Deprecated. Do not use in new code.

(Alarm Manager module)

Description: Tell the Alarm Manager when an alarm event occurs. This
subroutine will cause an entry to be added to the log file
without changing the alarm status.

Returns: 0

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Alarm

Related to: Register (Alarm Manager) (Alarm manager) | CurrentTime

Format: \AlarmManager\Event(AlarmObject[, EventTime]);

Parameters:

AlarmObject

Required. The object value for the alarm that was
passed to the Register subroutine that will be enabled.

EventTime

Optional. The time stamp to use when adding this
event to the alarm lists. If invalid or not defined, the
default is CurrentTime().

Comments: The Event subroutine always returns "0".

Execute

Description: Executes a group of statements as a single entity in struc-
tures that would otherwise allow only one statement to be
executed.

Returns: Nothing

Usage: Script Only.

Function Groups: Logic Control

Related to: Window | SetHelp

Format: Execute(Statement1 [, Statement2])

Parameters:

Statement1, Statement2, … }

Required. Are any expression(s) to be executed. Any
number of parameters may be used. Commas or
semi-colons must separate the parameters.

Comments: This statement is typically used with a Case or IfElse state-
ment..

Example:

If ZButton(10, 50, 110, 80, "Grid On", 1);
[
{ If module is not already launched, launch it },
IfElse(! Valid(ModPtr),
Execute({ Do a series of tasks }
modPtr = ShowGrid(){Launched because of script},
ySpace = ySpace,
gridOn = 1

),
{ If module already launched, stop it }
{ else } Execute({ Do a different series of tasks },
Slay(modPtr, 0),
gridOn = 0

));
]

When this particular button is pressed, modPtr's validity is checked and if
it is not valid, module ShowGrid is launched and some variables set, oth-
erwise, ShowGrid is slain via modPtr and variable gridOn is set to 0.
Notice how the use of the Execute function allows a whole series of tasks
to be performed with only one condition check.

ExecuteQuery

(ODBC Manager Library)

Description: Called to send an SQL command to the server and get a
reply back. This function is used as a general query tool
and does not provide for the guaranteed eventual exe-
cution that the ExecuteQueryCached() function does.

Returns: 0 upon query execution starting. See the following com-
ments.

Usage: Script Only.

Related to: ExecuteQueryCached

Format: \ODBCManager\ExecuteQuery(ErrPtr, CmdStr, DSN,
UserName, Password, ResultPtr [, AttribPtr, ErrorMsgPtr,
SQLStatePtr, ErrorCodePtr, ReFormat, TransObj,
FormatBitField, dbType])

Parameters:

ErrPtr

Required. Pointer to an error. Always valid on com-
pletion. Set to 0 if the command succeeds.

CmdStr

Required. The SQL command to send to the database

DSN

Required. The name of the ODBC database in which to
execute the command.

UserName

Required. The user name in the database for authen-
tication. A null provided in this field will be passed to
the database as a null string.

Password

Required. The password in the database for authen-
tication. A null provided in this field will be passed to
the database as a null string.

ResultPtr

Required. A pointer to the ODBC result data being
passed back as the result of the query.

AttribPtr

Optional. A pointer to the ODBC attribute array being
passed back from the result of the query. no default:

ErrorMsgPtr

Optional. A pointer to the ODBC error message being
passed back. Will contain invalid if the command suc-
ceeds. no default:

SQLStatePtr

Optional. A pointer to the ODBC error state being
passed back. Will contain invalid if the command suc-
ceeds. no default:

ErrorCodePtr

Optional. A pointer to ODBC error code being passed
back. Will contain invalid if the command succeeds.
no default:

ReFormat

Optional. A flag which, if set to true, causes the result
set from the query to be reformatted from a Result
[Column][Row] to Result[Row][Column]. This is poten-
tially useful for reformatting multi-record "Select" quer-
ies to match your application requirements. no

default:

TransObj

Optional. An transaction object (as returned from the
"Transaction()" function) to execute this query within.
If a transaction is opened on this DSN and this value is
not set, then the query will wait until the transaction
has completed before being executed. If set, the query
will be executed after all other outstanding
ExecuteQuery() functions for the transaction on the
DSN have executed. no default:

FormatBitField

Optional. Bitfield indicating whether values coming
back from the query will be converted to their cor-
responding VTScada data types. Can be set on a type
by type basis according to the following flags: (no
default)

Value Meaning

0 Convert numerics

1 Convert dates

2 Convert times

3 Convert timestamps

dbTyp

Optional numeric value, indicating the type of this DB
connection.

DBType Meaning

0 MS SQL

1 MS Access

2 Oracle

3 MySQL

4 SyBase

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.
This module MUST be called as a subroutine in a script.
This function acts as a shell to launch a query within the
DSN within the ODBCManager library. Upon completion of
the execution of the function, the query is still active. Com-
pleted execution of the query is indicated by a valid value
set in the variable pointed to by parameter "ErrPtr". For this
reason the variable referenced by "ErrPtr" MUST be inval-
idated before calling the function.

Example

Init [
If 1 Wait Execution;
[
ErrPtr = Invalid();
\ODBCManager\ExecuteQuery(&Err, "Select ID, TimeStamp, Data1 From
Log_Table Order By TimeStamp", "MAIN LOGGER", User, Pass)

]
]

WaitExecution [
If Err DisplayError;
If !Err DisplayData;

]

ExecuteQueryCached

(ODBC Manager Library)

Description: Called to send an SQL command to the server and get a
reply back. This module will cache the query locally if it
fails & send it to the db after the next successful transaction
with the db. This module was designed to be used for log-
ging values that cannot be lost.

Returns: 0 upon query execution starting. See the following com-
ments.

Usage: Script Only.

Related to: ExecuteQuery

Format: \ODBCManager\ExecuteQueryCached(ErrPtr, CmdStr,

DSN, UserName, Password[, BatchSize])

Parameters:

ErrPtr

Required. Pointer to an error. Always valid on com-
pletion. Set to 0 if the command succeeds.

CmdStr

Required. The SQL command to send to the database

DSN

Required. The name of the ODBC database in which to
execute the command.

UserName

Required. The user name in the database for authen-
tication. A null provided in this field will be passed to
the database as a null string.

Password

Required. The password in the database for authen-
tication. A null provided in this field will be passed to
the database as a null string.

BatchSize

Optional. The number of array entries to send in one
batch no default. Returns 0 upon query execution start-
ing. See the following comments.

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.
This module MUST be called as a subroutine in a script.
Completed execution of the query is indicated by a valid
value set in the variable pointed to by parameter "ErrPtr".
For this reason the variable referenced by "ErrPtr" MUST be
invalidated before calling the function.

Exp

Description: Returns the natural antilogarithm of a numeric expression.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Generic Math

Related to: Ln | Log | Pow

Format: Exp(X)

Parameters:

X

Required. Any numeric expression. The value must not
be negative or the result will be invalid.

Comments: The function raises the constant e to the power of the para-
meter X. It is the complement of the Ln function.

Example:

a = Ln(78);
b = Exp(a);

In this example, b will be equal to 78.

ExportKey

Description: The ExportKey function exports a cryptographic key or a
key pair from a CSP in a secure manner as a Key BLOB. It is
the VTScada analog of the Crypto API ExportKey call.

Returns: Text

Usage: Script Only.

Function Groups: Cryptography

Related to: DeriveKey | Decrypt | Encrypt | GenerateKey |
 GetCryptoProvider | GetKeyParam | ImportKey |
 SetKeyParam

Format: ExportKey(Key, BlobType [, EncryptKey, Flags, Error])

Parameters:

Key

Required. The handle to the key which is to be expor-
ted.

BlobType

Required. A parameter specifying the type of key BLOB
to be exported. Values are defined in WinCrypt.h

EncryptKey

Required. An optional parameter containing a Key
handle for a key to be used to encrypt the exported
key so that it may only be encrypted by the destination
user. If omitted or invalid, then the value NULL is used.

Flags

Required. An optional parameter specifying the flags
to be passed to CryptExportKey. If omitted or invalid
then the value 0 is used. Flags values are defined in
WinCrypt.h.

Error

Required. An optional variable in which the error code
for the function is returned. It has the following mean-
ing:

Error Meaning

0 Key successfully exported.

1 Key or BlobType parameters invalid.

x Any other value is an error from
CryptExportKey.

Comments: The exported key is returned as a text string. If an error
occurs, the return value is invalid.
EncryptKey is not required if BlobType is PUBLICKEYBLOB.

Example:

[
PubKey1;
Constant PUBLICKEYBLOB = 0x6;

]
Init [
If 1 Main;
[
{ Export the public key }
PubKey1 = ExportKey(Key1, PUBLICKEYBLOB);

]
]

F Functions
The sections that follow identify all VTScada functions beginning with "F".

Fail

Modem Manager

Description: This subroutine advises the Modem Manager to abort and
retry an established, outgoing call.

Usage: Script Only.

Related to:

Format: \ModemManager\Fail(Tag);

Parameters:

Tag

Any text expression that identifies the tag that ori-
ginally requested the call.

Comments: None

FALSE

Description: For use in expressions that perform Boolean logic. Using
"FALSE" will make your code easier to read than using "0".

Returns: With no parameters, returns the value, 0. If given a para-
meter, this function will return a 1 or 0 depending on
whether the parameter evaluates to FALSE or TRUE. Always

returns 0 if the parameter is Invalid.

Usage: Script or steady state.

Function Groups: Logic Control

Related to: TRUE

Format: FALSE[(TestExpr)]

Parameters:

TestExpr

Optional. Any expression that evaluates to a 1 or 0
value. If no parameter is provided, then there is no
need to include the parentheses.

Comments: This function exists to make your code more read-
able. It is equivalent to

PickValid(Cast(Parameter, 0) == 0, 0);

FFT

Description: Performs a fast Fourier transform between time and fre-
quency domains.

Returns: Numeric

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Generic Math

Related to: ArrayOp1 | ArrayOp2

Format: FFT(Array, N, Operation)

Parameters:

Array

Required. The starting array element. Array may con-
tain time domain samples, complex frequency
samples, or amplitude/phase pair samples. Any data
passed to FFT in Array will be overwritten by the res-

ulting transform. Arrays may be copied using
ArrayOp2 if it is necessary to retain an original. There
must be at least N elements in Array (partial trans-
forms are not possible).

N

Required. Any numeric expression giving the number
of elements in Array to transform. N must be a positive
power of 2 in the range 4 to 4096.

Operation

Required. Any numeric expression giving the type of
transform as follows:

Operation Transform Type

0 Time samples to frequency com-
plex

1 Time samples to frequency amp-
litude/phase

2 Time samples to frequency amp-
litude only

3 Frequency complex to time
samples

4 Frequency amplitude/phase to
time samples

Note that Operation 2 will set all phase elements
to 0 to indicate a loss of phase information. This
transform is not reversible because of this loss
of phase information.

Comments: This statement is useful for performing frequency
analysis on analog signals (such as motor fre-
quency). In the time domain equal sampling inter-
vals are required, equal frequency spacing in the
frequency domain is required. The order of the time

domain samples is in chronological order.
The order of complex frequency data is...

real 0, real N/2, real 1, imaginary 1, real 2,
imaginary 2, ..., real N/2-1, imaginary N/2-1

Real 0 is the average (D.C.) component in the signal.
The second element, real N/2, is the last real com-
ponent because real 0 and real N/2 are always real
(no imaginary component). Real 1 is the real amp-
litude of the lowest frequency, and imaginary 1 is
the imaginary amplitude of the lowest frequency.
Real N/2-1 and imaginary N/2-1 are the real and
imaginary components of the second highest fre-
quency.
The order of amplitude/phase pairs in Array is:

amplitude 0, amplitude 1, ..., amplitude N/2,
phase 1, phase 2, ..., phase N/2 - 1

Amplitude 0 is the average (D.C.) component in the
signal. Amplitude 1 is the amplitude of the lowest
frequency, amplitude N/2 is the amplitude of the
highest frequency. Phase 1 is the phase angle (in
radians) of the lowest frequency (the average
doesn't have a phase, its frequency is 0). Phase N/2-
1 is the phase angle of the second highest fre-
quency.
Note that neither the average (D.C.) component nor
the highest frequency have a phase angle or ima-
ginary component. The highest frequency and the
sampling is:
fc = 1/2D
Where fc is the critical (highest) frequency in Hertz,
and D is the sampling interval in seconds. The low-
est frequency, the number of samples, and the
sampling interval are related by the following equa-

tion:
fL = 1/ND
Where fL is the lowest frequency in Hertz, N is the
number of samples, and D is the sampling interval
in seconds.
All other frequencies are multiplies of the lowest fre-
quency fL.
Caution should be taken, as when VTScada executes
a script, no other statements are updated. The FFT
statement may take several seconds to execute,
depending on the computer and the number of
samples. The computation time goes up by N *
log2N.

Example:

If 1 Main;
[
FFT(samples[0], 512, 1);

]

Before this statement executes, samples[0] to samples[511] contain the
equally spaced time samples of a signal, which will be overwritten by
their amplitude/phase transform. After this statement executes, samples
[0] will contain the average (D.C.) component of the signal. Samples[1] is
the amplitude of fL, the lowest frequency component. Samples[256] is
the amplitude of fc, the highest frequency component. Samples[257] will
be the phase angle (in radians) of fL. Samples[511] will be the phase
angle of fc.

FileDialogBox

Description: Displays a threaded system common file dialog box.

Returns: Numeric (1 = failure, 0 = success) In addition, see the Res-
ult parameter.

Usage: Script Only.

Function Groups: File I/O, Graphics

Related to: FontDialog | PrintDialogBox | Dir

Threaded: Yes

Format: FileDialogBox(Save, FilterPattern, FilterDesc, File, Dir-
ectory, Title, Extension, Result)

Parameters:

Save

Required. Any expression that evaluates to one of the
following values

Save Meaning

0 indicates that an "Open" dialog
box is desired

Non-zero
(positive)

indicates that a "Save" dialog box
is required

-1 indicates that a "Browse for
Folder" dialog is required

(please read Comments below if you require a
"Browse for Folder" dialog).

FilterPattern

Required. Either a statically-declared array, or a semi-
colon separated list of wildcard file patterns for the file
types that will be offered to the user. Defaults to an
empty string if invalid.

FilterDesc

Required. Either a statically-declared array, or a semi-
colon separated list of text values that are the descrip-
tions corresponding to the FilePattern values (e.g.
"Text Files"). Defaults to an empty string if invalid.

File

Required. Any text expression giving the initial file

name for the dialog box.
In any 'Save' mode, an initial directory may be included
as part of the file name. If the path is valid, the Dir-
ectory parameter will be ignored. A known path alias
may be provided in the form, {KnownPathAlias}.
Defaults to "" if invalid.

Directory

Required. Any text expression giving the initial dir-
ectory for the dialog box. A known path alias may be
provided in the form, :{KnownPathAlias} . (A table of
known path aliases is provided in the Reference
chapter).
Defaults to "" if invalid. See comments for more detail.

Title

Required. Any text expression giving the title of the
window containing the dialog box. Defaults to "" if
invalid.

Extension

Required. Any text expression giving the default file
extension to use if the user does not specify one.
Defaults to "" if invalid.

Result

Required. A variable where the resulting file name,
including its path, will be returned.

Comments: This statement displays a threaded system dialog box for
opening or saving a file, depending on the value of the
Save parameter, however, it does not actually perform the
requested action, but simply displays the dialog. If suc-
cessful, the Result parameter will be set to the full path and
file name of the chosen file, or 0 if it fails or is canceled. It
is the user's responsibility to act upon the value of Result
and save or open the file by using such commands as
FWrite or FRead.

In addition to the Result parameter, the function itself will
return an error code to indicate whether the dialog was suc-
cessfully opened. A "1" indicates failure to open while a "0"
indicates success.
The Directory parameter is ignored for Open and Save oper-
ations if the File parameter contains a path. You can use
this feature to define the initial directory, but return to the
selected file if the user re-opens the dialog.
For example:

FileDialogBox(1, "", "", SelectedFile, Ini-
tialDirectory,);

SelectedFile can be initialized to "SomeFile.txt", in
which case the InitialDirectory will be used. After
the user has selected a file ("C:\AnotherFile.txt") ,
and reopens the dialog, then it will reopen to the
path in SelectedFile. This avoids having to parse a
user selection result (SelectedFile) into a filename
and path to achieve the same effect.
For Save -1 (directory browser mode) the Directory
parameter means something different. Directory
defines the root of the selectable directories. For
example, you can use this feature to restrict the
user from selecting a directory outside their
VTScada application folder. Passing the VTScada
application path as Directory, means that operators
would only be able to select that folder, or any sub-
folders. This option can be used in conjunction with
'File' to restrict the selectable path and also have an
initial selection.
If either the FilterPattern or FilterDesc parameters
use dynamically allocated arrays (i.e. created using
the New function), the dialog box will not open -
these two parameters must use statically declared

arrays. If using a single text value instead, you may
specify as many wildcard patterns as needed by
adding a semi-colon separator between each:
"*.BMP;*.JPG;*.PNG;*.TIF".

If the Save parameter is a negative value, indicating
that a "Browse for Folder" dialog is required, the Dir-
ectory and Title parameters must be set. Title will
be displayed above the tree view control in the dia-
log box. This string can be used to specify instruc-
tions to the user. Directory can either be a string
containing the starting root directory to begin
browsing, or a CSIDL value to specify a special
folder (a CSIDL is a number, the definitions of which
can be found in the Platform SDK). The remaining
parameters may be set to any valid value, including
empty strings ("").
FTP sites may be browsed depending on the server's
operating system. It will not work on Vista or Server
2008. FTP browsing is possible on Windows 7 and
Server 2008 r2 .

Note: Within an Anywhere Client session, this func-
tion does nothing.

Example:

If ZButton(100, 176, 200, 146, "Browse", 1);
[
FileDialogBox(0 { An "Open File" dialog box },

"*.*" { All files is only option },
"All Files" { Option label },
"APPROOT.SRC" { Default file name },
"C:\VTScada\APP" { Default path },
"Find Application" { Window title },
".SRC" { Default extension },
selectedApp { Chosen file });

]

When the button labeled "Browse" is pressed a file dialog box that shows
all files (and directories) in the C:\VTS5\App directory will open. The title
of the window will be "Find Application" and when a file is chosen, its
path and name will be stored in selectedApp.

FileFind

Description: Performs a recursive search down through the directory
tree structure and returns an array of matching file names.

Returns: Array

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: File I/O

Related to: Dir | DriveInfo | FileDialogBox

Format: FileFind(Path, Attributes, Option)

Parameters: .

Path

Required. Any text expression that indicates the full
path name where the search begins. This may include
a wildcard spec, such as "*.DAT". The search pro-
gresses recursively down each sub-directory (depth-
first).

Attributes

Required. Any numeric expression that gives the attrib-
utes to match on each file listed (files not matching
these attributes won't be listed).

Attribute
Bit
No.

Meaning

0 - Files without attributes

8 3 All files (regardless of attrib-
utes)

Attribute Bit No. Meaning

1 0 Read only

2 1 Hidden

4 2 System

16 4 Sub-directory

32 5 Archive

Attribute Bit No. Meaning

1 0 Read only

2 1 Hidden

4 2 System

16 4 Sub-directory

32 5 Archive

Option

Required. Any numeric expression giving the type of
text information to generate. The options are chosen
by adding together all of the option numbers required.
All information is placed in a single text string, sep-
arated by spaces. It will be stored in an element of the
array that is created. The information is written from
left to right, with lowest option numbers first.

Option
Bit
No.

Generates

1 0 Short file name

2 1 Full path and file name

4 2 File size

8 3 File last modified date (in text)

16 4 File last modified time (in text)

32 5 File attributes (ADHRS)

64 6 File last modified date/time com-
bination (in secs since Jan. 1, 1970)

128 7 File creation date (in text)

256 8 File creation time (in text)

512 9 File creation date/time com-
bination (in secs since Jan. 1, 1970)

The attributes returned as a result of bit 5 being
set are printed as the capital letters A (archive),
D (subdirectory), H (hidden), R (read-only), and S
(system).

Comments: This function returns an array of text values. As the func-
tion does a recursive search through the directory tree, the
contents of each sub-directory are added to the array in
reverse-alphabetic order before the function moves on to
the next directory.
Each text value contains the information specified by
Option for each file which matches both Path and Attrib-
utes. If no files are found, the return value will be set to
invalid. Notice that the only difference between this func-
tion and the Dir function is that Dir searches in the imme-
diate directory only, while this function looks down
through the whole directory tree.

Example:

If 1 Main;
[
fileData = FileFind("C:\VTS5\App*.DAT", 8, 8);

]

This statement will find all files with the extension "*.DAT" in the given
directory regardless of their attributes. The array fileData will contain
each file's full path and file name as well as its size and date.

FileRootModule

Description: Parses the document file that contains the given module to
find the root module in that file. Returns the module value
of the root module.

Returns: Pointer

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Advanced Mod-
ule, File I/O

Related to: SystemSelf

Format: FileRootModule(Module)

Parameters:

Module

Required. Any expression for the module.

Comments: The returned module value from this statement may be the
parent or some ancestor of Module.

Example:

modRoot = FileRootModule(Self());

This function returns a pointer to the root module of the current module.

FileSize

Description: Returns the size of a disk file in bytes.

Returns: Numeric

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: File I/O

Related to: FRead | FWrite | GetStreamLength

Format: FileSize(FileName)

Parameters:

FileName

Required. Any text expression that gives the path, file
name, and extension of the file. A Known Path Aliases
for File-Related Functions may be provided in the
form, :{KnownPathAlias}.

Comments: This function returns the size of the file in bytes. If the
return value is invalid, the file could not be found.

Example:

If ! Valid(size);
[
size = FileSize("C:\Log\Samples.DAT")

]

Size is set to the size in bytes of the file indicated.

FileStream

Description: Returns a stream attached to a disk file or printer, and is
suitable for use in SWrite.

Returns: Stream

Usage: Script Only.

Function Groups: File I/O, Stream and Socket

Related to: BlockWrite | BuffStream | ClientSocket | CloseStream |
 GetStreamLength | PipeStream | PrintDialogBox |
 ServerSocket | SRead | StreamEnd | SWrite

Format: FileStream(FileName [, PrintFlag, CompletionVar, Flags])

Parameters:

FileName

Required. Any text specification for a file or printer
SWrite. A known path alias may be provided in the
form, :{KnownPathAlias}.

PrintFlag

An optional parameter that is any logical expression
and must be set to true (non-0) if the stream is
printer-based so that special handling and error check-
ing for printer output will be provided.
If this parameter is omitted, the default value of false
(0) is used (i.e. a file-based stream is assumed).

CompletionVar

An optional variable that will be initially set Invalid.

When the stream is closed it will be incrementally set
to an integer in the range 0 to 100. This integer indic-
ates the percentage completion of writing the session-
aware stream contents to the VIC.

When the value of this variable is set to exactly 100,
the stream has been completely written to the VIC file
system. This can be used by the programmer to indic-
ate the progress in writing large files to a VIC over a rel-
atively slow communication link.

This variable can also be provided on non-session-
aware FileStreams, where it will remain untouched by
any file operations. Its presence does not mark the
FileStream as being session-aware.

Flags

An optional parameter that may take one of three val-
ues.
If absent or Invalid, the FileStream will not be session-
aware (i.e. all operations will be on the local file sys-
tem.
If valid, the FileStream is session-aware, and if the file
does not exist on the VIC file system, a zero-length file
will be created and opened for read-write access.
If the file on the VIC exists, setting this parameter to
zero will cause it to be initially opened for read-only
access. Read-write access is only obtained when you
make the first write to the stream.
If the file exists on the VIC, setting Flags to 1 will cause
the file to be opened for read-write access, and trun-
cated to zero length.

Comments: If the file designated by FileName does not exist, it will be
created once it has been written to (by SWrite/BlockWrite
for example). The file pointer returned by the function will

still be valid. If the file exists but has its read-only attribute
set, the stream may only be read from, not written to.
If you want to be certain that the file exists, then manually
use FWrite(File, 2, 0, ""); before opening the stream with
FileStream.
If the PrintFlag parameter is set, even though a printer is
not being used (i.e. FileName indicates a certain file), it will
not have any effect overall except that it may impose a
slight performance penalty.

Session-aware
Streams:

Session-aware streams can be defined simply as
streams opened or created by a FileStream state-
ment that can refer to files system resources on the
server, or on a VIC. In the latter case, the stream is
referred to as a "remote" stream. Not all FileStream
statements are session-aware. As the programmer,
you must decide whether to make a FileStream ses-
sion-aware.
To make a FileStream session-aware, you supply the
additional, optional parameters, CompletionVar and
Flags, to indicate that the stream is a session-aware
stream. Without these additional parameters (or
with the additional parameters set to certain values),
the FileStream is treated just as a regular
FileStream.
Having marked a FileStream statement as session-
aware, the FileStream will be a remote stream only if
it is running in the context of a VIC session. In other
words, the module instance running the FileStream
statement has an ultimate caller module instance
that is the root instance for a VIC session.

Note: A VIC session differs from a DisplayManager
session. A DisplayManager session may be running

in the singleton server session, or it may be run-
ning in one of N VIC sessions. The concept of VIC
session is something that the VTScada engine
understands, whereas the concept of a Dis-
playManager session is something that the
VTScada layer understands.

When a FileStream is remote, the FileName para-
meter is provided relative to the VIC. For example,
"C:\Temp\XX.txt" refers to a file on the C drive of
the VIC. The FileDialogBox statement may be used
to allow the VIC user to identify a resource access-
ible to the VIC, and provide a suitable text string to
pump into FileStream's FileName parameter.
If used in an Anywhere Client, calling FileStream
with the Flags set so as to be session-aware causes
FileStream to do nothing and return Invalid.

Blocking: It is necessary to block the execution of VTScada script
code at clearly defined points when using a remote
FileStream. Blocking script execution blocks only the
executing interpreter thread (i.e. it does not cause VTScada
to stop executing statements in other threads).
The points at which VTScada script code execution will be
blocked are...

l During execution of a FileStream statement that
refers to a remote stream. Execution will block until
the VIC can tell the server whether or not the spe-
cified FileName parameter is legal, and if it is, the size
of the file. This allows a GetStreamLength statement
immediately following the FileStream statement to
return the size without blocking. It also allows the
engine to initialize a cache for the remote stream.

l On the first write to the remote stream, if the remote
stream is open as read-only. This can be a result of a

number of statements, such as BlockWrite or SWrite.
The block is obtained simply to learn whether or not
read-write access can be obtained, and get a "write-
lock" on the remote stream. This lock prevents other
processes from accessing the stream content until
VTScada closes it.

l On all writes to a remote stream when the write over-
writes the content in the remote stream, and the
remote stream content for that file offset is not
cached locally on the server. This is not strictly neces-
sary, and is a product of the current caching
algorithm that operates on fixed size blocks. If this
becomes restrictive, a smarter caching algorithm can
avoid this block.

l On all reads to a remote stream when the content for
the specified file offset is not cached locally on the
server.

File Content Trans-
fer:

Remote stream content is cached on the server in fixed
size blocks. Only those blocks that have been read or writ-
ten are held on the server. Any changed blocks are only
written to the remote stream when the stream is closed,
either explicitly with a CloseStream statement, or implicitly
by invalidating the last reference to the remote stream.
The engine does not block interpreter threads while this
operation is performed.
All transfer to the VIC is performed on the "low-priority"
channel within the VIC connection to the server. Graphics,
user-input and control actions are all performed using the
"high-priority" channel. Presently the only other transfer
that takes place over the low-priority channel is image
transfer. This means that operator actions and graphical
representations are largely unaffected by stream transfer
operations. Because only one channel is used for stream
transfer, all stream transactions are serialized within that

channel, meaning that an attempt to open a stream that
the server has just closed will be queued behind the last
write to the stream, ensuring that you cannot read stale
data from the remote stream.
The CompletionVar parameter to the session-aware
FileStream statement may be used to monitor the progress
of large transfers, and provide operator feedback. It is
important to remember that because graphics use a higher
priority channel than the stream, the operator will be able
to see any progress notification that you display.

Caching Con-
siderations:

The present implementation of remote streams uses a
fixed block size cache (4 kb) on the server. If an attempt is
made either to write a partial file block that is not in the
server cache, but is existent in the remote stream. Or, to
read from a block that is not in the server cache but is
existent in the remote stream, the calling script code will
be blocked until the server has recovered the stream data
for that block from the VIC. Dependent upon the con-
nection speed and quality, this may take a long time (in
computer terms).
Writes of an entire block that is not cached does not cause
the server to read data from the VIC.
Once a block has been cached on the server, it is not re-
read from the VIC.
This algorithm provides a balance between complexity
and performance, principally designed to give good per-
formance when creating a file from scratch and writing it
to the VIC, while providing some caching benefit for ran-
dom access use of the remote stream.

Example:

If ! Valid(stream);
[
stream = FileStream("C:\Recipe\Glue.DAT");

]

This statement will set stream to the stream of the file indicated.

If MatchKeys(1, "p");
[
printStream = FileStream("\\ServerName\PName", 1);

]

This will cause printStream to be created as a printer based stream point-
ing to the printer called PName on the server called ServerName.

Filter

Description: Sets the value of one array element to invalid if the cor-
responding value in another array element is invalid.

Returns: Nothing

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Array

Related to: ArrayOp1 | ArrayOp2 | FiltHigh | FiltLow

Format: Filter(Array1Elem, Array2Elem, N)

Parameters:

Array1Elem

Required. Any array element giving the starting point
for the array conversion in the destination array. The
subscript for the array may be any numeric expres-
sion. If processing a multidimensional array, the usual
rules apply to decide which dimension should be used.

Array2Elem

Required. Any array element giving the starting point
in the reference array (this array is not altered in any
way). The subscript for the array may be any numeric
expression. If processing a multidimensional array, the
usual rules apply to decide which dimension should be
used.

N

Required. Any numeric expression giving the number

of array elements to process starting at the element
given by the first parameters. If this parameter is
greater than either dimension of the arrays, the num-
ber of points used will be the smaller array dimension.

Comments: This statement is useful together with either the FiltLow or
FiltHigh statements which would typically be executed on
the first array before Filter is executed.

Example:
Assume that there exists 2 arrays both of whom have subscripts starting
at 0, such that x = { 1, 2, Invalid, 4 } and Y = { 2.3, Invalid, 2.4, Invalid }

If changeArray;
[
Filter(x[0] { Start of array to be changed },

y[0] { Start of reference array },
4 { Number of elements to process });

changeArray = 0;
]

If the variable changeArray is set to true, this will result in array y remain-
ing unchanged and array x being changed to x = {1, Invalid, Invalid,
Invalid }
Example 2:

IF Watch(1);
[
ArTest = new(3,3);
ArTest2 = new(3,3);

ArTest[0][0] = 1;
ArTest[0][1] = 2;
ArTest[0][2] = 3;
ArTest[1][0] = 50;
ArTest[1][1] = 60;
ArTest[1][2] = 70;
ArTest[2][0] = 900;
ArTest[2][1] = 910;
ArTest[2][2] = 920;

ArTest2[0][0] = 1;
ArTest2[0][2] = 3;
ArTest2[1][0] = 50;

Filter(ArTest[1], ArTest2[1], 3);
]

After filtering, ArTest will look like:

FiltHigh

Description: Sets the values in an array sub-range that fall above a spe-
cified upper limit to a new value.

Returns: Nothing

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Array

Related to: ArrayOp1 | ArrayOp2 | Filter | FiltLow

Format: FiltHigh(ArrayElem, N, Limit, Value)

Parameters:

ArrayElem

Required. Any array element giving the starting point
in the array for the search. The subscript for the array
may be any numeric expression. If processing a mul-
tidimensional, the usual rules apply to decide which
dimension should be used.

N

Required. Any numeric expression giving the number
of array elements to use, starting at the element given

by the first parameter. If N extends past the upper
bound of the lowest array dimension, this computation
will "wrap-around" and resume at element 0, until N
elements have been processed.

Limit

Required. Any numeric expression giving the upper
cutoff value for the array elements. Any array elements
in the range that are strictly greater than this value are
set to the Value parameter.

Value

Required. Any numeric expression giving the new
value to set the array elements that fall above the Limit
parameter. The function still continues if this para-
meter is invalid, in which case the new values become
invalid.

Comments: The statement is useful for setting array elements above a
limit to a maximum value or to invalid.

Example:
Assume that there exists an array whose subscripts start at 0, such that x
= { 2, 1, invalid, 10 }

If ChangeArray;
[
FiltHigh(x[0] { Start of array },

4 { Number of elements to process },
2 { Max value in the array },
Invalid { Default value if over the limit });

changeArray = 0;
]

If the variable changeArray is set to true, x will be changed to x = {2, 1,
Invalid, Invalid }

FiltLow

Description: Sets the values in an array sub-range that fall below a spe-
cified lower limit to a new value.

Returns: Nothing

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Array

Related to: ArrayOp1 | ArrayOp2 | Filter | FiltHigh

Format: FiltLow(ArrayElem, N, Limit, Value)

Parameters:

ArrayElem

Required. Any array element giving the starting point
in the array for the search. The subscript for the array
may be any numeric expression.
If processing a multidimensional array, the usual rules
apply to decide which dimension should be used.

N

Required. Any numeric expression giving the number
of array elements to use, starting at the element given
by the first parameter. If N extends past the upper
bound of the lowest array dimension, this computation
will "wrap-around" and resume at element 0, until N
elements have been processed.

Limit

Required. Any numeric expression giving the lower
cutoff value for the array elements. Any array elements
in the range that are strictly less than this value are set
to the Value parameter.

Value

Required. Any numeric expression giving the new
value to set the array elements that fall below the Limit
parameter. The function still continues if this para-
meter is invalid, in which case the new values become
invalid.

Comments: The statement is useful for setting array elements below a
limit to a minimum value or to invalid.

Example:
Assume that there exists an array whose subscripts start at 0, such that x
= { 2, 1, Invalid, 10 }

If changeArray;
[
FiltLow(x[0] { Start of array },

4 { Number of elements to process },
2 { Min value in the array },
Invalid { Default value if under the limit });

changeArray = 0;
]

If the variable changeArray is set to true, x will be changed to x = {2,
Invalid, Invalid, 10 }

FindAction

Description: Returns an action from the list of actions in a state.

Returns: Pointer

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, State

Related to:

Format: FindAction(Action, Mode)

Parameters:

Action

Required. Any expression that gives a code value. If
the code value represents a module and state, the first
action will be returned.
If the code value represents an action or statement, the
action returned will depend on Mode.

Mode

Required. Any numeric expression for the mode. The
mode is described by the following table:

Value Mode

-1 Previous action

0 Return Action parameter

1 Next action

If Mode is 1, and Action is the last action in the
state, or if Mode is –1, and Action is the first pre-
dicate in the state, the return value is invalid.

Comments: This function is used to step through the actions in a state.

FindModem

Description This subroutine returns a pointer to one of the Modem Man-
ager's own internal modem objects. This pointer may then
be used to access public, read-only properties for display
purposes.

Usage Script Only.

Related to:

Format \ModemManager\FindModem(ModemName);

Parameters

ModemName

Any text expression that identifies the required
modem. This will be the name property of a modem
tag.

Com-
ments

FindModem will return an object pointer for a given modem
tag name. This object refers to a Modem Manager internal
object, which provides access to several read-only properties.
These are:

Property Description

Workstation Name of the workstation where the modem exists

FriendlyName Modem name as displayed in the Windows Control
Panel's Phone and Modems option (or Modems
option)

Failed . Refer to Call Progress and Error Codes. in the
VTScada Programmer's Guide.

OffHook TRUE while a call or call setup is in progress

Connecting TRUE while call setup is in progress

FindVariable

Description: Searches for a variable by text name and returns a variable
value.

Returns: Varies

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Variable

Related to: AddVariable | DeleteVariable | MakeNonShared |
 MakeNonPersistent | MakePersistent | MakeShared |
 SetDefault | SetVariableClass | SetVariableText | ListVars

Format: FindVariable(Name, Module, Reserved, Global)

Parameters:

Name

Required. Any text expression that gives the name of
the variable.

Module

Required. Any expression for the module where the
search begins.

Reserved n/a

Reserved for future use, set to 0.

Global

Required. Any logical expression. If true (non-0), the
search will continue to parent modules if they exist
and the variable isn't found. If false (0), only Module
will be searched.

Comments: This function returns invalid if the variable is not found.
FindVariable can be used on the left side of an equals sign
(=) to allow shared variables to be set when there are no
instances of a module running.

Example:

If ! Valid(ptr);
[
ptr = Launch(FindVariable("Grid", Self(), 0, 1 { Launchee }),

FindVariable("Draw", Self(), 0, 1 { Parent }),
FindVariable("Draw", Self(), 0, 1 { Caller }),
xSpace, ySpace { Parms });

]

This statement launches module Grid with its parameters xSpace and
ySpace as if it were a child of module Draw and had been called by Draw.
If Draw had been assigned an object pointer at the time it was called, the
second and third FindVariable statements would be unnecessary.

If Valid(checkVar);
[
IfThen(!Valid(FindVariable(checkVar { Var to look for },

Self() { Check this module },
0 { Reserved },
0 { Only this module })),

message = "Variable does not exist!");
]

This statement checks to see if a certain variable exists by looking for it
by name in the current module only. If it does not exist, an error mes-
sage is set.

FirstState

Description: Sets the first state in a module.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, State

Related to:

Format: FirstState(State)

Parameters:

State

Required. Any expression for the code value of the
new first state.

Comments: Given that a module starts in its first state, this function will
set which state within a module will considered to be first.

FitOffset

Description Linear regression offset. This function returns the offset or
Y intercept of the least square curve fit of data in a pair of
arrays.

Returns Numeric

Usage Script or steady state.

Function Groups Generic Math

Related to: FitR2 | FitSlope

Format FitOffset(XArrayElem, YArrayElem, N)

Parameters

XArrayElem

Required. Any array element giving the starting point
in the array of X coordinates of the input data set. The
subscript for the array may be any numeric expres-
sion.
If processing a multidimensional array, the usual rules
apply to decide which dimension should be used.

YArrayElem

Required. Any array element giving the starting point

in the array of Y coordinates of the input data set. The
subscript for the array may be any numeric expres-
sion.
If processing a multidimensional array, the usual rules
apply to decide which dimension should be used.

N

Required. Any numeric expression giving the number
of data points to use from the arrays given by the first
two parameters.
If N extends past the upper bound of the lowest array
dimension, this computation will "wrap-around" and
resume at element 0, until N elements have been pro-
cessed.

Comments If an element of either array is invalid, then that X-Y pair is
not included in the computation. If the number of valid
data points is less than 2, the function returns an invalid
value. Note that XarrayElem and YarrayElem are not neces-
sarily the same array element number. This function is
used in conjunction with the FitSlope function.

Example:
Assume that 2 arrays exist such that x = {0, 1, 2, 3} and y = {1, 3, 5, 7 },
and both arrays' subscripts start at 0

intercept = FitOffset(x[0] { Starting X element },
y[0] { Starting Y element },
4 { Number of elements to process });

The variable intercept will be set to 1.

FitR2

Description: Returns the coefficient of determination (i.e. r2) for a linear
curve fit. This number gives a measure of how accurate
the curve fit is.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Generic Math

Related to: FitOffset | FitSlope

Format: FitR2(XarrayElem, YarrayElem, N)

Parameters:

XArrayElem

Required. Any array element giving the starting point
in the array of X coordinates of the input data set. The
subscript for the array may be any numeric expres-
sion.
If processing a multidimensional array, the usual rules
apply to decide which dimension should be used.

YArrayElem

Required. Any array element giving the starting point
in the array of Y coordinates of the input data set. The
subscript for the array may be any numeric expres-
sion.
If processing a multidimensional, the usual rules apply
to decide which dimension should be used.

N

Required. Any numeric expression giving the number
of data points to use from the arrays given by the first
two parameters.
If N extends past the upper bound of the lowest array
dimension, this computation will "wrap-around" and
resume at element 0, until N elements have been pro-
cessed.

Comments: This function returns a number indicating how close a fit
the data are to a line. If an element of either array is
invalid, then that X-Y pair is not included in the com-
putation. If the result is 0, there is no linear relationship at
all between the array of X values and the array of Y values.

If the result is 1, the fit is perfect. The result may be any
value in the range of 0 to 1.
This function can be used in conjunction with the other lin-
ear regression functions.

Example:
Assume that 2 arrays exist such that x = {0, 1, 2, 3} and y = {1, 3, 5, 7 },
and both arrays' subscripts start at 0

determination = FitR2(x[0] { Starting X element },
y[0] { Starting Y element },
4 { Number of elements to process });

The value of determination will be set to 1 (a perfect fit).

FitSlope

Description: Linear regression slope. This function returns the slope of
the least square curve fit of data in a pair of arrays.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Generic Math

Related to: FitOffset | FitSlope

Format: FitSlope(XarrayElem, YarrayElem, N)

Parameters:

XArrayElem

Required. Any array element giving the starting point
in the array of X coordinates of the input data set. The
subscript for the array may be any numeric expres-
sion.
If processing a multidimensional array, the usual rules
apply to decide which dimension should be used.

YArrayElem

Required. Any array element giving the starting point

in the array of Y coordinates of the input data set. The
subscript for the array may be any numeric expres-
sion.
If processing a multidimensional array, the usual rules
apply to decide which dimension should be used.

N

Required. Any numeric expression giving the number
of data points to use from the arrays given by the first
two parameters.
If N extends past the upper bound of the lowest array
dimension, this computation will "wrap-around" and
resume at element 0, until N elements have been pro-
cessed.

Comments: If an element of either array is invalid, then that X-Y pair is
not included in the computation. If the number of valid
data points is less than 2, the function returns an invalid
value. Note that XArrayElem and YArrayElem are not neces-
sarily the same array element number. This function is
used in conjunction with the FitOffset function.

Example:
Assume that 2 arrays exist such that x = {0, 1, 2, 3} and y = {1, 3, 5, 7 },
and both arrays' subscripts start at 0.

slope = FitSlope(x[0] { Starting X element },
y[0] { Starting Y element },
4 { Number of elements to process });

The variable slope will be set to 2.

Flush

Description: Pushes the data in all software caches associated with a
FileStream directly to the physical media.

Returns: Nothing (see parameters)

Usage: Script Only.

Function Groups: Stream and Socket

Related to: Diff | CloseStream

Threaded: Yes

Format: Flush(Stream, CompletionCounter, Success);

Parameters:

Stream

Required. Any expression that resolves to the stream
that is to be persisted to the physical media. This must
be a FileStream. Other stream types do nothing in
response to a Flush call.

CompletionCounter

Required. Any expression that resolves to a variable
containing a numeric value or Invalid. If a numeric vari-
able, the value will be incremented at the instant that
Flush is called. It will then be decremented after the
stream has been flushed. The same variable can be
used to monitor any number of simultaneous, asyn-
chronous Flush operations.
If this parameter is set to Invalid then the Flush oper-
ation will be performed synchronously and the func-
tion won't return until the stream is flushed.

Success

Required. Any expression that resolves to a variable
containing a numeric value or Invalid. If a numeric
value, that value will be set once the stream has been
flushed to indicate the success of the operation. A
value of TRUE (1) indicates success while FALSE (0)
indicates failure. If set to invalid then the success of
the operation is not reported.

Comments: The operation is bound to the speed of the physical
media and can be slow.

This function is used to ensure that all preceding
operations on a FileStream have been completed on
the physical media before the operation completes.
All file operations in VTScada are subject to the
mediation of the file cache (a part of the Operating
System that serves to speed up file access) which
can have a reliability cost when the cache or the
media are disrupted.
This function allows the caller to momentarily opt
out of the file cache, ensuring that a file is in the
expected state while exposing the caller to the per-
formance limitations of the physical device. As this
can be a very slow operation it is performed asyn-
chronously, with the caller being informed once the
operation completes. Note that an asynchronous
flush can be prevented by the CloseStream function
if that results in the file being closed before the
flush completes.
There are two types of asynchronous operation avail-
able, depending upon whether the Com-
pletionCounter value has been set to a variable
containing a valid or invalid value. If invalid, the
thread upon which the call was made is blocked
until the operation completes, but other threads are
allowed to run.
CompletionCounter should not be set invalid if
Flush is called in a CriticalSection as this will cause
all threads to await the flush operation.
If CompletionCounter is set to a valid numeric value
then the flush operation will occur independently of
the calling thread, which will continue executing
immediately. This mechanism is identical to that

used by the Diff function, and the Com-
pletionCounter parameters of the two operations
can be shared.
If the Success parameter is provided and has not
been set to 1 by the time the operation completes
then it should be assumed that the file has not been
persisted, and in fact may not be persist-able. This
can happen if there is something wrong with the
Stream parameter, or if either the OS file cache or
the physical media are damaged. Flushing a file that
has nothing to write will set this parameter to TRUE
(1).

FlushCache

(ODBC Manager Library)

Description: Forces a flush of a log file for a specified DSN. Returns an
error pointer to indicate success or failure.

Returns: Numeric

Usage: Script Only.

Related to:

Format: \ODBCManager\FlushCache(DSN, UserName, Password,
ErrorPtr)

Parameters:

DSN

Required. The data source name of the ODBC database
for which to flush the cache.

UserName

Required The user name in the database for authen-
tication. A null provided in this field will be passed to
the database as a null string.

Password

Required. The password in the database for authen-
tication. A null provided in this field will be passed to
the database as a null string.

ErrPtr

Required. Pointer to an error. Always valid on com-
pletion. Set to 0 if the command succeeds.

Returns:0 upon completion.

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.

FocusID

Description: Returns the focus ID of the object in a window that has the
input focus.

Returns: Numeric

Usage: Script Only.

Function Groups: Window, Graphics, Keyboard

Related to: NextFocusID

Format: FocusID(Window)

Parameters:

Window

Required. Any object value that will specify the
instance of a window.

Comments: If the window is inactive, this function will return the focus
ID of the object that will receive the input focus when the
window becomes active.

Example:

ZButton(10, 100, 110, 130, "OK", 1);
If LocSwitch() == 4 { Left mouse button pressed };

[
IfThen(FocusID(Self()) != 1 { Focus leaves the OK button },

NextFocusID(Self(),1) { Return focus to OK button });
]

This set of statements ensures that after any input by the mouse (i.e.
clicking of the left mouse button), the focus will return to the "OK" but-
ton.

Folder

(System Library)

Description: Draws a tabbed folder dialog.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: DialogInitPos

Format: \System\Folder(X1, Y1, X2, Y2, Labels, Selected)

Parameters:

X1

Required. The coordinate of the left side of the folder.

Y1

Required. The coordinate of the bottom of the folder.

X2

Required. The coordinate of the right side of the
folder.

Y2

Required. The coordinate of the top of the folder.

Labels

Required. A one dimensional array of labels to be
assigned as the labels for each of the folder's tabs.

Selected

Required. The selected tab. Selected defaults to 0

(indicating the first tab).

TabHeight

Numeric feedback parameter, telling the caller the
height of the tabs, or the total height when there are
multiple rows of tabs.

Comments: This module is a member of the System Library, and must
therefore be prefaced by \System\ as shown in the
example above (see Format above). If the application you
are developing is a script application, the System variable
must be declared in AppRoot.src, and need not be pre-
faced by a backslash in the function call.

Example:

FolderOn [
 If Valid(FolderOff) FolderOff;
\System\Folder(10, 10, WIDTH - 10, HEIGHT - BUTTONH - 20,

TabNames, Current);
]

where Width is a variable indicating the window width, Height is a vari-
able indicating the window height, ButtonH is a constant with a value of
30, TabNames is a variable indicating the labels to be displayed on each
tab, and Current is a variable indicating the current tab selected on the
dialog should be the selected tab.

Font

Description: Returns a font value.

Returns: Font

Usage: Steady State only.

Function Groups: Graphics

Related to: FontDialog | GUIText | ZText

Format: Font(Name, CharSet, Height, Rotation, Weight, Italic,
Fixed)

Parameters:

Name

Required. Any text expression that gives the name of
the font. This must be the same as the Microsoft Win-
dows™ name for the font. For example, "ARIAL".

CharSet

Required. Any numeric expression giving the
 Font Character Sets for this font.
If you are uncertain as to a valid value, set
CharSet to 0, thereby obtaining English char-
acters.
The keyword, DEFAULT_CHARSET may be used,
auto-selecting the character set based on the
configured Windows locale. OEM_CHARSET will
do the same, but will use the DOS equivalent.

Height

Required. Any numeric expression giving the height of
the font in points.

Rotation

Required. Any numeric expression giving the rotation
of each character in degrees.

Weight

Required. Any numeric expression giving the weight of
the font. Larger numbers give a more bold appear-
ance. The range is 0 to 9.

Italic

Required. Any logical expression. If true (non-0), the
italicized version of the font is used. If false (0), the nor-
mal version is used.

Fixed

Required. Any logical expression. If true (non-0), all of

the characters used by the font will be the same width
and height, that of the largest character. If false (0),
and the font is a proportional or a true type font, then
the characters may have different sizes.

Comments: This function is for use in layered graphics state-
ments that display text. A good idea is to use vari-
ables for font parameters in the layered graphics
statements. If it is desired to change the font later,
it need only be changed at one place - where the
assignment is made to the variable. This also pro-
motes a consistent use of fonts.
Parameters are suggestions. Substitutions will be
made if the parameters describe a font that cannot
be found.
Supported font types include TRUEType, OpenType
and PostScript CFF.

Example:

inputFont = Font("ARIAL" { Font name },
0 { Character set },
14 { Height in points },
0 { Rotation },
5 { Weight - somewhat bold },
0 { Not italic },
0 { Non-fixed });

FontDialog

Description: Displays a threaded system common font dialog box.

Returns: Error code

Usage: Script Only.

Function Groups: Graphics

Related to: Font | PrintDialogBox

Threaded: Yes

Format: FontDialog(Name, CharSet, Height, Rotation, Weight,
Italic, Fixed [, Display, Result])

Parameters:

Name

Required. Any text expression which gives the name of
the font. This must be the same as the Microsoft Win-
dows™ name for the font. For example, "MS Sans
Serif".

CharSet

Required. Any numeric expression giving the Font
Character Sets for this font.
If you are uncertain as to a valid value, set CharSet to
0, thereby obtaining English characters.
The keyword, DEFAULT_CHARSET may be used, auto-
selecting the character set based on the configured
Windows locale. OEM_CHARSET will do the same, but
will use the DOS equivalent.

Height

Required. Any numeric expression giving the height of
the font in points.

Rotation

Required. Any numeric expression giving the rotation
of each character in degrees.

Weight

Required. Any numeric expression giving the weight of
the font. Larger numbers give a more bold appear-
ance. The range is 0 to 9.

Italic

Required. Any logical expression. If true (non-0), the
italicized version of the font is used. If false (0), the nor-
mal version is used.

Fixed

Required. Any logical expression. If true (non-0), all of
the characters used by the font will be the same width
and height, that of the largest character. If false (0),
and the font is a proportional or a true type font they
may have different sized characters.

Display

An optional parameter that gives a list of fonts to dis-
play. Display can be set to one of the following values.

Display Font List

0 All fonts

1 Screen fonts only

2 Printer fonts only

If the value is invalid, all fonts will be displayed.
If out of range, then the function call is not
valid.

Result

An optional parameter that is a variable whose value
will be set to 1 if the OK button on the font dialog is
clicked, and 0 if the Cancel button on the font dialog is
clicked.

Comments: The first seven parameters are originally read in to
set the default values for the dialog box and if they
are VTScada variables, they will be set to the attrib-
utes for the font chosen by the user in the dialog
box.
In addition to the Result parameter, the function
itself will return an error code to indicate whether
the dialog was successfully opened. A "1" indicates
failure to open while a "0" indicates success.

Note: Within an Anywhere Client session, this func-
tion does nothing.

Example:

[
newFont;
name = "Century Gothic";
charSet = 0;
ht = 14;
rotate = 0;
wt = 5;
italic = 1;
fixed = 1;
wasSet = 0;

]
Main [
{ Display the chosen font }
ZText(100, 100, Concat("A ", name, " Font", 12, newFont);
newFont = Font(name, charSet, ht, rotate, wt, italic, fixed);
{ Set the font }
If ZButton(200, 10, 300, 40, "Set Font", 1) &&
Valid(wasSet);

[
wasSet = Invalid;
FontDialog(name { Font name },

charSet { Character set },
ht { Height in points },
rotate { Rotation in degrees },
wt { Weight 0 - 10 },
italic { Italics flag },
fixed { Fixed pitch flag },
0 { All font options },
wasSet { Set when dlg closes });

]
]

ForceEvent

Note: Deprecated. Do not use in new code.

Description: Forces the editor to perform an action based on the inform-
ation provided.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Editor

Related to: AddEditorText | CurrentLine | Editor | GoToOffset |
 MakeEditor | SetEditMode

Format: ForceEvent(EditorValue, EventType, Parm1, Parm2, Parm3)

Parameters:

EditorValue

Required. An editor value that has been created by
MakeEditor.

EventType

EventType Type of event

-1 Tab

0 Cursor left

1 Cursor right

2 Cursor up

3 Cursor down

4 Enter

5 Delete next character

6 Delete previous character

7 Move cursor to beginning of line

8 Move cursor to end of line

9 Move cursor up one page

10 Move cursor down one page

11 Move cursor to start of the Editor

12 Move cursor to end of the Editor

13 Move the selection block left one
character

14 Move the selection block right one
character

15 Move the selection block up one
line

16 Move the selection block down
one line

17 Cut the selection block from the
editor to the clipboard

18 Copy the selection block from the
editor to the clipboard

19 Insert the text from the clipboard
into the editor

20 Toggle block line, column selec-
tion mode

21 Turn the selection block off

22 Delete the current line

23 Scroll down one line

24 Scroll up one line

25 Move the editor to the given byte
offset

26 Move cursor to the given pixel
coordinates if they lie within the
editor's defined region

27 Insert the supplied text at the cur-
rent cursor position

Parm1

Required. An expression that has a different meaning
based on the event type being forced.

EventType Parm1 Meaning
Parm1
Value

0 – 24 No meaning 0

25 Offset to which to
move the cursor

Byte offset

26 Location to which to
move the cursor

X pixel loc-
ation

27 Text to insert Text string

Parm2

Required. An expression that has a different meaning
based on the event type being forced.

EventType Parm2 Meaning
Parm2
Value

0 – 24 No meaning 0

25 Highlight characters
at new location 1

?? Don't select any
characters 0

26 Location to which to
move the cursor

Y pixel loc-
ation

27 No meaning 0

Parm3

Required. An expression that has a different meaning
based on the event type being forced.

EventType Parm3 Meaning Parm3 Value

 0 – 24 No meaning 0

 25 Characters to high-
light

Number of
chars

 26, 27 No meaning 0

Example:

textEd = MakeEditor(){ Create the editor };
...
ForceEvent(textEd { Use a certain editor },

25 { Move to the given byte offset },
115 { Move 115 bytes from current location },
1 { Highlight characters at new location },
10 { Highlight the next 10 chars });

ForceServers

RPC Manager Library

Description: Sets the servership of an application service to a specific
state.

Returns: Invalid

Usage: Script Only. (Subroutine call)

Function Groups: Network

Related to:

Format: \RPCManager\ForceServers(Service, ServerStates,
[OptGUID])

Parameters:

Service

Name by which the service is known.

ServerStates

A 2D array of servers and their states.

OptGUID

The GUID of the application in which the service
instance is located. Optional, the default is the applic-
ation to which the caller belongs.

Comments: The server states are defined by a 2D array, with row [0]
listing the servers and row[1] listing the states.
The servers MUST appear in the same order as returned
from GetServersListed for the service. The state values are
zero (undetermined), #RPCClient or #RPCServer. These val-
ues then get reflected in the RPCStatus to that service.

ForceState

Description: Sets the next state to start when the action script com-
pletes.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Logic Control,
State

Related to: FirstState

Format: ForceState(State)

Parameters:

State

Required. Any text expression giving the name of the
state to start upon completion of the script.

Comments: This statement does not act like an exit point from the
script - the script will still run in its entirety. If, however,
the script transfer condition did not specify a different
state to transfer to, this function will stop the current state.
Multiple ForceState statements may be executed in a
script, with the last one executed setting the state to which
the module will switch.

Example:

If TimeOut(1, 1) Main;
[
IfThen(level < 10, ForceState("Exit"));

]

After one second this statement will cause a state transfer to Main.
However, if level is less than 10 at that time, the next state will become
Exit rather than Main.

FormalParms

Description: Returns the number of formal parameters declared in a
module.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: NParm | NumParms | Parameter

Format: FormalParms(Module)

Parameters:

Module

Required. Any expression that returns an object or
module type value.

Comments: This function's result may seem obvious, but this function
can help automate some of the work in building a para-
metrized module, just in case the number of parameters
declared in a module is changed.

Example:

<
TinyModule
(
a;
b;

)
[

numParms;
]
Main [
NumParms = FormalParms(Self());

]
>

The variable numParms will have a value of 2.

Format

Description: Returns a text string corresponding to numbers in a spe-
cified format.

Returns: Text

Usage: Script or steady state.

Function Groups: String and Buffer

Related to: BuffWrite | FWrite | Output | Print | PrintLine

Format: Format(Width, Precision, Value)

Parameters:

Width

Required. Any numeric expression giving the min-
imum number of characters to use. If fewer characters
are required to produce the output, the area is filled
with blank spaces on the left to make up the required
number of characters. This is useful for aligning num-
bers on the right.
If more characters are required than the Width para-
meter specifies, the extra characters are extended to
the right. By making Width 0, the output will be aligned
on the left.
If the Width parameter is greater than or equal to 100,
the format of the floating point number used is in the
most compact form which may be in exponential form
if the exponent is less than -4 or is greater than the
specified Precision parameter.
The actual width used in this mode is 100 less than the

specified Width. Trailing 0s are not displayed in this
mode. Values for Width outside the range of 0 to 255
inclusive are invalid.

Precision

Required. Any numeric expression giving the precision
of the output (with rounding). It gives the number of
digits to appear after the decimal point, if Width is less
than 100, or the maximum number of significant
digits to appear, if Width is greater than or equal to
100.
Values for Precision outside the range of 0 to 255
inclusive are invalid.

Value

Required. Any numeric parameter giving the number
to be formatted.

Comments: This function is useful in conjunction with the Print state-
ment to produce numbers in a printed report. Note that if a
text expression is expected as an argument by any
VTScada function, and a numeric argument is used,
VTScada performs an automatic Format on the value.

Example:

number = 123.5692;
textVal = Format(7 { Minimum number of characters },

2 { Number of digits after decimal point },
number);

The variable textVal will be equal to " 123.57"

FormatBatchQuery

(ODBC Manager Library)

Description: When given an array of SQL queries, this module will re-
format them into a single query, suitable for a batch call to
the specified database.

Returns: Text

Usage: Script Only.

Related to:

Format: \ODBCManager\FormatBatchQuery(dbType, QueryArray,
StartingElement, NumberOfElements)

Parameters:

dbType

Required numeric value, indicating the type of this DB
connection.

DBType Meaning

0 MS SQL

1 MS Access

2 Oracle

3 MySQL

4 SyBase

QueryArray

Required. SQL queries to be executed in a batch.

StartingElement

Required. Indicates which element in the array to begin
at.

NumberOfElements

Required. Indicates the number of elements of the
array that should be processed.

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.
The return value is the batch query as a text string. If the
database type is unknown, this function will return only
one element from the array, as indicated by the Start-
ingElement. Batch queries cannot be created without know-
ing which separator string to use.

FormatInteger

Description: Given a numeric value, returns that value converted to
Hex, Octal or Binary as specified.

Returns: Text

Usage: Script or steady state.

Function Groups: Math - Generic Functions, String and Buffer

Related to: Format | FormatNumber

Format: \FormatInteger(Value, OutputFormat, Size, LeadingZeros)

Parameters:

Value

Required. Any numeric expression giving the original
decimal value to be converted.

OutputFormat

Required. The format to convert to. Constants are used
as follows: (Note the leading backslash in each case.)
\#HEX
\#OCTAL
\#BINARY

Size

Required. The size of the result to return. May be one
of:
\#DATA_BYTE
\#DATA_WORD
\#DATA_DWORD
\#DATA_QWORD

LeadingZeros

Optional. A Boolean. If TRUE, the output will be padded
with leading zeros according to the size specified.
Defaults to FALSE.

Comments: Must be preceded by a backslash. Useful for formatting a

numeric value into one of the three available rep-
resentations.

Example:

result = \FormatInteger(25, \#OCTAL, \#DATA_WORD, 0);

The variable result will be the "31".

FormatNumber

(System Library)

Description: Given a numeric value, returns a compactly formatted ver-
sion of this number containing at least the specified num-
ber of significant digits.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Math - Rounding Functions

Related to: Format | FormatInteger

Format: \System\FormatNumber(Value, Digits[, IntegerFlag])

Parameters:

Value

Required. Any numeric expression giving the original
value to be formatted.

Digits

Required. Any numeric expression giving the number
of significant digits to be returned from Value.

IntegerFlag

Optional. Any Boolean expression. If FALSE, integers
are returned without modification. Defaults to FALSE.

Comments Must be preceded by \System. This is primarily a sig-
nificant digits function, but will also return an exponential
value if the number of leading or trailing zeros is greater

than three.
If the number is a non-integer, its significant digits are lim-
ited (to four digits by default). If the number can be shown
with fewer characters using scientific notation, that nota-
tion is used. Integers are left untouched unless otherwise
directed by an optional parameter.

Example:

number = 0.0054321;
result = \System\FormatNumber(number,2);

The variable result will be 0.00054

number = 0.000054321;
result = \System\FormatNumber(number,2);

The variable result will be 5.4e-005

number = 0.00455321;
result = \System\FormatNumber(number,2);

The variable result will be 0.0046

number = 0.00454321;
result = \System\FormatNumber(number,2);

The variable result will be 0.0045

number = 12345.54321;
result = \System\FormatNumber(number,3);

The variable result will be 12300

number = 12345;
result = \FormatNumber(number,2);

The variable result will be 12345

number = 12345;
result = \System\FormatNumber(number,2,1);

The variable result will be 12000

FRead

Description: Reads values from a formatted file and returns the number
not read.

Returns: Numeric

Usage: Script Only.

Function Groups: File I/O, String and Buffer

Related to: BuffRead | BuffWrite | FileSize | FWrite | SRead | SWrite

Format: FRead([N], File, Offset, Format, V1[, V2, V3, ...])

Parameters:

File

Any text expression specifying the path, file name, and
extension to read. A known path alias may be provided
in the form, :{KnownPathAlias}.

Offset

Any numeric expression giving the starting file pos-
ition for the read in bytes, starting at 0.

Format

Required. Any text expression giving the format
of how the values (Vn parameters) are to be
read.
This format is similar, but not identical, to the C
language format string for the scanf function,
whereby each of the % format specifications
assigns a value to one of the Vn parameters in
the statement in the order in which each
appears in the list.
Note that like a standard text string, these
format specifiers must also be enclosed by
double quotes. If a format specification appears
for which there are no remaining V parameters,
the format specification value is read and dis-
carded.

For the % format specifications, the following
form applies (where the [] indicates optional ele-
ments):
%[*][width]type

Where…
% is mandatory;
The optional asterisk * causes the read to occur
as per the format specification, but suppresses
any assignment to the Vn parameters; and
width is mandatory, specifying the maximum
number of characters to read.
The specifications for type are listed in the fol-
lowing table:

Note: Note: Format strings are case insens-
itive. Additionally, specifying a character for a
type that is not in this list results in all the
characters following the % up to that point to
be read exactly as they appear in the Format
string and discarded.

Type Meaning

Nb Binary format, where n is a number
indicating the type of value (see below)

c Single ASCII character (byte)

d Signed decimal integer

e Signed exponential

f Signed floating point

g e or f formats

i Signed decimal integer

l Line of characters terminated by a car-
riage return, line feed, or both

n Present offset in the buffer

o Unsigned octal

s Text string

u Unsigned decimal integer

x Unsigned hex integer using "abcdef"

znnn Escape character where nnn is the 3-
digit ASCII code

nb, Binary type For the format specification of
%nb, where n specifies the type of number, n
must be a single digit from one of the following
choices. All are low-byte-first.

n value Type

0 Byte

1 Short integer (2 bytes, low byte first)

2 Long integer (4 bytes, low bytes first)

3 IEEE single precision float (4 bytes)

4 <obsolete>

5 IEEE double precision float (8 bytes)

6 <obsolete>

7 Binary unsigned short (2 bytes, low
byte first)

8 Unsigned 32-bit integer

c, ASCII character type: Unlike BuffWrite this
type deals with characters in a string; each char-

acter being equal to one byte. Unlike the %s
option, which reads only up to the first white-
space character, the %c option reads the number
of characters/bytes specified by its width and is
not terminated by any particular character. If no
width is specified, a single character is read.

d, Signed decimal integer

e, Signed exponential

f, Signed floating point

g, e or f formats

i, Signed decimal integer type: This option nor-
mally reads a decimal integer; however, if a lead-
ing "0b" is encountered, the number will be
interpreted as binary. If a leading "0" (zero only)
is encountered, the number will be interpreted
as octal. If a leading "0x" is encountered, the
number will be interpreted as hexadecimal.

l, Line of characters: This option reads a line of
characters terminated by a carriage return, a
line feed, or both (in either order). The carriage
return and line feed will be discarded, and the
next character read will be the first character on
the next line. The maximum number of char-
acters read is 4096 (or less if the width option is
used).

n, Buffer offset: This option does not read a

value, but returns the present offset in Buffer
and can be useful in subsequent reads.

o, Unsigned Octal

s, Text string type: Text in the string is read up
until a white-space character is encountered, or
the specified width has been read, whichever is
smaller. Square brackets enclosing a character,
group of characters, or a caret and a group of
characters used in the format string reads
strings not delimited by spaces. This is a sub-
stitute for the %s format specification. The input
is read up to the first character that does not
appear inside the square brackets (note that this
is case-sensitive). A dash may be used to specify
a range of characters. For example, the fol-
lowing format specifier:
% [A-Fa-f]
will read a string up to the first which is not an
A, B, C, D, E, or F both upper and lower case.

The caret symbol ^. If the first character inside
the square brackets is a caret (^), the read pro-
gresses up to, but not including, the first char-
acter that appears inside the square brackets:
%[^X-Z]
This would read a string up to, but not includ-
ing, the first X, Y or Z (upper-case only); if the
string were terminated by an X, the next char-
acter read would be that X. Inside the square
brackets, the backslash is used as an escape
character - any character following a backslash

(such as a caret, dash, or backslash) is taken as
that character without special meaning. For
example:
%[^X-Z\^]
would behave as described previously, except
that the string would now be read up to but not
including the first X, Y, Z, or ^.
Since format specifications for the Vn para-
meters are indicated by a percentage sign, to
read (and discard) an actual percentage sign as
part of the text string, precede it with a back-
slash character (i.e. \%). Also, since the back-
slash character is used in this manner, as well as
with special control characters such as line feed,
carriage return and form feed, to read and dis-
card a backslash, use two backslash characters
(i.e. \\).

x, Hexadecimal characters: the %x option reads
the number of characters/bytes specified by its
width and is not terminated by any particular
character. If no width is specified, it will con-
tinue reading all bytes that can be recognized as
hexadecimal characters. For example, given the
string "…= 3D", %[^=]=%2x would read the
hedadecimal value, 3D (decimal value, 61).

znnn, Escape characters: This specifies an
escape character that will be thrown away when
read, where nnn is a 3-digit number giving the
ASCII character code of the escape character.
This option is generally used as the sole format
specifier that reads an entire string, spaces

included, discarding every single occurrence of
an escape character, or the first occurrence of
every pair of escape characters. For example, if
the string to be read looked like:

abXc dXXfghiXXXjXXXXkl mX Xn o

and the format specifier indicated that the ASCII
code for 'X' (88) was to be the escape code:

%25z088

then the variable that this was read into would
contain:

abc dXfghiXjXXkl m n o

Notice that for each occurrence of X, the char-
acter immediately following it is saved, even if it
is itself an escape character. Then the next
occurrence of the escape character is discarded,
with the character following it being saved,
regardless of what it is, and so on. The width
field specifies the maximum number of bytes to
place in the output string; if this number is smal-
ler than the input string (less the offending
escape characters), the string will be truncated.
If no width is specified, a single character will be
read.

Control characters: In order to encode certain
control characters as part of the Format para-
meter, one of two methods may be used. The

first is to use a backslash character followed by
one of the single character codes listed below to
produce the desired result. Please note that the
letters must be lower case.

 Code Meaning

 \b Backspace

 \f Form Feed

 \n Line Feed

 \r Carriage Return

 \t Horizontal Tab

 \v Vertical Tab

 In addition to the predefined codes, an altern-
ate form may be used:

\nnn: where nnn is a three digit integer in the
range of 0 to 255 specifying a certain ASCII char-
acter. If the number contains less than three
digits, the leading spaces must be padded with
zeroes; this is not the case with the previously
listed single character control characters. For
example, to include the one byte ASCII character
G in the output, you could place its decimal equi-
valent of 71 in the Format string as \071.

V1, V2, V3
Optional. Parameters specifying the variables to
be read in the form described by the Format
parameter.
Expressions are not allowed.
Each of the Vn parameters is read in the order in
which each appears in the parameter list. V1 has

the format given by the first % sequence in the
Format parameter, V2 has the second, and so
forth.

V1, V2, …

Required. Are the variables to be read in the form
described by the Format parameter. Expressions are
not allowed. Each of the Vn parameters is read in the
order in which each appears in the parameter list. V1
has the format given by the first % sequence in the
Format parameter, V2 has the second, and so on.

Comments In early versions of VTS (WEB), there was a numeric
leading parameter, N. This should not be included
in any new code.
Data exchange between many file formats is pos-
sible if the file formats are known. The return value
is optional and is the number of Vn parameters NOT
read. This can be used as an error flag.

Example:

If ! Valid(err)
[
err = FRead("G:\RECIPES\GLUE.DAT" { File to read from },

0 { Starting point },
"%f%f%n" { Format },
compoundA, resin, offset { Parameters });

]

This reads two ASCII format floating-point numbers, starting at the
beginning of G:\RECIPES\GLUE.DAT and places them in compoundA and
resin, respectively. After the read is complete, the ending file position is
stored in offset. If the read were successful, err is 0. Otherwise it is the
number of items which were not read.

Freeze

Description: Freezes all or selected animated graphics in a window.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Graphics, Window

Related to: SelectArea | SelectGraphic | UnselectGraphics

Format: Freeze(Object, Scope, Mode)

Parameters:

Object

Required. Any expression for the object in the window
that indicates the selected list to use.

Scope

Required. Any logical expression. If true, all graphics
in the window are frozen. If false, only selected graph-
ics in the window are frozen.

Mode

Required. Any numerical expression that controls the
freeze, as shown in the following table

Mode Control Action

0 Stop animation

1 Start animation

2 Toggle animation

Comments: A graphical object that is frozen is no longer updated. It
cannot be selected.

Example:

Freeze(Self() { Act upon graphics drawn by current module },
1 { Freeze everything drawn by this module },
0 { Stop the animation on the frozen objects });

FWrite

Description: Writes ASCII or binary data to a file and may also be used

to create or delete a file. It returns the number of data
items not written.

Returns: Numeric

Usage: Script Only.

Function Groups: File I/O, String and Buffer

Related to: BuffRead | BuffWrite | FileSize | Format | FRead | Print |
 PrintLine | Redirect | Save

Format: FWrite([N,] FileSpec, Mode, Position, Format, V1[, V2, V3,
...])

Parameters:

FileSpec

Required. Specifies any output file or printer as the des-
tination to which to write. A known path alias may be
provided in the form, :{KnownPathAlias}.
When specifying a printer, FileSpec will accept any of
the following:
Local Printer:
Port name (including virtual ports) with or without a
trailing colon (e.g. DEF or DEF:. COM1 or COM1:;
USB001 or USB001:; etc.)
Windows printer share (e.g. "XYZ Laser Printer")
Windows share name (if the printer is shared) (e.g.
"XYZLaser")
Local or Remote Printer:
UNC share name (which includes the host and share
name (e.g. "\\localhost\XYlaser" or
"\\lab1\NetPrinter")

Mode

Required. Any numeric expression giving the method
of opening the file as shown: (further detail follows the
table)

Mode Method of opening

0 Overwrite old data at specified position
(other data unaffected)

1 Clear existing data before using file (all
data lost)

2 Append data to end of file (other data
unaffected)

3 Delete file (all data lost)

4 Open specifically for printer output

5 Print mode, DC-based

If the file does not exist, it will be created if a
mode of 0, 1, or 2 is used.
In the case of Mode 2, the Position parameter is
ignored. If a position past the end of file is spe-
cified, the file will be extended to include the
new information. If the file is extended, any
information not specified by the Fwrite (such as
a gap between the old end of file and the
present Fwrite position) will be a string of
unknown, random characters (bytes).
In the case of Mode 3, the remaining parameters
in Fwrite are ignored, but must be present and
valid.
In the case of Mode 4, special handling and
error checking for printer output will be
provided.

Position

Required. Any numeric expression giving the byte off-
set (number of characters) from the start of the file,
where data is to be written.
This parameter is ignored for Modes 1 - 3 but must be
a valid value for all modes. It must be greater than or
equal to 0. The start of the file is at Position 0.

Format

Required. Any text expression giving the format
of how the values (Vn parameters) are to be writ-
ten. This format is similar, but not identical, to
the C language format string for the printf func-
tion, whereby each of the Vn parameters in the
statement is assigned to a % format spe-
cification in the order in which each appears in
the list.
Note that like a standard text string, these
format specifiers must also be enclosed by
double quotes.
If a format specification appears for which there
are no remaining V parameters, the format spe-
cification characters themselves are output to
the stream exactly as they appear in the Format.
For the % format specifications, the following
form applies (where the [] indicates optional ele-
ments):
%[-][+][SPACE][#][width][.precision]type
where
% (percent sign) is mandatory;
- (minus sign) causes the data to be left jus-
tified within the field (for binary types b and
ASCII character types c, this option is ignored);
+ (plus sign) causes positive numbers to be pre-
faced with a + sign (negative numbers are unaf-

fected). This allows easy alignment of positive
and negative numbers in a printed column of
numbers. For binary types b and non-numerical
types, this option is ignored;
space represents the single space character, and
is similar to the [+] option but places a single
space rather than a plus sign in front of positive
numbers (negative numbers are still unaffected).
This allows alignment of a column of numbers
without having to show all signs. For binary
types b and non-numerical types, this option is
ignored;
(hash mark) When used with the o , x , or X
format, the # flag prefixes any nonzero output
value with 0, 0x, or 0X, respectively.
width is a number that specifies the minimum
number of characters to output. Numbers that
require more characters than specified by the
width value are truncated on output. If the num-
ber of characters in the number or string is less
than width, blanks will be added to the left or
right, depending upon whether the output is left
or right justified (i.e. whether or not the [-]
option has been specified) until the width is
reached. For binary types b and ASCII character
types c, this option is ignored;
precision has a different meaning for each of
the type options as follows:

l Integer types d, l, u, o, x, and X precision spe-
cifies the minimum number of digits to output. If
the number contains fewer digits, leading zeroes
will be added to the left of the number. If pre-
cision is 0, omitted, or if the decimal point

appears without a number following it, the pre-
cision defaults to 1. The number is not trun-
cated.

l Floating point types e and E precision specifies
the number of digits after the decimal point. The
last digit is rounded. The default precision in this
case is 6. If the precision is 0 or if the decimal
point appears without a number following it, no
decimal point appears in the output.

l Floating point type f precision specifies the num-
ber of digits after the decimal point. The last digit
is rounded. The default precision is 0. If the pre-
cision is explicitly 0, no decimal point is output.
If a decimal point is output, at least one digit will
be placed before the decimal point.

l Floating point types g and G precision specifies
the maximum number of significant digits to be
output. If no precision is specified, all significant
digits are written.

l String type s precision specifies the maximum
number of characters of the string to be output.
If the string contains more characters than spe-
cified by the precision, the string is truncated
and only the first characters are written. If the
precision is not specified, all of the string char-
acters are output.

l ASCII character type c The precision option is
ignored.

l Binary type b The precision option is ignored.
x unsigned hex integer using "abcdef"
znnn Escape character where nnn is the 3-digit
ASCII code
type is mandatory. The type specification must
be one of those listed below.

Note: The case of the letter is important. Spe-
cifying a character for the type that is not in this
list will result in all the characters following the
% up to that point to be output exactly as they
appear in the Format string.

Type Meaning

nb Binary format, where n is a number indic-
ating the type of value (see below).

c Single ASCII character (byte)

d Signed decimal integer

e Signed exponential; exponent key is "e".

E Signed exponential; exponent key is "E".

f Signed floating point.

g e or f format, whichever is shorter.

G E or f format, whichever is shorter.

h Handle to a window.

i Signed decimal integer.

o Unsigned octal integer.

p Pointer to a buffer.

s Text string.

u Unsigned decimal integer.

x Unsigned hex integer using "abcdef".

X Unsigned hex integer using "ABCDEF".

nb, Binary type For the format specification of
%nb, where n specifies the type of number, n
must be a single digit from one of the following
choices. All are low-byte-first.

n Value Type

0 Byte, unsigned

1 Signed short integer (2 bytes)

2 Signed long integer (4 bytes)

3 IEEE single precision float (4 bytes)

4 <obsolete>

5 IEEE double precision float (8 bytes)

6 <obsolete>

7 Unsigned short integer (2 bytes)

8 Unsigned long integer (4 bytes)

Note: Other options such as width and precision
do not apply to the b type.
c, ASCII character type: This type is not rep-
resentative of a single character in a string, but
rather, represents single byte ASCII characters.
Input values (the Vn parameter to which this
format specification applies) must be integers in
the range of 0 to 255 in order for the output to
be a valid ASCII equivalent character. Strings are
not acceptable input values. Note that the %c
format specifier behaves differently when used
in an output statement such as BuffWrite than
when used in an input statement, such as
BuffRead.
d, Signed decimal integer:
e, Signed exponential: Exponent key is “e”
E, Signed exponential: Exponent key is “E”
f, Signed floating point
g, e or f formats: Whichever is shorter

G, E or F formats: Whichever is shorter
h, Window handle type: This type is used for
building structures to be handed to DLLs and
should be used by advanced users only.
p, Buffer pointer type: This type is also used
for building structures to be handed to DLLs
and should be used by advanced users only.
s, Text string type:
Plain text Text in the Format parameter is writ-
ten exactly as it appears, with three exceptions:

l Percentage sign (%) Since format specifications
for the Vn parameters are indicated by a per-
centage sign, to include an actual percentage
sign as part of the Format parameter, precede it
with a backslash character (i.e. \%).

l Backslash character (\) Since this is used to indic-
ate special control characters such as line feed,
carriage return, and form feed, to write a back-
slash as part of the Format parameter, use two
backslash characters (i.e. \\).

l Quotation marks (") The entire test string is
delimited by quotation marks, so to include a set
of quotation marks as part of the Format para-
meter, use a set of quotations marks (i.e. "").

Control characters In order to encode certain
control characters as part of the Format para-
meter, one of two methods may be used. The
first is to use a backslash character followed by
one of the single character codes listed below to
produce the desired result (notice that the let-
ters must be lower case):

Code Meaning

\b Backspace

\f Form feed

\n Line feed

\r Carriage return

\t Horizontal tab

\v Vertical tab

\nnn In addition to the above predefined codes,
\nnn may be used, where nnn is a three digit
integer in the range of 0 to 255 specifying a cer-
tain ASCII character. If the number contains less
than three digits, the leading spaces must be
padded with zeroes; this is not the case with the
previously listed single character control char-
acters. For example, to include the one byte
ASCII character G in the output, you could place
its decimal equivalent of 71 in the Format string
as \071.
u, Unsigned decimal integer,
x, Unsigned hex integer using “abcdef”
X, Unsigned hex integer using “ABCDEF”
Offset is any numeric expression giving the start-
ing buffer position in characters or bytes for the
write, starting at 0.

V1, V2, …

Required. Are any expressions giving the values to be
output in the form described by the Format parameter.
Each of the Vn parameters is evaluated and written in
the order in which each appears in the parameter list.
The way in which they are formatted is dictated by the
% format specifications.
V1 is formatted by the first % sequence in the Format

parameter, V2 by the second, and so on. If there are
more V parameters than % sequences in the Format
string, the remainder are ignored. If there are fewer V
parameters than % sequences in the Format string, the
remaining % sequences are written literally without any
translation.

Comments: In early versions of VTS (WEB), there was a numeric
leading parameter, N. This should not be included
in any new code.
You cannot write to a read-only file. You may use
GetFileAttribs and SetFileAttribs to get/set the
read-only attribute.
If one of the values to be written is outside of the
range of the type indicated by the format specifier,
a 0 is written. If the value to be written is invalid,
nothing is written for most format specifiers, with
the exception of %nb, which will write a 0 in the
place of the invalid. Invalidity of the output values
does not preclude execution of this function.
This function returns the number of Vn parameters
not written to the file; a 0 return value indicates suc-
cess. Variables that contain invalid values that were
not written due to their invalidity do not increment
this count. An invalid return value indicates an error
with one of the parameters. For Mode 3, a 0 indic-
ates success and a 1 (true) indicates a problem delet-
ing the file.
FWrite cannot be used to open COM 1 or COM 2 for
direct writing; however, FWrite can connect to a
printer on either COM1 or COM2.
All print functions are compatible with the values
returned in either of the first two parameters of the
PrintDialogBox function.

Example:

If timeToWrite;
[
FWrite("ASCII.DAT" { File to write to },

1 { Clear data in file },
0 { Starting point },
"A=%d\r\nB=%3.2d\r\nC=%6.2f\r\n%8.3s\r\n%c"
{ Format string },
100.8, 2, 2/3, "finished", 33
{ Values to be written });

timeToWrite = 0;
]

If the variable timeToWrite is true, the FWrite statement would produce a
file called ASCII.DAT with five lines of text as follows:

A=100
B= 02
C= 0.67

fin
!

G Functions
The sections that follow identify all VTScada functions beginning with
"G".

GenerateKey

Description: The GenerateKey function generates
a random cryptographic session key
or a public/private key pair. A handle
to the key or key pair is returned.
This handle can then be used as
needed with any CryptoAPI function
requiring a key handle. It is the
VTScada analog of the CryptoAPI’s
CryptGenKey call.

Returns: Handle

Usage: Script Only.

Function
Groups:

Cryptography

Related to: DeriveKey | Decrypt | Encrypt |
 ExportKey | GenerateKey|
 GetKeyParam | ImportKey |
 SetKeyParam | Data Encryption and
Decryption

Format: GenerateKey(CSPHandle, AlgID [,
Flags, Error])

Parameters:

CSPHandle

Required. The handle of a CSP
(cryptographic service pro-
vider) to use to generate the
key.

AlgID

Required. Identifies the
algorithm for which the key is
to be generated. Values for
this parameter vary depend-
ing on the CSP used and are
defined in WinCrypt.h

Flags

An optional parameter spe-
cifying the flags to be passed
to CryptGenKey. If omitted or
invalid then the value 0 is
used.

Error

An optional variable in which
the error code for the func-
tion is returned. It can have
the following values.

Error Definition

0 Key successfully
generated.

1 CSPHandle or
AlgID parameters
invalid.

x Any other value is
an error from
CryptGenKey.

Comments: The return value for this function is a
handle to the Key. If an error occurs,
then the return value is invalid. A key
has a value type of 37. If cast to text,
then the hexadecimal value of the
algorithm ID will be returned.

Example:

[
Key1;
Key2;
Constant CALG_DH_EPHEM = 0xAA02;
Constant KEY_SIZE = 512;
Constant CRYPT_EXPORTABLE = 0x00000001;

]
Init [
If 1 Main;
[
{ Make a key }
Key1 = GenerateKey(CSP, CALG_DH_EPHEM,

KEY_SIZE << 16 || CRYPT_EXPORTABLE);
]

]

Get

Note: Deprecated. Do not use in new code.

Description: Reads an array of historical data from a file (written by Save
or SaveHistory) and returns the relative file position of the
file entry following the last one read, or an error code.

Returns: Array or Error code

Usage: Script Only.

Function Groups: File I/O, Log

Related to: Get | HistorianDeleteRecords | HistorianGetData |
 HistorianGetInfo | HistorianReadRecords |
 HistorianWriteRecords | HistorianGetData

Format: Get(ArrayElem, N, File, FieldNum, StartDate, StartTime,
TPP, Mode [, StaleTime, PathPrefix])

Parameters:

ArrayElem

Required. Any array element giving the starting point
in the array in which data read from the file will be
stored. The subscript for the array may be any
numeric expression.
If processing a multidimensional array, the usual rules
apply to decide which dimension should be used.

N

Required. Any numeric expression giving the number
of array entries to use. If this value is greater than the
dimension of the array, then the array dimension is
used for N.
If N extends past the upper bound of the lowest array
dimension, this computation will "wrap-around" and
resume at element 0, until N elements have been pro-
cessed.

File

Required. Any text expression giving the file name for
the historical data file. The file extension should not be
added to the name since the default of ".DAT" is auto-
matically added.
If the file name is prefixed with a period, the path will
be to the directory that the module is contained in.

FieldNum

Required. Any numeric expression giving the field
number to be read from the file. The value number for
the actual data starts at 0 and corresponds to the
columns specified in Save or SaveHistory.
It is also possible to retrieve time data associated with
each record by setting this parameter to a negative
value.
Time options are:

FieldNum Time Option

-1 Time of day only

-2 Date only

-3 Time since January 1, 1970

It is possible to retrieve more than one field in a
single Get statement. To do this, pass an array
of values in as the FieldNum parameter

StartDate

Required. Any numeric expression for the date
(expressed as the number of days since January 1,
1970) to search for in the file as the starting date for
the data.
If less than 0, this indicates the relative file position to
read rather than the date. A -1 indicates the last entry
in the file, a -2 the second last, and so on.
If more points are requested than exist, Invalid values

will be retrieved. For example, if this parameter is -20,
and there are only 5 data points, the resultant array
will contain 15 Invalid values followed by 5 valid val-
ues.
Note: If the Save was used with a non-negative Buffers
parameter, the last entry in the file will be an Invalid
value - the last valid entry will be indicated by -2, the
second last by -3 and so on.

StartTime

Required. Any numeric expression giving the time of
day (in number of seconds since midnight) on
StartDate to search for in the file as the starting time
for the data. This may be greater than one day. It may
also be negative, where data will start the previous day
at (86400 - StartTime) seconds after midnight.
If StartDate is less than 0, StartTime is ignored.

TPP

Required. Any numeric expression giving the time
span in seconds for each array entry. Each array ele-
ment will contain the data that corresponds exactly to
this time period, which corresponds to 0 or more data
points in the file.
If TPP is positive and FieldNum selects a text value, the
first entry which falls in a time is read and Mode is
ignored.
If TPP is equal to 0, the data is read from the file and
placed in the array on a one-to-one basis. If TPP is less
than 0, the data is read on a one-to-one basis from the
StartDate and StartTime for (negative) TPP seconds -
TPP places an upper limit on the time span to read.
In both of these cases the Mode parameter is ignored.

Mode

Required. Any numeric expression giving the method
of handling the data. If TPP is greater than 0, the values
that fall in each time span will be represented as fol-
lows:

Mode Representation

0 Time weighted average

1 Minimum in range

2 Maximum in range

3 Change in value over the range

4 Value at start of range

5 Time of minimum in range (in seconds
since Jan. 1, 1970)

6 Time of maximum in range (in seconds
since Jan. 1, 1970)

7 Count the total number of zero to non-
zero transitions within each TPP period.

8 Totalizes, for each TPP, the amount of
time when the value is non-zero (Invalid
is counted as zero).

9 Totalizes, for each TPP, the arithmetic
sum of the recorded values.

10 Interpolates between values.

11 Totalizes, allowing for value rollover.

In the case of modes 5 and 6, FieldNum should
still be set to indicate the field number on which
the mode is to act. The return values will be
times indicating the minimum or maximum in
that field for each time span.
In the case of mode 10, the result interpolates

between values. This is primarily intended for
the case where there are several TPPs per recor-
ded value, as the time-weighted average returns
a stepped curve in this case. The interpolate
mode returns a smoother curve.
In the case of mode 11, each value in the time
range is compared against the previous value,
and if it is less, it is assumed to have rolled over
some limit and that limit is then added to the
accumulated value. The rollover limit is spe-
cified in the StaleTime parameter.
If FieldNum is less than 0 (i.e. a time/date value
is being requested), the modes listed above are
still valid, although not particularly practical. A
time/date will be retrieved for every time span
containing a data point, even if that point is
Invalid, as in the case of a Save statement whose
Buffers parameter is 0 (causing an Invalid value
to be written).
If TPP is less than or equal to 0, Mode is
ignored. If the data is text, the first entry in a
given time range is used for the array entry, and
Mode is ignored.
It is possible to retrieve more than one mode in
a single Get statement. To do this, pass an array
of values in as the Mode parameter.

StaleTime

An optional parameter that sets a maximum validity
duration for data elements that are being TPP pro-
cessed. Normally, every data point is treated as remain-
ing valid until the next data point. If a valid StaleTime
parameter is given, then any data point will be treated

as invalid StaleTime seconds after the recorded time. If
TPP is less than or equal to 0, StaleTime is ignored. If
StaleTime is not required, but PathPrefix is, then
StaleTime should be given as either an Invalid value, or
a constant zero. If Mode is 11, then StaleTime is the
accumulator rollover value.
It is possible to specify more than one stale time in a
single Get statement. To do this, pass an array of val-
ues in as the StaleTime parameter.

PathPrefix

An optional text expression parameter that enables
and controls the retrieval of data from across a set of
files.

Com-
ments:

This function will return either the relative file position of the file entry
following the last entry read, or an error code. If the return value is
negative, it is the file position. If it is 0, the end of the file was reached
before all the data was read. If the return value is positive, one of the
following errors occurred.

Error Code Error

1 Parameter values out of described range

2 File could not be opened

3 Corrupted .DAT file

4 Field requested could not be found

If StartDate is given a negative value, indicating that a par-
ticular entry is to be retrieved, it must be stressed that the file
being read by the Get may or may not contain an Invalid
record at the end of the file. If the Save that created the file
was given a negative number for its Buffers parameter, the
Invalid record would not have been written to the file, how-
ever, a zero or positive value for Buffers will mean that the
last record of the file will be one whose fields are all Invalid
and whose time and date stamp reflect the cessation of writ-

ing to the file by the Save.
If FieldNum is an array with more than one element, then Get
will retrieve multiple fields from the file. In this case,
ArrayElem must represent an array with at least two dimen-
sions. The requested values will be returned in a manner ana-
logous to GetHistory. That is, with the data for a column in
the rightmost dimension, and the column index in the pre-
vious dimension.
When FieldNum is specified as an array, Mode or StaleTime,
or both, may be specified as either a single value or an array
of values. If a single value is specified, that value will be used
for each of the fields specified in FieldNum. If an array of val-
ues is specified, the first element in the array will be applied
to the first element of FieldNum, and so on.
If PathPrefix is specified, then this changes the interpretation
of the File parameter. In this case, the referenced file is not
the source of the data, but a file containing references to
other files that are data sources. This file should be in stand-
ard VTScada LogFile format and should contain a file ref-
erence as the first text value of each record (other values are
ignored). The records should be in the correct time order with
respect to the data files. The value of the PathPrefix is a
string, which when prefixed to one of the file references, will
yield a full pathname to the target file. If no prefix is
required, but expansion of the dataset is required, then
PathPrefix should be an empty string.

l If a filename entry does NOT begin with a "\" or "<drive let-
ter>:\", then the PathPrefix will be prepended to the filename.

l If a filename entry DOES begin with "<drive letter>:\", then the
PathPrefix will NOT be prepended to the filename.

l If a filename entry does begin with a "\", then the "<drive let-
ter>:\" from the PathPrefix will be prepended to the filename. If
there is no "<drive letter>:\" in the PathPrefix then the "<drive

letter>:\" from the path of the File parameter will be used
instead.

PathPrefix would normally be Invalid or the application path.
If a Get is executed while a Save is still active, the save buffer
will immediately be flushed to disk. That is to say, data in the
buffer that may have been otherwise overlooked by this par-
ticular Get will be written to disk so that the current data set
is available to the Get in its entirety.
Care must be exercised when using the result from a Get func-
tion in further Get functions. This is the normal use for the
return value; however, if a Save statement updates the file
between Get functions, the return value will be shifted by one
from its original file position. The solution to this problem is
to either ensure that the Save statement is not executed by
disabling the Trigger, or to keep the successive Get functions
in a single script.

Example:

If ! Valid(exists);
[
exists = FileFind("G:\Mixer\Trend.DAT"
{ Path and files to search },
0 { Normal file attributes },
2 { Return full path and name });

]
If Valid(exists[0]) && exists[0] == "G:\Mixer\Trend.DAT";
[
Get(Trend[0] { Destination array },

100 { Get 100 array elements from file },
"G:\Mixer\Trend" { path and file name },
0 { Read first 'column' from file },
Today() { Starting today },
Seconds() - 3600 { Starting 1 hour ago },
18 { Each element represents 18 seconds },
0 { Time weighted avg over 18 secs });

]

This tests to make sure that the file exists, and then reads a half hour of
data from a file, starting 1 hour (3600 seconds) ago. Note that just after
midnight, the expression Seconds() - 3600 may be negative. The Get
statement interprets this as before midnight on the previous day (which

is correct). X is set to the record following the last record read from the
file. Note also that a full path name may be specified, including network
drives. Also note that it is irrelevant when data were logged to the file.
The Save statement trigger could have been a regular timer (such as
AbsTime), or an event (such as Change as applied to a variable).

If ! Valid(filePos);
[
filePos = Get(array1[10]{ Start at element 10 },

25 { Read 25 array elements },
"trips" { File trips.dat (in current dir) },
1 { Read time stamp, not data },
25 { Read 25 items before EOF },
0 { Start time is ignored },
0 { Read on a point-by-point basis },
0 { Mode is ignored });

]

This reads the time stamps of the 25 most recently logged entries into
elements 10 through 34 of array1. FilePos is set to the item past the last
item read (in this case, the oldest record).

GetAccountID

Security Manager Module

Description: Returns the account ID of the named account.

Returns: String

Usage: Script or steady state.

Related to: GetAccountInfo | GetFullName | GetGroupName | GetUser-
Name | IsLoggedOn | IsSecured | IsSuspended | Secur-
ityCheck | UIErrorToText

Format: \SecurityManager\GetAccountID([AccountName])

Parameters:

AccountName

Optional. The name of the account to obtain the
account ID for.

Comments: If AccountName is Invalid or not specified, returns the
account ID of the caller’s account.

GetAccountInfo

Security Manager Module

Description: Returns one or more AccountData structures.

Returns: Dictionary

Usage: Script Only.

Related to: BuildFullName | GetAccountID | GetFullName |
GetGroupName | GetUserName | IsLoggedOn | IsSecured |
IsSuspended | SecurityCheck | UIErrorToText

Format: \SecurityManager\GetAccountInfo([AccountID,
IndexByID]);

Parameters:

AccountName

Optional. The account ID for which information is to be
obtained.

IndexByID

Optional. A Boolean. If TRUE the returned dictionary
will use account IDs as the dictionary key. If FALSE
(default) the returned dictionary will use the account
names as the dictionary key.

Comments: To use this API, the calling code must be running in a secur-
ity session that has Manager privilege.
If AccountID is valid, a single AccountData structure is
returned for the specified account.
If Account ID is Invalid, a dictionary of AccountData struc-
tures for every account is returned. The dictionary uses
either account names or account IDs as the dictionary key,
depending on the value of the IndexByID parameter.
The AccountData structures returned here can be modified
in situ and passed back into ModifyAccount or DeleteAc-
count to effect changes to the account records.
The Password and AltID fields of the returned structure are

always Invalid.

GetAlarmConfiguration

(Alarm Manager module)

Description: Returns a copy of an alarm's configuration structure, return-
ing an unpopulated structure it does not already exist.

Returns: Structure (see comments)

Usage: Script Only.

Function Groups: Alarm

Related to: Commission | GetAlarmStatus

Format: \AlarmManager\GetAlarmConfiguration(AlarmName)

Parameters:

AlarmName

Required text. The alarm name. Typically, the unique
id of the alarm tag, or the tag containing built-in
alarms.

Com-
ments:

GetAlarmConfiguration should be called before com-
missioning an alarm. This will create an alarm structure that
can be populated for the call to \AlarmManager\Commission
().
An alarm has the following configuration structure:

ConfigurationStruct { All Boolean flags default to FALSE }

Name Unique name for the alarm

FriendlyName Display name of the alarm's source

Area Area

Description Description. Was "Message" prior to 11.2

Priority Priority. Must be valid to be commissioned. Must be
an integer corresponding to the Alarm Priority tag val-
ues.

Reserved

ConfigurationStruct { All Boolean flags default to FALSE }

Disable TRUE to disable the alarm

DisableParmName Name of the tag's disable parm. Allows us to get the
operator name who made the config change.

OnDelay Seconds to delay before activating

OffDelay Seconds to delay before clearing

RearmDelay Seconds to delay before rearming after ack

Setpoint Setpoint of alarm evaluation

ValueLabels Array of labels to display instead of Value or Setpoint.
Rarely used by tags other than digitals.

Units Setpoint units

Function Enumerated function for alarm evaluation (1)

AlarmType String identifying the type of alarm

Trip TRUE if alarm only becomes unacked not active

NormalTrip TRUE if alarm becomes unacked when it clears

OffNormal TRUE if alarm only becomes active not unacked

Deadband Setpoint deadband

PopupEnable TRUE to enable popup display of active alarm

SoundFile Filename relative to app path of custom sound

Custom Array/Dictionary/Structure of custom fields

AdHoc TRUE if alarm is ad hoc

Example:
The following would typically be found in a tag's Refresh state.

IfElse(Valid(Name), Execute({ create or obtain the configuration
structure for this alarm }
 Cfg = \AlarmMan-
ager\GetAlarmConfiguration(UniqueID);

{ update the property values in that
structure }
 Cfg\Name = Root\UniqueID;
 Cfg\Area = AreaValue;
 Cfg\Priority = PriorityValue;
 Cfg\Setpoint = 1;
 Cfg\Function = \AlarmManager\ALM_FUNC_

EQUAL;
{ commission (or update the commission

of) the alarm }
 \AlarmManager\Commission(Root, Cfg,
Value);
);
);

Related Information:
(1)Function constants are documented in the VTScada Programmer's
Guide in: "Alarm Manager Function Constants"

GetAlarmList

(Alarm Manager module)

Description: Returns filtered and sorted lists of records from alarm data-
bases.

Returns: See descriptions in the parameter list.

Usage: Script Only.

Function Groups: Alarm

Related to:

Format: \AlarmManager\GetAlarmList(ListPtr, LengthPtr,
ListNames[, Snapshot, IncludeShelved, IncludeCon-
fig, FilterExpr, CalculatedFields, Cal-
culatedFieldsScope, SortOrder, BeginTime, EndTime,
MaxHistory, PtrDone, PtrHistoryProgress,
PtrChangeStats, DBTags, RefreshInterval, Realm])

Parameters:

ListPtr

Required. This pointer will be assigned the array of
records being returned. The array may be longer than
the number of records, see LengthPtr for the valid
length.

LengthPtr

Required. Pointer to a variable which will be assigned

the number of elements in the ListPtr array that are to
be used.

ListNames

Required. Provide an array of alarm names to
which the alarm lists will subscribe, or a text
string containing a single alarm name. Valid list
names include:

l History

l Active

l Unacked

l Current

l Shelved

l Disabled

l Configured

Snapshot

Optional Boolean. If TRUE, then this function will take a
snapshot of the list(s) and terminate. If FALSE, then the
function will build the list while also keeping it
updated.
A snapshot of live list(s) acts as a subroutine, all other
uses must launch a worker process.
Defaults to FALSE.

IncludeShelved

Optional Boolean. Set TRUE to include shelved alarms.
Defaults to FALSE.

IncludeConfig

Optional Boolean. Set TRUE to include alarm con-
figuration events in History. Defaults to FALSE.

FilterExpr

Optional text string that is the expression to evaluate if
a record is to be included.
Standard area filtering is handled automatically so

should not be included in this expression.

CalculatedFields

Optional array. May be used to create additional
record fields or modify existing records. A call-
back subroutine allows record field values to be
replaced, for example swapping AccountID for
an operator name.
If specified, this parameter must be an array
that defines the extra record fields.
For example:

CalculatedFields = New(4);
CalculatedFields[0] = "FriendlyName";
CalculatedFields[1] = "IsActive";
CalculatedFields[2] = "IsUnacked";
CalculatedFields[3] = "IsDisabled";

CalculatedFieldsScope

Optional. Scope in which to find calculated field val-
ues. Often, Self()

SortOrder

Optional. For live lists this is sorting inform-
ation for SortArray.
For example:

{ Sort by friendly name }
SortInfo = SortKeys("FriendlyName", 1 { text
}, #SortAscending);

For history set TRUE for forward chronological,
and FALSE for reverse (default).

BeginTime

Optional UTC timestamp. Oldest time. May be used
when filtering history.

EndTime

Optional UTC timestamp. Newest time. May be used
when filtering history.

MaxHistory

Optional numeric. Limits the number of history
records retrieved. No default.

PtrDone

Optional pointer. Will be set TRUE when history search
completes.

PtrHistoryProgress

Optional pointer. Will be set to a structure instance con-
taining progress stats (HistoryProgressDef)

PtrChangeStats

Optional pointer. Will be set to a structure with
Add/Mod/Del counts. Allows the caller to detect
changes.

DBTags

Optional array of AlarmDatabase tag names
(UniqueIDs or Friendly Names). If a simple text value,
then it is the single tag to access. If Invalid then all
AlarmDatabase tags are included. Realm filtering is
automatically detected and used.

RefreshInterval

Optional. Minimum time in seconds between sorted
array updates. Defaults to a half-second.
May also be set by adding an application property,
AlarmListRefreshDelayTime.

Realm

Optional; realm to use for realm area filtering. This will
be detected automatically for the logged-on account if
not otherwise specified.

Comments: An alarm database contains a history of alarm trans-
actions / event records. Event records are included
only in a queries for a history list.
Filtering - Only records that pass filtering will be

displayed. Filtering may be:
l Area filtering (Realms, etc..) [automatic]

l Shelved alarm suppression

l Custom filter expression
For efficiency reasons the filtering is done on the
base record rather than the calculated version.
History - Unlike the live lists, the history is unboun-
ded and must be accessed from storage. The pro-
cess can take time so search progress is reported
via PtrHistoryProgress.
When working with a live list, the system will auto-
matically rerun filtering and recalculate fields if an
alarm is changes on any list; allowing filtering and
calculated fields based on other list state.

Example:

LoadList [
 If 1 WaitResults;
[

 \AlarmManager\GetAlarmList(&Records, &NRecords, "History", TRUE,
ShowShelved, FALSE,
 Concat("Record\Name == """,
Record\Name, """ && (Record\Action == ""Active"" || Record\Action ==
""Trip"")"),
 Invalid, Invalid, FALSE, StartTime,
EndTime, NRecordsLimit,
 &Done, &Progress);
]
]

GetAlarmObject

(Alarm Manager module)

Description: Returns an alarm object value given an alarm name.

Returns: Object reference.

Usage: Script Only.

Function Groups: Alarm

Related to:

Format: \AlarmManager\GetAlarmObject(AlarmName[, ptrRoot])

Parameters:

AlarmName

Required text. The alarm name. Typically, the unique
id of the alarm tag, or the tag containing built-in
alarms.

ptrRoot

Optional pointer. If valid, and if the alarm is a tag or a
submodule of a tag, that tag's object value will be
returned in this parameter.

Comments: This function can also provide the alarm's Root tag
value, returned through the optional second para-
meter.

Example:

{ Given an array of alarm records, get the tag object from the alarm
name whenever the array index, SelRecord, changes. }
If Watch(1, Records[SelRecord]\GUID);
[
 \AlarmManager\GetAlarmObject(Records[SelRecord]\Name, &Root);
 ShortName = \AlarmManager\GetNameOfRecord(Records[SelRecord]);
]

GetAlarmStateStats

(Alarm Manager module)

Description: Returns a structure containing the cumulative alarm state
statistics for the specified tag. If the tag is the ancestor of
multiple alarm tags, the stats will be the accumulation of all
descendent alarms.

Returns: Structure

Usage: Script Only.

Function Groups: Alarm

Related to: GetAlarmObject

Format: \AlarmManager\GetAlarmStateStats(TagName)

Parameters:

TagName

Required. The tag for which statistics are to be
gathered.

Comments: TagName may be a context or other parent, in which
case statistics will be gathered for all of the child
tags.

Example:

TotalStats = Code\AlarmManager\GetAlarmStateStats(MyContextTagName);
TotalUnackedPriority = TotalStats\HighestUnackedPriority;

GetAlarmStatus

(Alarm Manager module)

Description: Returns a reference to an alarm's status structure, provid-
ing access the alarm's current state without having to make
function calls.

Returns: Structure (see comments)

Usage: Script Only.

Function Groups: Alarm

Related to: IsActive | IsDisabled | IsShelved | IsUnacked

Format: \AlarmManager\GetAlarmStatus(AlarmName)

Parameters:

AlarmName

Required text. The alarm name. Typically, the unique
id of the alarm tag, or the tag containing built-in
alarms.

Com- Use this when writing code that will monitor the status of an

ments: alarm. In older versions of VTScada, function calls were used
for the same task. For the sake of backward-compatibility,
those functions will continue to work, but should not be used
in new code.

AlarmStatus Struct

IsActive TRUE if alarm is on the Active list };

IsUnacked TRUE if alarm is on the Unacked list };

IsShelved TRUE if alarm is on the Shelved list };

IsDisabled TRUE if alarm is on the Disabled list };

Variables within the structure may be accessed using either
the dot notation or the backslash.

Example:
Monitor for when the alarm is active and unacknowledged, possibly to
display a message.

 IF Watch(1) Main;
[

 AlmStatus = \AlarmManager\GetAlarmStatus(AlarmName);
]
...
Main [
 IfElse(AlmStatus.IsActive && AlmStatus.IsUnacked,

... { TRUE case },

... { FALSE case });
]

Related Information:

GetAppInstance

(System Library)

Description: Retrieves the Layer object (LayerRoot) for a particular
application specified by GUID.

Returns: Object (Layer object returned via a parameter)

Usage: Script Only.

Function Groups: Configuration Management

Related to: GetLoadedAppInstance | GetCodeObj | GetGUID

Format: \System\GetAppInstance(GUID, pAppInstance)

Parameters:

GUID

Required text. The 36-byte GUID of the application to
be retrieved.

pAppInstance

A pointer to a variable. The Layer object matching the
GUID will be returned via this pointer.

Comments: The return value of this function will be an object that
becomes invalid upon completion. If the Layer has not fin-
ished loading, this function will wait until it does so before
returning. This is an asynchronous operation.
If the GUID does not match any known application, then an
Invalid value will be assigned to the second parameter.

Examples:

Init [
 IF 1 WorkState;
[

 WaitObj = \System\GetAppIntance(GUID, &TargetLayer);
]
]

GetByte

Description: Returns a single byte from a buffer.

Returns: Byte

Usage: Script or steady state.

Function Groups: String and Buffer

Related to: SetByte

Format: GetByte(Buffer, Offset)

Parameters:

Buffer

Required. Any buffer expression giving the buffer to
get the byte from.

Offset

Required. Any numeric expression giving the offset
from the start of the buffer in bytes, starting from 0.

Comments: This function is useful for manipulating ASCII text on a
byte-by-byte level. For example, examining serial I/O
driver response packets.

Example:

oneByte = GetByte(response, 0);

The variable oneByte is set to the ASCII value of the first byte in the text
variable response. If response is Invalid, then oneByte will be Invalid. If
oneByte is valid, its value will always be in the range 0 to 255.

GetClientDiverts

(RPC Manager Library)

Description: Returns a one-dimensional array of flags, indicating the
divert status of each client.

Returns: Array

Usage: Steady State only.

Function Groups: Network

Related to: SetDivert | GetClientGUIDs

Format: \RPCManager\GetClientDiverts(Service [, OptGUID])

Parameters:

Service

Required. Any text expression giving the name by
which the service is known.

OptGUID

An optional parameter that is any expression giving
the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service
instance is located. The default is the application to
which the caller belongs.

Comments: This module is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the module call must be
prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
Each client that has service RPCs diverted to an auxiliary
holding queue (as a result of the SetDivert function) has its
array element in the returned array set to one.
If the 16-byte binary format of the GUID for the application
in which the service instance is located is not known, the
GetClientGUIDs function may be used to obtain it.

GetClientGUIDs

(RPC Manager Library)

Description: Returns a one-dimensional array of the application GUIDs
of the clients of the specified RPC service instance.

Returns: Array

Usage: Steady State only.

Function Groups: Network

Related to: GetClientIPs | GetClientList

Format: \RPCManager\GetClientGUIDs(Service [, OptGUID]);

Parameters:

Service

Required. The name by which the service is known.

OptGUID

An optional parameter that is any expression giving
the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service
instance is located. The default is the application to
which the caller belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
The returned array elements will all be the same, unless
cross-application RPC is being used.

GetClientIPs

(RPC Manager Library)

Description: Returns a one-dimensional array of the IPs of the clients of
the specified service instance.

Returns: Array

Usage: Steady State only.

Function Groups: Network

Related to: GetClientGUIDs | GetClientList | GetClientNodes

Format: \RPCManager\GetClientIPs(Service [, OptGUID]);

Parameters:

Service

Required. The name by which the service is known.

OptGUID

An optional parameter that is any expression giving
the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service

instance is located. The default is the application to
which the caller belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
On a multi-homed system, any of the possible IPs may be
returned for each client.

GetClientList

(RPC Manager Library)

Description: Returns a one-dimensional array of the names of the cli-
ents of the specified service instance.

Returns: Array

Usage: Steady State only.

Function Groups: Network

Related to: GetClientGUIDs | GetClientIPs

Format: \RPCManager\GetClientList(Service [, OptGUID]);

Parameters:

Service

Required. The name by which the service is known.

OptGUID

An optional parameter that is any expression giving
the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service
instance is located. The default is the application to
which the caller belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as

shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
On a multi-homed system, any of the possible alias names
may be returned for each client.

GetClientMode

(RPC Manager Library)

Description: Returns a one-dimensional array of the modes of the cli-
ents of the specified service instance.

Returns: Array

Usage: Steady State only.

Function Groups: Network

Related to:

Format: \RPCManager\GetClientMode(Service [, OptGUID]);

Parameters:

Service

Required. The name by which the service is known.

OptGUI

An optional parameter that is any expression giving
the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service
instance is located. The default is the application to
which the caller belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.

The mode value represents the current synchronization
state of the client, with respect to the local service
instance. Presently, one of the following values may be
returned in each array element
\RPC_ACCEPT_ALL – the client is fully synchronized;
\RPC_SYNC_MODE – the client is being synchronized; or
\RPC_LINKCONTROL_ONLY – client requires syn-
chronization.

GetClientNodes

(RPC Manager Library)

Description: Returns a one-dimensional array of the object values of the
Machine Nodes of the clients of the specified service
instance.

Returns: Array

Usage: Steady State only.

Function Groups: Network

Related to:

Format: \RPCManager\GetClientNodes(Service [, OptGUID]);

Parameters:

Service

Required. The name by which the service is known.

OptGUID

An optional parameter that is any expression giving
the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service
instance is located. The default is the application to
which the caller belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are

developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.

GetCodeObj

Description: Retrieves the "Code" object associated with the layer.

Returns: Object

Usage: Script Only.

Function Groups: Configuration Management

Related to: GetLoadedAppInstance |

Format: LayerRoot\GetCodeObj()

Parameters: none

Comments: This function is useful when there is a need to work with
the code object of a layer other than the current applic-
ation.

Examples:
Given a valid, 32-character application GUID, stored in TextGUID, the fol-
lowing will obtain the list of parameters in the current page.

Layer = GetLoadedAppInstance(TextGUID);
AppCodeObj = Layer\GetCodeObj();
PageParmNames = ListVars(Scope(AppCodeObj, SessionData), "*", 0, 0, 4
{parms}, 0, 0, 0, 0);

GetColorInfo

Description: Returns the brush and pen information for a given graphic
statement.

Returns: Numeric

Usage: Script Only.

Function Groups: Graphics, Color

Related to: Brush | Pen

Format: GetColorInfo(Code, PenBrushNum, Attribute)

Parameters:

Code

Required. Any statement which gives the code pointer
of the object whose color information is desired.

PenBrushNum

Required. Any numeric expression which gives the
number of the pen or brush which the color inform-
ation is desired for. The first pen or brush is numbered
1.

Attribute

Required. Any numeric expression which gives the
desired color attribute.

Attribute Color Attribute

0 Type of the PenBrushNum supplied.
Return value is 19 (brush) or 20
(pen)

1 The foreground color of the brush
or pen specified

2 For a brush, the background color,
for a pen, the width

3 For a brush, the pattern number,
for a pen, the style

Comments: The return value of this function is determined by Attrib-
ute.

GetConfiguration

Description: Returns the configuration parameters from the license key
for this copy of VTScada.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Software and Hardware

Related to: SerialNum

Format: GetConfiguration(Option)

Parameters:

Option

Option Configuration Item

0 Serial number of this copy of VTS

1 Number of hours for restricted run
time (0 if unrestricted)

2 Expiry date for free updates'

3 Number of tags permitted (or 0 if no
limit)

4 Number of browser clients permitted

5 Run mode (0 = Full. 1 = Run Time. 2 =
Configuration. 3 = View Mode)

6 Dongle required to run.

7 Returns the number of days remaining
in the evaluation period. If this is not
an evaluation license, then this option
returns Invalid.

8 Returns the Client Connection Restric-
tion. If TRUE (1). VTScada client sys-
tems installed with this license may
only connect to servers with the same
serial number. If FALSE (0), VTScada cli-
ent systems installed with this license
may connect to any server.

9 The VTScada Alarm Notification System
is an option controlled by the install-
ation key in VTScada versions 7.1 and
later. Option 9 returns the status of
this enable – TRUE if the Alarm Noti-
fication System is supported. FALSE if
the Alarm Notification System is not
supported.

10 Returns the copyright statement built
into VTScada. The format of the
returned text string is: "Copyright ©
1988-2011 Trihedral Engineering Ltd"

11 Not used.

12 Returns 1 if WEB services are enabled.
0 if not

13 Returns 1 if the ODBC server is
enabled. 0 if not

14 Returns 1 if the OPC server is enabled.
0 if not

15 Returns 1 if this installation is licensed
to run 64-bit VTScada. 0 if not

16 Returns 1 if the key enables the Show
Version Control option in the Applic-
ation Properties Dialog

17 Returns 1 if Synchronized Configuration is
enabled

18 Returns 1 if Application RPC Services are
enabled

19 Returns 1 if machine is an RPC Server

20 Reserved

21 IVONA (Deprecated)

22 Returns 1 if ScadaAce is enabled.

23 Returns the installation key evaluation
period type, as follows:
 0 - unlimited;
 1 - 30 days from install;
 2 - 90 days from install;
 3 - same as maintenance expiration

Comments: If the license key information fails certain consistency
checks, then this function returns Invalid for all values of
Option.
This function can be used to determine license restrictions
pertaining to the current copy of VTScada. GetCon-
figuration(0) is identical to the function SerialNum() and is
preferred for all new code.

GetConnList

(ODBC Manager Library)

Description: Called to obtain a list of the available connections. The list
will be returned in the form of two pointers; one for an
array of the connection objects and the other for an array
of the connection names.

Returns: Numeric. The connection list will be passed back in the
parameters.

Usage: Script or steady state.

Related to:

Format: \ODBCManager\GetConnList(ObjPtr, NamePtr)

Parameters:

ObjPtr

Required. The list of object values to return.

NamePtr

Required. The list of names to return.

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.
Returns 0 upon completion
The module may be called as a subroutine in a script or as
a called function in a state. When called in a state, there is
no automatic updating of the connection list as it changes.

GetContainerNumActive

(Alarm Manager module)

Description: Returns the number of active alarms within a hierarchy of
tags.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Alarm Manager

Related to: Accumulate | GetContainerNumUnacked

Format: GetContainerNumUnacked(ContainerObj);

Parameters:

ContainerObj

Required. The container tag to query.

Comments: The alarm count is accumulated by the hierarchical accu-
mulator module. Alarm tags and tags with built in alarms
are designed to contribute to this accumulator auto-
matically. If you have written a custom tag with a built-in
alarm, you must ensure that it contributes its active alarms
to the count.

Example:

TotalNumUnacked = Code\AlarmManager\GetContainerNumActive(MyTagName);

GetContainerNumUnacked

(Alarm Manager module)

Description: Returns the number of unacknowledged alarms within a
hierarchy of tags.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Alarm Manager

Related to: Accumulate | GetContainerNumActive

Format: GetContainerNumUnacked(ContainerObj);

Parameters:

ContainerObj

Required. The container tag to query.

Comments: The alarm count is accumulated by the hierarchical accu-
mulator module. Alarm tags and tags with built in alarms
are designed to contribute to this accumulator auto-
matically. If you have written a custom tag with a built-in
alarm, you must ensure that it contributes its unac-
knowledged alarms to the count.

Example:

TotalNumUnacked = Code\AlarmManager\GetContainerNumUnacked
(MyTagName);

GetContributors

Description: Returns a copy of an array of object values of contributors
for a given container.

Returns: Array

Usage: Script Only.

Function Groups: Containers and Contributors

Related to:

Format: GetContributors(HandleName, ContainerObj);

Parameters:

HandleName

Required. The name of the handle variable in the con-
tainer module.

ContainerObj

Required. The object VTScada Value Types - Numeric

Reference of the container tag module.

Comments: This function can be called from the contributor.

GetCryptoProvider

Description: The GetCryptoProvider function is used to acquire a handle
to a particular key container within a particular cryp-
tographic service provider (CSP). This returned handle can
then be used to make calls to the selected CSP. It is the
VTScada analog of the CryptoAPI CryptAcquireContext
call.

Returns: Handle

Usage: Script Only.

Function Groups: Cryptography

Related to: DeriveKey | Decrypt | Encrypt | ExportKey |
 GenerateKey | GetKeyParam | ImportKey | SetKeyParam

Format: GetCryptoProvider(CSPType [, CSPName, ContainerName,
Flags, Error])

Parameters:

CSPType

Required. The type of CSP required. Values are defined
in WinCrypt.h.

CSPName

An optional parameter that holds the name of the
required CSP. If omitted or invalid, then a handle to the
default CSP of the specified type will be acquired.

ContainerName

An optional parameter that holds the name of the key
container. If omitted or invalid, then the default key
container for the CSP is used.

Flags

An optional parameter specifying the flags to be
passed to CryptAcquireContext. If omitted or invalid
then the value 0 is used.

Error

An optional variable in which the error code for the
function is returned. It has the following meaning

Error Meaning

0 CSP handle successfully returned.

1 CSPType parameter invalid.

x Any other value is an error from
CryptAcquireContext.

Comments: The return value for this function is a handle to the CSP. If
an error occurs, then the return value is invalid. A CSP
handle has a value type of 36. If cast to text then the name
of the CSP will be returned.
If ContainerName is omitted or invalid then a default key
container name is used. For example, the Microsoft Base
Cryptographic Provider uses the logon name of the user
logged on as the key container name. Other CSPs can also
have default key containers that can be acquired in this
way.

Example:

[
CSP;
CSPFail;
Container = "VTS";
Constant PROV_DSS_DH = 13;
Constant CRYPT_NEWKEYSET = 8;
Constant NTE_BAD_KEYSET = 0x80090016;

]
Init [
If 1 Main;
[
CSP = GetCryptoProvider(PROV_DSS_DH, Invalid,

Container, Invalid, CSPFail);
IfThen(CSPFail == NTE_BAD_KEYSET,
{ Not used this container before, make a new one }
CSP = GetCryptoProvider(PROV_DSS_DH, Invalid,

Container, CRYPT_NEWKEYSET, CSPFail);
);

]
]

GetDefaultValue

Description: Returns a variable's default value.

Returns: Varies

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Variable

Related to: SetDefault | FindVariable

Format: GetDefaultValue(Variable)

Parameters:

Variable

Required. Any expression for the variable value.

Comments: If the given variable does not have a default value this func-
tion will return Invalid. The current value of Variable does
not affect the return value of this function.

Example:

If ! Valid(defValue);
[
defValue = GetDefaultValue(FindVariable("originalVal", Self(),

0, 1));
]

The above statement will assign the default value of original to defValue.
The reason that the statement is inside a script is because FindVariable
may only appear inside a script.

GetDevices

(VoiceTalk Module)

Description: Runs in the VoiceTalk thread and returns a list of devices
available on a SAPI text-to-speech stream.

Returns: Array

Usage: Script Only.

Function Groups: Speech and Sound

Related to: Configure | GetVoices | Reset | ShowLexicon | Speak |
 VoiceTalk

Format: VoiceTalkStream\GetDevices()

Parameters:

VoiceTalkStream

Required. A speech stream returned from VoiceTalk.

Comments: This function will immediately return a 1-dimensional list
of output device names available for the text-to-speech
stream. The strings in this array are suitable to pass as
devices to the VoiceTalk\Configure module.

Example:

sHandle = \VoiceTalk();
If Valid(sHandle) && ! getDevices;
[
getDevices = 1;
sDevices = sHandle\GetDevices();

]

This will return an array of all available text-to-speech output devices in
the array sDevices.

GetFileAttribs

Description: Returns information about the specified file.

Returns: Numeric

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: File I/O

Related to: SetFileAttribs

Format: GetFileAttribs(FileName[, Mode])

Parameters:

FileName

Required. Any text expression giving the name of the
file. A known path Known Path Aliases for File-Related
Functions may be provided in the form, :
{KnownPathAlias}.

Mode

Optional numeric value that controls what information
is returned by this function. Defaults to 0 if missing or
invalid.

Mo-
de:

Function Returns:

0 File attributes in the form of a value set to
the sum of the following values:

Value Bit No. Attribute

0 - Normal

1 0 Read only

2 1 Hidden

4 2 System

8 3 Archive

16 4 Directory

1 Timestamp showing the date modified

2 File access and status flags as follows:

0 File is locked or doesn’t exist.

1 Open access (file exists and isn’t open-
locked.

2 Read access (bit 0 is always true if this
is true).

3 Write access (bit 0 is always true if this
is true).

Comments: The return value will vary according to Mode. See tables
above.

Example:

If Watch(0, newFile);
[

attribs = GetFileAttribs(Concat(MyPath, newFile));
]

The above statement will cause attribs to be set to the file attribute value
of newFile every time its name changes.

GetFullName

Security Manager Module

Description Returns the full, namespace-qualified name of the caller’s
account

Returns String

Usage Script or steady state.

Related to: BuildFullName | GetAccountID | GetAccountInfo |
GetGroupName | GetUserName | IsLoggedOn | IsSecured |
IsSuspended | SecurityCheck | UIErrorToText | See also,
"Security NameSpaces" in the VTScada Programmer's
Guide.

Format \SecurityManager\GetFullName()

Parameters None

Comments None

GetGroupName

Security Manager Module

Description Returns the namespace of the caller’s account.

Returns String

Usage Script or steady state.

Related to: BuildFullName | GetAccountID | GetAccountInfo |
GetFullName | GetUserName | IsLoggedOn | IsSecured |
IsSuspended | SecurityCheck | UIErrorToText | See also,
"Security NameSpaces" in the VTScada Programmer's
Guide.

Format \SecurityManager\GetGroupName()

Parameters None

Comments None

GetGUID

Description: Creates a globally unique identifier or converts an existing
GUID to another format.

Returns: Text

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Network

Related to:

Format: GetGUID(Format [, ExistingGUID])

Parameters:

Format

Required. Any numeric expression giving that defines
the format of the return value as follows

Format Format definition

0 36 byte ASCII string

1 16 byte binary string

ExistingGUID

An optional parameter that is any text expression for
the GUID to be converted from one format to another.
No default value.

Comments: Any generated GUID will be different from all others
generated on this or any other machine now or in
the future. It is particularly useful in generating
unique variable or file names.
The current application's GUID is stored in

\LocalGUID, using the 16-byte binary form.

Example:
The following script will cause GUID1 to be set to a globally unique 16
bit binary string and GUID2 to convert GUID1 to its 36 byte ASCII string
equivalent.

If 1 Main;
[
GUID1 = GetGUID(1);
GUID2 = GetGUID(0, GUID1);

]

The next example obtains the current application's existing GUID as a
32-character string.

If 1 Main;
[
MyGUID = GetGUID(0,\LocalGUID);

]

GetHistory

Note: Deprecated. Do not use in new code.

Description: Get History from a File written by Save or SaveHistory. This
threaded function retrieves an array of data from a .DAT
file for a certain time span. If the parameters to GetHistory
are valid and an attempt is made to get the data, the return
value is 0, otherwise, if no attempt is made to get the data,
the return value is 1.

Returns: Numeric (see discussion of the first parameter)

Usage: Script Only.

Function Groups: File I/O, Log

Related to: GetHistory | HistorianDeleteRecords | HistorianGetData |
 HistorianGetInfo | HistorianReadRecords |
 HistorianWriteRecords | Get | GetLog| GetLogInfo | Save
| SaveHistory | TGet

Threaded: Yes

Format: GetHistory(Array, File, StartTime, EndTime [, Error, PathPre-
fix])

Parameters:

Array

Required. A variable that will be set to an array upon
completion of the data retrieval. The format of the
array is [column][record]. Column 0 is the timestamp
in seconds since January 1, 1970. Each subsequent
column is the data for that record. Array is not set if
there is no data for the requested period.

File

Required. Any text expression giving the file name for
the historical data file. The file extension must be
included. If the file name is prefixed with a period, the
path will be to the directory in which the module is con-
tained.

StartTime

Required. Any numeric expression giving the start
time of the period for which data is requested in
seconds since January 1, 1970.

EndTime

Required. Any numeric expression giving the end time
of the period for which data is requested in seconds
since January 1, 1970.

Error

An optional variable that will always be set to a valid
value upon completion of the GetHistory. Its meaning
is as follows:

Error Error Description

0 No error

1 Parameter values out of described
range

2 File could not be opened

3 Corrupted .DAT file

4 Field requested could not be found

If Error is not required, but PathPrefix is, then
Error should be given as an Invalid value.

PathPrefix

An optional text expression parameter that enables
and controls the retrieval of data from across a set of
files.

Comments: This function is threaded - that is to say, it starts its
own thread and VTScada will continue executing.
When it is finished executing, it will set the data in
Array. Note that Array will not be initially inval-
idated upon execution of this statement, so if Array
already contained data when the GetHistory was
executed, that data will remain untouched until all
of the data requested by GetHistory has been
amassed, at which time Array will be set to its new
value.
Since Array could conceivably remain invalid indef-
initely (i.e. there was no data in the requested time
span), Error will always be set to a valid value to
indicate completion of execution.

There is a return value for this function that indic-
ates if any of its parameters are invalid. The func-
tion will immediately return a value of false (0)
unless a parameter was invalid, in which case it will
return true (1). Note that the return value only sig-
nals completion of the function's execution if it is
true, otherwise the function will continue executing
in its thread.

If PathPrefix is specified, then this changes the inter-
pretation of the File parameter. In this case, the ref-
erenced file is not the source of the data, but a file
containing references to other files which are the
data sources. This file should be in standard
VTScada log file format and should contain a file ref-
erence as the first text value of each record (other
values are ignored). The records should be in the
correct time order with respect to the data files. The
value of the PathPrefix is a string, which when pre-
fixed to one of the file references, will yield a full
pathname to the target file. If no prefix is required,
but expansion of the dataset is required, then
PathPrefix should be an empty string.

l If a filename entry does NOT begin with a "\" or
"<drive letter>:\", then the PathPrefix will be pre-
pended to the filename.

l If a filename entry DOES begin with "<drive let-
ter>:\", then the PathPrefix will NOT be prepended to
the filename.

l If a filename entry does begin with a "\", then the
"<drive letter>:" from the PathPrefix will be pre-
pended to the filename. If there is no "<drive let-

ter>:" in the PathPrefix then the "<drive letter>:"
from the path of the File parameter will be used
instead.

PathPrefix would normally be Invalid or the applic-
ation path.

GetHostByName

Description: Calls the WinSock "gethostbyname" function and returns
the host name, address(es) and alias names for the named
computer.

Returns: Array

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Network

Related to: WkStaInfo

Format: GetHostByName(Name)

Parameters:

Name

Required. Any text expression giving the host name
(or an alias) for which information is required.

Comments: This function will return details of the TCP/IP inter-
face to the named computer. The return value is an
array with three elements comprising a structure as
follows:
Element Information
Official host name of the requested computer as
known to the system. If using DNS or a similar res-
olution system, it is the Fully Qualified Domain
Name (FQDN) that caused the server to return a
reply. If using a local "hosts" file, it is the first entry

after the IP address.
An array of addresses. Each address is a text string
giving a "dotted quad" address (xx.xx.xx.xx). If the
name being queried is a remote machine, then
there will be only one address. If the name being
queried is the local machine, then there will be one
address for each network interface (including RAS),
and no interpretation should be placed on the order-
ing of the returned addresses.
Invalid, or an array of alias names. These are altern-
ative names, defined in the local hosts file, by which
the target computer may be referenced.
If the name passed to this function is irresolvable as
belonging to a computer on the network, the reply
will be invalid.
Depending upon the network topology, it may be
several seconds before this call returns, although
other threads in the application will continue to run.

GetID

Description: This returns the ID (opcode) of a given function.

Warning: For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications

Related to: Compile

Format: GetID(Statement)

Parameters:

Statement

Required. Any expression for the code value of the
function.

Comments: This function is used by the compiler. The OpCode for all
functions can be found in the file WEBFUNC.TXT

GetInhibitedServiceList

RPC Manager Service

Description: Returns a one-dimensional array of the names of all ser-
vices inhibited from RPCManager servership control.

Returns: Array

Usage: Script Only.

Function Groups: Network

Related to:

Format: \RPCManager\GetInhibitedServiceList([OptGUID])

Parameters:

OptGUID

The GUID of the application in which the service
instance is located. Optional, the default is the applic-
ation to which the caller belongs.

Comments: Requires that the application be running.

GetINIProperty

(System Library)

Description: Given an array of INIProperty structures, returns the value
of a given property from that array.

Returns: Value

Usage: Script Only.

Function Groups: Configuration Management, Variable

Related to: CaptureSettings | ReadPropertiesFile | SetINIProperty |
 WritePropertiesFile

Format: \System\GetINIProperty(InputArray, Name[, Comment,
pFail])

Parameters:

InputArray

Required. An array of INIProperty structures. See Com-
ment section.

Name

Required. The name of the property whose value is to
be returned.

Comment

Optional pointer to a text value. The comment asso-
ciated with the property will be returned in this field.

pFail

Optional Boolean pointer. If the property is not found,
FALSE will be returned to the calling module in this
parameter.

Comments: The INIProperty structure is as follows

INIProperty Struct [
Name { Variable name in the .star-

tup/.dynamic file };
Value { Simple value

};
Comment { Text comment if present in the

file };
Hidden { TRUE if not visible in Edit

Properties GUI };
];

Example:

{ Read Settings.Startup file }
TempProperties = ReadPropertiesFile(Concat(AppPath,

#APP_INI_FILENAME,
#STATIC_INI_EXT));

GUID = GetINIProperty(TempProperties\Sections["Application"],

"GUID");
OEMGUID = GetINIProperty(TempProperties\Sections["Application"],
"OEMGUID");

GetInSyncServers

Description: Returns a one-dimensional array of the names or IPs of the
potential, synchronized servers for the given service.

Returns: Array

Usage: Steady State only.

Function Groups: Network

Related to:

Format: \RPCManager\GetInSyncServers(Service, [OptGUID])

Parameters:

Service

Name by which the service is known.

OptGUID

The GUID of the application in which the service
instance is located. Optional, the default is the applic-
ation to which the caller belongs.

Comments: None

GetInstance

Description: Returns the object value of a module instance.

Warning: For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns: Object

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Basic Module

Related to: FindVariable | CalledInstances | NumInstances

Format: GetInstance(Module, Index)

Parameters:

Module

Required. Any expression for the code value of the
module.

Index

Required. Any numeric expression indicating which
instance of Module to get. The most recently started
instance is instance 0.

Comments: If the number requested is larger than the total number of
instances for the module, the return value will be invalid.

GetIP

(RPC Manager Library)

Description: Returns an IP address for a workstation, given its name.

Returns: Text

Usage: Steady State only.

Function Groups: Network

Related to:

Format: \RPCManager\GetIP(Name)

Parameters:

Name

Required. Any of the names by which the remote work-
station is known to the RPC Manager.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.

GetKeyCount

Description: Return a count of the number of keys stored by the given
dictionary.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Dictionary

Related to: ListKeys | GetNextKey

Format: GetKeyCount (Dictionary)

Parameters:

Dictionary

Required. Any dictionary for which you wish to retrieve
the key count.

Comments: Generally used in combination with ListKeys. The single
parameter is required and must contain a dictionary, oth-
erwise INVALID will be returned.

GetKeyParam

Description: The CryptGetKeyParam function retrieves data that gov-
erns the operations of a key. It is the VTScada analog of
the CryptoAPI’s CryptGetKeyParam call.

Returns: Varies

Usage: Script Only.

Function Groups: Cryptography

Related to: DeriveKey | Decrypt | Encrypt | ExportKey |
 GenerateKey | GetCryptoProvider | ImportKey |
 SetKeyParam

Format: GetKeyParam(Key, Param [, Flags, Error])

Parameters:

Key

Required. The handle to the key being queried.

Param

Required. A parameter specifying the query being
made. Values are defined in WinCrypt.h

Flags

An optional parameter specifying the flags to be
passed to CryptGetKeyParam. If omitted or invalid then
the value 0 is used.

Error

An optional variable in which the error code for the
function is returned. It may have the following values

Error Meaning

0 Key parameter successfully returned.

1 Key or Param parameters invalid.

x Any other value is an error from
CryptGetKeyParam.

Comments: The parameter for the key is returned. If an error occurs,
the return value is invalid.
The allowable values for Param vary with the key type.

Example:

[
KeyG;
Constant KP_G = 12 { DSS/Diffie-Hellman G value };

]
Init [
If 1 Main;
[
{ Get the key parameter }
KeyG = GetKeyParam(Key1, KP_G);

]
]

GetLoadedAppInstance

Description: Retrieves the Layer object (LayerRoot) for a particular
application specified by GUID

Returns: Layer object

Usage: Script Only.

Function Groups: Configuration Management

Related to: GetAppInstance | GetCodeObj

Format: GetLoadedAppInstance(GUID)

Parameters:

GUID

Required text. The 36-byte GUID of the application to
be found.

Comments: This function is similar to GetAppInstance, but is a syn-
chronous operation, returning the Layer object directly
rather than in a pointer parameter.
If the target application is not yet loaded, then this function
will return Invalid rather than wait.

GetLocalIP

(RPC Manager Library)

Description: Returns an IP address for the local workstation that is
known to the specified remote workstation.

Returns: Text

Usage: Steady State only.

Function Groups: Network

Related to:

Format: \RPCManager\GetLocalIP(Name);

Parameters:

Name

Required. Any of the names by which the remote work-
station is known to the RPC Manager.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.

GetLocalNumber

(RPC Manager Library)

Description: Returns the index of the local workstation down the pri-
oritized server list for the named service.

Returns: Numeric

Usage: Steady State only.

Function Groups: Network

Related to:

Format: \RPCManager\GetLocalNumber(Service [, OptGUID]);

Parameters:

Service

Required. The name by which the service is known.

OptGUID

An optional parameter that is any expression giving
the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service
instance is located. The default is the application to
which the caller belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as

shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
The machine at the top of the prioritized server list will
return an index of zero. If the local machine cannot be a
server for the specified service, -1 is returned.

GetLog

Description: This launched module returns an array of logged data.
GetTagHistory should be considered for use in new code.

Returns: An array, stored in the first parameter (see comments)

Usage: Script Only.

Function Groups: File I/O, Log

Related to: GetTagHistory

Format: \GetLog(&Result, Tag, Name, Start, End, TPP, Size, Mode,
Obsolete [, StaleTime] [, TimeZoneBias])

Parameters:

Result

Required. A pointer to set to the array retrieved from
file. The array may be multidimensional as described
in the Comments section. Please review the inform-
ation carefully.

Tag

Required. The object value of the tag from which to get
the logged data.

Name

Required. The name of the logged value in the tag. If
Invalid or a valid empty string, a timestamp is used.
It is possible to retrieve more than one field in a single
GetLog statement. To do this, pass an array of values

in as the Name parameter.

Start

Required. The start time in seconds since January 1,
1970.

End

Required. The end time in seconds since January 1,
1970. If invalid, Size limits the number of tags
retrieved.

TPP

Required. The time span per tag. If Invalid, Size limits
the number of tags retrieved.

Size

Required. The maximum number of tags to get. If
greater than 0, data is accessed one at a time from file,
rather than at equal time intervals. If TPP is valid, Size
is ignored.

Mode

Required. Indicates the mode of data collection.
Note: The mode is useful only when the TPP parameter
is valid and greater than 0. Mode may be one of:

Mode Data Collection

0 Time-weighted average

1 Minimum in range

2 Maximum in range

3 Change in value over the range

4 Value at start of range

5 TimeOfMinInRange

6 TimeOfMaxInRange

7 SumOfZtoNZTransitions

8 SumOfNonZeroTime

9 Totalizer

10 Interpolated

11 Difference between the start and end
values of a range (see comments)

It is possible to retrieve more than one mode in
a single GetLog statement. To do this, pass an
array of values in as the Mode parameter.

Obsolete n/a

No longer used – maintained for backward com-
patibility.

StaleTime

The meaning of StaleTime depends on the selected
Mode.
For Mode 0 through 10, StaleTime is indicates the max-
imum time to propagate an old value.
For Mode 11, this is the maximum value of a range

(see comments).
It is possible to specify more than one stale time in a
single GetLog statement. To do this, pass an array of
values in as the StaleTime parameter.

TimeZoneBias

Used with time zone aware reports. If included, it
should be the number of seconds that your time zone
differs from UTC, specified in time stamps. This is the
value that would be returned from TimeZone(0).

Comments: When the value of the Result parameter becomes valid, all
of the data has been retrieved.
If Name is an array with more than one element, then
GetLog will retrieve multiple fields from the tag. In this
case, Result will be a two-dimensional array. The reques-
ted values will be returned in a manner analogous to
GetHistory. That is, with the data for a column in the right-
most dimension, and the column index in the previous
dimension.
When Name is specified as an array, Mode or StaleTime, or
both, may be specified as either a single value or an array
of values. If a single value is specified, that value will be
used for each of the fields specified in Name. If an array of
values is specified, the first element in the array will be
applied to the first element of Name, and so on.
When TimeZoneBias is included, GetLog will translate the
start and end times for the requested range of data from
the local time zone to that of the server before retrieving
the data. Then, before returning the retrieved data, it will
translate the timestamps back to the local time zone.

When Mode is set to 11, Getlog counts to a maximum value as set by
StaleTime, and then rolls over to start a new interval. Whenever there is a
decrease in value from one record to the next in the file, it is assumed
that the maximum of the range has been reached and a rollover has
occurred.

Upon rollover, the value of Getlog for the previous interval is calculated
as (StaleTime + CurrentValue) – Minimum Value from previous interval.
Thus, for a StaleTime set to 100 and values read as follows: 10, 40, 90,
5.
The transition from 90 to 5 marks a rollover event. The value for the pre-
vious interval is (100 + 5) – 10 = 95.
This module executes in parallel to the launching code. Watch for the
return array to be filled with valid data to determine when it has finished.
Example:

If 1 Loop;
[

{ Setup the TimeZone Bias }
TZBias = \IsTimeZoneAware ? TimeZone(0) : Invalid;

{ Set up the fieldnames, modes & staletime arrays for Getlog }
FieldNames = New(5);
FieldNames[0] = Invalid { Timestamps };
FieldNames[1] = "Quality";
FieldNames[2] = "SuccessCount";
FieldNames[3] = "ErrorValue";
FieldNames[4] = "ErrorAddress";

Modes = New(5);
Modes[0] =
Modes[1] =
Modes[2] =
Modes[3] =
Modes[4] = Invalid;

{ Retrieve Data for the first tag }
\GetLog(&TagData,

Scope(\Code, Tags[TagIndex]) { Point object value },
FieldNames { Read data },
Start { Start time },
End { End time },
Invalid { Time per point },
#NUMRECLIMIT { No max number of recs },
Modes { Modes },
Invalid { Obsolete },
Invalid { Stale Time },
TZBias { TimeZone Bias

});

GetLogInfo

Note: Deprecated. Do not use in new code.

Description: Interrogates a historical data file, or a set of historical data

files, and returns overall time, date, and record count
information either for the entire file(set), or for a specified
time range.

Returns: Nothing (data returned in parameters)

Usage: Script Only.

Function Groups: File I/O, Log

Related to: GetLogInfo | HistorianDeleteRecords | HistorianGetData |
 HistorianGetInfo | HistorianReadRecords |
 HistorianWriteRecords | Get | GetHistory | Save |
 SaveHistory | TGet

Format: GetLogInfo(File, Earliest, Latest, NRecords [, PathPrefix,
StartTime, EndTime]);

Parameters:

File

Required. The historical data file (or index file for a file
set) for which information is required.

Earliest

Required. Any variable in which will be returned the
earliest time stamp from the file(set).

Latest

Required. Any variable in which will be returned the
latest time stamp from the file(set).

NRecords

Required. Any variable in which will be returned the
total number of records in the file(set).

PathPrefix

An optional text expression parameter that enables
and controls the retrieval of data from across a set of
files.

StartTime

An optional timestamp parameter that defines the start
time of the range to be examined.

EndTime

An optional timestamp parameter which defines the
end time of the range to be examined.

Comments: For any optional parameter that is to be set, all
optional parameters preceding the desired one
must be present, although they may be Invalid.
All timestamps are specified in seconds since Janu-
ary 1, 1970.
If the number of records found is zero, then Earliest
and Latest are both set Invalid.
If PathPrefix is specified, then this changes the inter-
pretation of the File parameter. In this case, the ref-
erenced file is not the source of the data, but a file
containing references to other files which are the
data sources. This file should be in standard
VTScada logfile format and should contain a file ref-
erence as the first text value of each record (other
values are ignored). The records should be in the
correct time order with respect to the data files. The
value of the PathPrefix is a string, which when pre-
fixed to one of the file references, will yield a full
pathname to the target file. If no prefix is required,
but expansion of the dataset is required, then
PathPrefix should be an empty string.

l If a filename entry does NOT begin with a "\" or
"<drive letter>:\", then the PathPrefix will be pre-
pended to the filename.

l If a filename entry DOES begin with "<drive let-
ter>:\", then the PathPrefix will NOT be prepended to
the filename.

l If a filename entry does begin with a "\", then the
"<drive letter>:" from the PathPrefix will be pre-
pended to the filename. If there is no "<drive let-
ter>:" in the PathPrefix then the "<drive letter>:"
from the path of the File parameter will be used
instead.

PathPrefix would normally be Invalid or the applic-
ation path.

GetMachineNode

(RPC Manager Library)

Description: Returns the object value of the MachineNode for the spe-
cified name or IP.

Returns: Object

Usage: Steady State only.

Function Groups: Network

Related to:

Format: \RPCManager\GetMachineNode(Name);

Parameters:

Name

Required. Any of the names or IPs by which the work-
station is known to the RPC Manager.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.

GetMakeAltPtr

(RPC Manager Library)

Description: Returns a pointer to a variable containing the Alternate
status for the local service instance in the calling applic-
ation for the specified service. Steady state or subroutine
call.

Returns: Pointer

Usage: Steady State only.

Function Groups: Network

Related to:

Format: \RPCManager\GetMakeAltPtr(Service);

Parameters:

Service

Required. The name by which the service is known.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.

GetModuleRefBox

Description: Returns the outer reference box for any selectable (GUI)
graphics in a module.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Advanced
Module, Graphics

Related to: GetXformRefBox | SetModuleRefBox

Format: GetModuleRefBox(Module, Option)

Parameters:

Module

Required. Any expression for the code value of the
module.

Option

Required. Any expression that defines the return value
as indicated by the following:

Option Return Value

0 left side

1 bottom side

2 right side

3 top side

4 width

5 height

Comments: A module's reference box defines an area that will exactly
enclose all layered (GUI) graphics in the module regardless
of state before any rotations and trajectories have been
applied. A module reference box, or MRB as it is some-
times called, is not a clipping region and objects can and
often will extend outside of their MRB as a result of applied
rotations or trajectories.
When a module is transformed, the transform is based on
the size of the module as determined by its reference box.
The module's reference box will always exactly fill the ref-
erence box of the transform. In the case of graphics that
have had a rotation or trajectory applied to them, the
graphics will be transformed correctly, but the MRB may
no longer contain the objects in their modified positions.
If a SetModuleRefBox has been done within the module in
question, or its module reference box has been defined by
following the module name with the four boundaries
enclosed in parentheses, the return value will be based on

these explicitly defined boundaries. Otherwise the return
value will define the minimum reference box that will
exactly enclose all (GUI) graphics in the module. This does
not include any child graphics (i.e. graphics created by
child modules of Module).
Module does not need to be running at the time that this
statement is called in order to retrieve valid data.

Example:

If ! Valid(rightSide);
[
rightSide = GetModuleRefBox(Self(), 2);

]

Variable rightSide will contain the X-coordinate for the graphic object
drawn by this module that is the furthest right in the window.

GetModuleText

Description: Returns information about a module's document file.

Warning: For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns: Varies

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: AdjustCode | GetOneParmText | GetParmText |
 GetStateText | GetTransitText | GetVariableText |
 SetModuleText | SetOneParmText | SetParmText |
 SetStateText | SetTransitText | SetVariableText |
 TextOffset | TextSize

Format: GetModuleText(Module, Info)

Parameters:

Module

Required. Any expression for the module.

Info

Required. Any numeric expression giving the inform-
ation to return, as shown in the following table:

Info Information to return

0 File name which defines Module

1 Character offset to beginning of Module

2 Length of Module

3 Character offset to beginning of para-
meter definitions

4 Character offset to beginning of variable
definitions

5 Character offset to beginning of state
definitions

6 Character offset to beginning of child
module definitions

7 Character offset to first variable defin-
ition

8 Length of variable definitions

9 Character offset to first parameter defin-
ition

10 Length of parameter definitions

Comments: This function is used when automatically modifying mod-
ules.

GetNameOfRecord

(Alarm Manager module)

Description: Given an alarm record, returns the tag name.

Returns: Text

Usage: Script Only.

Function Groups: Alarm

Related to: GetAlarmObject

Format: \AlarmManager\GetNameOfRecord(AlarmRecord[, Par-
entTag])

Parameters:

AlarmRecord

Required record. A reference to the alarm, as returned
by the function GetAlarmObject.

ParentTag

Optional. The parent tag's name. If valid, this value will
be stripped from the result.

Comments: This function is intended primarily for presentation
purposes.
The function will return whichever of the following,
in order, for which it can find a valid value: the rel-
ative tag name, the full name, or the unique ID
(alarm name).

Example:

{ Given an array of alarm records, get the tag object from the alarm
name whenever the array index, SelRecord, changes. }
If Watch(1, Records[SelRecord]\GUID);
[
 \AlarmManager\GetAlarmObject(Records[SelRecord]\Name, &Root);
 ShortName = \AlarmManager\GetNameOfRecord(Records[SelRecord]);
]

GetNextKey

Description: Allows a linear search through a dictionary in place. i.e.
without copying the contents to an array.

Returns: Varies

Usage: Script Only.

Function Groups: Dictionary

Related to: ListKeys

Format: GetNextKey(Dictionary[, Key, Order, KeyFound])

Parameters:

Dictionary

Required. Any dictionary you wish to search.

Key

The key to start from. If this is invalid, or if the key is
not found in the dictionary, then the first key in the
given order will be returned.

Order

An optional numeric expression. Defines the search
according to the following table of values. Defaults to
0 if missing. Setting this parameter to Invalid will result
in the function returning Invalid.

Order Meaning

0 Forward alphabetic search

1 Forward ordinal search. Returns the
next newer key. Begins at the oldest key
if the parameter Key is invalid.

2 Backward alphabetic search

3 Backward ordinal search. Returns the
next older key. Begins at the newest key
if the parameter Key is invalid.

Key Found

Upon completion of the function, this value will receive
the key of the record found, which matches with the

value of that record returned by the function. If there
are no further keys in the given order, this value will be
set to INVALID.

Comments: The return value is the value associated with the key
found, or INVALID if no key was found.
Only the first parameter is required.

GetNumUnacked

(Alarm Manager module)

Description: Returns either the number of unacknowledged alarms or a
Yes/No flag to indicate that the alarms exist. A filter may
be applied to limit the search.
Note that this function will place a heavy load on computer
resources while searching.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Alarm

Related to: Register (Alarm Manager) | DBListGet

Format: \AlarmManager\GetNumUnacked(UserFilter,
ReturnYesNoFlag);

Parameters:

UserFilter

Required. An array that can be used to limit the search.
If set to Invalid, GetNumUnacked will return all unac-
knowledged alarms.
This will typically be a one-dimensional, three-ele-
ment array with elements as follows:

Element Description

0 Index of the field in the alarm table.
This is defined as the second para-
meter to the KeyName as shown in the
KeyName table

1 Limiting value

2 Comparison Operator
(see Comparison Operator table)

KeyName Table

Value to use for fil-
ter (*)

Alarm Table Key Names

0 Message

1 Priority

2 Type

3 HookPointValue

4 Area

5 HookPointUnits

6 Operator

(*) Note: these values may vary if an application
has specified a different table header and
indexes in their own customized Set-
tings.Startup.
Comparison Operator Table

Comparison
Value

Comparison
Case Sens-

itive

0 Equal to no

1 Greater than no

2 Less than no

3 Specified by wildcard
(field value is text)

no

4 Not equal to no

5 Less than or equal to no

6 Greater than or equal
to

no

7 Opposite of wildcard
specification (field
value is text)

no

8 Equal to yes

9 Greater than yes

10 Less than yes

11 Specified by wildcard
(field value is text)

yes

12 Not equal to yes

13 Less than or equal to yes

14 Greater than or equal
to

yes

15 Opposite of wildcard
specification (field
value is text)

yes

ReturnYesNoFlag

Required. A Boolean that controls the result returned
by the function.
If true, only a 1 or a 0 will be returned, indicating
whether unacknowledged alarms were found.
If false, the number of unacknowledged alarms will be
returned.

Example:

Temp = New(3);
Temp[0] = \AlarmPriorityField;
Temp[1] = 1; {Critical }
Temp[2] = 0; { Equal to, not case sensitive. This parameter may hold
a 1-dimensional array with 2 or 3 numeric elements. }
\AlarmManager\GetNumUnacked(Temp, 0);

If a more detailed filtering criterion is required, a 2-dimensional array
may be used. See DBListGet for examples and further information.

GetOEMLayer

Description: Retrieves the layer root module of the OEM layer (should
one exist) of the layer this is called against.

Returns: A pointer (within the parameter)

Usage: Script Only.

Function Groups: Configuration Management

Related to: GetWCPath |

Format: \Layer\GetOEMLayer

Parameters:

OEMLayerPtr

Required. A variable, into which a pointer to the OEM
layer's root module will be placed.

Comments: The return value of the function will be set to Invalid upon
completion. A pointer to the OEM layer's module will be
returned in the first parameter to this function.

Examples:

MyLayer\GetOEMLayer(ParentLayer);

GetOneParmText

Description: Returns the text for one parameter of a function.

Warning: For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns: Text

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: AdjustCode | GetModuleText | GetParmText |
 GetStateText | GetTransitText | GetVariableText |
 SetModuleText | SetOneParmText | SetParmText |
 SetStateText | SetTransitText | SetVariableText |
 TextOffset | TextSize

Format: GetOneParmText(Function, Parameter[, Type])

Parameters:

Function

Required. Any expression for the code value of the
function.

Parameter

Required. Any numeric expression indicating which
parameter's text to return.

Type

Optional numeric expression. Controls what will be
returned by the function according to the following
table:

Type Description

0 default. Return the text for the para-
meter.

1 Return the offset in the file for the start
of the parameter.

2 Return the size (number of bytes) of the
parameter.

GetOutputTypes

Description: Returns a list of available report output type plugins.

Returns: Array

Usage: Script Only.

Function Groups: Report

Related to: GetReportTypes

Format: \ReportPanel\GetOutputTypes(PtrTypeNames,
PtrTypeMods)

Parameters:

PtrTypeNames

Required. A pointer to a variable storing output names.

PtrTypeMods

Required. A pointer to a variable storing output mod-
ule names.

Comments: This subroutine, declared in ReportPanel, is a plug-in to
help with custom retrieval of output types. GetOutputTypes
must be prefaced by \ReportPanel\, as shown in the
"Format" section above.

GetOverrides

Description Returns an array of OpCodes and the module value that
will run when each OpCode is executed

Warning For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns 2-dimensional array

Usage Script Only.

Function Groups Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: SetOverride

Format GetOverrides(TargetModule)

Parameters

TargetModule

Required. Any expression that can be resolved to a
module value.

Comments The target module will be queried for a list of over-
ridden OpCodes. The return value is a 2 dimen-
sional array where the first dimension is the
override as set by SetOverride and second dimen-
sion will be [0] for the OpCode and [1] for the cor-
responding module that has been set to override
that opcode.
Together with SetOverride, this provides the ability
to override a built-in function in a module with a
module call. It is used primarily for testing. See
SetOverride for full details.

GetParameter

Description: Returns the requested parameters as a constant, variable

or code pointer.

Warning: For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns: Constant, variable or code value.

Usage: Script Only.

Function Groups: Advanced Module

Related to:

Format: GetParameter(Code, Index)

Parameters:

Code

Required. Any expression for the code value or code
pointer of the function.

Index

Required. Parameter number to obtain. Starts with 0
for the first parameter.

Comments: If the parameter being retrieved is a constant number, then
GetParameter just returns that number. The same goes for
a constant string parameter.
If the parameter is just a variable, then GetParameter
returns the variable (a value of type \#VTypeVariable).
If the parameter is itself a function, then GetParameter
returns a code value for it.

GetParmText

Description: Returns the text for all parameters of a function.

Warning: For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns: Text array

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: AdjustCode | GetModuleText | GetOneParmText |
 GetStateText | GetTransitText | GetVariableText |
 SetModuleText | SetOneParmText| SetParmText |
SetStateText | SetTransitText | SetVariableText |
 TextOffset | TextSize

Format: GetParmText(Function)

Parameters:

Function

Required. Any expression for the code value of the
function.

Comments: This function may only appear in a script.

GetParserOffset

Description: Returns the offset before the last compiled statement.

Warning: For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns: Numeric

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications

Related to: Compile

Format: GetParserOffset(ParserStack)

Parameters:

ParserStack

Required. Any expression for the parser stack value.

Comments: This is used by the compiler to give the location of an

error.

GetPathBound

Description: Returns the bounding box coordinates for a path.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Graphics

Related to: GetModuleRefBox | Path

Format: GetPathBound(Path, Object, Transform, Side)

Parameters:

Path

Required. Any expression that returns a Path value.

Object

Required. Any object expression which defines the win-
dow where Path is drawn.

Transform

Required. Any expression for the transform value
applied to Path.

Side

Required. Any numeric expression for the coordinate
to return:

Side Side to Return

0 Left

1 Bottom

2 Right

3 Top

GetPlatformInfo

Description: Gathers information about the current application and the
workstation it is running on.

Returns: Numeric status indicator. (Platform information is returned
in the parameter)

Usage: Script Only.

Function Groups: Configuration Management

Related to: Platform | WKStaInfo

Format: Layer\GetPlatformInfo(&Info)

Parameters:

&Info

Required. Pointer to a variable. The information
gathered will be returned in a structure that this vari-
able points to.

Comments: This utility function makes use of WkStaInfo and
Platform to gather relevant information about the
application. The structure returned has the fol-
lowing format:

INIFiles Struct [
FileName { file name and extension for the

file };
 OEM { TRUE if an OEM layer file };
 Workstation { Name of the workstation or
invalid if global };
 Layer { Instance of application layer owning
the file };
 Dynamic { TRUE if a dynamic property };
 Sections { Dictionary of sections, each ele-
ment of which
is an array of Property structures (see fol-
lowing) };
 Changed { User sets to true if the file has
been changed,
initialized to false };
]

The property structures have the following format:

INIProperty Struct [
 Name { Variable name in the settings file };
 Value { Simple value or an ordered array of
values if the
variable occurs more than once in the section of
the file };
 Comment { Text comment if present in the file
};
 Hidden { TRUE if not shown in the Edit Prop-
erties GUI };
]

Examples:

GetPowerState

Description: Returns a structure that holds details of the computer's
power supply status.

Returns: Structure containing four elements

Usage: Steady State only. See: Rules for Usage.

Function Groups: Network & Workstation

Related to:

Format: GetPowerState()

Parameters: none

Comments: This function is intended for use when the work-
station is running on battery power, whether UPS or
laptop battery. The return structure contains the fol-
lowing elements:
PowerStatus (Short. AC line status. 0 == battery, 1
== A/C, 2 == backup power.)
BatteryState (Short. Indicates any of High, Low, Crit-
ical, Charging or No Battery.)
BatteryLevel (Short. The remaining charge in the bat-
tery, expressed as a percentage.)
BatteryLifetime (Double. Estimated number of

seconds of charge remaining in battery.)

Examples:

{ Display selected page name on the title bar }
PowerState = GetPowerState();

GetReferencedValues

Description: Collects all dynamically referenced values in the call tree
rooted at the parameter and returns them in an array.
Returns Invalid if none are found.

Returns: Array

Usage: Script Only.

Function Groups: Variable Functions

Related to:

Format: GetReferencedValues(Object)

Parameters:

Object

Required. The object for which referenced values are
to be found.

Comments: Referenced objects are found via quaffles in steady state.
(Quaffle1)

Examples:

{ Get an array of pointers to all values scoped-to in the call tree
rooted at PageObj. }
ReferencedVals = GetReferencedValues(PageObj);

GetRemoteVersion

(RPC Manager Library)

1A hidden compiler function that forms a dynamic relationship between
a value and a statement. Essential to the operation of Steady State code.

Description: Returns the version number of VTScada running on a spe-
cified workstation. Steady state or subroutine call.

Returns: Numeric

Usage: Steady State only.

Function Groups: Network

Related to:

Format: \RPCManager\GetRemoteVersion(NameOrIP);

Parameters:

NameOrIP

Required. Any of the names or IPs by which the work-
station is known to the RPC Manager.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.

GetReportTypes

Description: This subroutine returns a list of available report type plu-
gins.

Returns: Array

Usage: Script Only.

Function Groups: Report

Related to: GetOutputTypes

Format: \ReportPanel\GetReportTypes(PtrTypeNames,
PtrTypeMods)

Parameters:

PtrTypeNames

Required. A pointer to a variable storing report names.

PtrTypeMods

Required. A pointer to a variable storing report module
names.

Comments: This subroutine, declared in ReportPanel, is a plugin to
help with custom retrieval of report types. GetReportTypes
must be prefaced by \ReportPanel\, as shown in the
"Format" section above.

GetReturnValue

Description: Returns a module's return value.

Returns: Varies

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Basic Module

Related to: Return | ResetParm

Format: GetReturnValue(Object)

Parameters:

Object

Required. An object expression for the module
instance whose return value is required.

Comments: This function is useful for obtaining a return value from a
module that has been called as a parameter to another
module, and whose return value has been or will be altered
by a ResetParm statement.

GetSelected

Description: Returns a selected graphic item in a window.

Returns: Object

Usage: Script Only.

Function Groups: Graphics

Related to: GetSelectedInfo

Format: GetSelected(Object)

Parameters:

Object

Required. Any object expression for the window con-
taining selected graphics.

Comments: This function may only appear in a script.

GetSelectedInfo

Description: Returns information about selected graphic item(s) in a
window.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Graphics

Related to: CurrentWindow | GetSelected

Format: GetSelectedInfo(Object, Mode)

Parameters:

Object

Required. Any object expression for the window con-
taining selected graphics.

Mode

Required. Any numeric expression that defines what
information to return:

Mode Information to return

0 Minimum left side user coordinate

1 Minimum bottom side user coordinate

2 Maximum right side user coordinate

3 Maximum top side user coordinate

Comments: If no graphic objects are selected, the return value will be
meaningless.

Example:

sel = GetSelectedInfo(CurrentWindow(), 0);

This statement will set sel to the minimum left side (user) coordinate out
of all selected graphic objects that are in the VTScada window that the
mouse is over.

GetServer

(RPC Manager Library)

Description: Returns the name of the active server for a specified ser-
vice.

Returns: Text

Usage: Steady State only.

Function Groups: Network

Related to: ConnectToMachine | DisconnectFromMachine |
 GetServersListed | GetStatus | IsClient | IsPotentialServer
| IsPrimaryServer | Register (RPC Manager) | Send |
 SetRemoteValue | GetGUID

Format: \RPCManager\GetServer(ServiceName [, OptGUID])

Parameters:

ServiceName

Required. Any text expression giving the name of the
service for which to get the active server's name.

OptGUID

An optional parameter that is any expression giving
the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service
instance is located. The default is the application to
which the caller belongs.

Comments: This module is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
If the 16-byte binary format of the GUID is not known, the
GetGUID function may be used to obtain it.

Example:

SName = \RPCManager\GetServer("ModemManager");

GetServerChanges

(RPC Manager Library)

Description: Launched by RPC Manager on a service server to obtain
the service's synchronization data (i.e. called by RPC Man-
ager during startup synchronization on a server to get the
package of RPCs that create a synchronizable state on the
client which is in step with the server).

Returns: See comments

Usage: Steady State only.

Function Groups: Network

Related to: See: "Adding Server-Only Synchronization" in the

VTScada Programmer's Guide

Format: GetServerChanges(RevisionInfo, PackStreamRef, Client)

Parameters:

RevisionInfo

Required. The revision information from the GetCli-
entRevision call made on the synchronizing client.

PackStreamRef

Required. A pointer to a variable to obtain changes.

ClientName

Required. The name of the client.

Comments: This subroutine is expected to be found in the
object value of the caller of RPCManager\Register. It
should not be called as "\RPCMan-
ager\GetServerChanges", but it may be appropriate
to call it within the scope of the relevant service
"<service scope>\GetServerChanges".
GetServerChanges() should not be written as a sub-
routine, as it will run on the RPCManager thread,
thereby suspending external machine com-
munication during synchronization.
If your GetServerChanges() request takes a long
time, this will lead to a reduction in RPC throughput
during RPC service synchronization, which may have
undesirable effects. If GetServerChanges() is instead
written as a launched module that slays itself when
complete, the RPC thread will continue to service
other RPC requests while you are building your syn-
chronization data package.

Further, if GetServerChanges() is written as a sub-
routine, the RPC thread can be suspended while run-

ning your GetServerChanges() script, allowing your
service thread to get a time slice and modify the ser-
vice data that you are attempting to sample. This
may cause two PCs running the same service to end
up with mismatching data.

You must write GetServerChanges() as a launched
module and call \RPCManager\SetDivert() as soon as
you have finished sampling the synchronizable data
for your service. If there is any possibility that
another execution thread in your application can
modify the data that GetServerChanges() is sampling
during building of the synchronization package, you
must protect the acquisition of the synchronization
package with a CriticalSection().

GetServerMode

(RPC Manager Library)

Description: Returns the mode in which the current server for a spe-
cified service is running.

Returns: See comments

Usage: Steady State only.

Function Groups: Network

Related to:

Format: \RPCManager\GetServerMode(Service [, OptGUID]);

Parameters:

Service

Required. The name by which the service is known.

OptGUID

An optional parameter that is any expression giving

the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service
instance is located. The default is the application to
which the caller belongs.

Comments: This subroutine is a member of the RPC Manager's
Library, and must therefore be prefaced by
\RPCManager\, as shown in the "Format" section. If
the application you are developing is a script applic-
ation, the subroutine call must be prefaced by Sys-
tem\RPCManager\, and the System variable must be
declared in AppRoot.src.
The mode value represents the current syn-
chronization state of the server for the specified ser-
vice.
Presently, one of the following values may be
returned

l \RPC_ACCEPT_ALL – the server is not performing syn-
chronization with any client;

l \RPC_SYNC_MODE – the server is performing syn-
chronization with a client; or

l \RPC_LINKCONTROL_ONLY – the server is starting
synchronization with a client.

GetServerNumber

(RPC Manager Library)

Description: Returns the index down the prioritized server list of the cur-
rent server for the specified service. Steady state or sub-
routine call.

Returns: Numeric

Usage: Steady State only.

Function Groups: Network

Related to:

Format: \RPCManager\GetServerNumber(Service [, OptGUID]);

Parameters:

Service

Required. The name by which the service is known.

OptGUID

An optional parameter that is any expression giving
the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service
instance is located. The default is the application to
which the caller belongs.

Comments: This subroutine is a member of the RPC Manager's
Library, and must therefore be prefaced by
\RPCManager\, as shown in the "Format" section. If
the application you are developing is a script applic-
ation, the subroutine call must be prefaced by Sys-
tem\RPCManager\, and the System variable must be
declared in AppRoot.src.

The workstation at the top of the prioritized server
list will return an index of zero.

GetServerSIDPtr

(RPC Manager Library)

Description: Returns a pointer to a variable that holds the session ID for
the current server for the specified service.

Returns: Pointer

Usage: Steady State only.

Function Groups: Network

Related to:

Format: \RPCManager\GetServerSIDPtr(Service [, OptGUID]);

Parameters:

Service

Required. The name by which the service is known.

OptGUID

An optional parameter that is any expression giving
the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service
instance is located. The default is the application to
which the caller belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.

If the server changes, the value referenced by the returned
pointer will change. This could be used by clients as a trig-
ger to cause them to synchronize to the new server.

GetServersListed

(RPC Manager Library)

Description: This subroutine returns a one-dimensional array of the
names or IPs of the servers that has been derived from the
"-Servers" section of the service configuration file.

Returns: Array

Usage: Script Only.

Function Groups: Network

Related to: ConnectToMachine | DisconnectFromMachine | GetGUID
| GetServer | GetStatus | IsClient | IsPotentialServer |

 IsPrimaryServer | Register (RPC Manager) | Send |
 SetRemoteValue

Format: \RPCManager\GetServersListed(ServiceName [, OptGUID])

Parameters:

ServiceName

Required. Any text expression giving the name of the
service for which to get the list of servers.

OptGUID

An optional parameter that is any expression giving
the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service
instance is located. The default is the application to
which the caller belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
The return value from this subroutine is a list of the text
names for all workstations listed as servers.
If the 16-byte binary format of the GUID is not known, the
GetGUID function may be used to obtain it.

Example:

If 1 Main;
[
sList = \RPCManager\GetServersListed("ModemManager");

]

GetServiceScope

(RPC Manager Library)

Description: Returns the service instance for a service.

Returns: See comments

Usage: Steady State only.

Function Groups: Compilation and On-Line Modifications, Network

Related to:

Format: \RPCManager\GetServiceScope(Service [, OptGUID]);

Parameters:

Service

Required. The name by which the service is known.

OptGUID

An optional parameter that is any expression giving
the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service
instance is located. The default is the application to
which the caller belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.

GetSessionContainers

Description: Returns an array of the names of tags that are "container"
tags that exist at any level under the given context (parent)
tag

Returns: Array

Usage: Script Only.

Function Groups: Variable

Related to: BuffOrder

Format: \ GetSessionContainers([Context, WithLocationOnly,
ExcludeContextFromList]);

Parameters:

Context

Optional. The name of the tag under which to look for
containers. Defaults to VTSDB.

WithLocationOnly

Boolean. When true, only tags that have valid Latitude
and Longitude parameters will be returned

ExcludeContextFromList

Boolean. When true, the returned list will not include
the tag specified in Context.

Comments: Returns Invalid if nothing is found.

GetSessionContainerTags

Description: Returns a dictionary of tag items below a given context
(parent) tag.

Returns: Dictionary (see comments)

Usage: Script Only.

Function Groups: Variable

Related to: GetSessionContainers

Format: \ GetSessionContainerTags([Context, DoNotRe-
curseIntoContainer, NoContainersInTagsList, IncludeTag-
sInSubContainers, NavigationPath, PtrAutoDrilled]);

Parameters:

Context

Optional. The name of the tag under which to look for
containers. Defaults to VTSDB.

DoNotRecurseIntoContainer

Optional Boolean. Set TRUE to not recurse into con-
tainer with details page (default is false).

NoContainersInTagsList

Optional Boolean. Set TRUE to prevent containers from
appearing in the Tags list. Defaults to FALSE.

IncludeTagsInSubContainers

Optional Boolean. Dpecifies whether or not to filter out
descendents of containers. Normally defaults to false.
Defaults to true if Context is an array or if Context tag
has contributors

NavigationPath

Optional array. Unique ID values of the tags that make
up the path taken to get to our Context tag.

PtrAutoDrilled

Optional pointer to an array of the Unique ID values of
tags that were skipped (drilled through) to arrive at the
Context tag. These will be skipped by the "Go Up" but-
ton in the site list user interface.

Comments: The returned dictionary will have the following struc-
ture:
["Title"] - The title to display for the returned data
["Tags"] - A list of tags that either exist under or
contribute to the provided Context tag
["Containers"] - A list of Container tags that exist
under the provided "Context" tag
Note that container tags use this function to obtain
the list to be displayed in a Sites page. If the con-
tainer tag also includes a module named Cus-
tomSiteListGetSubTags or
CustomSiteMapGetSubTags, (which must be a sub-
routine and must return an array of tag names) then
GetSessionContainerTags will automatically call that

module rather than GetTagList.
NavigationPath and PtrAutoDrilled are used only
with Context tags that have an optional hook: Cus-
tomSiteListGetSubTags or Cus-
tomSiteMapGetSubTags.

GetSessionID

(RPC Manager Library)

Description: Returns the current session ID for a specified application
on a workstation.

Returns: Numeric

Usage: Steady State only.

Function Groups: Network

Related to:

Format: \RPCManager\GetSessionID(NameOrIP [, OptGUID]);

Parameters:

NameOrIP

Required. Any of the names or IPs by which the work-
station is known to the RPC Manager.

OptGUID

An optional parameter that is any expression giving
the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service
instance is located. The default is the application to
which the caller belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.

GetShapePath

Description: Returns the path value which defines the shape of a poly-
gon.

Returns: Object

Usage: Script or steady state.

Function Groups: Graphics

Related to: GetModuleRefBox | GetPathBound

Format: GetShapePath(CodePointer)

Parameters:

CodePointer

Required. Any expression for the code pointer value
that defines the graphic statement.

Example:

Start [
If 1 Check;
[
drawWin = CurrentWindow() { Set drawing window };
selObj = LastSelected(drawWin) { Get which graphic };
graphicObj = GetShapePath(selObj) { Get shape of object };

]
]
Check [
If Valid(graphicObj) EditGraphic;
[
UnselectGraphics(drawWin) { Use only this object };
SelectPath(Self(), graphicObj) { Mark as selected };

]
]

The first state listed here retrieves the last selected graphic object and
gets its shape in preparation for editing it. The next state then checks to
make sure a valid graphic was chosen, then it releases all other chosen
graphics in the window and selects the outline of the graphic as a pre-
cursor to editing it.

GetSocketStatus

(RPC Manager Library)

Description: Returns the connection status of either, 1) The machine
node if the subnet is not valid, or 2) The socket that is on
the specified subnet.

Warning: For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns: See comments

Usage: Steady State only.

Function Groups: Network

Related to: BinIP2Text | GetSocketStatus | TextIP2Bin

Format: \RPCManager\GetSocketStatus(MachineName [,Subnet])

Parameters:

MachineName

Required. The name of the machine for which you wish
to get the Socket status.

Subnet

An optional parameter that specifies which subnet the
socket you are interested in is on.

Comments: This subroutine is a member of the RPC Manager's
Library, and must therefore be prefaced by
\RPCManager\, as shown in the "Format" section. If
the application you are developing is a script applic-
ation, the subroutine call must be prefaced by Sys-
tem\RPCManager\, and the System variable must be
declared in AppRoot.src.
This module returns the status of the connection
between two PCs if no Subnet is specified. If the Sub-
net is specified, then the return value is that of the

Socket’s status on the specified Subnet. If a Subnet
is not specified and you are using a multi-homed
PC, the return value will indicate how many sockets
are connected to a particular PC.

Note: In a network using multi-homed PCs, it is
possible for two PCs to be connected multiple
times under a given Subnet. In such a case,
GetSocketStatus will return the status of the first
applicable socket found.

GetState

Description: Returns the code value for the specified state.

Warning: For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns: State code value

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, State

Format: GetState(Module, Name, Case)

Parameters:

Module

Required. Any expression for the code value that
defines the module.

Name

Required. Any text expression which gives the text
name of the state.

Case

Required. Any logical expression. If true, the name will
be treated as case-sensitive. Otherwise the name will
be treated as case-insensitive.

Comments: none

Related Functions:
 GetInstance | GetStatement | GetStatementNum | GetStateText

GetStatement

Description: Returns the code value, statement offset or statement text
size for the specified statement.

Returns: Varies. See Option parameter.

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, State

Related to: GetInstance | GetState | GetStatementNum |
 GetStateText

Format: GetStatement(Location, Index[, Option])

Parameters:

Location

Required. Any expression for the code value which
defines the module and state.

Index

Required. Any numeric expression for the statement.

Option

Optional Boolean. If zero (the default) a suitable code
value will be returned.
If set to 1, the statement offset in the source file will be
returned.
If set to 2, the statement text size in the source file will
be returned.

Comments: none

Example:

If 1 Check;
[

dest = GetStatement(ActiveState(modPtr), 1);
]

This script gets the first statement in the active state of the module
instance pointed to by modPtr.

GetStatementNum

Description: Returns the statement number for the specified statement.

Warning: For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns: Numeric

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, State

Related to: GetInstance | GetState | GetStatement | GetStateText

Format: GetStatementNum(Object, Statement)

Parameters:

Object

Required. Any expression for the module instance
where the statement is located.

Statement

Required. Any expression for the code value or code
pointer value which defines the statement. If this is an
object value, the executing statement is used.

Comments: none

GetStateText

Description: Returns the text for the specified state.

Warning: For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns: Text

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, State

Related to: AdjustCode | GetModuleText | GetOneParmText |
 GetParmText | GetTransitText | GetVariableText |
 SetModuleText | SetOneParmText | SetParmText |
 SetStateText | SetTransitText | SetVariableText |
 TextOffset | TextSize

Format: GetStateText(State, Mode)

Parameters:

State

Required. Any expression for the code value which
defines the state.

Mode

Required. Any numeric expression for the desired
information:

Mode Desired information

0 Character offset to beginning of state
definition from start of module
(includes state name and square brack-
ets enclosing state code).

1 Size of state in characters, including
state name and square brackets.

2 Character offset to beginning of first
statement from start of state.

3 Size of state code in characters, exclud-
ing state name and square brackets.

Comments: none

Example:

If 1 Next;
[
{ The module and file for which to get state code }
ModVal = FindVariable("ConfigFolder", Scope(\Code,

"AnalogInput"), 0, 0);
FStream = FileStream("C:\VTScada\VTS\AnalogInput.SRC");
{ Get the states and create an array in which to store their code

}
SList = StateList(ModVal, 1);
Num = ArraySize(SList, 0);
CodeList = New(Num);
I = 0;
WhileLoop(I < Num,
StateOffset = GetStateText(SList[I], 0) +

GetStateText(SList[I], 2).
StateLength = GetStateText(SList[I], 3);
{ Read in the code contained in that state - don't include the
square brackets }
Seek(FStream, GetModuleText(ModVal, 1) + StateOffset, 0);
StateCode[I] = BuffStream("");
BlockWrite(StateCode[I], FStream, StateLength);
Seek(StateCode[I], 0, 0);
I++;

);
CloseStream(FStream);

]

GetStatus

(RPC Manager Library)

Description: Returns a variable that holds the current service instance
status for the specified service.

Returns: Numeric

Usage: Steady State only. See: Rules for Usage.

Function Groups: Compilation and On-Line Modifications, Network

Related to: ConnectToMachine | DisconnectFromMachine | GetGUID
| GetServer | GetServersListed | IsClient |
 IsPotentialServer | IsPrimaryServer | Register (RPC Man-
ager) | Send | SetRemoteValue

Format: \RPCManager\GetStatus(ServiceName [, OptGUID])

Parameters:

ServiceName

Required. Any text expression giving the name of the
service for which to get the connection status.

OptGUID

An optional parameter that is any expression giving
the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service
instance is located. The default is the application to
which the caller belongs.

Comments: This module is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the module call must be
prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
The return value from this subroutine is the current status
of a service on the local workstation. It is similar to the
return value for the Register module, except that in that
case it is a pointer to the value that is returned rather than
the value itself.
If the 16-byte binary format of the GUID is not known, the
GetGUID module may be used to obtain it.

Example:

status = \RPCManager\GetStatus("ModemManager");

GetStreamLength

Description: Returns the present length of a stream in bytes.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Stream and Socket

Related to: BuffStream | ClientSocket | FileSize | FileStream |

 PipeStream | Seek | ServerSocket | StreamEnd

Format: GetStreamLength(Stream)

Parameters:

Stream

Required. Any expression that returns a stream value.

Comments: This function is useful in determining the size of an exist-
ing stream. It is not necessary to do a Seek prior to execut-
ing the GetStreamLength.

Example:

sLength = GetStreamLength(BuffStream("abcde"));

This function will cause sLength to be set to 5.

GetStreamType

Description: Returns a type indication for a stream.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Stream and Socket

Related to: GetStreamLength

Format: GetStreamType(Stream)

Parameters:

Stream

Required. Any expression that returns a stream value.

Com-
ments:

This returns the type of an existing stream. Possible valid return val-
ues are as follows

Return Value Meaning

0 file stream (temporary or persistent)

1 pipe stream

2 editor stream

3 buffer stream

4 TCP/IP socket stream

5 serial port stream

6 modem stream

7 TCP control stream

Invalid is returned for all non-stream values.

Example:

sType = GetStreamType(BuffStream("abcde"));

This function will cause sType to be set to 3.

GetSystemColor

Description: Returns the colors for the user-configured Windows™ col-
ors.

Returns: Text (RGB color string)

Usage: Script or steady state.

Function Groups: Color, Graphics

Related to: PalStatus

Format: GetSystemColor(Option)

Parameters:

Option

Required. Any numeric expression that determines
which color to return, as indicated in the following
table.

Option Color

0 Scroll bar

1 Desk top

2 Active window title bar

3 Inactive window title bar

4 Menu background

5 Window background

6 Window frame

7 Text in menus

8 Text in windows

9 Active window title text, size button,
scroll bar arrow button

10 Active window border

11 Inactive window border

12 Background in MDI window

13 Background of selected control item

14 Text of selected item in control

15 Button face

16 Button shadow

17 Grayed text

18 Text on buttons

19 Inactive text title

20 Button highlight

Comments: This function is session aware. It will get VIC colors if called
from within the VIC session.

Example:

ZText(25, 25, "Standard text", GetSystemColor(8), 0);

This puts text in the upper left corner of the screen in the standard Win-
dows™ text color.

GetTagHistory

(Historian Manager Library)

Description: Launched module that retrieves historical data for a tag.
Replaces GetLog.

Returns: Nothing

Usage: Script Only.

Function Groups: Log

Related to: GetLog

Format: \HistorianManager\GetTagHistory(PtrReturnCode, PtrRes-
ult, TagObj, FieldNames, StartTime, EndTime, TPP, NumEn-
tries[, Modes, StaleTime, EnableDownTimeOverride,
UseRecordOverrides])

Parameters:

PtrReturnCode

Required. A return code that may be numeric or
may be a structure with an error code field. 0
indicates success. Non-zero indicates an error.
If a structure is returned, it will be defined as:

STRUCT [
ErrrorCode – An error code. See table in com-
ments.
ErrorText – Additional text to help diagnose
the problem.
ErrorTime – UTC timestamp of the error.
];

PtrReturnCode will be invalid until this launched
function finishes.

PtrResult

A pointer to the historical data will be returned in this
parameter.

TagObj

Object value of the tag for which the history is to be
retrieved.

FieldNames

Either the name or, an array of names of the fields to
retrieve.

StartTime

UTC time stamp indicating the beginning of the data
range to retrieve.
A local time value should be converted to UTC as fol-
lows:
UTCStartTime = ConvertTimestamp(Start,
LocalTimeZone, FALSE, Invalid);

EndTime

UTC time stamp indicating the end of the data range to
retrieve. (Selection is inclusive of this time.)
Ignored if TPP is non-zero.

TPP

Required. Any numeric expression giving the time
span in seconds for each array entry. Each array ele-
ment will contain the data which correspond exactly to
this time period which corresponds to 0 or more data
points. If TPP is positive and FieldNames selects a text
value, the first entry which falls in a time is read and
Mode is ignored.
If TPP is equal to 0, the data is read and placed in the
array on a one to one basis.
If TPP is less than 0, an error will be returned.

NumEntries

The number of log entries to be returned in the array.
Use a negative value to retrieve values in reverse chro-
nological order.

Modes

Optional numeric expression giving the method of
handling the data. If TPP is greater than 0, the values
that fall in each time span will be represented as fol-
lows:

Mode Time Span Representation

0 Time weighted average

1 Minimum in range

2 Maximum in range

3 Change in value over the range

4 Value at start of range

5 Time of minimum in range (in seconds
since Jan 1, 1970)

6 Time of maximum in range (in seconds
since Jan 1, 1970)

7 Count the total number of zero to non-
zero transitions within each TPP period.

8 Totals, for each TPP, the amount of time
when the value is non-zero (Invalid is
counted as zero).

9 Totals, for each TPP, the arithmetic sum
of the recorded values.

10 Interpolates between values.

11 Difference between the start and end
values of a range (see comments)

In the case of modes 5 and 6, FieldName should
still be set to indicate the field on which the
mode is to act; the return values will be times
indicating the maximum or minimum in that
field for each time span.
If TPP is less than or equal to 0, Mode is
ignored. If the data is text, the first entry in a
given time range is used for the array entry and
Mode is ignored.
It is possible to retrieve more than one mode in
a single GetTagHistory statement. To do this,
pass an array of values in as the Mode para-
meter.

StaleTime

An optional parameter that sets a maximum validity
duration for data elements that are being TPP pro-
cessed. Normally, every data point is treated as remain-
ing valid until the next data point. If a valid StaleTime
parameter is given, then any data point will be treated
as invalid StaleTime seconds after the recorded time. If
TPP is less than or equal to 0, StaleTime is ignored. If
StaleTime is not required but EnableDowntimeOverride
is, then StaleTime should be given as an Invalid value.
It is possible to specify more than one stale time in a
single GetTagHistory statement. To do this, pass an
array of values in as the StaleTime parameter.

EnableDownTimeOverride

An optional Boolean. If valid, this will be used instead
of the EnableDownTime property in the tag con-
figuration.

UseRecordOverrides

An optional Boolean. Flag indicating if record overrides
are in effect. Setting the UseRecordOverrides para-

meter to FALSE will cause all records in storage to be
returned even if there are duplicate timestamps.
Typically, a new record with a timestamp matching an
existing record would be considered to override the
existing record. The parameter defaults to TRUE,
returning only the most recently added record for each
timestamp.

Com-
ments:

This function is a replacement for GetLog. It has the following
advantages over GetLog:
1) Works purely in UTC. Any conversion to local timestamps
should be done by the caller only when absolutely necessary
(only when they are about to be displayed or presented to an
end-user).
2) Ambiguity removed from the StartTime, EndTime, TPP and
NumEntries parameters: If TPP is non-zero, then EndTime is
ignored and NumEntries explicitly specifies the number of
periods to return.
3) Ambiguity removed from return values. There is an explicit
return code set when the function is complete, rather than
just returning a single-element array when an error occurs,
which is ambiguous to whether or not it indicates an error or
returned data. Moreover, the array returned is always a two-
dimensional array.
Note: if multiple modes are being returned from the same
field, the array size of fields needs to match that of mode.
When Mode is set to 11, GetTagHistory counts to a maximum
value as set by StaleTime, and then rolls over to start a new
interval. Whenever there is a decrease in value from one
record to the next in the file, it is assumed that the maximum
of the range has been reached and a rollover has occurred.
Upon rollover, the value of GetTagHistory for the previous
interval is calculated as (StaleTime + CurrentValue) – Min-
imum Value from previous interval.

Thus, for a StaleTime set to 100 and values read as follows:
10, 40, 90, 5.
The transition from 90 to 5 marks a rollover event. The value
for the previous interval is (100 + 5) – 10 = 95.
This function forwards to GetLog if there is legacy history
data involved in the query.
No downtime invalids are inserted when reading in the
reverse order.
Defined error codes, which may be found in ptrReturnCode:

Constant Value Notes

HISTORIAN_SUCCESS 0

HISTORIAN_ERROR_INVALID_
PARAMETER

1

HISTORIAN_ERROR_UNKNOWN_
CONNECTION_TYPE

100001

HISTORIAN_ERROR_ILLEGAL_
GETDATA_QUERY

100002

HISTORIAN_ERROR_STORAGE_
LOCKED

100003

HISTORIAN_ERROR_RECORDS_
DO_NOT_EXIST

100004 the records requested do not
exist in storage according to the
sequence counters

HISTORIAN_ERROR_
CONNECTION_FAILED

100005

HISTORIAN_ERROR_RECORD_
READ_FAILURE

100006 the records requested should
exist in storage, but there was
an error retrieving them

HISTORIAN_ERROR_RECORD_
WRITE_FAILURE

100007

HISTORIAN_ERROR_STORAGE_
INCONSISTENT_WITH_
SEQUENCE_COUNTER

100008

HISTORIAN_ERROR_FIELD_ 100009

DOES_NOT_EXIST

HISTORIAN_ERROR_RECORD_
DELETION_FAILURE

100010

HISTORIAN_ERROR_
INITIALIZATION_FAILURE

100011

HISTORIAN_ERROR_SCHEMA_
PERSIST_FAILURE

100012

HISTORIAN_ERROR_FAILED_TO_
LAUNCH_THREAD

100100

See Also:
 WriteHistory, ConvertTimeStamp

Examples
There are two distinct ways to retrieve historical data: (1) Raw history and
(2) Statistically processed data ("TPP").
A raw history retrieval retrieves the actual records that were logged by
the tag

FieldNames = New(2);
FieldNames[0] = "Timestamp";
FieldNames[1] = "Value";
\HistorianManager\GetTagHistory(&RetCode, &Results, AnalogStatus1,

FieldNames, UTCStartTime, UTCEndTime,
0 {TPP=0 indicates raw records requested},
100 { Maximum number of records to return});

TPP-type query (average daily values for a 10-day period):

Modes = New(2);
Modes[0] = 4; { Timestamp at start of period }
Modes[1] = 0; { Time-weighted average of Value over the period }
\HistorianManager\GetTagHistory(&RetCode, &Results, AnalogStatus1,

FieldNames, UTCStartTime, 0 {EndTime
ignored},

86400 { 1-day time periods },
10 { 10 days requested }, Modes);

Retrieve an average and a minimum:

Modes = New(2);
Modes[0] = 0 { Average };
Modes[1] = 1 { Minimum };

Fields = New(2);
Fields[0] = "Value";
Fields[1] = "Value";

\HistorianManager\GetTagHistory(&ReturnCode,&Result,TagObj,Fields,
 StartTime,EndTime,EndTime - StartTime,1,Modes);

GetTagList

Description: Returns an array of tags, starting at a given point in the tag
tree and including all child tags below that point, subject to
the filtering parameters.

Returns: Array

Usage: Script Only.

Function Groups: Basic Module

Related to: PointList | GetTagTypes

Format: \GetTagList([RootLevel, DoRecursive, SearchType,
SearchString, TagType, AreaSearch, EnableRealmAreaFil-
tering, IncludeGhosts, ExcludeLeaves])

Parameters:

RootLevel

Optional text. The name of the tag to begin with. May
be a unique id or a tag name. Defaults to VTSDB if not
specified.

DoRecursive

Optional. A Boolean value which, when set TRUE, res-
ults in sub-tags being returned as well as tags at the
current level of the tree. Defaults to false if Invalid.

SearchType

Optional flag. Set 0 for a name search or 1 to search all
parameters. Defaults to 0, name search.

SearchString

Optional text. A value to filter for, using pattern match-
ing.

TagType

The type of tag to be filtered for.

AreaSearch

Optional text - the area name to filter for using pattern
matching.

EnableRealmAreaFiltering

Optional Boolean. Set TRUE to enable area and realm fil-
tering. Defaults to TRUE.

IncludeGhosts

Optional Boolean. Set TRUE to include disabled tags.
Defaults to FALSE.

ExcludeLeaves

Optional Boolean. Set true to filter for only tags that
have child tags. Defaults to FALSE.

Comments: This function provides the search and filtering features
seen in the Tag Browser. You should select this function
over the older PointList, since GetTagList adds several
options to control what will be returned.

Examples:
Select all driver tags in application:

If 1;
[
 PList = \GetTagList(Invalid, TRUE, 0, "*", "Drivers", Invalid,
FALSE);
]

Select all the Analog Status tags, in all areas, within a context named
MyStationName:

If 1;
[
 PList = \GetTagList("MyStationName", TRUE, 0, "*", "Ana-
logStatus");
]

GetTagTypes

Description: Returns an array of either the common names or the mod-
ule names of all tag types. May optionally include the list of
tag groups.

Returns: Array

Usage: Script Only.

Function Groups: Basic Module

Related to: PointList | GetTagList

Format: \GetTagTypes([GetGroups, GetModuleNames])

Parameters:

GetGroups

Optional Boolean. If set TRUE, the list of tag groups will
be retrieved and returned at the end of the list of types.
Defaults to TRUE.

GetModuleNames

Optional Boolean. If set TRUE, this function will
return module names rather than the display
name for each type.
If set, Groups will be invalid. Defaults to FALSE.

Comments: This function is used to populate a selection list of types.

Examples:
Select all driver tags in application:

If 1;
[
 PList = \GetTagList(Invalid, TRUE, 0, "*", "Drivers", Invalid,
FALSE);
]

Select all the Analog Status tags, in all areas, within a context named
MyStationName:

If 1;
[

 PList = \GetTagList("MyStationName", TRUE, 0, "*", "Ana-
logStatus");
]

GetToken

Description: Reads the next token from a stream and returns the token
type.

Warning: For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns: Numeric (see table in comments)

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Stream and
Socket

Related to: Compile

Format: GetToken(Stream, Token, ClassBuffer, NumClasses,
StateBuffer, ActionBuffer, SkipWhite, LineCount, Column,
CharCount)

Parameters:

Stream

Required. Any stream expression for the input stream.

Token

Required. A variable into which the next token read
will be stored.

ClassBuffer

Required. Any text expression for the character clas-
sifier table.

NumClasses

Required. Any numeric expression for the number of
character classes.

StateBuffer

Required. Any text expression for the tokenizer state

table.

ActionBuffer

Required. Any text expression for the tokenizer action
table.

SkipWhite

Required. Any logical expression. If true, all white
spaced is skipped. Otherwise all continuous white
space is treated as a token.

LineCount

Required. Must be a variable. The number of lines read
is stored here.

Column

Required. Must be a variable. The current column is
stored here.

CharCount

Required. Must be a variable. The number of char-
acters read is stored here.

Com-
ments:

The return value for this function is the token type. The tokens recog-
nized by the Compile function are as follows (assuming the tables
used by the compiler are those handed in to this function)

Return Value Token Type

0 End-of-file

1 White space

2 Identifier - variable

GetTrajectoryPath

Description: Returns the Path value which defines the trajectory of a
graphic object.

Returns: Path

Usage: Script or steady state.

Function Groups: Graphics

Related to: GetPathBound | Trajectory

Format: GetTrajectoryPath(CodePointer)

Parameters:

CodePointer

Required. Any expression for the code pointer value
that defines the graphic statement.

GetTransform

Description: Returns the transform value applied to a graphic state-
ment.

Returns: Transform

Usage: Script or steady state.

Function Groups: Graphics

Related to: GetXformRefBox | GUITransform | UnTransform

Format: GetTransform(CodePointer)

Parameters:

CodePointer

Required. Any expression for the code pointer value
which defines the graphic statement.

GetTransitText

Description: Get Transition Document Text. This function returns
information about the documentation of an action.

Warning: For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns: Text

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: AdjustCode | GetModuleText | GetOneParmText |
 GetParmText | GetStateText | GetVariableText |
 SetModuleText | SetOneParmText | SetParmText |
 SetStateText | SetTransitText | SetVariableText |
 TextOffset | TextSize

Format: GetTransitText(Action, Mode)

Parameters:

Action

Required. Any expression for the code value that
defines the action.

Mode

Required. Any numeric expression which defines the
information desired

Mode Information desired

0 Script size in characters

1 Character offset to script

2 Trigger size in characters

3 Character offset to trigger

4 Destination size in characters

5 Character offset to destination

6 Size of script excluding [] , in char-
acters

7 Character offset to first script state-
ment

8 Total size of action, in characters

GetUserID

Description: Returns the name of the user for the current session.

Returns: Text

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Variable

Related to: GetUserSession

Format: Layer\GetUserID()

Parameters: none

GetUserName

Security Manager Module

Description: Returns the user name of the caller’s account.

Returns: String

Usage: Script or steady state.

Related to: GetAccountID | GetAccountInfo | GetFullName |
GetGroupName | IsLoggedOn | IsSecured | IsSuspended |
SecurityCheck | UIErrorToText

Format: \SecurityManager\GetUserName()

Parameters: None

Comments: This is not namespace-qualified.

GetUserNameOfRecord

(Alarm Manager module)

Description: Given an alarm record, returns the user name associated
with the transaction.

Returns: Text

Usage: Script Only.

Function Groups: Alarm

Related to: GetAlarmObject

Format: \AlarmManager\GetUserNameOfRecord(AlarmRecord[,
TrimRealm])

Parameters:

AlarmName

Required record. A reference to the alarm, as returned
by the function GetAlarmObject.

TrimRealm

Optional Boolean. If TRUE, and if the user is a member
of a security group, the realm (group) will be trimmed
from the result.

Comments: This function is intended primarily for presentation
purposes.

Example:

Related Information:

GetUserSession

Description: The module this function returns is useful for accessing
session-specific variables. The function will traverse the
call tree to find the session that called it.

Returns: A session module instance.

Usage: Script or steady state.

Function Groups: Basic Module, Variable

Related to: ParentWindow

Format: \GetUserSession([DefaultToRootSession])[\QueryVariable]

Parameters:

DefaultToRootSession

Optional Boolean. If TRUE (the default value) then if a
valid session is not found, this function will return the
Display Manager's root session. (That is, the one per-
taining to the actual running application as opposed to
any remotely established session.)
If set FALSE, then Invalid will be returned if a valid ses-
sion is not found.

QueryVariable

Optional. The name of a variable to be queried.
Examples include, but are not limited to:
\IsRootSession
\AppTitle
\CurrentWinInst\PageInstance

Comments: This routine walks up the caller's call tree, looking
for a variable named "_UserSession_", then return-
ing the context containing that variable. In none is
found, then the Display Manager's root session will
be return unless the optional parameter is set to
FALSE.
GetUserSession is also useful for launching dialogs
in the scope of a particular user session. This means
that a tag or service which is not associated with any
particular user can cause a dialog to open on a par-
ticular VIC session.
Note that the public variable, IsEditing, is obsolete.
In place of GetUserSession\IsEditing, new code
should use ParentWindow()\Editing.

Examples:
Launch a dialog in the scope of a session:

If OpenDialog Idle;
[
Session = \GetUserSession();

Launch("Dialog", Self() { Parent }, Session { Caller });
]

GetValue

(Hierarchical Accumulator module)

Description: Returns the current count of the values within an accu-
mulator dictionary.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Variable

Related to: Accumulate

Format: HierarchicalAccumulator\GetValue(TagObj, Accu-
mulatorName);

Parameters:

TagObj

Required. The tag object at the point in the hierarchy
where you want to collect the accumulated values.

AccumulatorName

Required. The name of the accumulator, from which to
retrieve the current count.

Comments: This function is part of the HierarchicalAccumulator mod-
ule, so must always be called as shown in the format. You
will need this function if you have created your own accu-
mulator and wish to retrieve the value.
The accumulator allows a fresh count to be generated at
different levels in a tag tree, and as tags are moved or dis-
abled.

Examples:

Main [
 Return(\HierarchicalAccumulator\GetValue(ContainerObj, "AlarmUn-
acked"));
]

GetVariableText

Description: Returns information about a variable.

Warning: For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns: Numeric

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Variable

Related to: AdjustCode | GetModuleText | GetOneParmText |
 GetParmText | GetStateText | GetTransitText |
 SetModuleText | SetOneParmText | SetParmText |
 SetStateText | SetTransitText | SetVariableText |
 TextOffset | TextSize

Format: GetVariableText(Variable, Mode)

Parameters:

Variable

Required. Any expression for a variable.

Mode

Required. Any numeric expression for the
desired information. The character offset is to
the right after the declared variable (i.e. the car-
riage return is not included, nor is the line feed
that ends the line), and length includes the CR,
LF(2).

Mode Desired information

0 Character offset to variable declaration

1 Size of variable declaration in char-
acters

In the case of the offset to the variable declar-

ation, this is located immediately following the
variable preceding this variable and will in fact
include the carriage return and line feed from
the previous variable. Likewise, the size of the
variable declaration includes the leading car-
riage return and line feed, any spaces preceding
the actual variable name and does not include
the carriage return and line feed following the
variable.

Example:
Assume that the following text is the entire document file for a module:

[
x;
y;
[(99)
P1 Module "P1.SRC";

]
]
Main [
]

The offsets for the variables would be as follows:

Variable Offset (Mode = 0) Size (Mode = 1)

X 1 6

Y 7 6

P1 23 25

GetVariableType

Description: Returns the type, BASEVALUE, stored within a variable.

Warning: For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns: Integer or Structure.

Usage: Script Only.

Function Groups: Variable

Related to: SetVariableType

Format: GetVariableType(Variable)

Parameters:

Variable

Required. Any expression for a variable.

Comments: If a structure is returned, the first element will be an
integer giving the data type. In the case where the variable
is a module, the remaining elements will be text strings giv-
ing the names of modules within the scope.

Example:

Var = FindVariable(ParmList[I], Mod, 0, 0);
{ Retrieve any typing information }
ParmType = GetVariableType(Var);

GetVarMetadata

Description: Every variable object contains an embedded value. This
function is used to retrieve those values.

Warning: For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns: Varies

Usage: Script Only.

Function Groups: Dictionary, Variable

Related to: SetVarMetadata | FindVariable | AddVariable

Format: GetVarMetadata(Variable)

Parameters:

Variable

Required. A variable handle, such as would be

returned from the FindVariable or AddVariable func-
tions.

Comments: Commonly used in conjunction with SetVarMetadata,
FindVariable or AddVariable. Note that type data for each
variable is stored within the variable using metadata.

Example:

<
TestMod
[
X;
Y;
Var;

]
Main [
If ! Valid(X);
[
X = "This is the value of X"
Var = FindVariable("X", Self(), 0, 0);
SetVarMetadata(Var, "This is the metadata in variable X");
Y = GetVarMetadata(Var);

]
ZText(50, 100, Concat("X: ", X), 14, 0);
ZText(50, 120, Concat("Y: ", Y), 14, 0);

]
>

GetVoices

(VoiceTalk Module)

Description: Runs in the VoiceTalk thread and returns a list of voices
available on a SAPI text-to-speech stream.

Returns: Array

Usage: Script Only.

Function Groups: Speech and Sound

Related to: Configure | GetDevices | Reset | ShowLexicon | Speak |
 VoiceTalk

Format: VoiceTalkStream\GetVoices([Detailed])

Parameters:

VoiceTalkStream

Required. A speech stream returned from VoiceTalk.

Detailed

Required. A flag which, if set to a non-zero value, res-
ults in a detailed 2-dimensional array of information
about the voices being returned. If this parameter is "0"
or omitted, the return value will be a 1-dimensional list
of voice names suitable for use in the VoiceTalk\Con-
figure function.
If Detailed is specified, a 2-dimensional array con-
taining the available speech voices will be returned.
Each row in the array represents a speech module as
follows:

[N][0] Text value that indicates the name of this voice
This is a human readable string (such as "Microsoft
Mary") that may be passed to the VoiceTalk\Configure
function.

[N][1] Text value giving the language of the voice. For
example, American English will be returned as "409,9",
where 409 is the hexadecimal representation of stand-
ard English (decimal 1033), and 9 indicates American
version of English.

[N][2] Text value giving the gender of the voice. Either
"Male" or "Female"

[N][3] Text value giving the age of the voice (e.g.,
"Adult")

[N][4] Text value vendor providing the voice (e.g.
"Microsoft")

Comments This function will return immediately. Using the array

information returned from this call, it is possible to determ-
ine whether a particular SAPI text-to-speech mode exists
on the system. If it does not, the array information can be
used to select the voice that most closely matches the
desired characteristics, or build and display a dialog to
allow the user to choose.

Example:

sHandle = \VoiceTalk();
If Valid(sHandle) && ! getVoices;
[
getVoices = 1;
sVoices = sHandle\GetVoices(1);

]

This will return a detailed 2-dimensional array of all available text-to-
speech engine voices in the array, sVoices.

GetWCPath

Description: Returns the file system path to the application's working
copy folder.

Returns: Text

Usage: Steady State only. See: Rules for Usage.

Function Groups: Configuration Management

Related to: GetOEMLayer |

Format: Layer\GetWCPath

Parameters: none

Comments: The retrieved path includes the trailing backslash.

Examples:
This snippet from a script application will display the working copy path
for the completed tutorial. (The GUID of the completed tutorial may
vary.)

[
 WaitObj;
 CompLayer;
 TutGUID = "db53f244-90ef-4628-bdf6-2d53794a2079";
]
Main [
 If !Valid(WaitObj) && !Valid(TestLayer) WaitTestLayerLoad;
[
{ GetAppInstance doesn't return the Layer until it has loaded. }

 WaitObj = Layer\GetAppInstance(TestLayerGUID, &TestLayer);
]
]
WaitTestLayerLoad [
 WC = TestLayer\GetWCPath();
 ZText(100, 100 { Lower left corner of text },
 WC { Text to display },
 0 { Text is black },
 0 { Use default font });
]

GetWCRevision

Description: Returns the revision structure for the repository revision in
use by the working copy.

Returns: Revision Node.

Usage: Script Only.

Function Groups: Configuration Management

Related to: GetWCPath |

Format: LayerRoot\GetWCRevision()

Parameters: None

Comments: None

Examples:

GetXformRefBox

Description: Get Transform Reference Box. This function returns the ref-
erence box for any transform of a module.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Graphics,
Advanced Module, Window

Related to: GetModuleRefBox | GUITransform | UnTransform

Format: GetXformRefBox(Object, Option)

Parameters:

Object

Required. Any expression which gives the object value
for the transformed module instance.

Option

Required. Any expression that defines the requested
return value as indicated by the following:

Option Return Value

0 Left side

1 Bottom side

2 Right side

3 Top side

Comments: This function will only return the reference box of a trans-
form immediately acting upon the module indicated by
Object, it will not search for a transform that may be acting
upon the module's parent or ancestors.
If the module indicated by Object is not under the influ-
ence of a transform, the return value will be Invalid.
This function is unaffected by the Untransform statement.
Even if the module has been untransformed, it will still be
able to retrieve the reference box of a transform that
would be otherwise acting upon it.

Example:
Suppose that the System module calls module Motor inside of a trans-
form as follows:

GUITransform(0, 100, 100, 0 { Bounding box for transform },
1, 1, 1, 1, 1 { No scaling },
0, 0 { No trajectory or rotation },
1 { Module graphics are visible },
0 { Reserved },
0, 0, 0 { Cannot be focused/selected },
Motor() { Module to transform });

Further suppose that Motor needs to know its exact location in the win-
dow - it is inside of the transform and is therefore unaware of its (the
transform's) parameters. This can be done by the following:

right = GetXFormRefBox(Self(), 2);

The variable right will contain the X-coordinate for the right of the trans-
form's reference box, which in this case will be 100. If the transform's
position in the window were to change, the value of this variable would
similarly change.

GetXMLNodeArray

(System Library)

Description: Searches the result returned from XMLParse and
returns an array of XMLNode values of a given type.
Returns Invalid if no matches are found.

Returns: Array of XMLNodes.

Usage: Script Only.

Function Groups: XML

Related to: XMLProcessor | XMLAddSchema | XMLWrite |
 XMLCloneNode | XMLCreateNode | XMLDeleteMember |
 XMLGetNode | XMLParse

Format: \System\GetXMLNodeArray(XMLContainer, ElementType)

Parameters:

XMLContainer

The XMLNode within which to search for element type
name. Only the direct child nodes of this node are
searched.

This is the equivalent of the first parameter of the
Scope operator.

ElementType

The element type name to search for.
This is equivalent to the second parameter of the
Scope operator.

Comments: This helper function was created to work with the
results of XMLParse.
GetXMLNodeArray searches the immediate children
of a given XMLNode value (first parameter) for ele-
ments with the type name provided by the second
parameter and returns those elements in an array of
XMLNodes. This serves to simplify parsing of
XMLNode trees, which may contain lists of repeating
elements.
Elements in the returned array will be in the same
order as in they were in the original XML document.
If no elements with the given name are found, then
this function will return INVALID.

Examples:

Source = "<X><Y>"Hello"</Y><Y>" "</Y><Y>"world"</Y><Y>"!"</Y></X>";
XMLProc = XMLProcessor(INVALID);
XMLParse(XMLProc, Source, Errors, Document);
RootNode = XMLGetNode(Scope(Document, "X"));
TextNodes = \System\GetXMLNodeArray(RootNode, "Y");
At this point TextNodes will contain an array of four XMLNodes, con-
taining "Hello", " ", "world", and "!" respectively.

GoToOffset

Note: Deprecated. Do not use in new code.

Description: Forces an editor to move to a location in its text.

Returns: None

Usage: Script or steady state.

Function Groups: Editor

Related to: AddEditorText | CurrentLine | Editor | ForceEvent |
 MakeEditor | SetEditMode

Format: GoToOffset(Editor, Offset, Highlight, NumHighlight)

Parameters:

Editor

Required. Any expression for the editor value.

Offset

Required. Any numeric expression for the character
offset to display.

Highlight

Required. Any logical expression. If true, characters
will automatically be highlighted, beginning at Offset.

NumHighlight

Required. Any numeric expression for the number of
characters to highlight if Highlight is true.

Example:

myEditor = MakeEditor() { Create the editor };
...
GoToOffset(myEditor { Which editor to use },

100 { Move to an offset of 100 bytes },
1 { Highlight characters at new offset },
10 { Highlight 10 characters });

Grid

Description: Places a (lined) grid pattern on the screen.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: Box | GUIRectangle| Line | ZBox | ZGrid

Format: Grid(X1, Y1, X2, Y2, Style, Color, Horizontal, Vertical)

Parameters:

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the grid area.

Y1

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the grid area.

X2

Required. Any numeric expression giving the X
coordinate on the screen of the side of the grid area
opposite to X1.

Y2

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the grid area, whichever is the opposite to Y1.

Style

Required. Any numeric expression giving the line style
for the grid lines. Valid line styles are from 1 to 10,
where 1 is a solid line.

Color

Required. Any numeric expression giving the color of
the grid lines. If the number is less than 10000, the
grid lines are non-destructive. If greater than or equal
to 10000, the grid lines are destructive and the actual
color used is Color - 10000. RGB values and system
color constants are not supported.

Horizontal

Required. Any numeric expression giving the number
of horizontal lines in the grid. This value may be zero.

Vertical

Required. Any numeric expression giving the number

of vertical lines in the grid. This value may be zero.

Comments This statement is non-destructive unless Color is explicitly
set destructive. The outside perimeter of the grid area is
not drawn.

Example:

Grid(100, 100, 700, 500 { Bounding box for the grid },
3 { Dotted line style },
9 { Light blue color },
3 { 3 horizontal lines divide 4 areas },
5 { 5 vertical lines divide 6 areas });

This example divides an area into 6 blocks wide by 4 blocks high using 3
horizontal lines and 5 vertical lines.

GridList

(System Library)

Description: Draws a list in the style of a spreadsheet.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: CheckBox | Droplist | GUITransform | HScrollbar |
 Listbox | RadioButtons | Spinbox | SplitList | ToolBar |
 VScrollbar |

Format: \System\GridList(Titles, Data, DataFormat, ColWidth-
sParm, NumDataRowsParm, NumDataColsParm,
GridListBGndParm, GridColorParm, GridLineWidthParm,
GridStyleParm, RowHeightParm, TitleHeightParm,
HCellPaddingParm, VCellPaddingParm, HScrollPosParm,
VScrollPosParm, DisableVScroll, DisableHScroll, Dis-
ableColumnSizing, DisableSorting, DisableSelectedCell,
DisableVGridLines, DisableHGridLines [, LockFirstColumn ,
Sort, SelectedRow, SelectedColumn, GridFontParm,
GetSortKeyScope, EnableBorderParm])

Parameters:

Titles

Required. The array of the titles you wish to use
for the grid column headings. The title bar for a
grid can be disabled by setting the Titles array
to Invalid, or by setting TitleHeightParm to 0.
This (and all other) array parameters must use
dynamic arrays.
Alternatively, you may provide the name of a call-
back module, which will provide the titles. The
module must allow for sorting by title.

Data

Required. The array of data with which to populate the
grid.

DataFormat

Required. The array of the data formats corresponding
to the data specified in the Data array. There must be
one entry per column of data.

ColWidthsParm

Required. The array of the widths of the columns in
pixels.

NumDataRowsParm

Required. Specifies the number of data rows to display.

NumDataColsParm

Required. Specifies the number of data columns to dis-
play.

GridListBGndParm

Required. Indicates the background color for the cells
in the grid.

GridColorParm

Required. Indicates the color of the grid lines.

GridLineWidthParm

Required. Indicates the width of the grid lines.

GridStyleParm

Required. Indicates the style of the grid lines.

RowHeightParm

Required. Indicates the height of the rows in the grid.

TitleHeightParm

Required. Indicates the height of the column headings
row above the grid. The title bar for a grid can be dis-
abled by setting TitleHeightParm to 0, or by setting the
Title array to Invalid.

HCellPaddingParm

Required. Indicates the horizontal cell padding for the
grid.

VCellPaddingParm

Required. Indicates the vertical cell padding for the
grid.

HScrollPosParm

Required. Indicates the horizontal scroll bar position.

VScrollPosParm

Required. Indicates the vertical scroll bar position.

DisableVScroll

Required. A flag that may be set to TRUE (non-zero) to
disable vertical scrolling, or FALSE (0) to enable ver-
tical scrolling.

DisableHScroll

Required. A flag that may be set to TRUE (non-zero) to
disable horizontal scrolling, or FALSE (0) to enable hori-
zontal scrolling.

DisableColumnSizing

Required. A flag that may be set to TRUE (non-zero) to

disable column resizing, or FALSE (0) to enable
column resizing.

DisableSorting

Required. A flag that may be set to TRUE (non-zero) to
disable sorting by clicking the column headings, or
FALSE (0) to enable sorting by clicking the column
headings.

DisableSelectedCell

Required. A flag that may be set to TRUE (non-zero) to
disable selected cell highlighting, or FALSE (0) to
enable selected cell highlighting.

DisableVGridLines

Required. A flag that may be set to TRUE (non-zero) to
disable vertical grid lines, or FALSE (0) to enable ver-
tical grid lines.

DisableHGridLines

Required. A flag that may be set to TRUE (non-zero) to
disable horizontal grid lines, or FALSE (0) to enable
horizontal grid lines.

LockFirstColumn

An optional flag that may be set TRUE (non-zero) to
lock the first column from horizontal scrolling (e.g.
the first column contains row titles). The default value
if Invalid or not supplied is FALSE.

Sort

An optional parameter that specifies the column on
which the GridList is to be sorted. The parameter is 1-
based (i.e. a value of 1 refers to the first column).
If negative, the sort order is descending If the user
clicks a column title to sort the GridList, then the para-
meter is set to the appropriate value. .
If Invalid or not supplied, no column sorting will be
applied.

SelectedRow

An optional parameter that specifies the row of the
selected cell. The parameter is 0-based (i.e. a value of
0 refers to the first row). If the user clicks in a cell, then
the parameter is set to the index of the selected row.
If Invalid or not supplied, no cell is selected.

SelectedColumn

An optional parameter that specifies the column of the
selected cell. The parameter is 0-based (i.e. a value of
0 refers to the first column). If the user clicks in a cell,
then the parameter is set to the index of the selected
column.
If Invalid or not supplied, no cell is selected.

GridFontParm

An optional parameter that specifies the font to be
used for Titles and Grid elements. The selected font
will affect all items in the GridList.
If using callbacks, it will allow the user to use the same
font in their callbacks or have a separate title font and
use their own font in their callbacks.
Note: Nothing in a GridList is sized based on font size.
The caller must ensure that the row and title heights
are large enough to accommodate the font.
No default value.

GetSortKeyScope

An optional module value of GetSortKey call-back
(example in comments section). Required only when
using call-backs for the cells of the gridlist.

EnableBorderParm

Optional Boolean. Set true to show a border around the
grid. Defaults to FALSE.

Comments: GridList is a member of the VTS System Library, and
must therefore be prefaced by "\System\", as shown

in the "Format" section above. If you are developing
a script application, use "System\..." rather than
"\System\..." in the function call.
Where parameters use arrays, they must be dynamic
arrays.

Using GridList, you may enable such functionality as
column resizing, sorting when clicking on column
headings, selection of cells, using the keyboard to
move around the grid, and adding scroll bars.

GridList also provides the ability to define a call-
back function to draw in a cell

Data[I] = Self() { Module in which the
CallBack exists };
DataForms[I] = "DrawCell" { The CallBack module
used to display a cell
in this column };

An example of a GetSortKey call-back module:

GetSortKey
(
Row { Row index to get the

sort key for };
Column { Column index to get the

sort key for };
Inverted { Bool: TRUE if the order

is being reversed };
)
Main [
If 1;
[

Return(ToUpper(Data[Row][Column]);
]

]

Note: GridList has been configured to clip text
on the right and display a tooltip if there is not
enough room to show the entire text string in a
cell.

Example:

(See also, an example in GUITransform)

{initialize the data array}
Titles[0] = "Name";
Titles[1] = "Area";
Titles[2] = "Description";
Titles[3] = "I/O Device";
Titles[4] = "Address";
Data[0][0] = "Tag1";
Data[1][0] = "Tag2";
Data[2][0] = "Tag3";
Data[0][1] = "Area1";
Data[1][1] = "Area1";
Data[2][2] = "I'm a tag";
Data[1][3] = "PollDrvr1";
Data[0][4] = "40001";
DataForm = "%s";

GUITransform(50, 500, 350, 50 { Reference rectangle },
1 { Scale Left },
1 { Scale Bottom },
1 { Scale Right },
1 { Scale Top },
1 { No overall scaling },
0, 0, 1, 0 { No movement; visible; res },
0, 0, 0 { Not selectable },
\System\GridList(Titles { Titles array },

Data { Data array },
DataForm { Cell format array },
60 { Column widths array },
3 { # Data rows },
5 { # Data cols },
15, 8 { Grid BGnd, Grid color },
1, 1 { Grid line width, line style},
30, 30 { Row/Title height },
0, 0 { Horiz/Vert cell padding },
0, 0 { Horiz/Vert Scroll position },
1, 1 { Disable V/H scroll bars },
1 { Disable column sizing },
1 { Disable Sorting },
1 { Disable selected cell },
0, 0 { Disable V/H grid lines },
1 { LockFirstColumn },
Invalid { Sort },
0 { SelectedRow },
0 { SelectedColumn },
_DialogFont { GridFontParm }));

This code example will create a Grid List that looks like the following:

GUIArc

Description: Draws an arc in a window. Can return a Boolean when selec-
ted by a mouse button or when the <ENTER> key is
pressed after the graphic acquires focus.

Returns: Numeric

Usage: Steady State only.

Function Groups: Graphics

Format: GUIArc(LeftReference, BottomReference, RightReference,
TopReference, ScaleLeft, ScaleBottom, ScaleRight,
ScaleTop, ScaleWhole, Trajectory, Rotation, Opacity,
Reserved, Button, FocusID, FocusTrigger, Pen, Vertex)

Parameters:

LeftReference

A constant number that gives the left side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

BottomReference

A constant number that gives the bottom side ref-
erence coordinate. It must be a constant. A variable or
expression is not valid here. The top and bottom ref-
erences are measured down from the top of the
screen. The top and bottom references are measured
down from the top of the screen.

RightReference

A constant number that gives the right side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

TopReference

A constant number that gives the top side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

ScaleLeft

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleBottom

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleRight

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleTop

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.

If the value is at the low level, the side will be at the
opposite side reference position.

ScaleWhole

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales the horizontal and vertical dimensions by the
specified factor before the left, bottom, right and top
coordinates are scaled.

Trajectory

Required. Either a Trajectory function, a variable con-
taining a Trajectory value, or a numeric expression. If
this is a Trajectory value or function, the appropriate
translation is applied to the image after the rotation is
applied. If it is a valid numeric expression, the image
isn't translated, but is displayed. Any other value is
Invalid.

Rotation

Required. Either a Rotate function, a variable con-
taining a Rotate value, or a numeric expression. If this
is a Rotate value or function, the appropriate rotation
is applied to the image before the trajectory is applied.
If it is a valid numeric expression, the image is rotated
clockwise the number of degrees specified. Any other
value is Invalid.

Opacity

Required. Any Numeric expression, setting the opacity
of the object. A value of one results in a solid, zero is
invisible and values between zero and one are used as
an alpha setting for opacity.

Reserved

Reserved for future use, set to 0.

Button

Required. Any numeric expression giving the button
combination that activates this graphic.

Button Locator Buttons

0 No button combination will activate
this graphic

1 Right button

2 Middle button

3 Right and middle buttons

4 Left button

5 Left and right buttons

6 Left and middle buttons

7 All three buttons

If the above values are multiplied by 8, the mean-
ing for multiple buttons pressed becomes "OR"
rather than "AND." For example, to accept any
button on a 2 or 3 button mouse, use 56 (i.e. 8 *
7). To accept the left mouse button regardless
of whether or not the right button is pressed,
use 32 (i.e. 8 * 4).
If a 64 is added to this parameter, the function
will become true when the mouse buttons are
released rather than when they are pressed.

FocusID

Required. Any numeric expression giving the focus
number of this graphic. If FocusID is zero, this graphic
cannot receive the input focus. This parameter's value
may be used in a NextFocusID statement to force this
graphic to get the focus.

FocusTrigger

Required. Any Boolean expression. If FocusTrigger

changes from a valid false to a valid true, this graphic
will become acquire focus.

Pen

Required. Any expression that returns a Pen
value to describe the color, width and style. You
may also use any of the following to draw a
single-pixel, solid arc:

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

Vertex

Required. Any expression that returns a Vertex value
that describes this arc. The center point of the vertex is
the center point of the arc. The two vertex handle
points are used to find the start and end angle of the
arc, by the angle each point makes with the center
point.
The points do not describe absolute positions - that is
controlled by the object's bounding box. What matters
is the relation of the points to each other.

Comments: This function is a layered graphics statement. For inform-
ation about positioning a layered graphic, please refer to
"Use Scaling to Position GUI Objects".
The Left and Right references are interchangeable.
Whichever is smaller is taken as the left and the larger of
the two values will be used as the right. The same is true of
the top and bottom references. Note that the 1st 42 pixels
of a VTScada application will be obscured by the title bar, if
present.

Example:

press = GUIArc(0, 99, 99, 0,
 1, 1, 1, 1, 1 { Scaling },
 0, 0 { Movement },
 1, 0 { Visibility, Reserved },
 0, 0, 0 { Selectability },
 Pen("<FF000000>", 1, 1),
 Vertex(1,
 Point(560, 512, Invalid, Invalid),
 Point(623, 449, Invalid, Invalid),
 Point(489, 583, Invalid, Invalid)));

This shows a black arc in the upper left corner of the window. No scaling
is performed, and no animation is performed.
The first four parameters must be constants. See GUITransform for an
example of how to compute the position dynamically.

Related Functions:
Arc | Circle | DrawArcPath | DrawChordPath | DrawEllipticalPath |
 DrawPiePath | Ellipse | GUIChord | GUIEllipse | GUIPie | GUITransform
| NextFocusID | Normalize | Pie Point | Rotate | Trajectory | Vertex |
 VStatus

Related Information:
See: "Best Practices for Graphics" in the VTScada Programmer's Guide.

GUIBitmap

Description: Draws an image of any of the following formats in a win-
dow. Can return a Boolean TRUE when selected by a mouse
button or when the <ENTER> key is pressed after focus
has been acquired. Available formats include, BMP, EMF,
WMF, APM, CUT, PCX, JPG, PNG, and TIF

Returns: GUI Object Return Codes

Usage: Steady State only.

Function Groups: Graphics

Format: GUIBitmap(LeftReference, BottomReference, RightRe-
ference, TopReference, ScaleLeft, ScaleBottom, ScaleRight,
ScaleTop, ScaleWhole, Trajectory, Rotation, Visibility,
Reserved, Button, FocusID, FocusTrigger, Image)

Parameters:

LeftReference

A constant number that gives the left side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

BottomReference

A constant number that gives the bottom side ref-
erence coordinate. It must be a constant. A variable or
expression is not valid here. The top and bottom ref-
erences are measured down from the top of the
screen.

RightReference

A constant number that gives the right side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

TopReference

A constant number that gives the top side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

ScaleLeft

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleBottom

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleRight

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleTop

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the

opposite side reference position.

ScaleWhole

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales the horizontal and vertical dimensions by the
specified factor before the left, bottom, right and top
coordinates are scaled.

Trajectory

Required. Either a Trajectory function, a variable con-
taining a Trajectory value, or a numeric expression. If
this is a Trajectory value or function, the appropriate
translation is applied to the image after the rotation is
applied. If it is a valid numeric expression, the image
isn't translated, but is displayed. Any other value is
Invalid.

Rotation

Required. Either a Rotate function, a variable con-
taining a Rotate value, or a numeric expression. If this
is a Rotate value or function, the appropriate rotation
is applied to the image before the trajectory is applied.
If it is a valid numeric expression, the image is rotated
clockwise the number of degrees specified. Any other
value is Invalid.

Visibility

Required. Any logical expression. If true, the image is
drawn normally. If false, the image is not drawn.

Reserved

Reserved for future use, set to 0.

Button

Required. Any numeric expression giving the button
combination that activates this graphic.

Value Locator Buttons

0 No button combination will activate
this graphic

1 Right button

2 Middle button

3 Right and middle buttons

4 Left button

5 Left and right buttons

6 Left and middle buttons

7 All three buttons

If the above values are multiplied by 8, the mean-
ing for multiple buttons pressed becomes "OR"
rather than "AND." For example, to accept any
button on a 2 or 3 button mouse, use 56 (i.e. 8 *
7). To accept the left mouse button regardless
of whether or not the right button is pressed,
use 32 (i.e. 8 * 4).
If a 64 is added to this parameter, the function
will become true when the mouse buttons are
released rather than when they are pressed.

FocusID

Required. Any numeric expression giving the focus
number of this graphic. If FocusID is 0, this graphic
cannot receive the input focus. This parameter's value
may be used in a NextFocusID statement to force this
graphic to get the focus.

FocusTrigger

Required. Any Boolean expression. If FocusTrigger

changes from a valid false to a valid true, this graphic
will acquire focus.

Image

Required. Either an image expression or a text
expression. An image value will display that
image. A text value identifies the name of an
image file.
If an expression is used, this graphic can func-
tion like an Image Change, switching images in
response to changing application states.

Comments: 32-bit color is used for all VTScada image drawing.
The performance of image drawing is heavily influenced by
the presence or absence of graphics acceleration hard-
ware. An anti-aliased image draws much more slowly than
one without this option set, and becomes much less com-
patible with masking operations such as zColorChange.

This function is a layered graphics statement. See "Use Scal-
ing to Position GUI Objects" for information about pos-
itioning a layered graphic.
The Left and Right references are interchangeable.
Whichever is smaller is taken as the left and the larger of
the two values will be used as the right. The same is true of
the top and bottom references. Note that the 1st 42 pixels
of a VTScada application will be obscured by the title bar, if
present.

Example:

[
{ variable declaration & assignment }

 Left = 10; { scaling parameters }
 Right = 110;
 Top = 50;
 Bottom = 150;
]
{ ... main state for page or window }
GUIBitmap(0, 1, 1, 0 { Bounding box of image },

1 - Top, Left, Bottom, 1 - Right, 1 { Scaling },

0, 0 { No trajectory or rotation },
1 { Bitmap is visible },
0 { Reserved },
0 { Left mouse button activates },
0 { Focus ID number },
FALSE { Focus trigger },
"..\Bitmaps\Smiley face icon.bmp" { Bitmap file name });

This shows an image in the upper left corner of the window. Position and
size are set using scaling parameters.

The first four parameters must be constants. See GUITransform for an
example of how to compute the position dynamically.

Related Functions:
 BitmapInfo | Crop | GUIButton | GUITransform | ImageArray |
 ImageSweep | MakeBitmap | ModifyBitmap | NextFocusID | Normalize
| Rotate | Trajectory | VStatus

Related Information:
See: "Best Practices for Graphics" in the VTScada Programmer's Guide

GUIButton

Description: Draws a push-button in a window. Can return a Boolean
TRUE when selected by a mouse button or when the
<ENTER> key is pressed after focus has been acquired.

Returns: GUI Object Return Codes

Usage: Steady State only.

Function Groups: Graphics

Format: GUIButton(LeftReference, BottomReference, RightRe-
ference, TopReference, ScaleLeft, ScaleBottom, ScaleRight,
ScaleTop, ScaleWhole, Trajectory, Rotation, Visibility,
Reserved, Button, FocusID, FocusTrigger, Brush, High-
lightPen, ShadowPen, TextColor, Sides, Reserved, UpLabel,
DownLabel, Font, DownValue, UpValue, Variable[,
ImageSet, ClickSound])

Parameters:

LeftReference

A constant number that gives the left side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

BottomReference

A constant number that gives the bottom side ref-
erence coordinate. It must be a constant. A variable or
expression is not valid here. The top and bottom ref-
erences are measured down from the top of the
screen.

RightReference

A constant number that gives the right side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

TopReference

A constant number that gives the top side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

ScaleLeft

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleBottom

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter

scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleRight

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleTop

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleWhole

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales the horizontal and vertical dimensions by the
specified factor before the left, bottom, right and top
coordinates are scaled.

Trajectory

Required. Either a Trajectory function, a variable con-
taining a Trajectory value, or a numeric expression. If
this is a Trajectory value or function, the appropriate
translation is applied to the image after the rotation is
applied. If it is a valid numeric expression, the image
isn't translated, but is displayed. Any other value is
Invalid.

Rotation

Required. Either a Rotate function, a variable con-
taining a Rotate value, or a numeric expression. If this
is a Rotate value or function, the appropriate rotation
is applied to the image before the trajectory is applied.
If it is a valid numeric expression, the image is rotated
clockwise the number of degrees specified. Any other
value is Invalid.

Visibility

Required. Any logical expression. If true, the image is
drawn normally. If false, the image is not drawn.

Reserved n/a

Reserved for future use, set to 0.

Button

Required. Any numeric expression giving the button
combination that activates this graphic.

Value Locator Buttons

0 No button combination will activate this
graphic

1 Right button

2 Middle button

3 Right and middle buttons

4 Left button

5 Left and right buttons

6 Left and middle buttons

7 All three buttons

If the above values are multiplied by 8, the mean-
ing for multiple buttons pressed becomes "OR"
rather than "AND." For example, to accept any
button on a 2 or 3 button mouse, use 56 (i.e. 8 *
7). To accept the left mouse button regardless
of whether or not the right button is pressed,
use 32 (i.e. 8 * 4).
If a 64 is added to this parameter, the function
will become true when the mouse buttons are
released rather than when they are pressed.

FocusID

Required. Any numeric expression giving the
focus number of this graphic. If FocusID is zero,
this graphic will not immediately have focus, but
will work in any other manner. For values above
and below zero, the control will be selectable
until 32767, after which the graphic will not be
visible.

This parameter's value may be used in a Nex-
tFocusID statement to force this graphic to get
the focus.

FocusTrigger

Required. Any logical expression. If FocusTrigger
changes from a valid false to a valid true, this graphic
will attempt to obtain focus.

Brush

Required. Used to fill the background of the button.
Any of the following may be used:

l a Brush object

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

HighlightPen

Required. Used to draw the highlight sides of the but-
ton, one pixel wide. Any of the following may be used:

l a Pen object (in which case the pen's width value
may be used)

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

ShadowPen

Required. . Used to draw the shadowed sides of the but-
ton, one pixel wide. Any of the following may be used:

l a Pen object (in which case the pen's width value
may be used)

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

TextColor

Required.Used to set the color of the text that appears
on the button. Any of the following may be used:

l a Pen object (only the color will be used)

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

Sides

Required. Any numeric expression giving the
number of sides on the button. If this value is 0,
the button will have four sides. If not zero, the
value must be greater than or equal to 4.
In general, the use of non-rectangular shapes is
discouraged. When the button is selected, a rect-
angular outline will be shown.

Reserved

Reserved for future use, set to 0.

UpLabel

Required. An expression returning a Bitmap
value, or text. If text, it will be drawn in the font
set by the Font parameter. Both text and images
will be centered on the button while it is up.
Images will be scaled to fill the button area. To
use an image file, use: MakeBitmap("rel-
ative\path\to\file") Any of the recognized image
formats may be used; the file extension is not

required.

DownLabel

Required. An expression returning a Bitmap value, or
text. If text, it will be drawn in the font set by the Font
parameter, Both text and images will be centered on
the button while it is down. Images will be scaled to fill
the button area.

Font

Required. Any expression returning a Font value, or
any numeric expression. Set as "0" to use the default
system font.

DownValue

Required. Any expression. This will be assigned to the
variable parameter when the button is down (pressed).
If the value of Variable matches the value of this
expression, the button will immediately be drawn as
down.

UpValue

Required. Any expression. This will be assigned to the
variable parameter when the button is up (released). If
the value of Variable matches the value of this expres-
sion, the button will immediately be drawn as up.

Variable

Required. Any variable or any expression which may
receive an assignment (any l-value). This will be set
whenever the button is pressed or released. If this
value is changed by another expression (or is given a
default value) to match either the UpValue or the
DownValue, the button will be drawn in whatever
status the value represents - up or down.

ImageSet

A set of image values, stored in a structure, to

be used in response to various mouse actions.
Not all need be specified.
The full list of possible members for the struc-
ture is as follows:

ImageSetStruct STRUCT [
UpImage { Image to use when the

button is "up" };
DownImage { Image to use when the but-

ton is "down" };
MouseOverUpImage { Image to use when the

mouse is over an
"up" button };

MouseOverDownImage { Image to use when the
mouse is over

a "down" button };
DisabledImage { Image to use when user

actions on
the button are dis-

abled };
]

ClickSound

The name of a .wav file that is to be played when the
button is clicked. The extension ".wav" will be appen-
ded if not provided in the parameter. This file will not
be played while another sound (for example, an
alarm,) is sounding.

Comments: GUIButtons drawn on a page cannot be modified
using ribbons or properties dialogs. Editing can only
be done in code.
Standard practice is to use WinButtons if displaying
plain text labels, and to use images for the labels
when using a GUIButton.
There are three basic types of buttons:

l Momentary

l Toggle (or latching)

l Radio (which is actually a group of buttons behaving
as a unit)

For details on how to create each of these types, see
the Examples section.
A momentary button is one that immediately
releases when pressed (i.e. it does not remain in its
pressed position). It is usually used in conjunction
with an If statement as an action trigger for a script.
A toggle or latching button is a button that when
pressed remains locked (latched) into its pressed
position until it is pressed again (unlatched). Its Vari-
able parameter will be set according to the position
of the button - if it is latched in (pressed), the vari-
able will be set to 1, otherwise it will be 0. Similarly,
if the variable's value is set by an external source
from 0 to 1, the button will become pressed to
match the value. This latching/toggling effect is
achieved by the second last parameter being set to !
Variable, which is the same as saying "not the value
of the Variable parameter" or more simply, "toggle
the value from what it is".
A radio button is one of a set of latching buttons
that are mutually exclusive, that is to say, only one
button in the set may be latched (down) at one time.
When another button in the same set is pressed, the
current depressed button will "pop out". Two but-
tons cannot be latched in at once.
If the FocusID parameter of a GUIButton is to be
used in a NextFocusID statement to force this
graphic to get the focus, it is important to note that
this does not cause the GUIButton statement to
become true (selected), but only for it to become
focused. Once the button is focused it may then be
selected via the <CR> key on the keyboard.

Since structures cannot be initialized in steady state,
the ImageSet parameter must be created in a script.
You may create your own structures, or use one that
has been created for you. The syntax to use the pre-
defined structure varies depending on whether you
are working in a script application or a standard
VTScada application.

l For script applications, use \System\ImageSetStruct()

l For standard applications, use \ImageSetStruct().
The following set of rules defines the ImageSet beha-
vior...
In the absence of the ImageSet parameter or, if that
parameter is present but is not valid, the GUIButton
statement will display a set of predefined ren-
derings.
In the presence of a valid ImageSet parameter, the
current GUIButton rendering will be disabled. (Note
that providing a valid variable that holds Invalid for
this parameter will not disable the older GUIButton
rendering).
It is possible to specify the ImageSet parameter as
Invalid and use only the ClickSound parameter
The ImageSet parameter, when valid, must consist
of a structure holding the images.
Each structure member must be named as described
in the parameter listing above.
The only valid formats for each image in the struc-
ture are image values.
You may declare your own structure or use one of
the pre-created structures in VTScada. For standard
apps you can simply use \ImageSetStruct ()and for
script apps you can use \System\ImageSetStruct()
In addition to these rules for the ImageSet structure,

the following rules govern how the button will be
rendered:

l If no image is provided in the set, no images shall be
displayed for the button. You will end up with a
blank, clickable area

l If the button is disabled, the "Disabled" image will be
displayed at all times. If there is no Disabled image
the "Up" image will be displayed.

l If the mouse cursor is not within the bounding box of
the button:

l If the button state is logically up, the "Up" image (if
any) shall be displayed. If there is no "Up" image, no
image shall be displayed.

l If the button state is logically down, the "Down" image
(if any) shall be displayed. If there is no "Down"
image, no image shall be displayed.

l If the mouse cursor is within the bounding box of the
button:

l If the button state is logically up, the "MouseOverUp"
image (if any) shall be displayed. If there is no
"MouseOverUp" image, the "Up" image (if any) shall
be displayed. If there is no "Up" image, no image shall
be displayed.

l If the button state is logically down, the "MouseOver-
Down" image (if any) shall be displayed. If there is no
"MouseOverDown" image, the "Down" image (if any)
shall be displayed. If there is no "Down" image, no
image shall be displayed.

The control has the ability to display text layered on
top of the images. The text is displayed regardless
of which image is being displayed. The text must be
provided by the existing UpLabel, DownLabel, Tex-
tColor and Font parameters. If the UpLabel and

DownLabel parameters are images, then they will
not be used if the ImageSet parameter has pre-
vented old GUIButton rendering.
The following parameters do not affect how the new
images are displayed:
Brush, HighlightPen, ShadowPen, Sides.
This function is a layered graphics statement. See
"Use Scaling to Position GUI Objects" for information
about positioning a layered graphic.
The Left and Right references are interchangeable.
Whichever is smaller is taken as the left and the lar-
ger of the two values will be used as the right. The
same is true of the top and bottom references. Note
that the 1st 42 pixels of a VTScada application will
be obscured by the title bar, if present.

Example:
The following illustrates how to create a momentary button used as an
action trigger for a script. Notice that in this particular example images
are used to label the button rather than text. The image files are
assumed to be in the Bitmaps folder, while the code for this module is in
the Pages folder.

If GUIButton(10, 90, 100, 50 { Outline of the button },
1, 1, 1, 1, 1 { No scaling },
0, 0, 1, 0 { No movement; visible },
64 + 4, 1, 0 { Triggered by left mouse
button release },
GetSystemColor(15){ Windows button face color },
GetSystemColor(20){ Windows button highlight color},
GetSystemColor(16){ Windows button shadow color },
GetSystemColor(18){ Windows button text color },
0, 0 { Windows standard attributes },
MakeBitmap("..\Bitmaps\StartPict"),
MakeBitmap("..\Bitmaps\StopPict") { Up and down labels

},
0, 0, 1, 2 { No variable assignment });

[
...

]

This statement is a latching button that sets the value of the variable
called pos:

GUIButton(10, 90, 100, 50 { Outline of the button },
1, 1, 1, 1, 1 { No scaling },
0, 0 { No movement },
1, 0 { Visible; reserved },
64 + 4, 1, 0 { Left mouse button release },
7, 15, 8, 0 { Colors },
0, 0 { Number of sides; reserved },
MakeBitmap("..\Bitmaps\StartPict"),

 MakeBitmap("..\Bitmaps\StopPict") { Up and down labels },
1, ! pos, pos { Latching });

To situate a button at a position given by left, bottom, right, top:

[{ variable declaration and initialization }
 left = 10;
 right = 100;
 top = 50;
 bottom = 140;
]

{ ... state code ... }
If GUIButton(0, 1, 1, 0 { Unit bounding box },

1 - (left) { Left scaling }, bottom { Bottom scaling },
right { Right scaling },1 - (top) { Top scaling },
1, 0, 0 { No overall scaling/movement },
1, 0, 68, 2, 0 { Visible; selectable },
7, 15, 8, 0, 4, 0 { Colors; sides },
MakeBitmap("..\Bitmaps\StartPict"),

 MakeBitmap("..\Bitmaps\StopPict") { Up and down labels
},

0, 0, 1, 2 { No variable assignment });
[
...

]

To use the ImageSetStruct structure, you can either set the images in one
statement like so: (note that in a script application, \System must be pre-
fixed. These file names assume that the files are in the same folder as
the module.)

ButtonImages = \ImageSetStruct(MakeBitMap("UpButton.png"),
MakeBitmap("DownButton.png"),
MakeBitmap("HoverUpButton.png"),
MakeBitmap("HoverDownButton.png"),
MakeBitmap("DisabledButton.png");

You can also set the images in multiple statements (which is recom-
mended as better practice):

ButtonImages = \ImageSetStruct();
ButtonImages\UpImage = MakeBitMap("UpButton.png");

ButtonImages\MouseOverUpImage = MakeBitmap("HoverUpButton.png");
ButtonImages\DownImage = MakeBitmap("DownButton.png");
ButtonImages\MouseOverDownImage = MakeBitmap("HoverDownButton.png");
ButtonImages\DisabledImage = MakeBitmap("DisabledButton.png");

Having initialized the structure as shown, you can then use it in a GUIBut-
ton:

GUIButton(10, 90, 100, 50 { Outline of the button },
1, 1, 1, 1, 1 { No scaling },
0, 0, 1, 0 { No movement; visible },
64 + 4, 1, 0 { Left mouse button release },
GetSystemColor(15){ Windows button face color },
GetSystemColor(20){ Windows button highlight color},
GetSystemColor(16){ Windows button shadow color },
GetSystemColor(18){ Windows button text color },
0, 0 { Windows standard attributes },
"Up", "Down" { Up and down labels },
0, 0, 1, 2 { No variable assignment },
ButtonImages, "Click.WAV");

Related Functions:
 BitmapInfo | Crop | Brush | GUIBitmap | ImageArray | ImageSweep |
 MakeBitmap | ModifyBitmap | NextFocusID | Normalize | Pen | Rotate
| Trajectory | VStatus | ZButton

Related Information:
See: "Best Practices for Graphics" in the VTScada Programmer's Guide

GUIChord

Description: Draws a chord in a window. Can return a Boolean TRUE
when selected by a mouse button or when the <ENTER>
key is pressed after focus has been acquired.

Returns: GUI Object Return Codes

Usage: Steady State only.

Function Groups: Graphics

Format: GUIChord(LeftReference, BottomReference, RightRe-
ference, TopReference, ScaleLeft, ScaleBottom, ScaleRight,
ScaleTop, ScaleWhole, Trajectory, Rotation, Opacity,
Reserved, Button, FocusID, FocusTrigger, Brush, Pen, Ver-
tex)

Parameters:

LeftReference

A constant number that gives the left side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

BottomReference

A constant number that gives the bottom side ref-
erence coordinate. It must be a constant. A variable or
expression is not valid here. The top and bottom ref-
erences are measured down from the top of the
screen.

RightReference

A constant number that gives the right side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

TopReference

A constant number that gives the top side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

ScaleLeft

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleBottom

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleRight

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleTop

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the

opposite side reference position.

ScaleWhole

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales the horizontal and vertical dimensions by the
specified factor before the left, bottom, right and top
coordinates are scaled.

Trajectory

Required. Either a Trajectory function, a variable con-
taining a Trajectory value, or a numeric expression. If
this is a Trajectory value or function, the appropriate
translation is applied to the image after the rotation is
applied. If it is a valid numeric expression, the image
isn't translated, but is displayed. Any other value is
Invalid.

Rotation

Required. Either a Rotate function, a variable con-
taining a Rotate value, or a numeric expression. If this
is a Rotate value or function, the appropriate rotation
is applied to the image before the trajectory is applied.
If it is a valid numeric expression, the image is rotated
clockwise the number of degrees specified. Any other
value is Invalid.

Opacity

Required. Any Numeric expression, setting the opacity
of the object. A value of one results in a solid, zero is
invisible and values between zero and one are used as
an alpha setting for opacity.

Reserved n/a

Reserved for future use, set to 0.

Button

Required. Any numeric expression giving the button
combination that activates this graphic.

Value Locator Buttons

0 No buttons

1 Right button

2 Middle button

3 Right and middle buttons

4 Left button

5 Left and right buttons

6 Left and middle buttons

7 All three buttons

If the above values are multiplied by 8, the mean-
ing for multiple buttons pressed becomes "OR"
rather than "AND." For example, to accept any
button on a 2 or 3 button mouse, use 56 (i.e. 8 *
7). To accept the left mouse button regardless
of whether or not the right button is pressed,
use 32 (i.e. 8 * 4).
If a 64 is added to this parameter, the function
will become true when the mouse buttons are
released rather than when they are pressed.

FocusID

Required. Any numeric expression giving the focus
number of this graphic. If FocusID is zero, this graphic
cannot receive the input focus. This parameter's value
may be used in a NextFocusID statement to force this
graphic to get the focus.

FocusTrigger

Required. Any logical expression. If FocusTrigger
changes from a valid false to a valid true, this graphic

will attempt to obtain focus.

Brush

Required. Any expression that returns a Brush value to
be used to describe the fill. For a solid color fill, you
may use any of the following:

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l -1 (transparent)

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

Pen

Required. Any expression that returns a Pen value to
describe the color, width and line style of the border.
For a 1-pixel solid border, you may use any of the fol-
lowing:

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l -1 (transparent)

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

Vertex

Required. Any expression that returns a Vertex value
that describes this chord. The center point of the ver-
tex is the center point of the ellipse that describes the
chord. The two vertex handle points are used to find
the start and end angle of the chord, by the angle each
point makes with the center point.

Comments: This function is a layered graphics statement. See "Use Scal-
ing to Position GUI Objects" for information about pos-
itioning a layered graphic.
The Left and Right references are interchangeable.

Whichever is smaller is taken as the left and the larger of
the two values will be used as the right. The same is true of
the top and bottom references. Note that the 1st 42 pixels
of a VTScada application will be obscured by the title bar, if
present.

Example:

GUIChord(400, 150, 600, 55 { Bounding box of the chord },
1, 1, 1, 1, 1 { No scaling },
0, 0 { No trajectory or rotation },
1 { Chord is visible },
0 { Reserved },
0 { Not activated },
6 { Focus ID number },
FALSE { No focus trigger },
Brush(12, 0, 0) { Brush light red, background

ignored (style is solid) },
Pen(15, 1, 1) { Pen draws white solid lines 1 pixel wide },
Vertex(0 { Rectangular mode },

Point(50, 50, Invalid, Invalid){ Center },
Point(50, 0, Invalid, Invalid) { Start angle },
Point(0, 50, Invalid, Invalid) { End angle }));

This shows a chord in the upper right corner of the window. If it is selec-
ted with the left mouse button, on the release of the mouse button the
statement will return true. This is also the case if it is focused and the
return key is pressed. This chord will attempt to get the keyboard input
focus when the "F" key is pressed (because of the MatchKeys function in
the trigger). It is focus number 6. This is the number to use in the Nex-
tFocusID function to force this graphic to get the focus. No scaling is per-
formed, and no animation is performed.
The first four parameters must be constants. See GUITransform for an
example of how to compute the position dynamically.

Related Functions:
 DrawArcPath | DrawChordPath | DrawEllipticalPath | DrawPiePath |
Ellipse GUIArc | GUIEllipse | GUIPie | GUITransform | NextFocusID |
 Normalize | Pie Point | Rotate | Trajectory | Vertex | VStatus

Related Information:
See: "Best Practices for Graphics" in the VTScada Programmer's Guide

GUIEllipse

Description: Draws an ellipse in a window. Can return a Boolean TRUE
when selected by a mouse button or when the <ENTER>
key is pressed after focus has been acquired.

Returns: GUI Object Return Codes

Usage: Steady State only.

Function Groups: Graphics

Format: GUIEllipse(LeftReference, BottomReference, RightRe-
ference, TopReference, ScaleLeft, ScaleBottom, ScaleRight,
ScaleTop, ScaleWhole, Trajectory, Rotation, Opacity,
Reserved, Button, FocusID, FocusTrigger, Brush, Pen)

Parameters:

LeftReference

A constant number that gives the left side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

BottomReference

A constant number that gives the bottom side ref-
erence coordinate. It must be a constant. A variable or
expression is not valid here. The top and bottom ref-
erences are measured down from the top of the
screen.

RightReference

A constant number that gives the right side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

TopReference

A constant number that gives the top side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

ScaleLeft

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleBottom

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleRight

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.

If the value is at the low level, the side will be at the
opposite side reference position.

ScaleTop

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleWhole

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales the horizontal and vertical dimensions by the
specified factor before the left, bottom, right and top
coordinates are scaled.

Trajectory

Required. Either a Trajectory function, a variable con-
taining a Trajectory value, or a numeric expression. If
this is a Trajectory value or function, the appropriate
translation is applied to the image after the rotation is
applied. If it is a valid numeric expression, the image
isn't translated, but is displayed. Any other value is
Invalid.

Rotation

Required. Either a Rotate function, a variable con-
taining a Rotate value, or a numeric expression. If this
is a Rotate value or function, the appropriate rotation
is applied to the image before the trajectory is applied.
If it is a valid numeric expression, the image is rotated

clockwise the number of degrees specified. Any other
value is Invalid.

Opacity

Required. Any Numeric expression, setting the opacity
of the object. A value of one results in a solid, zero is
invisible and values between zero and one are used as
an alpha setting for opacity.

Reserved n/a

Reserved for future use, set to 0.

Button

Required. Any numeric expression giving the button
combination that activates this graphic.

Value Locator Buttons

0 No buttons

1 Right button

2 Middle button

3 Right and middle buttons

4 Left button

5 Left and right buttons

6 Left and middle buttons

7 All three buttons

If the above values are multiplied by 8, the mean-
ing for multiple buttons pressed becomes "OR"
rather than "AND." For example, to accept any
button on a 2 or 3 button mouse, use 56 (i.e. 8 *
7). To accept the left mouse button regardless
of whether or not the right button is pressed,
use 32 (i.e. 8 * 4).
If a 64 is added to this parameter, the function
will become true when the mouse buttons are

released rather than when they are pressed.

FocusID

Required. Any numeric expression giving the focus
number of this graphic. If FocusID is zero, this graphic
cannot receive the input focus. This parameter's value
may be used in a NextFocusID statement to force this
graphic to get the focus.

FocusTrigger

Required. Any logical expression. If FocusTrigger
changes from a valid false to a valid true, this graphic
will attempt to obtain focus.

Brush

Required. Any expression that returns a Brush value to
be used to describe the fill. For a solid color fill, you
may use any of the following:

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l -1 (transparent)

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

Pen

Required. Any expression that returns a Pen value to
describe the color, width and line style of the border.
For a 1-pixel solid border, you may use any of the fol-
lowing:

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l -1 (transparent)

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

Comments: This function is a layered graphics statement. See "Use Scal-
ing to Position GUI Objects" for information about pos-
itioning a layered graphic.
GUIEllipses whose Pen value has an even numbered width
are subject to pixel rounding errors, which is particularly
obvious when drawing two concentric ellipses, one with an
even width outline and one with an odd. To avoid this,
always use all even or all odd outline widths for concentric
ellipses.
The Left and Right references are interchangeable.
Whichever is smaller is taken as the left and the larger of
the two values will be used as the right. The same is true of
the top and bottom references. Note that the 1st 42 pixels
of a VTScada application will be obscured by the title bar, if
present.

Example:

GUIEllipse(215, 128, 315, 58,
 1, 1, 1, 1, 1 { Scaling },
 0, 0 { Movement },
 1, 0 { Visibility, Reserved },
 0, 0, 0 { Selectability },
 Brush("<FFA0A0A0>", 0, 1), Pen("<FF000000>", 1, 1));

A basic gray ellipse with a single-pixel-wide, black border.
The first four parameters must be constants. See GUITransform for an
example of how to compute the position dynamically.

Related Functions:
 DrawArcPath | DrawChordPath | DrawEllipticalPath | DrawPiePath |
 GUIArc | GUIChord | GUIPie | GUITransform | NextFocusID |
 Normalize | Point | Rotate | Trajectory | Vertex | VStatus

Related Information:
See: "Best Practices for Graphics" in the VTScada Programmer's Guide

GUIPie

Description: Draws a pie-shaped wedge in a window. Can return a

Boolean TRUE when selected by a mouse button or when
the <ENTER> key is pressed after focus has been
acquired.

Returns: GUI Object Return Codes

Usage: Steady State only.

Function Groups: Graphics

Format: GUIPie(LeftReference, BottomReference, RightReference,
TopReference, ScaleLeft, ScaleBottom, ScaleRight,
ScaleTop, ScaleWhole, Trajectory, Rotation, Opacity,
Reserved, Button, FocusID, FocusTrigger, Brush, Pen, Ver-
tex)

Parameters:

LeftReference

A constant number that gives the left side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

BottomReference

A constant number that gives the bottom side ref-
erence coordinate. It must be a constant. A variable or
expression is not valid here. The top and bottom ref-
erences are measured down from the top of the
screen.

RightReference

A constant number that gives the right side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

TopReference

A constant number that gives the top side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

ScaleLeft

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleBottom

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleRight

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the

opposite side reference position.

ScaleTop

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleWhole

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales the horizontal and vertical dimensions by the
specified factor before the left, bottom, right and top
coordinates are scaled.

Trajectory

Required. Either a Trajectory function, a variable con-
taining a Trajectory value, or a numeric expression. If
this is a Trajectory value or function, the appropriate
translation is applied to the image after the rotation is
applied. If it is a valid numeric expression, the image
isn't translated, but is displayed. Any other value is
Invalid.

Rotation

Required. Either a Rotate function, a variable con-
taining a Rotate value, or a numeric expression. If this
is a Rotate value or function, the appropriate rotation
is applied to the image before the trajectory is applied.
If it is a valid numeric expression, the image is rotated
clockwise the number of degrees specified. Any other

value is Invalid.

Opacity

Required. Any Numeric expression, setting the opacity
of the object. A value of one results in a solid, zero is
invisible and values between zero and one are used as
an alpha setting for opacity.

Reserved n/a

Reserved for future use, set to 0.

Button

Required. Any numeric expression giving the button
combination that activates this graphic.

Value Locator Buttons

0 No button combination will activate
this graphic

1 Right button

2 Middle button

3 Right and middle buttons

4 Left button

5 Left and right buttons

6 Left and middle buttons

7 All three buttons

If the above values are multiplied by 8, the mean-
ing for multiple buttons pressed becomes "OR"
rather than "AND." For example, to accept any
button on a 2 or 3 button mouse, use 56 (i.e. 8 *
7). To accept the left mouse button regardless
of whether or not the right button is pressed,
use 32 (i.e. 8 * 4).
If a 64 is added to this parameter, the function
will become true when the mouse buttons are

released rather than when they are pressed.

FocusID

Required. Any numeric expression giving the focus
number of this graphic. If FocusID is zero, this graphic
cannot receive the input focus. This parameter's value
may be used in a NextFocusID statement to force this
graphic to get the focus.

FocusTrigger

Required. Any logical expression. If FocusTrigger
changes from a valid false to a valid true, this graphic
will attempt to obtain focus.

Brush

Required. Any expression that returns a Brush value to
be used to describe the fill. For a solid color fill, you
may use any of the following:

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l -1 (transparent)

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

Pen

Required. Any expression that returns a Pen value to
describe the color, width and line style of the border.
For a 1-pixel solid border, you may use any of the fol-
lowing:

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l -1 (transparent)

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

Vertex

Required. Any expression that returns the vertex that
describes this pie. The center point of the vertex is the
center point of the ellipse that describes the pie. The
two vertex handle points are used to find the start and
end angle of the pie, by the angle each point makes
with the center point.
The points do not describe absolute positions - that is
controlled by the object's bounding box. What matters
is the relation of the points to each other.

Comments: This function is a layered graphics statement. See "Use Scal-
ing to Position GUI Objects" for information about pos-
itioning a layered graphic.
The Left and Right references are interchangeable.
Whichever is smaller is taken as the left and the larger of
the two values will be used as the right. The same is true of
the top and bottom references. Note that the 1st 42 pixels
of a VTScada application will be obscured by the title bar, if
present.

Example:

GUIPie(30, 570, 100, 420 { Bounding box of the pie },
1, 1, 1, 1, 1 { No scaling },
0, 0 { No trajectory or rotation },
1, 0 { Pie is visible; reserved },
0 { Not activated by selection },
0 { Focus ID number },
0 { No focus trigger },
Brush(4, 6, 25) { Brush is dark red, brown

background, style is brick },
Pen(2, 2, 2) { dark green dashed line, 2 pixels wide

},
Vertex(0 { Rectangular mode },

Point(30, 495, Invalid, Invalid) { Pie point },
Point(90, 495, Invalid, Invalid) { Start },
Point(30, 0, Invalid, Invalid) { End }));

This shows a red and brown brick patterned pie outlined in a dark green
(slightly thick) line in the lower left corner of the window. No scaling is
performed, and no animation is performed.

The first four parameters must be constants. See GUITransform for an
example of how to compute the position dynamically.

Related Functions:
 DrawArcPath | DrawChordPath | DrawEllipticalPath | DrawPiePath |
 GUIArc | GUIChord | GUIEllipse | GUITransform | NextFocusID |
 Normalize | Point | Rotate | Trajectory | Vertex | VStatus

Related Information:
See: "Best Practices for Graphics" in the VTScada Programmer's Guide

GUIPipe

Note: Deprecated. Do not use in new code.

GUIPipes from older applications will still be drawn, but will be displayed
as a wide line. GUIPipe statements are no longer generated by users draw-
ing pipes in their applications.

Description: Draws a 3 dimensional, shaded pipe in a window and
returns an indication when selected by a mouse button or
the <ENTER> key.

Returns: GUI Object Return Codes

Usage: Steady State only.

Function Groups: Graphics

Format: GUIPipe(LeftReference, BottomReference, RightReference,
TopReference, ScaleLeft, ScaleBottom, ScaleRight,
ScaleTop, ScaleWhole, Trajectory, Rotation, Visibility,
Reserved, Button, FocusID, FocusTrigger, LowIndex,
HighIndex, PixelWidth, Path)

Parameters:

LeftReference

A constant number that gives the left side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

BottomReference

A constant number that gives the bottom side ref-
erence coordinate. It must be a constant. A variable or
expression is not valid here. The top and bottom ref-
erences are measured down from the top of the
screen.

RightReference

A constant number that gives the right side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

TopReference

A constant number that gives the top side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

ScaleLeft

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleBottom

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference

position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleRight

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleTop

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleWhole

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales the horizontal and vertical dimensions by the
specified factor before the left, bottom, right and top

coordinates are scaled.

Trajectory

Required. Either a Trajectory function, a variable con-
taining a Trajectory value, or a numeric expression. If
this is a Trajectory value or function, the appropriate
translation is applied to the image after the rotation is
applied. If it is a valid numeric expression, the image
isn't translated, but is displayed. Any other value is
Invalid.

Rotation

Required. Either a Rotate function, a variable con-
taining a Rotate value, or a numeric expression. If this
is a Rotate value or function, the appropriate rotation
is applied to the image before the trajectory is applied.
If it is a valid numeric expression, the image is rotated
clockwise the number of degrees specified. Any other
value is Invalid.

Visibility

Required. Any logical expression. If true, the image is
drawn normally. If false, the image is not drawn.

Reserved n/a

Reserved for future use, set to 0.

Button

Required. Any numeric expression giving the button
combination that activates this graphic.

Value Locator Buttons

0 No buttons

1 Right button

2 Middle button

3 Right and middle buttons

4 Left button

5 Left and right buttons

6 Left and middle buttons

7 All three buttons

If the above values are multiplied by 8, the mean-
ing for multiple buttons pressed becomes "OR"
rather than "AND." For example, to accept any
button on a 2 or 3 button mouse, use 56 (i.e. 8 *
7). To accept the left mouse button regardless
of whether or not the right button is pressed,
use 32 (i.e. 8 * 4).
If a 64 is added to this parameter, the function
will become true when the mouse buttons are
released rather than when they are pressed.

FocusID

Required. Any numeric expression giving the focus
number of this graphic. If FocusID is zero, this graphic
cannot receive the input focus. This parameter's value
may be used in a NextFocusID statement to force this
graphic to get the focus.

FocusTrigger

Required. Any logical expression. If FocusTrigger
changes from a valid false to a valid true, this graphic

will attempt to obtain focus.

LowIndex

Required. Any numeric expression specifying the low
index into the current color palette. It is used in con-
junction with the next parameter to adjust the bright-
ness and contrast of the shading.

HighIndex

Required. Any numeric expression specifying the high
index into the current color palette. It is used in con-
junction with the previous parameter to adjust the
brightness and contrast of the shading.

PixelWidth

Required. Any numeric expression specifying the
width of the shaded pipe in pixels and is subject to
applicable scaling factors.

Path

Required. Any expression that returns a Path value that
is used to draw the pipe. This defines the pipe's shape.
The points do not describe absolute positions - that is
controlled by the object's bounding box. What matters
is the relation of the points to each other.

Comments: This function is a layered graphics statement. See "Use Scal-
ing to Position GUI Objects" for information about pos-
itioning a layered graphic.
The pipe will be drawn with a miter effect, such that pipe
segments meet at 45-degree angles. For best results, use a
vertex mode of 4, which preserves right angles, as shown
in the example.
The Left and Right references are interchangeable.
Whichever is smaller is taken as the left and the larger of
the two values will be used as the right. The same is true of
the top and bottom references. Note that the 1st 42 pixels
of a VTScada application will be obscured by the title bar, if

present.

Example:

bottomLeft = Point(385, 145, Invalid, Invalid);
topLeft = Point(385, 25, Invalid, Invalid);
topRight = Point(645, 25, Invalid, Invalid);
bottomRight = Point(645, 145, Invalid, Invalid);
GUIPipe(385, 145, 645, 25 { Bounding box of pipe },

1, 1, 1, 1, 1 { No scaling },
0, 0 { No trajectory or rotation },
1, 0 { Pipe is visible; reserved },
0, 0, 0 { Cannot be focused/selected },
176, 239 { Very dark gray to very light gray },
24 { Width of pipe in pixels },
Path(1 { Closed path },
Vertex(4 { Manhattan1 mode, right angles preserved },
bottomLeft, bottomLeft, bottomLeft),
Vertex(4 { Manhattan mode, right angles preserved },
topLeft, topLeft, topLeft),
Vertex(4 { Manhattan mode, right angles preserved },
topRight, topRight, topRight),
Vertex(4 { Manhattan mode, right angles preserved },
bottomRight, bottomRight, bottomRight)));

This draws a pipe that follows an orthoganal path. The pipe is 24 pixels
wide and is shaded from a dark to a light gray.
The first four parameters must be constants. See GUITransform for an
example of how to compute the position dynamically.

Related Functions:
 GUITransform | Normalize | NextFocusID | Path | Pipe | Point |
 Rotate| Trajectory | Vertex | VStatus | ZPipe | GUIPolygon | PathDraw

Related Information:
See: "Best Practices for Graphics" in the VTScada Programmer's Guide

GUIPolygon

Description: Draws a multi-sided polygon in a window. Can return a
Boolean TRUE when selected by a mouse button or when
the <ENTER> key is pressed after focus has been

1Meaning that all lines are horizontal or vertical. Inspired by a skyline of
tall, rectangular buildings.

acquired.

Returns: Numeric

Usage: Steady State only.

Function Groups: Graphics

Format: GUIPolygon(LeftReference, BottomReference, RightRe-
ference, TopReference, ScaleLeft, ScaleBottom, ScaleRight,
ScaleTop, ScaleWhole, Trajectory, Rotation, Opacity,
Reserved, Button, FocusID, FocusTrigger, Brush, Pen, Path)

Parameters:

LeftReference

A constant number that gives the left side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

BottomReference

A constant number that gives the bottom side ref-
erence coordinate. It must be a constant. A variable or
expression is not valid here. The top and bottom ref-
erences are measured down from the top of the
screen.

RightReference

A constant number that gives the right side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

TopReference

A constant number that gives the top side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

ScaleLeft

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect

to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleBottom

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleRight

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleTop

Required. Either a numeric expression, or any expres-

sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleWhole

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales the horizontal and vertical dimensions by the
specified factor before the left, bottom, right and top
coordinates are scaled.

Trajectory

Required. Either a Trajectory function, a variable con-
taining a Trajectory value, or a numeric expression. If
this is a Trajectory value or function, the appropriate
translation is applied to the image after the rotation is
applied. If it is a valid numeric expression, the image
isn't translated, but is displayed. Any other value is
Invalid.

Rotation

Required. Either a Rotate function, a variable con-
taining a Rotate value, or a numeric expression. If this
is a Rotate value or function, the appropriate rotation
is applied to the image before the trajectory is applied.
If it is a valid numeric expression, the image is rotated
clockwise the number of degrees specified. Any other
value is Invalid.

Opacity

Required. Any Numeric expression, setting the opacity
of the object. A value of one results in a solid, zero is
invisible and values between zero and one are used as
an alpha setting for opacity.

Reserved n/a

Reserved for future use, set to 0.

Button

Required. Any numeric expression giving the button
combination that activates this graphic.

Value Locator Buttons

0 No buttons

1 Right button

2 Middle button

3 Right and middle buttons

4 Left button

5 Left and right buttons

6 Left and middle buttons

7 All three buttons

If the above values are multiplied by 8, the mean-
ing for multiple buttons pressed becomes "OR"
rather than "AND." For example, to accept any
button on a 2 or 3 button mouse, use 56 (i.e. 8 *
7). To accept the left mouse button regardless
of whether or not the right button is pressed,
use 32 (i.e. 8 * 4).
If a 64 is added to this parameter, the function
will become true when the mouse buttons are
released rather than when they are pressed.

FocusID

Required. Any numeric expression giving the focus

number of this graphic. If FocusID is zero, this graphic
cannot receive the input focus. This parameter's value
may be used in a NextFocusID statement to force this
graphic to get the focus.

FocusTrigger

Required. Any logical expression. If FocusTrigger
changes from a valid false to a valid true, this graphic
will attempt to obtain focus.

Brush

Required, but used only if the polygon is closed. Any
expression that returns a Brush value to be used to
describe the fill. For a solid color fill, you may use any
of the following:

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l -1 (transparent)

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

Pen

Required. Any expression that returns a Pen value to
describe the color, width and line style of the border.
For a 1-pixel solid border, you may use any of the fol-
lowing:

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l -1 (transparent)

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

Path

Required. Any expression that returns a Path value that

is used to draw the polygon. This defines the polygon's
shape.
The points do not describe absolute positions - that is
controlled by the object's bounding box. What matters
is the relation of the points to each other.

Comments: This function is a layered graphics statement. See "Use Scal-
ing to Position GUI Objects" for information about pos-
itioning a layered graphic.
The handle points on each vertex control the Bezier curve
used to draw that segment of the polygon.
The Left and Right references are interchangeable.
Whichever is smaller is taken as the left and the larger of
the two values will be used as the right. The same is true of
the top and bottom references. Note that the 1st 42 pixels
of a VTScada application will be obscured by the title bar, if
present.

Example:

[
{ variable declaration & assignment }

 Left = 50; { scaling parameters }
 Right = 210;
 Top = 550;
 Bottom = 10;
]

{ ... main state for page or window... }
GUIPolygon(0, 1, 1, 0 { Bounding box of image },

1 - Top, Left, Bottom, 1 - Right, 1 { Scaling },
0, 0 { No trajectory or rotation },
1, 0 { Polygon is visible; reserved },
0, 0, 0 { Cannot be focused/selected },
Brush(14, 2, 13) { Brush is yellow, dark green
background, style crosshatched },
Pen(2, 1, 3) { dark green solid line, 3 pixels wide },
Path(1 { Closed figure },
Vertex(0 { Rectangular mode, no curvature },
Point(0, 100, Invalid, Invalid) { Center },
Point(0, 100, Invalid, Invalid) { In handle },
Point(0, 100, Invalid, Invalid) { Out handle }),

Vertex(0 { Rectangular mode, no curvature },
Point(100, 100, Invalid, Invalid){ Center },
Point(100, 100, Invalid, Invalid){ In handle },
Point(100, 100, Invalid, Invalid){ Out handle }),

Vertex(0 { Rectangular mode, no curvature },

Point(100, 0, Invalid, Invalid) { Center },
Point(100, 0, Invalid, Invalid) { In handle },
Point(100, 0, Invalid, Invalid) { Out handle })));

This shows a triangle at the top of the window. It has a yellow
crosshatched pattern on a dark green background and is outlined by a
thick dark green line. It cannot be focused. No animation is performed.
The first four parameters must be constants. See GUITransform for an
example of how to compute the position dynamically.

Related Functions:
 DrawPath | NextFocusID | Normalize | Point | Rotate | Trajectory |
 Vertex | VStatus

Related Information:
See: "Best Practices for Graphics" in the VTScada Programmer's Guide

GUIRectangle

Description: Draws a rectangle in a window. Can return a Boolean TRUE
when selected by a mouse button or when the <ENTER>
key is pressed after focus has been acquired.

Returns: GUI Object Return Codes

Usage: Steady State only.

Function Groups: Graphics

Format: GUIRectangle(LeftReference, BottomReference, RightRe-
ference, TopReference, ScaleLeft, ScaleBottom, ScaleRight,
ScaleTop, ScaleWhole, Trajectory, Rotation, Opacity,
Reserved, Button, FocusID, FocusTrigger, Brush, Pen)

Parameters:

LeftReference

A constant number that gives the left side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

BottomReference

A constant number that gives the bottom side ref-

erence coordinate. It must be a constant. A variable or
expression is not valid here. The top and bottom ref-
erences are measured down from the top of the
screen.

RightReference

A constant number that gives the right side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

TopReference

A constant number that gives the top side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

ScaleLeft

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleBottom

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.

If the value is at the low level, the side will be at the
opposite side reference position.

ScaleRight

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleTop

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleWhole

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales the horizontal and vertical dimensions by the
specified factor before the left, bottom, right and top
coordinates are scaled.

Trajectory

Required. Either a Trajectory function, a variable con-
taining a Trajectory value, or a numeric expression. If
this is a Trajectory value or function, the appropriate
translation is applied to the image after the rotation is
applied. If it is a valid numeric expression, the image
isn't translated, but is displayed. Any other value is
Invalid.

Rotation

Required. Either a Rotate function, a variable con-
taining a Rotate value, or a numeric expression. If this
is a Rotate value or function, the appropriate rotation
is applied to the image before the trajectory is applied.
If it is a valid numeric expression, the image is rotated
clockwise the number of degrees specified. Any other
value is Invalid.

Opacity

Required. Any Numeric expression, setting the opacity
of the object. A value of one results in a solid, zero is
invisible and values between zero and one are used as
an alpha setting for opacity.

Reserved n/a

Reserved for future use, set to 0.

Button

Required. Any numeric expression giving the button
combination that activates this graphic.

Value Locator Buttons

0 No buttons

1 Right button

2 Middle button

3 Right and middle buttons

4 Left button

5 Left and right buttons

6 Left and middle buttons

7 All three buttons

If the above values are multiplied by 8, the mean-
ing for multiple buttons pressed becomes "OR"
rather than "AND." For example, to accept any
button on a 2 or 3 button mouse, use 56 (i.e. 8 *
7). To accept the left mouse button regardless
of whether or not the right button is pressed,
use 32 (i.e. 8 * 4).
If a 64 is added to this parameter, the function
will become true when the mouse buttons are
released rather than when they are pressed.

FocusID

FocusID is any numeric expression giving the focus
number of this graphic. If FocusID is zero, this graphic
cannot receive the input focus. This parameter's value
may be used in a NextFocusID statement to force this
graphic to get the focus.

FocusTrigger

Required. Any logical expression. If FocusTrigger
changes from a valid false to a valid true, this graphic

will attempt to obtain focus.

Brush

Required. Any expression that returns a Brush value to
be used to describe the fill. For a solid color fill, you
may use any of the following:

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l -1 (transparent)

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

Pen

Required. Any expression that returns a Pen value to
describe the color, width and line style of the border.
For a 1-pixel solid border, you may use any of the fol-
lowing:

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l -1 (transparent)

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

Comments: This function is a layered graphics statement. See "Use Scal-
ing to Position GUI Objects" for information about pos-
itioning a layered graphic.
The Left and Right references are interchangeable.
Whichever is smaller is taken as the left and the larger of
the two values will be used as the right. The same is true of
the top and bottom references. Note that the 1st 42 pixels
of a VTScada application will be obscured by the title bar, if
present.

Examples:

GUIRectangle(19, 126, 143, 58,
 1, 1, 1, 1, 1 { Scaling },
 0, 0 { Movement },
 1, 0 { Visibility, Reserved },
 0, 0, 0 { Selectability },
 Brush("<FFA0A0A0>", 0, 1), Pen("<FF000000>", 1, 1));

A basic gray rectangle with a single-pixel-wide, black border.

GUIRectangle(25, 100, 225, 80 { Bounding box of rectangle },
1, 1, 1, 1, 1 { No scaling },

0, 0 { No trajectory or rotation },
1, 0 { Rectangle is visible; reserved },
4 { Left mouse button },
5 { Focus ID number },
MatchKeys(2, "T"){ Focus trigger },
Brush(14, 0, 1) { Brush is yellow, background

ignored (style is solid) },
Pen(2, 1, 1) { Pen is dark green solid

line, 1 pixel wide });

This shows a rectangle in the upper left corner of the window. If it is
clicked with the left mouse button, or if it is focused and the return key
is pressed, it will return true. This rectangle will attempt to get the key-
board input focus when the "T" key is pressed (because of the MatchKeys
function in the trigger). It is focus number 5. This is the number to use in
the NextFocusID function to force this graphic to get the focus. No scal-
ing is performed, and no animation is performed.
The first four parameters must be constants. See GUITransform for an
example of how to compute the position dynamically.

Related Functions:
 Bar | Box | NextFocusID | Normalize | Rotate | Trajectory | ZBar |
 ZBox| GUITransform | VStatus

Related Information:
See: "Best Practices for Graphics" in the VTScada Programmer's Guide

GUIText

Description: Draws formatted text in a window. Can return a Boolean
TRUE when selected by a mouse button or when the
<ENTER> key is pressed after focus has been acquired.

Returns: GUI Object Return Codes

Usage: Steady State only.

Function Groups: Graphics

Format: GUIText(LeftReference, BottomReference, RightReference,
TopReference, ScaleLeft, ScaleBottom, ScaleRight,
ScaleTop, ScaleWhole, Trajectory, Rotation, Opacity,
Options, Button, FocusID, FocusTrigger, Brush, Pen, Font,
HCenter, VCenter, Format, V1, V2, ...)

Parameters:

LeftReference

A constant number that gives the left side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

BottomReference

A constant number that gives the bottom side ref-
erence coordinate. It must be a constant. A variable or
expression is not valid here. The top and bottom ref-
erences are measured down from the top of the
screen.

RightReference

A constant number that gives the right side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

TopReference

A constant number that gives the top side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

ScaleLeft

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect

to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleBottom

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleRight

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleTop

Required. Either a numeric expression, or any expres-

sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleWhole

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales the horizontal and vertical dimensions by the
specified factor before the left, bottom, right and top
coordinates are scaled.

Trajectory

Required. Either a Trajectory function, a variable con-
taining a Trajectory value, or a numeric expression. If
this is a Trajectory value or function, the appropriate
translation is applied to the image after the rotation is
applied. If it is a valid numeric expression, the image
isn't translated, but is displayed. Any other value is
Invalid.

Rotation

Required. Either a Rotate function, a variable con-
taining a Rotate value, or a numeric expression. If this
is a Rotate value or function, the appropriate rotation
is applied to the image before the trajectory is applied.
If it is a valid numeric expression, the image is rotated
clockwise the number of degrees specified. Any other
value is Invalid.

Opacity

Required. Any Numeric expression, setting the opacity
of the object. A value of one results in a solid, zero is
invisible and values between zero and one are used as
an alpha setting for opacity.

Options

Required. Any numeric expression giving how a font
behaves with regards to scaling, as follows:

Options Font Behavior

0 Font not transformed

1 Font is transformed.

2 Font is transformed, but only by the top-
most transform in the calling path.

Button

Required. Any numeric expression giving the button
combination that activates this graphic.

Button Locator Buttons

0 No buttons

1 Right button

2 Middle button

3 Right and middle buttons

4 Left button

5 Left and right buttons

6 Left and middle buttons

7 All three buttons

If the above values are multiplied by 8, the mean-
ing for multiple buttons pressed becomes "OR"
rather than "AND." For example, to accept any
button on a 2 or 3 button mouse, use 56 (i.e. 8 *
7). To accept the left mouse button regardless

of whether or not the right button is pressed,
use 32 (i.e. 8 * 4).
If a 64 is added to this parameter, the function
will become true when the mouse buttons are
released rather than when they are pressed.

FocusID

Required. Any numeric expression giving the focus
number of this graphic. If FocusID is zero, this graphic
cannot receive the input focus. This parameter's value
may be used in a NextFocusID statement to force this
graphic to get the focus.

FocusTrigger

Required. Any logical expression. If FocusTrigger
changes from a valid false to a valid true, this graphic
will attempt to obtain focus.

Brush

Required. Any expression that returns a Brush value to
describe the background. A solid-color background
may be defined by using any of the following:

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l -1 (transparent)

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

Pen

Required. Any expression that returns a Pen value.
Only the color property of the pen will be used. You
may also use any of the following:

l a palette index VTScada Color Palette

l a system color Constants for System Colors

l -1 (transparent)

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

Font

Required. Any expression that returns a Font value
used to display the text.

HCenter

Required. Any numeric expression that specifies the
horizontal justification and clipping, as shown in the
following table:

Value H. Justification Clipping

0 Left Right

1 Left Both

2 Left Left

3 Center Right

4 Center Both

5 Center Left

6 Right Right

7 Right Both

8 Right Left

VCenter

Required. Any numeric expression that specifies the
vertical justification and clipping, as shown in the fol-
lowing table:

Value V. Justification Clipping

0 Top Bottom

1 Top Both

2 Top Top

3 Center Bottom

4 Center Both

5 Center Top

6 Bottom Bottom

7 Bottom Both

8 Bottom Top

Format

Required. Any text expression giving the format
of how the values (Vn parameters) are to be writ-
ten. This format is similar, but not identical, to
the C language format string for the printf func-
tion, whereby each of the Vn parameters in the
GUIText statement is assigned to a % format spe-
cification in the order in which each appears in
the list. Note that like a standard text string,
these format specifiers must also be enclosed by
double quotes. If a format specification appears
for which there are no remaining V parameters,
the format specification characters themselves
are output to the stream exactly as they appear
in the Format. For the % format specifications,
the following form applies (where the [] indic-
ates optional elements):

%[-][+][SPACE][#][width][.precision]type
where:
% is mandatory.
+ causes the data to be left justified within the
field. For binary types b and ASCII character
types c, this option is ignored.
- causes positive numbers to be prefaced with a
+ sign (negative numbers are unaffected). This
allows easy alignment of positive and negative
numbers in a printed column of numbers. For
binary types b and non-numerical types, this
option is ignored.
SPACE represents the single space character,
and is similar to the [+] option but places a
single space rather than a plus sign in front of
positive numbers (negative numbers are still
unaffected). This allows alignment of a column
of numbers without having to show all signs.
For binary types b and non-numerical types, this
option is ignored.
When used with the o , x , or X format, the
flag prefixes any nonzero output value with 0,
0x, or 0X, respectively..
width is a number that specifies the minimum
number of characters to output. Numbers that
require more characters than specified by the
width value will be output in their entirety
without truncation. If the number of characters
in the number or string is less than width,
blanks will be added to the left or right, depend-
ing upon whether the output is left or right jus-
tified (i.e. whether or not the [-] option has
been specified) until the width is reached. For

binary types b and ASCII character types c, this
option is ignored.
.precision has a different meaning for each of
the type options as follows:
Integer types d, i, u, o, x and X - precision spe-
cifies the minimum number of digits to output.
If the number contains fewer digits, leading zer-
oes will be added to the left of the number. If
precision is 0, omitted, or if the decimal point
appears without a number following it, the pre-
cision defaults to 1. The number is not trun-
cated.
Floating point types e and E - precision spe-
cifies the number of digits after the decimal
point. The last digit is rounded. The default pre-
cision in this case is 6. If the precision is 0 or if
the decimal point appears without a number fol-
lowing it, no decimal point appears in the out-
put.
Floating point type f - precision specifies the
number of digits after the decimal point. The
last digit is rounded. The default precision is 0.
If the precision is explicitly 0, no decimal point
is output. If a decimal point is output, at least
one digit will be placed before the decimal
point.
Floating point types g and G - precision spe-
cifies the maximum number of significant digits
to be output. If no precision is specified, all sig-
nificant digits are written.
String type s - precision specifies the maximum
number of characters of the string to be output.
If the string contains more characters than spe-

cified by the precision, the string is truncated
and only the first characters are written. If the
precision is not specified, all of the string char-
acters are output.
ASCII character type c - this option is ignored.
Binary type b - this option is ignored.
type is a mandatory specification that must be
one of those listed here. Note that the case of
the letter is important. Specifying a character
for the type which is not in this list will result in
all the characters following the % up to that
point to be output exactly as they appear in the
Format string.

Type Meaning

nb Binary format, where n is a number indic-
ating the type of value (following table)

c Single ASCII character (byte)

d Signed decimal integer

e Signed exponential. Exponent key is "e"

E Signed exponential. Exponent key is "E"

f Signed floating point

g e or f format, whichever is shorter

G E or f format, whichever is shorter

i Signed decimal integer

o Unsigned octal integer

s Text string

u Unsigned decimal integer

x Unsigned hex integer using "abcdef"

X Unsigned hex integer using "ABCDEF"

Binary type b - For the format specification of
%nb, where n specifies the type of number, n
must be a single digit from one of the following
choices:

n Value Type

0 Byte

1 Short integer (2 bytes, low byte first)

2 Long integer (4 bytes, low bytes first)

3 IEEE single precision float (4 bytes)

5 IEEE double precision float (8 bytes)

Notice that the other options such as width and
precision do not apply to the b type.
ASCII character type c - This type is not rep-
resentative of a single character in a string, but
rather, represents single byte ASCII characters.
Input values (the Vn parameter to which this
format specification applies) must be integers in
the range of 0 to 255 in order for the output to
be a valid ASCII equivalent character. Strings are
not acceptable input values. Note that the %c
format specifier behaves differently when used
in an output statement such as GUIText than
when used in an input statement, such as
BuffRead.
Text string type s - Text in the string is written
exactly as it appears, with two exceptions. First,
since format specifications for the Vn para-
meters are indicated by a percentage sign, to
include an actual percentage sign as part of the
text string, precede it with a backslash character
(i.e. \%). Also, since the backslash character is

used in this manner, as well as with special con-
trol characters such as form feed, to write a
backslash as part of the text string, use two
backslash characters (i.e. \\).

Note: Note: Omitting the %s format character
for parameters that are to be displayed as
strings can result in errors such as
"Area\Place" being displayed as "AreaPlace".

Control characters - In order to encode certain
control characters as part of the Format para-
meter, one of two methods may be used. The
first is to use a backslash character followed by
one of the single character codes listed here to
produce the desired result (notice that the let-
ters must be lower case):

Code Meaning

\b Backspace

\f Form feed

\t Horizontal tab

\v Vertical tab

In addition to the predefined codes, an alternate
form may be used :
\nnn
Where nnn is a three digit integer in the range
of 0 to 255 specifying a certain ASCII character.
If the number contains less than three digits,
the leading spaces must be padded with zeroes.
This is not the case with the previously listed
single character control characters. For
example, to include the one byte ASCII character
G in the output, you could place its decimal equi-

valent of 71 in the Format string as \071.

V1, V2, ...

Required. Any expressions giving the values to be out-
put in the form described by the Format parameter.
Each of the Vn parameters is evaluated and written in
the order in which each appears in the parameter list.
The way in which they are formatted is dictated by the
% format specifications. V1 is formatted by the first %
sequence in the Format parameter, V2 by the second,
and so on. If there are more V parameters than %
sequences in the Format string, the remainder are
ignored. If there are fewer V parameters than %
sequences in the Format string, the remaining %
sequences are written literally without any translation.
If a numeric value is Invalid or outside of the range of
the type indicated by the format specifier, a 0 is used
as its value. If a text string value is Invalid, spaces will
be output. Invalidity of Vn parameters does not pre-
clude execution of this function.

Comments: This function is a layered graphics statement. See Use Scal-
ing to Position GUI Objects for information about pos-
itioning a layered graphic.
The Left and Right references are interchangeable.
Whichever is smaller is taken as the left and the larger of
the two values will be used as the right. The same is true of
the top and bottom references. Note that the 1st 42 pixels
of a VTScada application will be obscured by the title bar, if
present.
It produces formatted text in exactly the same manner as
BuffWrite, FWrite, and SWrite. The text is displayed directly
on the screen, centered in the reference box after any
animation is applied.. Binary formats aren't useful here.
They will produce strings with non-printable and non-
ASCII characters in them (they will be unreadable).

Example:

GUIText(0, 100, 100, 0 { Bounding box of text },
1, 1, 1, 1, 1 { No scaling },
0, 0 { No trajectory or rotation },
1, 0 { Text is visible; reserved },
0, 0, 0 { Cannot be focused/selected },
Brush(12, 0, 1){ Brush is red, background

 ignored (style is solid) },
Pen(15, 1, 1) { White solid line 1 pixel wide },
Font("Courier" { Font name },

0 { Character set },
14 { Height },
0 { No rotation },
0 { Weight },
0 { Not italicized },
1 { Fixed pitch }),

4 { Center horizontally },
4 { Center vertically },
"Valve = %6.2f%% open." { Format specifier },
valvePosition { First value });

This shows text in the upper left corner of the window. It cannot be
focused. No scaling or animation is performed. If valvePosition contains
the number 56.789, the text is displayed as:

Valve = 56.78% open.

The first four parameters must be constants. See GUITransform for an
example of how to compute the position dynamically.

Related Functions:
 BuffWrite | Font | FWrite | NextFocusID | Normalize | Point | SWrite |
 TextAttribs | VStatus | Trajectory | ZText

Related Information:
See: "Best Practices for Graphics" in the VTScada Programmer's Guide

GUITransform

Description: Applies a graphical transformation to all graphics in a mod-
ule and returns an indication when selected by a mouse
button or the <ENTER> key.

Returns: GUI Object Return Codes

Usage: Steady State only.

Function Groups: Graphics, Advanced Module

Format: GUITransform(LeftReference, BottomReference, RightRe-
ference, TopReference, ScaleLeft, ScaleBottom, ScaleRight,
ScaleTop, ScaleWhole, Trajectory, Rotation, Visibility,
Options, Button, FocusID, FocusTrigger, ModuleCall)

Parameters:

LeftReference

A constant number that gives the left side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

BottomReference

A constant number that gives the bottom side ref-
erence coordinate. It must be a constant. A variable or
expression is not valid here. The top and bottom ref-
erences are measured down from the top of the
screen.

RightReference

A constant number that gives the right side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

TopReference

A constant number that gives the top side reference
coordinate. It must be a constant. A variable or expres-
sion is not valid here.

ScaleLeft

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the

side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleBottom

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleRight

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A
value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleTop

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales this side from its reference position with respect
to the opposite side. If it is a numeric expression, a
value of 1 will place the side at its reference position. A

value of 0 will place it at the opposite side reference
position. Similarly, a Normalize value will scale the
side between the high and low limits. If the value is at
the high level, the side will be at its reference position.
If the value is at the low level, the side will be at the
opposite side reference position.

ScaleWhole

Required. Either a numeric expression, or any expres-
sion that returns a Normalize value. This parameter
scales the horizontal and vertical dimensions by the
specified factor before the left, bottom, right and top
coordinates are scaled.

Trajectory

Required. Either a Trajectory function, a variable con-
taining a Trajectory value, or a numeric expression. If
this is a Trajectory value or function, the appropriate
translation is applied to the image after the rotation is
applied. If it is a valid numeric expression, the image
isn't translated, but is displayed. Any other value is
Invalid.

Rotation

Required. Either a Rotate function, a variable con-
taining a Rotate value, or a numeric expression. If this
is a Rotate value or function, the appropriate rotation
is applied to the image before the trajectory is applied.
If it is a valid numeric expression, the image is rotated
clockwise the number of degrees specified. Any other
value is Invalid.

Visibility

Required. Any logical expression. If true, the image is
drawn normally. If false, the image is not drawn.

Options

Bit 1 (2^1) == Marks the transform as a

GUIStretch. Rendering of the transform is done
by stretching the content.
Bit 2 (2^2) == Transform may be dragged onto
a window from the palette.
All transforms in a palette that can be dragged
must have both bits set. A transform may be
dragged even if its visibility flag is set to zero.
Note that only Windows with bit 22 of the Style
parameter set can function as a drop-target.
Windows with bit 23 of the Style parameter set
are palette windows.

Button

Required. Any numeric expression giving the button
combination that activates this graphic.

Value Locator Buttons

0 No buttons

1 Right button

2 Middle button

3 Right and middle buttons

4 Left button

5 Left and right buttons

6 Left and middle buttons

7 All three buttons

If the above values are multiplied by 8, the mean-
ing for multiple buttons pressed becomes "OR"
rather than "AND." For example, to accept any
button on a 2 or 3 button mouse, use 56 (i.e. 8 *
7). To accept the left mouse button regardless
of whether or not the right button is pressed,
use 32 (i.e. 8 * 4).

If a 64 is added to this parameter, the function
will become true when the mouse buttons are
released rather than when they are pressed.

FocusID

Required. Any numeric expression giving the focus
number of this graphic. If FocusID is 0, this graphic
cannot receive the input focus. This parameter's value
may be used in a NextFocusID statement to force this
graphic to get the focus.

FocusTrigger

Required. Any logical expression. If FocusTrigger
changes from a valid false to a valid true, this graphic
will attempt to obtain focus.

ModuleCall

Required. Any function containing a module call.

Comments: This function is a layered graphics statement. See
"Use Scaling to Position GUI Objects" for inform-
ation about positioning a layered graphic.
The Left and Right references are interchangeable.
Whichever is smaller is taken as the left and the lar-
ger of the two values will be used as the right. The
same is true of the top and bottom references. Note
that the 1st 42 pixels of a VTScada application will
be obscured by the title bar, if present.
This is typically used to display a module which con-
tains an active graphics symbol.
The transformation is applied by finding the min-
imum area box which contains all reference box
coordinates (the first 4) for all graphics active in
that module. A scaling is performed on all graphics
in that module to make them appear in the ref-
erence box specified in the transform.

This is typically used to make a group of objects
move and scale together. For example, a module
(called PumpSymbol) could draw a symbol (such as a
pump). By applying a transform to this module, it
can be made to appear in a certain area of the
screen.
Any mouse functions contained by the transform
will also be affected. For example, if the object is
rotated 90 degrees XLoc will begin to behave like
YLoc.
A draggable GUITransform has two renderings. The
palette rendering is what is displayed in the palette
and is the image attached to the mouse at the start
of dragging the transform onto a drop-target win-
dow. When the mouse cursor is moved over a drop-
target window, the module called by the GUITrans-
form is rendered at the native size of the called
module and displayed in its place. The rendering is
scaled according to the zoom factor of the drop-tar-
get window. Moving off the drop target window
again displays the palette rendering.
The relative mouse position within the graphic when
the drag operation is started is maintained through-
out the operation. Therefore, when the image
switches from the palette rendering to the called
module rendering, the mouse position within the
called module rendering is over the same feature of
the graphic as when the palette rendering is used.

Examples:

GUITransform(0, 150, 100, 50 { Bounding box of object },
1, 1, 1, 1, 1 { No scaling },
0, 0 { No trajectory or rotation },
1, 0 { Object is visible; reserved },

0, 0, 0 { Graphic cannot be focused },
flow = PumpSymbol(1, amps) { A sample module call });

This shows a pump object in the upper left corner of the window. It can-
not be focused. No extra scaling is performed, and no animation is per-
formed.
This shows how a symbol can be defined once, and positioned in a mul-
tiple area (reused).
To use the magic formula to situate a button at a position given by left,
bottom, right, top:

If GUITransform(0, 1, 1, 0 { Unit bounding box },
1 - (left) { Left scaling },
bottom { Bottom scaling,
right { Right scaling },
1 - (top) { Top scaling },
1, 0, 0 { No overall scaling/movement },
1, 0 { Object is visible; reserved },
0, 0, 0 { Graphic cannot be focused },
flow = PumpSymbol(1, amps) { A sample module call });

[
...
]

The following displays a GridList that will re-size to match the Window
object it is displayed within:

BOT = VStatus(Self(), 12);
TOP = VStatus(Self(), 11);
GUITransform(0, 1, 1, 0 { Reference rectangle },

1- 0 { Left edge of window },
BOT { Bottom edge of window },
TOP { Right edge of window },
1- 0 { Top edge of window },
1 { No overall scaling },
0, 0, 1, 0 { No movement; visible; res },
0, 0, 0 { Not selectable },
\System\GridList(GridTitles { Titles array },

AllList { Data array },
Formats { Cell format array },
ColWidths { Column widths array },
PickValid(ArraySize(AllList,0), 0) {

rows },
3 { # Data cols },
15, 8 { Grid BGnd, Grid color },
1, 1 { Grid line width, line style},
30, 30 { Row/Title height },
0, 0 { Horiz/Vert cell padding },
0, 0 { Horiz/Vert Scroll position },
0, 0 { Enable V/H scroll bars },
0 { Enable column sizing },
1 { Disable Sorting },
1 { Disable selected cell },

0, 0 { Disable V/H grid lines },
1 { LockFirstColumn },
Invalid { Sort },
0 { SelectedRow },
0 { SelectedColumn },
_DialogFont { GridFontParm }));

Related Functions:
 GetXformRefBox | NextFocusID | Normalize | Point | Rotate |
 Trajectory | UnTransform | Vertex | VStatus | Window

Related Information:
See: "Best Practices for Graphics" in the VTScada Programmer's Guide

H Functions
The sections that follow identify all VTScada functions beginning with
"H".

HasCompilationErrors

Description: Reports if the working copy presently has unresolved com-
pilation errors

Returns: Boolean

Usage: Script Only.

Function Groups: Configuration Management

Related to: IsAppEditable |

Format: LayerModule\HasCompilationErrors()

Parameters: None.

Comments: Returns TRUE if the last attempted compilation of the layer
failed. This is a situation that shouldn't ever be
encountered, as any attempt to commit a compilation error
to the repository should fail, with the working copy (WC)
being rolled back to a compilable version.
However, if the WC becomes corrupted or if there are com-

pilation dependencies outside of the working copy, then in
theory the WC can be in an unresolvable, non-compilable
state, which is what this subroutine reports. This function
should only be called as a subroutine, following Activation.

Hash

Description: Generates a hash – a text string of bytes - of the given
string.

Returns: Text

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Cryptography

Related to: Encrypt | Decrypt

Format: Hash(PlainText[, AlgID, Seed, HashHandle])

Parameters:

PlainText

Required. Any text string to create a hash from.

AlgID

Specifies the algorithm to use when creating the hash.
Valid options are as follows: Defaults to 0 (SHA-1) if
missing or invalid.

AlgID Hash

0 SHA-1 (160 bit hash)

1 MD5 (128 bit hash)

2 SHA-2 (256 bit hash)

3 SHA-2 (384 bit hash)

4 SHA-2 (512 bit hash)

Seed

Optional text buffer, which will be used as a seed for

the hash algorithm. The contents of the buffer will be
pre-pended to the text from the first parameter when
creating the hash.

HashHandle

Optional. LValue. If Invalid, a hashing handle for the
given AlgID is created and used for this and sub-
sequent calls that supply this handle. No output is gen-
erated until a call, with this handle, is made with an
Invalid PlainText parameter, at which time the hash
built up using the handle is returned. At that time, the
handle is destroyed and the LValue invalidated.

For one-time hashing, the hash value is returned from
this function as a text string of bytes. For progressive
hashing the return value of this function is Invalid until
a call with an Invalid PlainText parameter and a valid
HashHandle is made.

Comments The use of a seed string is functionally equivalent to the fol-
lowing example, but will execute slightly faster.
X = Hash(Concat("XYZ", "ABCDE"), 2);.

HasMetaData

Description: Tests whether a given variable is a dictionary. Since the
default behavior of most operands and functions on dic-
tionaries is to return just the value of the dictionary’s root,
this function provides the only means to determine
whether or not a variable contains a dictionary.

Returns: Boolean

Usage: Script or steady state.

Function Groups: Dictionary, Variable

Related to: Dictionary | MetaData | IsDictionary

Format: RVAL = HasMetaData(dictionary);

Parameters:

Dictionary

Required. The name of any variable to test.

Comments: Returns TRUE if the object is a dictionary and FALSE oth-
erwise.
Since the default behavior of most operands and functions
on dictionaries is to return just the value of the dictionary’s
root, this function provides the only means to determine
whether or not a variable contains a dictionary.

HasReturnStatement

Description: Examines a specified object to see if it is running a return
statement in steady-state.

Returns: Boolean

Usage: Script Only.

Function Groups: Basic Module

Related to: SetReturnValue

Format: HasReturnStatement(Object)

Parameters:

Object

Required. Reference to the object of interest.

Comments: This function examines a specified object to see if it is run-
ning a return statement in steady-state. Returns 1 if such a
statement is running, 0 if no return statement is running in
steady-state, or Invalid if the first parameter cannot be
resolved to an object.

HasUndeployedChanges

Description: Finds whether the local machine is maintaining changes
that have not been deployed, including changes that have

been recorded by EditFile but have yet to be committed.

Returns: Boolean

Usage: Script or steady state.

Function Groups: Configuration Management

Related to: HasCompilationErrors | IsAppEditable | IsRunOnly |

Format: \LayerRoot\HasUndeployedChanges

Parameters: none

Comments: This function returns TRUE if the Layer is running with
changes that have not been deployed. Either it is on a local
branch, or there are working copy modifications that have
yet to be committed such as page changes.
Note that the return value doesn't get updated while we are
within the } { working copy lock so that atomic (within the
working copy lock) commits do } { not cause the return
value to flicker.

Help

Description Calls a topic in a help system.

Returns Nothing

Usage Script Only.

Function Groups Help

Related to: SetHelp

Format Help(FileName, Option, SearchValue)

Parameters

FileName

Required. Any text expression for the name of
the help system to be displayed. May be the
name of a .CHM file, or a.HLP file. To call a topic
in the VTScada help system, use the system prop-

erty, \DevHelpFile.
Refer to the comments section for more options.

Option

Required. Any numeric expression controlling how the
topic will be located within the help system, as indic-
ated by the following table. Not all options work with
all help system formats. Calls to topics using context
sensitive help ID values should use option 3.

Option Display Option SearchValue

0 Help contents 0

1 Key Key string

2 Partial key Partial key string

3 ID ID number

4 Help Topics 0

SearchValue

Required. Any expression that provides the proper
qualification needed by the Option parameter as indic-
ated by the preceding table.

Comments If calling a help system compiled using the
DocToHelp NetHelp system, use the string, "MyHelp-
folder\NetHelp". If calling your own help system com-
piled using the Flare HTML5 system, use the string
"MyHelpFolder\MadCapWebHelp".
DocToHelp and Flare are products of Madcap Soft-
ware Ltd. and are recognized by VTScada.

Example:

If ZButton(10, 40, 110, 10, "Help", 1);
[
Help("C:\VTScada\MyCustomHelpFile.chm", 0, 0);

]

This displays a button on the screen that when pressed, opens the table
of contents of the named CHM format file.

If WinButton(513, 135, 547, 101,
 0 { normal appearance },
 "?" { label },
 1 { focus id enables button },
 0 { default system font },
 Invalid { no ToggleVal used },
 Invalid { image displayed in the button});

[
 Help(\DevHelpFile,3,110);
]

This will display a button that when pressed will open topic id 110 in the
VTScada help system. Note that 110 is one of the ID values set aside for
user-created topics.

Related Information:
See: "User-Topics in the VTScada Help Folder" in the VTScada Developer's
Guide.

HexToBuff

Description: Converts a hex string to a binary buffer.

Returns: Buffer

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: String and Buffer

Related to: BuffToHex

Format: HexToBuff(HexValue)

Parameters:

HexValue

Required. Any string representing a hexadecimal
value.

Comments: Given an invalid parameter value, the function will return
Invalid.

Examples:

BuffResult = HexToBuff("57494C4C");

BuffResult will contain "Will".

HighlightModule

Obsolete. Code using this function will compile, but will do nothing.

Description Highlighted a module in a module tree.

Returns Boolean

Usage Script Only.

Function Groups Module Tree Diagram

Related to: HighlightState | HighlightTree | ModuleHighlighted

Format HighlightModule(ModuleTree, Module, Mode)

Parameters

ModuleTree

Required. Any expression for the module tree value.

Module

Required. Any expression for the code value of the
module.

Mode

Required. Any numeric expression that indicates how
to highlight

Mode Highlight

0 Turn on highlighting

1 Turn off highlighting

2 Toggle highlighting

Comments none

HistorianConnect

Description Opens a logging connection and controls the lifetime of all
resources associated with that connection.

Warning This function should be used only by advanced pro-
grammers. The functions, WriteHistory and GetTagHistory
and GetLog are recommended for most uses.

Returns Invalid if the parameters are invalid, 0 otherwise

Usage Script Only.

Threaded Yes

Function Groups Logging

Related to: HistorianDeleteRecords | HistorianGetData |
 HistorianGetInfo | HistorianReadRecords |
 HistorianWriteRecords

Format HistorianConnect(ConnectionType, ConnectionString, His-
torianName, Namespace, HistorianHandle, Error)

Parameters

ConnectionType

A text keyword that indicates the storage meth-
odology required. Permitted values are

l FileDB for storage on a local or networked hard
drive, using the VTScada proprietary database
format.

l ODBC for storage using a local or networked
DBMS, accessed via ODBC drivers.

The keywords are not case-sensitive.

ConnectionString

A text string that provides the information required to
connect to the database specified by the Con-
nectionType.

ConnectionType ConnectionString

FileDB The root path to the storage
folder. If a relative path is
provided, then it is relative
to the VTScada installation
directory

ODBC Any valid ODBC connection
string. This may begin with
DSN= to specify a data
source name, or it may be a
complete connection string.

HistorianName

A text string providing the Historian Tag Name. This
string is used as part of the full path to a file-based
data store and is also the name of the UpTime table in
the database.

Namespace

The top-level namespace in which to store data (may
be an empty string).

HistorianHandle

Historian Connection handle value. For the VTScada
proprietary data store, this will be invalidated on an
"out of disk space" error, or on loss of access to the file
storage. For other databases, this will be invalidated on
any connection loss.

Error

A value in which the error code, (if any) will be
returned.

Comments The connection to the data store is done asynchronously.
HistorianHandle will become valid when the connection
has been made. If the connection fails Error will be set to
some sort of error information.
Each separate connection will create its own thread for writ-
ing data. Invalidating the connection handle will flush all
pending write data and then terminate the thread, DB con-
nections etc.
The Namespace parameter may be used to allow the same
root storage location to be shared by multiple applications
or machines or both.

HistorianDeleteRecords

Description: Conditionally deletes full sequences of records from the
data store identified by the ConnectionHandle

Warning: This function should be used only by advanced pro-
grammers. The functions, WriteHistory and GetTagHistory
and GetLog are recommended for most uses.

Returns: An array of SequenceID values, indicating which sequences
were deleted

Usage: Script Only.

Threaded: Yes

Related to: HistorianDeleteRecords |
 HistorianDeleteRecords HistorianGetData |
 HistorianGetInfo | HistorianReadRecords |
 HistorianWriteRecords

Format: HistorianDeleteRecords (ConnectionHandle, TagName,
Schema, MinGroupValue, NumRecordsToKeep)

Parameters:

ConnectionHandle

As returned by a HistorianConnect call.

TagName

A text string identifying the tag whose records are to
be deleted.

Schema

This is a textual representation of a schema structure.

MinGroupValue

All sequences with a Group Value (the last 4 bytes of
the 12-byte SequenceID) less than this value will be
deleted, provided that the NumRecordsToKeep con-
dition is also met.

NumRecordsToKeep

A numeric expression, specifying a minimum number
of records that are to be kept for the tag.

Comments: This function will delete as many entire sequences from
storage for a tag as it can so that at least NumRe-
cordsToKeep records are kept, and only sequences with a
lower group value than MinGroupValue are deleted.
While considered to be threaded, this function has no life-
time once it passes the records to another thread for dele-
tion.

HistorianGetData

Description: Queries a Historian data store and returns an array of pro-
cessed records.

Returns: Invalid if parameters are invalid, otherwise 0.

Usage: Script Only.

Threaded: Yes

Related to: HistorianGetData | HistorianDeleteRecords |
 HistorianGetData HistorianGetInfo | HistorianReadRecords
| HistorianWriteRecords

Format: HistorianGetData (ConnectionHandle, TagName, Schema,

Data, FieldNames, TPP, StartTime, EndTime, NumEntries,
Modes, StaleTimes, LastRestartTime, ErrorCode)

Parameters:

ConnectionHandle

As returned by a HistorianConnect call.

TagName

A text string representing the desired table name.
Engine code may modify this to conform with storage
limitations.

Schema

A text expression describing the schema from which
to retrieve data.

Data

A variable in which the data will be returned.
This will be a two-dimensional array representing the
returned data, indexed by [col][row]. If TPP is non-
zero, the number of rows in the result set will equal the
value of the NumEntries parameter. If TPP is zero there
could be fewer rows than specified by NumEntries

FieldNames

Names of the fields (as opposed to the number in
TGET). There is no need to support time options as in
TGET.

TPP

Required. Any numeric expression giving the time
span in seconds for each array entry. Each array ele-
ment will contain the data which correspond exactly to
this time period which corresponds to 0 or more data
points. If TPP is positive and FieldNames selects a text
value, the first entry which falls in a time is read and
Mode is ignored.
If TPP is equal to 0, the data is read and placed in the

array on a one to one basis.
If TPP is less than 0, an error will be returned.

StartTime

Timestamp in UTC. The report will include values
matching and later than this time.

EndTime

Ending timestamp. Ignored if TPP is non-zero. The
report will include values less than and matching this
value.

NumEntries

Number of log entries in the array (numEn-
triesRequested - determined by Size or TPP parameters
of Getlog)
Use a negative value to retrieve values in reverse chro-
nological order.

Modes

Optional numeric expression giving the method of
handling the data. If TPP is greater than 0, the values
that fall in each time span will be represented as fol-
lows:

Mode Time Span Representation

0 Time weighted average

1 Minimum in range

2 Maximum in range

3 Change in value over the range

4 Value at start of range

5 Time of minimum in range (in seconds
since Jan 1, 1970)

6 Time of maximum in range (in seconds
since Jan 1, 1970)

7 Count the total number of zero to non-
zero transitions within each TPP period.

8 Totalizes, for each TPP, the amount of
time when the value is non-zero (Invalid
is counted as zero).

9 Totalizes, for each TPP, the arithmetic
sum of the recorded values.

10 Interpolates between values.

In the case of modes 5 and 6, FieldName should
still be set to indicate the field on which the
mode is to act; the return values will be times
indicating the maximum or minimum in that
field for each time span.
If TPP is less than or equal to 0, Mode is
ignored. If the data is text, the first entry in a
given time range is used for the array entry and

Mode is ignored.
It is possible to retrieve more than one mode in
a single GetTagHistory statement. To do this,
pass an array of values in as the Mode para-
meter.

StaleTimes

An optional parameter that sets a maximum validity
duration for data elements that are being TPP pro-
cessed. Normally, every data point is treated as remain-
ing valid until the next data point. If a valid StaleTime
parameter is given, then any data point will be treated
as invalid StaleTime seconds after the recorded time. If
TPP is less than or equal to 0, StaleTime is ignored. If
StaleTime is not required but EnableDowntimeOverride
is, then StaleTime should be given as an Invalid value.
It is possible to specify more than one stale time in a
single GetTagHistory statement. To do this, pass an
array of values in as the StaleTime parameter.

LastRestartTime

A Timestamp value used in UpTime processing. (see
comments)

ErrorCode

A value in which the error code (if any) will be
returned.

Comments: If a record has been written that duplicates the
timestamp of an existing record then, when read-
ing, the newer record will be supplied in place of
the older. This arbitration is performed by means of
a Secondary (or Generation) Timestamp.

To support this, properties can be associated with
Schema columns. One property defines the Primary

Timestamp for the record and another property
value defines the Secondary (or Generation)
Timestamp for the record. If no secondary
timestamp column is defined, then arbitration will
not take place. If no primary timestamp column is
defined, then retrieval of a specific time range is
not possible.

Uptime processing allows VTScada to show gaps in
data for periods when VTScada did not record any
data. As long as there is at least one Historian log-
ging on a machine, the logging system is deemed
available and there is no downtime. Any gap indic-
ates that the logging system was down. (That is, the
application may be running but the Historian has
lost its connection to its SQL database). The UpTime
information is logged by a Historian tag and is
therefore to be found in the Historian’s normal log
data table.
No downtime invalids are inserted when reading in
the reverse order.

HistorianGetInfo

Description: Retrieves information about a specified Historian or all His-
torians.

Returns: Varies depending on the request.

Usage: Script Only.

Threaded: No.

Related to: HistorianGetInfo | HistorianDeleteRecords |
 HistorianGetData | HistorianGetInfo HistorianReadRecords
| HistorianWriteRecords

Format: HistorianGetInfo(ConnectionHandle, InfoType)

Parameters:

ConnectionHandle

As returned by a HistorianConnect call.

InfoType

InfoType Information requested

0 Counters. A dictionary of dictionaries
of dictionaries containing full
counter information for all
sequences stored by this Historian.

1 Errors. A dictionary of write or dele-
tion errors that occurred in this His-
torian since the last time GetInfo
(Historian, 1) was called.

2 Overall write queue count. The num-
ber of records in the write queue for
all Historians (ConnectionHandle
parameter is ignored).

3 Overall records stored. A rollover
count of the records stored by all His-
torians (ConnectionHandle para-
meter is ignored). This counter rolls
over (2^32) and therefore is only use-
ful for performance diagnostics. It is
not a count of all records in storage.

4 Write queue count. The number of
records in the write queue for this
Historian.

5 Records stored. A rollover count of
the records stored by this Historian.
This counter rolls over and therefore
is only useful for performance dia-
gnostics. It is not a count of all
records in storage.

6 Overall write queue size. The approx-
imate memory size of the write
queue for all Historians (Con-
nectionHandle parameter is ignored).

HistorianReadRecords

Description: Reads a range of records from the data store. The range is
specified by the Start and End counter values supplied.

Warning: This function should be used only by advanced pro-
grammers. The functions, WriteHistory and GetTagHistory
and GetLog are recommended for most uses.

Returns: Invalid if parameters are invalid, 0 otherwise.

Usage: Script Only.

Threaded: Yes

Related to: HistorianReadRecords | HistorianDeleteRecords |
 HistorianGetData | HistorianGetInfo |
 HistorianReadRecords HistorianWriteRecords

Format: HistorianReadRecords (ConnectionHandle, TagName,
Schema, Data, MID-S, StartCounter, EndCount, ErrorCode)

Parameters:

ConnectionHandle

As returned by a HistorianConnect call.

TagName

A text string representing the desired table name.
Engine code may modify this to conform with storage
limitations.

Schema

This is a textual representation of a schema structure.

Data

A variable in which the values will be returned.
This will be a single dimension array representing the
Fields (columns). The entries in the array will be an
array of values (all fields will be the same) and the size
of one of these arrays gives the number of records
(rows) in the result set.

Mid-S

A 64 bit binary token.

StartCounter

Starting counter number. Starts counting at 1 rather
than zero.

EndCounter

Ending counter number. Starts counting at 1 rather
than zero.

ErrorCode

FileDB or SQL DB error code returned.

Comments: Data will be set on completion of the operation.
ErrorCode will be set on completion of the operation. This
will be set to zero if the operation was successful

Together, the Schema and the MID-S parameters define
the subset of records in the Index file from which the data
in the required Counter range will be retrieved. If this
filtered subset has no data, then none will be returned.

HistorianWriteRecords

Description Writes records to the data store identified by the Con-
nectionHandle

Warning This function should be used only by advanced pro-
grammers. The functions, WriteHistory and GetTagHistory
and GetLog are recommended for most uses.

Returns A counter value, or Invalid if parameters are invalid

Usage Script Only.

Threaded Yes

Related to: HistorianWriteRecords | HistorianDeleteRecords |
 HistorianGetData | HistorianGetInfo |
 HistorianReadRecords

Format HistorianWriteRecords (ConnectionHandle, TagName,
Schema, Records, SequenceID)

Parameters

ConnectionHandle

As returned by a HistorianConnect call.

TagName

A text string representing the desired table name.
Engine code may modify this to conform with storage
limitations.

Schema

This is a textual representation of a schema structure.

Records

Array of data. This is a single dimension array rep-
resenting the Fields (columns) to be written. Each entry
in this array may be either a single data value or an
array of values. If any entry is an array, then the size of
the largest array gives the number of records (rows) to
be written. If any individual field is underspecified,
then a representation of INVALID is written for the miss-
ing values.

SequenceID

A 12-byte, binary token.

Comments This is the normal method of writing historical data. Data is
always appended to the data store, and records are not
deleted or replaced unless HistorianDeleteRecords is called
explicitly.
The function returns the counter value for the last record
being written.

Note: At the point that the function returns, the data has
not yet been written. Since the Counter is the actual record
number (FileDB) or an index (SQL) the counter value

returned here will be a calculated value, based on the num-
ber of records that are pending.

As well as defining the column format, the Schema defines
the subset of tables to which the supplied data will be writ-
ten.

While considered to be threaded, this function has no life-
time once it passes the records to another thread for writ-
ing.

Each record will be represented by a Counter value which is
one greater than the previous Counter value, unless either
Schema or MID-S have changed from the previous write. In
this case, a new table/file set is started. The counter value
for a new table always starts from 1.

HScrollbar

(System Library)

Description Draws a horizontal scrollbar and returns its position.

Returns Boolean

Usage Steady State only.

Function Groups Graphics

Related to: ToolBar | VScrollbar

Format \System\HScrollBar(Left, Top, Width, Steps, PageLen[, Off-
set, StepSize, WindowObj])

Parameters

Left

Required. Any numeric expression for the left side
coordinate of the scrollbar.

Top

Required. Any numeric expression for the top coordin-
ate of the scrollbar.

Width

Required. Any numeric expression for the width of the
scrollbar in pixels.

Steps

Any numeric expression giving the number of steps in
the scrollbar.

PageLen

Required. Any numeric expression giving the number
of steps to jump per page.

Offset

Optional. Any numeric expression giving the expor-
ted/imported scroll position. Defaults to 0 if not spe-
cified.

StepSize

Optional. Any numeric expression giving the number
of lines to scroll through when the user clicks on an
arrow. Defaults to 1 if not specified.

WindowObj

Used by the Anywhere client. Enables redirection to the
HScrollbar of horizontal panning over a given region.
Required because on many touchscreens you cannot
interact directly with the scrollbar therefore this object
is needed to make it possible to scroll HScrollbar on
those platforms.

Comments This module is a member of the System Library, and must
therefore be prefaced by \System\, as shown in "Format"
above. If you are developing a script application, use "Sys-
tem\..." rather than "\System\..." in the function call.
Steps can be calculated by subtracting the number of vis-
ible items from the total number of scrollable items, while
PageLen is equal to the number of visible items.

Example:

\System\HScrollBar(VStatus(Self, 11) - VStatus(Self, 21) { Left },
VStatus(Self, 12) - 1 { Top },
VStatus(Self, 12) { Width },
Length - LinesVisible { Total steps },
LinesVisible { Steps in page },
Offset { Thumb tab pos },
StepSize { Number of lines per arrow click. });

I Functions
The sections that follow identify all VTScada functions beginning with "I".

IconMarker

Note: Deprecated. Do not use in new code.

Description: Creates the question mark and exclamation mark graph-
ics, used to indicate questionable and manual data in a wid-
get.
This module places a set of icons on the screen centered
over a given rectangular region. The icon displayed is
cycled with each passage of the period, measured in
seconds

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GetXformRefBox | Scale | TagIconMarker

Format: IconMarker(Left, Bottom, Right, Top, Period, Mode, SizeX,
SizeY, IconArray)

Parameters:

Left, Bottom, Right and Top

Are numeric expressions providing the bounds of the
graphic to mark. The symbol will appear in the center
of this area.

Period

A numeric expression setting the period (in seconds)
at which the symbol is changed

Mode

A numeric expression indicating the symbol to display
according to the following table

Mode Symbol

0 Inhibit symbol display

1 Questionable Data symbol

2 Manual Data symbol

3 Questionable and Manual symbols

4 Error symbol

5+ User supplied symbols

SizeX

A numeric expression providing the horizontal extent
of the symbols to be displayed

SizeY

A numeric expression providing the vertical extent of
the symbols to be displayed.

IconArray

The array of images to be displayed. This must be a
variable - use of the "Invalid" keyword or a constant
here will cause the module to fail. The value of this vari-
able is discarded for mode values less than 5.

Examples:
To load an image into IconArray for use with mode 5, you might use
code similar to the following. The image should be 12 x 12 pixels.

CIcon = 0;
IconArray[CIcon] = PickValid(MakeBitmap("BitmapName.bmp", 1),
\IMStandardArrays[3][0]); { Color 1 is set as transparent }

To use IconMarker in a tag widget, you must check the value of the tag's
questionable and manual data parameters. The code may be similar to
the following.
(example taken from the TopBar widget. Note that in this example, the
vertical position of the icon changes with size of the TopBar.)

Call(Variable((PickValid(\Questionable, 0) || Valid(\ManualValue))?
("IconMarker"):(Invalid)),
 GetXFormRefBox(Self(), 0),

GetXFormRefBox(Self(), 1),
GetXFormRefBox(Self(), 2),
Scale(SVal, SMin, SMax, GetXFormRefBox(Self(), 1),

GetXFormRefBox(Self(), 3)),
1,
((PickValid(\Questionable, 0))?(1):(0)) + ((Valid

(\ManualValue))?(2):(0)),
12, 12, MarkList);

(MarkList is a variable declared in the widget as a holder for the mark-
ings.)

IF

Description: Performs an action; it changes the active state in a module
instance, or executes a script, or both.

Returns: Nothing

Usage: Steady State only.

Function Groups: Logic Control

Related to: IfElse | IfOne | IfThen | Cond

Format: IF Trigger Destination;
[
Script

]

Parameters:

Trigger

Required. Any logical expression. If false, nothing hap-
pens. If true, the action is performed, and any func-
tions that may be reset are automatically reset.

Destination

Optional. Destination is not an expression, it is the text
name of a state. If provided, it must be a legal name of
a state in the module where this action is defined.
It is not possible to change to a state in another mod-
ule; each module must have one (and only one) active
state, unless the module has no states defined.

Comments: This is the only way to change the active state in a module.
An action may have a Destination, a Script, or both, or
neither (although it does not make sense to have neither).

Script is a list of functions and statements, ending in semi-
colons, contained by square brackets. The Script is
optional; it may be omitted. There is no limit to the num-
ber of statements in Script (other than RAM). If the script is
omitted, the square brackets must also be omitted. A
script's statements are executed in order, from top to bot-
tom. While a script is executing, no other statements, func-
tions, or scripts may execute until this script is complete.

Examples:

highLevel = 0;
...
FillUp
[{ Begin state FillUp }
If level > 36 heaterOn { Wait for tank to fill };

] { End state FillUp }

This action is triggered if the variable level is a number greater than 36.
If this action is triggered, the state FillUp is stopped, and the state Heat-
erOn is started.

{ An example of poorly written code }
HeaterOn
[{ Begin state HeaterOn }
If level > 40 { Monitor the level };
[{ Begin script }
highLevel++;
highAlm = highLevel > 10 { Sound high level alarm };

] { End script }
] { End state heaterOn }

This is an example of what to AVOID!

If level rises above 40, this action will trigger over and over again. This is
called an "If 1" condition and will degrade system performance easily to
10% or 1% or less of its normal potential. All the time level > 40 is true,
highLevel will increase by one at a very rapid rate. This is because there
is no destination state; the action remains active, and the trigger is
checked again and again.
Note also that the script has two statements. They are executed once
only, in order; this means that the script will have to execute 10 times
before the first statement has increased highLevel enough so that the
second statement will execute.
If what is desired is to count the number of times level rises above 40, a
better way to write this would be:

HeaterOn
[{ Begin state HeaterOn }
If Change(level > 40, 0) && level > 40
{ Monitor the level };
[{ Begin script }
highLevel++;
highAlm = highLevel > 10 { Sound high level alarm };

] { End script }
] { End of state heaterOn }

This waits for level to change while also being above 40. Once this hap-
pens, the action is triggered, the script is executed, and the Change func-
tion is automatically reset to wait for another change. The Change
function will not re-trigger until level drops below 40, when there will
finally be a change in the condition level > 40. At that time, however,
since level will be less than 40, the action won't trigger until level rises
above 40. This is how to trigger on the rising edge of a logical expres-
sion (level > 40).
It is recommended that you refer to "Automatically Reset Functions" for
further information.

IfElse

Description: Returns the result of one of two expressions depending
upon the result of a conditional expression.

Returns: Varies

Usage: Script or steady state.

Function Groups: Logic Control

Related to: | Cond | Execute | IfThen

Format: IfElse(Condition, TRUECase, FALSECase)

Parameters:

Condition

Required. An expression that returns true or false. If
true the TRUECase is executed. If false, the FALSECase
is executed. If invalid, neither case is executed.

TRUECase

Required. The expression (typically an Execute state-
ment) which is executed when Condition is true.

FALSECase

Required. The expression (typically an Execute state-
ment) which is executed when the Condition is false.

Comments: This is simply a different name for the Cond function. The
return value is the result of the evaluated case. Both cases
are evaluated, in which case Cond is a more apt name.

Example:

If 1 Main;
[
IfElse(i > 0 && i <= 50,

Execute(y[i] = x,
i++),

{ else }
Execute(x = i,

doneFlag = 1)
);

]

This statement will set the element of array y equal to i and then incre-
ment i if i is between 1 and 50 inclusive; if i is not in that range, x will be

set to i and doneFlag will go true. Note that IfElse and Execute may only
appear in a script.

IfOne

Description: Check for an If One Condition. This function checks for a
race condition in an action script and returns the value of
the location.

Returns: Module

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Logic Control

Related to: | Cond | Execute | IfElse

Format: IfOne()

Parameters: None

Comments: This function is used for debugging VTScada applications
and returns the module, state or statement value of the last
script that did not switch states, and had a true action trig-
ger after executing its script.

Example:

[
 BadMod = "";
 BadModFile = "";
 BadState = "";
 BadStatement = "";
 LastIfOne;
]

Main [
 If ZButton(10, 30, 90, 10, "Go", 1, System\DefFont);
[

 LastIfOne = IfOne();
 BadMod = Cast(Cast(LastIfOne, 11), 4);
 BadModFile = GetModuleText(LastIfOne, 0);
 BadState = StateName(LastIfOne);
 BadStatement = Cast(LastIfOne, 1);
]

 ZText(10, 50, "File:", 0, System\DefFont);
 ZText(10, 70, "Module:", 0, System\DefFont);

 ZText(10, 90, "State:", 0, System\DefFont);
 ZText(10, 110, "Statement:", 0, System\DefFont);
 ZText(70, 50, PickValid(BadModFile, "N/A"), 0, System\DefFont);
 ZText(70, 70, PickValid(BadMod, "N/A"), 0, System\DefFont);
 ZText(70, 90, PickValid(BadState, "N/A"), 0, System\DefFont);
 ZText(70, 110, PickValid(BadStatement, "N/A"), 0, System\DefFont);
]

This script will find a possible problem area (a script that may have a
race condition) and set the variables badMod, badState or badStmnt to
indicate its location in the application. There would probably be several
statements following this script that printed out the aforementioned vari-
ables; the ones that were not valid would simply hold the text "N/A".

IfThen

Description: Conditionally Execute Statements. This statement executes
a statement if the condition parameter is true.

Returns: Nothing

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Logic Control

Related to: | Cond | Execute | IfElse

Format: IfThen(Condition, Expression1, Expression2, ...)

Parameters:

Condition

Required. An expression that will indicate whether or
not the Expression parameters are executed. If this is
true, the Expression parameters will be executed.

Expression1, Expression2, ... default }

Required. Any statements to be executed when Condi-
tion is true. Any number of Expression parameters
may be listed. They are executed once in the order
that they are listed.

Comments: This statement may only appear in a script.

Example:

If 1 Main;
[
IfThen(Valid(tankPtr) && fluidLevel > 1000,
startPump = 1,
activeTankNum++,
msg = "Changing tanks...");

]

The statement in the script will test to see if tankPtr exists (is valid) and
if fluidLevel > 1000, if these conditions are both true, the series of
actions will be taken. VTScada does not use short-circuit evaluation. Both
parts of the condition will always be checked (and evaluated if required).

ImageArray

Description: Reads an existing image handle and returns another one
containing an image created from that handle by tiling the
image a given number of times.

Returns: Image handle

Usage: Script or steady state.

Function Groups: Graphics

Related to: Crop | GUIBitmap | GUIButton | ImageSweep |
 MakeBitmap | ModifyBitmap

Format: ImageArray(Handle, HorizontalSpacing, VerticalSpacing,
RowCount, ColCount[, Orientation, CropLeft, CropTop,
CropWidth, CropHeight, Tessellate])

Parameters:

Handle

Required. The image handle to copy and modify.

HorizontalSpacing

Required. Any numeric expression for the horizontal
space between each tile.

VerticalSpacing

Required. Any numeric expression for the vertical

space between each tile.

RowCount

Required. Any numeric expression for the number of
tiles running vertically.

ColCount

Required. Any numeric expression for the number of
tiles running horizontally.

Orientation

Optional numeric value between 0 and 15, spe-
cifying the orientation of the tiles. Defaults to
zero.

Orientation
Value

Meaning
Orientation

Value
Meaning

0 No rotation,
no flipping

8 No rotation,
flip vertically

1 90-degree
CW rotation
without flip-
ping

9 90-degree
CW rotation
and flip ver-
tically

2 180-degree
CW rotation
without flip-
ping

10 180-degree
CW rotation
and flip ver-
tically

3 270-degree
CW rotation
without flip-
ping

11 270-degree
CW rotation
and flip ver-
tically

4 No rotation,
flip hori-
zontally.

12 No rotation,
flip hori-
zontally,
then ver-
tically

5 90-degree
CW rotation
and flip hori-
zontally

13 90-degree
CW rotation,
flip hori-
zontally,
then ver-
tically

6 180-degree
CW rotation
and flip hori-
zontally

14 180-degree
CW rotation,
flip hori-
zontally,
then ver-
tically

7 270-degree
CW rotation
and flip hori-
zontally

15 270-degree
CW rotation,
flip hori-
zontally,
then ver-
tically

CropLeft

Optional. Left coordinate of the cropping region.
This and the following three parameters must all be
specified if any are specified. Together, they apply a
clipping rectangle that will be applied to the tiled
image after tiling occurs.

CropTop

Optional. Top coordinate of the cropping region.

CropWidth

Optional. Width of the cropping region.

CropHeight

Optional. Height of the cropping region.

Tessellate

Optional Boolean. Defaults to FALSE (0). Optim-

izes drawing for a simple grid of images, but
causes ImageArray to ignore spacing and trans-
formation of the images. Does not improve the
appearance of the result, but uses significantly
less memory and may be marginally faster.
The result may be clipped and stretched.

Comments: More commonly used in script than in steady-state.
The cropping parameters work in contrast to the
Clip function, which applies a clipping region to the
image before tiling occurs.
A regular image array will allow for gaps between
the tiles and some transformations of the original
image. The algorithm for this is less than optimal if
one wants an unspaced grid of images, such as in a
wallpaper bitmap. For the latter case, set the Tes-
sellate parameter to true.

ImageSweep

Description: Reads an existing image handle and returns another one
containing an image created from that handle by tiling the
image a given number of times along an arc-shaped path.

Returns: Invalid on failure

Usage: Script or steady state.

Function Groups: Graphics

Related to: Crop | GUIBitmap | GUIButton | ImageArray |
 MakeBitmap | ModifyBitmap

Format: ImageSweep(Handle, Count, Radius, StartAngle,
EndAngle[, CropLeft, CropTop, CropWidth, CropHeight])

Parameters:

Handle

Required. The image handle to copy and modify.

Count

Required. Any numeric expression for the number of
tiles to draw.

Radius

Required. Any numeric expression for the natural
radius of the short axis of the ellipse, used to determ-
ine scaling.

StartAngle

Required. Any numeric expression for the angle at
which the first tile is to be drawn. The range -180 to
180. The start point is the vertical axis. Angles are pos-
itive, counter-clockwise..

EndAngle

Required. Any numeric expression for the angle at
which the last tile is to be drawn. Range -180 to 180,
start point is the vertical axis, angles are positive
counter-clockwise..

CropLeft

Optional. Left coordinate of the cropping region.
This and the following three parameters must all be
specified if any are specified. Together, they apply a
clipping rectangle that will be applied to the tiled
image after tiling occurs.

CropTop

Optional. Top coordinate of the cropping region.

CropWidth

Optional. Width of the cropping region.

CropHeight

Optional. Height of the cropping region.

Comments: The result is a radial array of tiles. Drawing angles

intersect the center of the tiles. The path is based
upon the size and shape of an ellipse traced out
using the bounding box of the drawing transform.
Scaling is based upon a comparison of the
described radius and the final size of the transform
on the screen. In the case of an ellipse the radius is
assumed to be the smallest elliptical radius. Returns
Invalid upon failure
The cropping parameters work in contrast to the
Clip function, which applies a clipping region to the
image before tiling occurs.

ImportAPI

Description: Imports objects of class API from a given module, for use
in the calling module.

Returns: Numeric

Usage: Script Only.

Function Groups: Advanced Module

Related to:

Format: ImportAPI(SourceModule[, DestinationModule])

Parameters:

SourceModule

Required. Any expression for the module from which
the API-class constants should be imported.

DestinationModule

An optional expression, giving the module that the
API-class constants should be imported into. Used
only if the constants are not being imported into the
current module.

Comments: When using modules such as TreeControl, the ImportAPI

function can reduce the programming workload by import-
ing all the required constants with one command. Only
those constants that have been declared as class API in the
source module will be imported.

ImportAPI "imports" the source objects by creating vari-
ables with the same name in the destination module and
assigning to these the default values from the source mod-
ule. Results may be unpredictable if more than one
instance of the source module is found.

Returns the number of variables that were found to have
the same name in the calling module and that therefore
were not imported from the source module.

Example:
A selection of constants declared in TreeControl.SRC:

{***** Indices into the Tree array nodes *****}
[(API)
Constant #TI_KEY = 0 { "Key" value...see heading comment };
Constant #TI_TEXT = 1 { Text value to be displayed };
Constant #TI_SUBTREE = 2 { Subordinate tree below this node };

… etc …

Importing the TreeControl constants in DropTree.SRC:

Init [
If 1 DropTree;
[

{ Import the Tree Control API }
ImportAPI(\TreeControl);

… etc …

ImportKey

Description: The ImportKey function transfers a cryptographic key
from a key BLOB into a CSP (cryptography service pro-
vider). It is the VTScada analog of the CryptoAPI’s
ImportKey call.

Returns: Key

Usage: Script Only.

Function Groups: Cryptography

Related to: DeriveKey | Decrypt | Encrypt | ExportKey |
 GenerateKey | GetCryptoProvider | GetKeyParam |
 SetKeyParam

Format: ImportKey(CSP, BlobType, KeyBLOB [, DecryptKey, Flags,
Error])

Parameters:

CSP

Required. The handle to the CSP which is receive the
imported key.

BlobType

Required. A parameter specifying the type of key BLOB
to be imported. Values are defined in WinCrypt.h

KeyBLOB

Required. Text string containing the KeyBLOB to be
imported.

EncryptKey

An optional parameter containing a Key handle for a
key to be used to encrypt the exported key so that it
may only be encrypted by the destination user. If omit-
ted or invalid, then the value NULL is used.

Flags

An optional parameter specifying the flags to be
passed to CryptExportKey. If omitted or invalid then
the value 0 is used.

Error

An optional variable in which the error code for the
function is returned. It may have the following values:

Error Meaning

0 Key successfully imported.

1 CSP, BlobType or KeyBLOB parameters
invalid.

X Any other value is an error from
CryptImportKey.

Comments: The new key is returned as a Key handle. If an error
occurs, the return value is invalid.

Example:

[
Constant PUBLICKEYBLOB = 0x6;
Key3;

]
Init [
If 1 Main;
[
{ Import the public key }
Key3 = ImportKey(CSP, PUBLICKEYBLOB, PubKey1, Key2);

]
]

In

Description: Read I/O Byte. This function returns the byte read from an
I/O port.

Returns: Byte

Usage: Script or steady state.

Function Groups: Memory I/O, Stream and Socket

Related to: InWord | Out | OutWord

Format: In(Port)

Parameters:

Port

Required. Any numeric expression, which specifies
which I/O port to read. Port must be in the range 0 to
65535

Comments: This function requires that the VTSIO driver be installed.
Please refer to the topic, Communicating Directly With
Hardware for more details.
If In is used in a statement or an action trigger, it will be
evaluated at a very fast rate. In is a high priority function,
and should be used sparingly to avoid reducing overall sys-
tem performance.

Example:

reg = In(0x300);

This reads a byte from CPU input port 300 hex. If this statement appears
in a script the read takes place when the script is executed. If this state-
ment appears in steady state, it is updated very rapidly as a high-priority
function.

InsertArrayItem

Description: Insert Array Item. This function inserts an element into a
dynamically allocated array and returns the modified
array.

Returns: Array

Usage: Script Only.

Function Groups: Array

Related to: DeleteArrayItem | New

Format: InsertArrayItem(Array [, Index, Value])

Parameters:

Array

Required. Any variable whose value is invalid or con-

tains a dynamically allocated array (one created via a
New function call). This should be a single dimension
array or unexpected results may occur.

Index

An optional parameter that is any numeric expression
for the index at which to insert a new element. If this
value is invalid, the new element will be inserted at the
end of the array.

Value

An optional parameter that is any expression for the
value to assign to the new array element.

Comments: This function supersedes the System Library's Inser-
tListItem.
This function is intended for use on dynamically allocated
arrays, that is, arrays that have been created via the New
function. If used with an array that has been statically
declared, unless otherwise specified in the Array para-
meter, the first element of the array will be used, and a
dynamically allocated array will be created/added to in this
element.

Examples:

If 1 Next;
[
Data = InsertArrayItem(Data { Array to use },

Invalid { Insert at end },
32 { Value of element });

Names = InsertArrayItem(Names { Array to use });
]

The first statement inserts an element with a value of 32 at the end of
array Data, while the second statement inserts an invalid element at the
end of array Names.

Instance

Description: Limit Module Instances. This function limits the number of

fixed module instances allowed to run simultaneously and
returns the old limit

Returns: Numeric

Usage: Script Only.

Function Groups: Basic Module

Related to: NumInstances | CalledInstances | GetInstance

Format: Instance(Module, Count)

Parameters:

Module

Required. Any text expression that specifies the fixed
module to limit; it must be in the current scope -
scope resolution operators (\) are not permitted.
If the module does not exist, nothing is done. If the
module is not a fixed module, the return value is -1.

Count

Required. Any numeric expression that specifies the
number of fixed module instances allowed to run sim-
ultaneously.
If Count is in the range 1 to 2,147,483,647, the new
limit is set and the old limit is returned.
If Count is 0, the limit is not changed, but the current
limit is returned.
Count is ignored if the module is not a queued mod-
ule.

Comments: This function is recommended for experienced users only
and is not needed for most applications. If this function is
not used, the number of concurrent instances for a given
fixed module defaults to 1.

Note: This limit is the number of concurrent instances allowed for each
parent instance. Each parent module instance has a separate Count for

each of its fixed modules, which is separate from other instances of
itself.

Example:

If 1 Main;
[
mtrs = Instance("Motor", 5);

]

Assume that this statement is found in a module called Feeder, which
has as its child a module called Motor. Execution of the script will cause
mtrs to be assigned a value of 1, and to limit the number of instances of
Motors to 5 (note that it is necessary for Motor to be a member or an
ancestor of Feeder). All instances of module Feeder will be affected; that
is to say, each one will be allowed to have up to 5 running instances of
Motor.

Int

Description: Integer Portion of Number. This function returns the por-
tion of a number before the decimal point.

Returns: Integer

Usage: Script or steady state.

Function Groups: Rounding Math

Related to: Ceil | Step

Format: Int(X)

Parameters:

X

Required. Any numeric expression. Normally this is a
floating point value.

Examples:

a = Int(1.00);
b = Int(1.12);
c = Int(1.99);

d = Int(2.00);
e = Int(-1.00);
f = Int(-1.9);

 The variables a, b, c, d, e and f will have values of 1, 1, 1, 2, -1 and -2
respectively.

x1 = 3.4;
y1 = 4.7;
x2 = Int(x1 + 0.5);
y2 = Int(y1 + 0.5);

The value of x2 and y2 in the above example will be 3 and 5 respectively.
Notice how adding 0.5 to each value causes the Int function to perform
mathematical rounding rather than truncation.

Comments:
The Int function is sometimes referred to as "floor."

Intgr

Description: Time Integral. This function returns the time integral of a
value.

Returns: Numeric

Usage: Steady State only.

Function Groups: Generic Math

Related to: Deriv | PID

Format: Intgr(Value, Time)

Parameters:

Value

Required. Any numeric expression giving the value to
integrate with respect to time.

Time

Required. Any numeric expression giving the max-
imum time in seconds between integral function
updates.

Comments: The integral function takes the Value parameter, multiplies
by the elapsed time and adds it to the accumulated value
so far. If the Value changes from invalid to valid, the new
valid result will start at zero. This function is the inverse of
Deriv.
The time parameter is necessary because of VTScada's eval-
uation method of not doing any calculations unless neces-
sitated by a change in a parameter. This means that if
Value remains unchanged, the Intgr function will be re-cal-
culated after the time interval specified by the Time para-
meter.
This function is often used in control functions such as PID
loops where it makes up the "I" in the "PID."
The Intgr function is reset when it appears in a true action
trigger, when a state starts, or when it appears in a func-
tion which resets its parameters (e.g. Latch, Toggle, and
Save). When Intgr is reset, the integral starts from zero
again.

Examples:

speed = Intgr(accel, 0.1);

This computes speed as the time integral of accel. The integral starts
when the state containing this function starts, and stops when the state
stops. The integral is updated every 0.1 seconds.

runTime = Intgr(motorOn, 0.25);

This integrates a constant 1 while the motor is running, 0 otherwise. This
computes the running time of the motor, accurate to 0.25 seconds.

Invalid

Description: Return Invalid Value. This function always returns an
invalid value.

Returns: Invalid

Function Groups: Logic Control, Variable

Usage: Script or steady state.

Related to: Valid

Format: Invalid()

Parameters: None

Comments: This function is useful to invalidate data that are found to
be incorrect, or to disable statements or functions that will
not execute with invalid parameters.

Examples:

x = Valid(Invalid());

This will set x to 0.
Another example of this function's usefulness follows:

Main [
If !Valid(a);
[
a = Scale(Rand(), 0, 1, -1000, 1000);
...

]
If Valid(a);
[
...
a = Invalid();

]
]

By toggling a between a valid and an invalid value, you can ensure that
the two scripts in Main will take turns executing; it is not possible for a
race condition to occur.

InWord

Description: Read I/O Word. This function reads a 16 bit unsigned word
from an I/O port.

Returns: Word

Usage: Script or steady state.

Function Groups: Memory I/O

Related to: In | Out | OutWord

Format: InWord(Port)

Parameters:

Port

Required. Any numeric expression that gives the I/O
address. Port must be in the range 0 to 65535.

Comments: This function requires that the VTSIO driver be installed.
Please refer to the topic, Communicating Directly With
Hardware for more details.
This is a high priority function. If InWord is used in a state,
it will be evaluated at a very fast rate. InWord should be
used sparingly to avoid reducing system performance.

Examples:

reg = InWord(0x300);

This reads reg as a 16 bit unsigned word from input port 300 hex. If this
statement appears in a script, it is executed when the script is executed
(when the action is triggered); if it appears in a state, it will be updated
rapidly as a high priority function.

IPAddressList

Description: Displays a list of IP address which can be added to or
removed from.

Returns: Text

Usage: Steady State only.

Function Groups: Graphics, String and Buffer

Related to: PIPAddressList

Format: \IPAddressList(X1, Y1, X2, Y2, AddressList, BaseFocusID[,
Title, DrawBevel, AlignTitle, ListBGndColor, Over-

layCallback]);

Parameters:

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the object and
its label. The smaller of X1 and X2 will always be to the
left

Y1

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the object. The smaller of Y1 and Y2 will always be the
top.

X2

Required. Any numeric expression giving the X
coordinate on the screen of the side of the object and
its label opposite to X1.

Y2

Required. Any numeric expression giving the Y
coordinate on the screen of the top or bottom of the
object, whichever is the opposite to Y1.

AddressList

Required. The array of IP addresses to be displayed /
the array of IP addresses returned.

BaseFocusID

Required. Reserves 10 focus ID values beginning at the
value provided. Set to zero to disable user input.

Title

Optional. Any text expression to use as the title for the
field. No default value

DrawBevel

Optional. Any logical expression. If TRUE, a bevel is

drawn around the graphic. Defaults to FALSE.

AlignTitle

Optional. Any logical value. If TRUE then title affects
alignment

ListBGndColor

Optional. Any numeric expression setting a back-
ground color for the list. No default value.

OverlayCallback

Optional module value. Called from the listbox. No
default value.

Comments: Control is read-only if BaseFID is zero.
Addresses are validated by a utility function in Sock-
etServerManager before being added to the list.
Controls are available for removing items and reordering.
A double-click on a list item will copy it into the edit field.
The resulting list is stored in the AddressList array, which
also serves as the initial display on initialization. Note that
addresses are only validated when the add button is
pressed.

Example:
The following example is taken from the PIPAddressList code. The over-
lay callback allows the caller to react to user actions such as right-clicks.

\IPAddressList(LHS, BTM, RHS, TOP, AddressArray,
AllowEdit ? ID : 0,
Title, DrawBevel, AlignTitle, HighlightColor,
Variable("OverlayCallback") { List overlay graphics

callback });

IsActive

(Alarm Manager module)

Note: Use GetAlarmStatus in new code.

Description: Will indicate if an alarm is active. It can be used either as a
subroutine or as a called function.

Returns: Numeric

Usage: Script Only.

Function Groups: Alarm

Related to: GetAlarmStatus | IsShelved | IsDisabled | IsUnacked

Format: \AlarmManager\IsActive(AlarmName);

Parameters:

AlarmName

Required. A text expression providing the name of an
alarm. Not the alarm object value that was passed to
the Register subroutine.

Comments: The IsActive subroutine returns a "1" if the alarm is active;
otherwise it returns a "0".

Example:
Within a custom tag...

AlarmStatus = \AlarmManager\GetAlarmStatus(Root\UniqueID);
AlarmActive = AlarmStatus\IsActive;

IsAppEditable

Description: Returns TRUE if the application can accept changes without
being re-started.

Returns: Boolean

Usage: Script or steady state.

Function Groups: Configuration Management

Related to: HasCompilationErrors | HasUndeployedChanges |
AppIsRunning | GetAppInstance | GetLoadedAppInstance |
GetOEMLayer

Format: \LayerRoot\IsAppEditable() or \IsAppEditable()

Parameters: none

Comments: Note that a steady-state call of this function is not auto-
matically updated with a repository change.
This function can evaluate to false if applying an out-
standing set of changes would cause an error or if there
are outstanding changes that require a restart to be
applied. It will also return FALSE if the working copy is not
at the repository tip, or if there is a compilation error (gen-
erally due to corruption of the working copy files).
The Layer object can be acquired using GetAp-
pInstance, GetLoadedAppInstance or GetOEMLayer.

Examples:

Main [
 CanEditLayer = Layer\IsAppEditable();
 ...

If WorkingCopyLock Commit;
[

{ Now that we have the WC lock, make sure the Layer still is edit-
able }
 IfElse(Layer\IsAppEditable(),
 WriteINIPropertiesObj = Layer\WriteINIProperties(ConfigData,
TRUE);

{ Else }
 ForceState("ReleaseLock"); { Abort if app not editable }
);
]

IsChild

Description: Identify Child Module. This function returns an indication
of whether one module is a child module of another.

Returns: Boolean

Usage: Script Only.

Function Groups: Basic Module

Related to:

Format: IsChild(Child, Parent)

Parameters:

Child

Required. Any expression that returns an object or
module value.

Parent

Required. Any expression that returns an object or
module value.

Comments: This function returns true if Child is a descendant module
of Parent, false if it isn't, and invalid if either, or both argu-
ments are invalid or not module or object values.

Example:

If ! Valid(isMember);
[
isMember = IsChild(read1 { Read module object value },
driver { I/O driver module object value });

]

The variable isMember will be set to true if the object read1 is a child of
(defined within) the object driver.

IsClient

(RPC Manager Library)

Description: Is Client of a Service. This subroutine returns an indication
of whether or not a particular workstation is a client con-
nected to a service. Returns 1 for the specified service if
the specified machine is a client to the machine on which
the IsClient() call is made.

Returns: Boolean

Usage: Script Only.

Function Groups: Network

Related to: ConnectToMachine | DisconnectFromMachine |
 GetServer | GetServersListed | GetStatus |
 IsPotentialServer | IsPrimaryServer | Register (RPC Man-
ager) | Send | SetRemoteValue

Format: \RPCManager\IsClient(ServiceName, Workstation [,
OptGUID])

Parameters:

ServiceName

Required. Any text expression giving the name by
which the service is known.

Workstation

Required. Any text expression giving the name or IP
address by which the workstation is known to the RPC
Manager.

OptGUID

Any optional parameter that provides the GUID for the
application in which the service instance is located.
The default is the application to which the caller
belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.

The return value from this subroutine is a logical value, if
true (1) the workstation is a client connected to the service,
if false (0) it is not.
If the 16-byte binary format of the GUID is not known, the
GetGUID function may be used to obtain it.

Example:

If 1 Main;
[
IfThen(\RPCManager\IsClient("ModemManager",
"TestMachine"),
...

);
]

Related Information:
You may also refer to "RPC Manager Service" for a listing of Service Con-
trol Methods, RPC Methods, and Deprecated RPC Methods.

IsEqual

Description: Will return TRUE if the parameter values are equivalent, or
if both are invalid.

Returns: Boolean

Usage: Script or steady state.

Function Groups: Variable

Related to: Valid

Format: IsEqual(Parm1, Parm2);

Parameters:

Parm1

Required. Any value, to be compared to parameter 2.

Parm2

Required. Any value, to be compared to parameter 1.

Comments: This function is equivalent to the longer expression:
!Valid(Parm1) == !Valid(Parm2) OR Parm1 ==
Parm2
If the parameters are text or numeric, they will be
compared directly. If the parameters are expres-
sions, the strings that they evaluate to will be com-
pared. If object values, the Name variables will be
used, thus allowing tag to tag comparisons. Other
value types will be turned into strings before the
comparison.

Examples:

If !IsEqual(Color, ChosenColor);
[
 Color = ChosenColor;
 EnableColorSelect = 0;
]

IsDictionary

Description: A synonym for HasMetadata. Tests whether the parameter
is a dictionary.

Returns: Boolean

Usage: Script Only.

Function Groups: Dictionary, Variable

Related to: HasMetaData | Dictionary

Format: IsDictionary(Value);

Parameters:

Value

Required. Any value to be tested.

Comments: Any value can be entered as the lone, required, para-
meter. The result is TRUE if the value is of type Dictionary,
regardless of the presence of a root value. Otherwise, a
FALSE will always be returned. An invalid parameter will
cause a response of FALSE. IsDictionary cannot have an
invalid outcome.

IsDisabled

(Alarm Manager module)

Note: Use GetAlarmStatus in new code.

Description: Will indicate if an alarm is disabled. It can be used either as
a subroutine or as a function.

Returns: Numeric

Usage: Script Only.

Function Groups: Alarm

Related to: GetAlarmStatus | IsActive | IsShelved | IsUnacked

Format: \AlarmManager\IsDisabled (AlarmName);

Parameters:

AlarmName

Required. A text expression providing the name of an
alarm. Not the alarm object value that was passed to
the Register subroutine.

Comments: The IsDisabled subroutine returns a "1" if the alarm is dis-
abled; otherwise it returns a "0".

Example:
Within a custom tag...

AlarmStatus = \AlarmManager\GetAlarmStatus(Root\UniqueID);
AlarmDisabled = AlarmStatus\IsDisabled;

IsLoggedOn

Security Manager Module

Description: Returns TRUE if the calling user is logged on, else FALSE.

Returns: Boolean

Usage: Script or steady state.

Related to: GetAccountID | GetAccountInfo | GetFullName |
GetGroupName | GetUserName | IsSecured | IsSuspended |
SecurityCheck | UIErrorToText

Format: \SecurityManager\IsLoggedOn()

Parameters: None

Comments: None

IsMatch

(RPC Manager Library)

Description: Determines whether two names or IPs indicate the same
workstation. This subroutine returns a "1" if the two names
or IPs (any combination) refer to the same workstation.

Returns: Boolean

Function Groups: Network

Usage: Steady State only.

Related to:

Format: \RPCManager\IsMatch(Name1, Name2);

Parameters:

Name1

Required. Any of the names or IPs by which the first
workstation is known to the RPC Manager.

Name2

Required. Any of the names or IPs by which the second
workstation is known to the RPC Manager.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
The return value from this function will be a "1" if the two
names or IPs (any combination) refer to the same work-
station.

IsOnLocalBranch

Description: Returns TRUE if the local machine is maintaining changes
that have not been deployed within the repository.

Returns: Boolean

Usage: Script or steady state.

Function Groups: Configuration Management

Related to: HasCompilationErrors | IsAppEditable | IsRunOnly |
HasUndeployedChanges | GetAppInstance | GetLoadedAp-
pInstance | GetOEMLayer

Format: LayerModule\IsOnLocalBranch()

Parameters: None

Comments: Also defined as the repository tip being on the local
branch.
Useful for determining whether there is anything that can
be deployed or reverted.
Note that a steady-state call to this function will not be
updated automatically with a repository change.
The Layer object can be acquired using GetAp-
pInstance, GetLoadedAppInstance or GetOEMLayer.

IsPotentialServer

(RPC Manager Library)

Description: Is Potential Server for a Service. This subroutine returns an
indication of whether or not the local workstation is a
potential server for a service. Returns "1" if the local work-
station can be a server for the specified service. IsPoten-
tialServer should not be called in steady state.

Returns: Boolean

Usage: Script Only.

Function Groups: Network

Related to: ConnectToMachine | DisconnectFromMachine |
 GetServer | GetServersListed | GetStatus | IsClient |
 IsPrimaryServer | Register (RPC Manager) | Send |
 SetRemoteValue

Format: \RPCManager\IsPotentialServer(ServiceName [, OptGUID])

Parameters:

ServiceName

Required. The name by which the service is known.

OptGUID

Any optional parameter that provides the GUID of the
application in which the service instance is located.
The default is the application to which the caller
belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
This function returns Invalid if the local service instance is
not running.
If the 16-byte binary format of the GUID is not known, the
GetGUID function may be used to obtain it.

Example:

If 1 Main;
[
IfThen(\RPCManager\IsPotentialServer("ModemManager"),
...
);

]

Related Functions:
Refer also to "RPC Manager Service" for a listing of Service Control Meth-
ods, RPC Methods, and Deprecated RPC Methods.

IsPrimaryServer

(RPC Manager Library)

Description: Is Primary Server Active for a Service. This module returns
an indication of whether or not the active server for a ser-
vice is the primary server. Returns "1" if the local work-
station is the current server for the specified service.

Returns: Integer

Usage: Steady State only.

Function Groups: Network

Related to: ConnectToMachine | DisconnectFromMachine |
 GetServer | GetServersListed | GetStatus | IsClient |
 IsPotentialServer | Register (RPC Manager) | Send |
 SetRemoteValue

Format: \RPCManager\IsPrimaryServer(ServiceName [, OptGUID])

Parameters:

ServiceName

Required. The name by which the service is known.

OptGUID

Any optional parameter that provides the GUID of the
application in which the service instance is known. The
default is the application to which the caller belongs.

Comments: This module is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the module call must be
prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
The return value from this module is a logical value, if true
(1) the primary server is the active server for the service, if
false (0) a backup or no server is active is active.
If the 16-byte binary format of the GUID is not known, the
GetGUID function may be used to obtain it.

Example:

If \RPCManager\IsPrimaryServer("ModemManager") Main;
[
...

]

Related Functions:

Refer also to "RPC Manager Service" for a listing of Service Control Meth-
ods, RPC Methods, and Deprecated RPC Methods.

IsRunning

Description: Check if a Program is running. This function returns an
indication of whether a certain program is running on the
same computer.

Returns: Boolean

Usage: Steady State only.

Function Groups: Software and Hardware

Related to: DDE | Spawn

Format: IsRunning(Program)

Parameters:

Program

Required. Any text expression giving the program
name to test (without the .EXE extension).

Comments: This function returns 1 if the specified program is running
on the same computer.
If running under 32-bit, this statement will only be valid if
the value of Program refers to another 32-bit process.

Example:

If ! Valid(running);
[
running = IsRunning("Excel");

]

After executing this statement, the variable running will have a value of 1
if the program Microsoft™ Excel is running and a 0 if not.

IsRunOnly

Description: Returns TRUE if the application is a run-file-only app,
according to the WC contents.

Returns: Boolean

Usage: Script Only.

Function Groups: Configuration Management

Related to: IsRunning | GetAppInstance | GetLoadedAppInstance |
GetOEMLayer

Format: \LayerModule\IsRunOnly()

Parameters: none

Comments: The application is defined as run-only if it does not contain
source files.
This function should only be launched as a subroutine.

IsSecured

Security Manager Module

Description: Returns TRUE if the application has any user accounts
defined, else FALSE.

Returns: Boolean

Usage: Script or steady state.

Related to: GetAccountID | GetAccountInfo | GetFullName |
GetGroupName | GetUserName | IsLoggedOn | IsSus-
pended | SecurityCheck | UIErrorToText

Format: \SecurityManager\IsSecured()

Parameters: None

Comments: An application can be unsecured, yet have role accounts
configured. An application is only considered secured if
one or more user accounts exist.

IsServiceReady

(RPC Manager Library)

Description: Is Primary Server Active for a Service. Only available in VTS
6. This module returns an indication of whether or not the

specified server is in synchronization with the server
instance. Returns "1" if the local instance is in syn-
chronization with the server instance.

Returns: Boolean

Usage: Steady State only.

Function Groups: Network

Related to: ConnectToMachine | DisconnectFromMachine |
 GetServer | GetServersListed | GetStatus | IsClient |
 IsPrimaryServer | IsPotentialServer | Register (RPC Man-
ager) | Send | SetRemoteValue

Format: \RPCManager\IsServiceReady(ServiceName [, OptGUID])

Parameters:

ServiceName

Required. The name by which the service is known.

OptGUID

Required. Any optional parameter that provides the
GUID of the application in which the service instance is
known. The default is the application to which the
caller belongs.

Comments: This module is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the module call must be
prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
If the 16-byte binary format of the GUID is not known, the
GetGUID function may be used to obtain it.

Related Functions:
Refer also to "RPC Manager Service" for a listing of Service Control Meth-
ods, RPC Methods, and Deprecated RPC Methods.

IsShelved

(Alarm Manager module)

Note: Use GetAlarmStatus in new code.

Description: Will indicate if an alarm is shelved. It can be used either as
a subroutine or as a called function.

Returns: Boolean

Usage: Script Only.

Function Groups: Alarm

Related to: GetAlarmStatus | IsActive | IsDisabled | IsUnacked

Format: \AlarmManager\IsShelved(AlarmName);

Parameters:

AlarmName

Required. A text expression providing the name of an
alarm.

Comments: The IsShelved subroutine returns a "1" if the alarm is act-
ive; otherwise it returns a "0".

Example:
Within a custom tag...

AlarmStatus = \AlarmManager\GetAlarmStatus(Root\UniqueID);
AlarmShelved = AlarmStatus\IsShelved;

IsSuspended

Security Manager Module

Description Returns TRUE if the user’s account is suspended, else
FALSE.

Returns Boolean

Usage Script or steady state.

Related to: GetAccountID | GetAccountInfo | GetFullName |

GetGroupName | GetUserName | IsLoggedOn | IsSecured |
 SectionControl | UIErrorToText

Format: \SecurityManager\IsSuspended()

Parameters None

Comments A user’s account will become suspended when a user tries
to log on, but a password change is required. IsSuspended
() will return TRUE until the user closes the password
change dialog.

Related Functions:

IsUnacked

(Alarm Manager module)

Note: Use GetAlarmStatus in new code.

Description Will indicate if an alarm is unacknowledged. It can be used
either as a subroutine or as a function.

Returns Numeric

Usage Script Only.

Function Groups Alarm

Related to: GetAlarmStatus | IsActive | IsDisabled | IsShelved

Format: \AlarmManager\IsUnacked(AlarmName);

Parameters

AlarmName

Required. A text expression providing the name of an
alarm. Not the alarm object value that was passed to
the Register subroutine.

Comments The IsUnacked subroutine returns a "1" if the alarm is unac-
knowledged; otherwise it returns a "0".

Related Functions:

IsVICSession

Description Returns TRUE to indicate that a call is being made from a
VTScada Internet Client session.

Returns Boolean

Usage Script Only.

Function Groups VTScada Internet Client

Related to:

Format: IsVICSession([IsAnywhere])

Parameters

IsAnwhere

Optional Boolean. When set TRUE, makes IsVICSession
only return true if the session is an Anywhere client ses-
sion. When FALSE (0), the function returns true if the
client is either a VIC or an Anywhere client. Defaults to
0.

Comments Certain modules need to know whether they are being
executed from a VTScada workstation or a VIC, and will
adjust their behavior as needed. IsVICSession provides a
quick test to determine this.

K Functions
The sections that follow identify all VTScada functions beginning with
"K".

KeyCount

Description: Returns the number of keys pressed since the state
became active, either edited or non-edited.

Returns: Numeric

Usage: Steady State only.

Function Groups: Keyboard

Related to: KeyFake | Keys | MatchKeys

Format: KeyCount(Option)

Parameters:

Option

Any logical expression. If true, the number of non-
edited keystrokes is returned; if false, the edited key-
strokes is returned.

Comments: Edited keystrokes are printable characters and the enter
key. Non-edited keystrokes are all keystrokes, including
printable characters, enter key, special keys, and function
keys.
When the Backspace key is pressed, the key code for back-
space is entered as a non-edited keystroke, and the pre-
vious edited keystroke is removed. That is, when
Backspace is pressed the number or non-edited key-
strokes increments, and the number of edited keystrokes
decrements (and possibly goes negative).

Examples:

If KeyCount(1) MainMenu;

This action simply waits for any key to be pressed, and changes to
another state. Another way of using this function would be:

If KeyCount(1) > keysChecked;

This checks that the number of non-edited keys pressed is greater than
the value of keysChecked. This is the beginning of a loop which would
process keystrokes one at a time (such as a text editor).

KeyFake

Description Places a string of characters in a window's keyboard buf-

fer.

Returns Nothing

Usage Script Only.

Function Groups Keyboard, String and Buffer

Related to: KeyCount | Keys | MatchKeys

Format: KeyFake(Object, String)

Parameters

Object

Any expression that returns an object value that
defines a window.

String

Any text expression that gives the characters to place
in the window's keyboard buffer.

Examples:

If 1 Main;
[
KeyFake(myWindow, "Hello World");

]

Keys

Description Returns the most recently pressed keys, optionally flag-
ging virtual key codes.

Returns Text

Usage Script or steady state.

Function Groups Keyboard, String and Buffer

Related to: KeyFake | KeyCount | MatchKeys

Format: Keys(N, Option)

Parameters

N

Any numeric expression giving the number of keys to
get.

Option

Any logical expression indicating whether edited mode
or non-edited mode should be used. Set to TRUE for
the non-edited mode.

Comments In the non-edited mode, function keys and others that
return a virtual key code will have a 0xFD (253) pre-pen-
ded to the return value. (See Microsoft's online MSDN ref-
erence for a list of virtual key codes.) Because of this, the
return value may contain more bytes than specified by the
parameter, N.

Examples:

nonEditPressed = Keys(5, 1);

This sets nonEditPressed to a text string containing the key codes for the
last five keys pressed, in order from oldest to most recently pressed.
In Edited Mode, the keys [a][b][c][up-arrow][d] results in the buffer, 61 62
63 64.
In Non-edited mode, [a][b][c][up-arrow][d] results in 61 62 63 FD 48 64.

L Functions
The sections that follow identify all VTScada functions beginning with "L".

LastSelected

Description: Returns the most recently selected graphics statement.

Returns: Text

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Graphics

Related to:

Format: LastSelected(Object)

Parameters:

Object

Required. Any object value expression that defines the
window where the selected items are found.

Comments: None

Latch

Description Latch On or Off. This function allows a transient change of
a variable to be captured. Its return value is determined by
the rules listed in the comments section.

Returns Boolean

Usage Steady State only. See: Rules for Usage.

Function Groups Variable

Related to: Toggle | MatchKeys | TimeOut | Intgr | RTimeOut

Format: Latch(Set, Reset)

Parameters

Set

Required. Any numeric expression. When true (i.e. not
equal to 0), the latch is set.

Reset

Required. Any numeric expression. When true (i.e. not
equal to 0), the latch is reset.

Com-
ments

This function starts in a state with its return value being a valid 0
(false). The change in values is governed by the following rules

Set Reset Old Value New Value

FALSE FALSE FALSE FALSE

FALSE FALSE TRUE TRUE

Either TRUE Either FALSE

TRUE FALSE Either TRUE

Invalid TRUE Either FALSE

Either Invalid Either Invalid

If both the Set and Reset are false, the latch value remains
unchanged. Note that a true Reset overrides a true Set.
This function resets its parameters after they evaluate to true.
This is significant only for functions which can be reset, such
as MatchKeys, TimeOut, Intgr and RTimeOut.

Example:

motorOn = Latch(MatchKeys(1,"1") { Set the var with a "1" },
MatchKeys(1,"0") { Reset the var with a "0" });

This controls the variable motorOn from the keyboard. MotorOn initially
starts as 0. When 1 is pressed on the keyboard, the latch is set and
motorOn becomes 1. When 0 is pressed on the keyboard, the latch is
reset and motorOn becomes 0.

Related Information:
See: "Latching and Resetting Functions" in the VTScada Programmer's
Guide

Launch

Description Runs a module instance and returns a pointer to it.

Returns Varies – see comments

Usage Script Only.

Function Groups Basic Module

Related to: Call | FindVariable | LoadModule | Return | Slay |
 Thread

Format: Launch(Launchee, Parent, Caller[, P1, P2, ...])

Parameters

Launchee

Required. A module pointer or a text expression giving
the module to run.
If this parameter is a module value that has been
returned from a LoadModule or FindVariable state-
ment, that module will be launched.
If this parameter is type text it may either designate the
module by its name, if it is in scope, or it may give the
name of a variable that contains the module value of
the module to launch.

Parent

Required. The object value of the module where the
Launchee is to resolve its global variable references.
If a valid non-object value is supplied the Launchee
will resolve its global variable references to the scope
defined by the first parameter.
If this is invalid, the module will still run, but global ref-
erences will be invalid.

Caller

Required. The object value of the window to draw in.
This specifies the module instance where the Launchee
acts as if it were called from.
If this is invalid, the module will still run but will not
stop without a Slay. A Return in the case of a sub-
routine.
If it is valid, the module will stop when the Caller mod-
ule instance stops, when a Slay is executed upon it, or
(subroutine only) when it calls Return .

P1, P2, ...

Optional. Are any expressions that will be supplied as
parameters to the launched module.

Comments This function returns an object value of the newly
started module. In general, variables that are listed
in the final parameter spots are passed to the mod-
ule as a value only. This means that if the launched
module instance changes the value of one of the
parameters, its value will not change outside of the
scope of the module. If there are variables external
to the module that the module itself will be
required to alter, it is best to make them within the
scope of Parent.
If a launched module contains a Return statement it
is considered to be a sub-routine, whether it is
explicitly or implicitly launched. This is true even if
the Return statement is in a state that does not get
executed. In that case, the script that launches the
sub-routine will stop its execution indefinitely, wait-
ing for the sub-routine to return a value.
If a sub-routine contains the statement

x = Launch("myMod", …);

x will be set to the value returned by the sub-
routine's Return statement upon completion. Prior
to execution of the Return statement, x will be
invalid, unlike a module that is not a sub-routine,
which would set x to the object value of the
launched module.
A common syntactical problem with the use of the
Launch function will result in two instances of a
module running. The following example shows the
improper syntax

Launch(X, Self, Self);

(assuming that "X" is declared as a module.) The
problem here is the first parameter. As written
above, the code will launch a module called "X", and
use the return value from the launch (an object
value) as the first parameter for Launch . This will
result in two copies of the "X" module running.
The correct syntax is:

 Launch("X", Self, Self);

Example:

If ! Valid(modPtr);
[
modPtr = Launch(FindVariable("DataLog", Self(), 0, 1),

Self(), Self(), { Parent and caller }
timeSpan, fileSave { Parameters });

]

This launches one instance of the module DataLog. The current module
is its parent and caller. The two variables timeSpan and fileSave are
passed as parameters to the module.

LayerInUse

Description: Returns true if the application is running, or if there are any
applications that depend on this layer, running or not.

Returns: Boolean

Usage: Script Only.

Function Groups: Configuration Management

Related to:

Format: LayerRoot\LayerInUse()

Parameters: None

Comments: If this function returns FALSE, the layer is not in use and
may be removed from the VAM.

Examples:

LayerRoot\Stop

Description: Stop the application designated by LayerRoot

Returns: Nothing

Usage: Script Only.

Function Groups: Configuration Management

Related to: Start |

Format: LayerRoot\Stop

Parameters:

IsRestart

Optional Boolean. Set TRUE if the application is to be
re-started.

Comments: For a VTScada application, most of the work is done in
Start\VTSThread. Once the app is stopped,
AppStopMonObj does some post-stop clean-up. The work
is done there rather than here as a script application often
stops just by slaying itself, and AppStopMonitor picks up
on both situations.
This module launches a worker module into the Layer so
that the operation is not interrupted by this module's caller
being slain.

Examples:
Building on the example in Start(), the following will stop the application
started in that example.

CompLayer\Stop();

Related Functions:

Limit

Description Set Value Minimum and Maximum. This function returns a

value that is limited both on the high and low ranges.

Returns Numeric

Usage Script or steady state.

Function Groups Rounding Math

Related to: Max | Min

Format: Limit(X, Low, High)

Parameters

X

Required. The variable whose numeric value will be lim-
ited.

Low

Required. Any numeric expression giving the lower
limit for the value X.

High

Required. Any numeric expression giving the upper
limit for the value X.

Comments This function performs the same operation as Min(High,
Max(Low, X)) but is simpler to write and requires less
memory. If the value exceeds one of the limits, the func-
tion returns that limit. Otherwise, the value is returned
unchanged. If Low is greater than High, the value for High
is returned. If any of the parameters is invalid, the function
returns invalid.

Examples:

a = Limit(123.4, 0, 100);
b = Limit(-2.6, 0, 100);
c = Limit(36.7, 0, 100);
d = Limit(36.7, Invalid, 100);

The values for a, b, c, and d are 100, 0, 36.7 and invalid, respectively.

Line

Note: Deprecated. Do not use in new code.

Description: Draws a line on the screen that may consist of multiple seg-
ments.

Returns: Numeric

Usage: Steady State only.

Function Groups: Graphics

Related to: GUIPolygon | Pipe | PlotXY | ZLine

Format: Line(Style, Width, Color, Curvature, X1, Y1, X2, Y2, ...)

Parameters:

Style

Required. Any numeric expression giving the Line
Types. Valid line styles are from 1 to 5 inclusive. A line
style of 1 is a solid line

Width

Required. Any numeric expression giving the width of
the line in units of X screen coordinates. The width is
always rounded to result in an odd number of pixels
on the screen. The minimum width displayed will be 1
pixel.

Color

Required. Any numeric expression giving the VTScada
Color Palette of the line.

Curvature

Required. Any numeric expression giving the radius of
curvature of the corners for the line. This is specified
in units of X screen coordinates. If the number of end-
points is 2, Curvature is ignored.

X1, Y1, X2, Y2, ...

Required. Any numeric expressions giving the screen

coordinates of the line endpoints.

Comments: This statement has been superseded by the GUIPoly-
gon and ZLine statements and is maintained for
backwards compatibility only.
The radius of curvature of the line corners is the
radius of the arc that joins the line endpoints. A
Curvature of 0 results in sharp (square) line
corners. Larger Curvature numbers result in greater
rounding of the line corners.
As of version 11, this is now drawn in the same z-
order as other graphics, making it similar to the z-
graphics functions.

Note: Within an Anywhere Client session, this func-
tion does nothing.

Example:

Line(1 { Solid line style },
1 { Line width is 1 pixel },
10 { Light green },
0 { Curvature not applicable (2 endpoints) },
0, 0 { Coordinates of first end },
XLoc(), YLoc() { Second end follows mouse });

This statement will draw a light green solid line with one end anchored
at (0, 0) and the second end following the movements of the mouse.

LinearIndicator

(Meter Parts Library)

Description: Will draw a linear type indicator. A linear indicator can be
drawn in 3 different ways. Scaled from min to current pos-
ition, cropped from min to current position or as a line that
moves to the current position. This function must be called
inside a GUITransform in order to work properly.

Returns: Image handle

Usage: Steady State only.

Function Groups: Graphics

Related to:

Format: \MeterParts\LinearIndicator(DataSource, IndicatorImage,
Orientation, DrawMode, IndicatorRToL, Hue, Saturation,
Brightness, Transparency, Contrast, ColorizeHue, Col-
orizeIntensity, UseTagScaling, MinScaleValue,
MaxScaleValue, DampenIndicator, NumberOfSteps)

Parameters:

DataSource

Required. A Tag name, constant or expression that
provides the value to show.

IndicatorImage

Required. The full path to the name of an image file to
use as the indicator. Typically this is an image of a
needle.

Orientation

A flag indicating the orientation of the Indicator. Set to
0 for Horizontal and 1 for Vertical. The default is 0
(Horizontal).

DrawMode

Controls how the indicator is drawn. Details of the 3
modes are as follows

DrawMode Meaning

0 Scaled. This mode will scale the
Indicator image from the 0 pos-
ition to the position that rep-
resents the current value of the
DataSource.

1 Cropped. This mode will scale the
indicator image from the 0 pos-
ition to the full position and then
crop it to the position that rep-
resents the current value of the
DataSource.

2 Moving This mode will keep the
Indicator image at a constant size
and simply move it to the position
that represents the current value
of the DataSource.

IndicatorRToL

A flag that changes the location of the 0 position. If set
to true, the 0 position is on the right side or the top in
vertical orientation.
If set to false and the 0 position is on the left side or
the bottom in vertical orientation. The default is false.

Hue

The hue translation to perform on the Indicator image.
This enables you to change the color.
The image must have color in it already in order to per-
form a hue translation. If there is no color to start with,
then changing this value does nothing. You can add
color by setting a value for the ColorizeHue parameter,

described later.
The default is 0, indicating that no hue translation is
done and the indicator is in its native color.

Saturation

The amount of saturation of the colors in the indicator
image. A value of 0 will make the image black and
white (no color saturation). A value of 2 produces a
brightly colored (saturated) indicator. The default is 1
which corresponds to the native saturation of the indic-
ator image.

Brightness

An adjustment of the brightness of the indicator
image. Higher numbers produce a brighter indicator
image. A 0 produces a black image. The default is 1
which corresponds to the native brightness of the indic-
ator image.

Transparency

An adjustment of the opacity of the indicator where 1
means 100% opacity and 0 means %100 transparent.
The default is 1.

Contrast

An adjustment of the contrast of the colors in the indic-
ator image. A value of 0 produces a flat looking image
and a value of 2 gives a high contrast image. The
default is 1 which corresponds to the native contrast of
the indicator image.

ColorizeHue

A value that works in conjunction with Col-
orizeIntensity. This is the hue of the color that is intro-
duced by colorizing an image. Colorizing an image will
introduce color into an image that previously was
black and white or grayscale. The default value is 0.

ColorizeIntensity

A value to define how much color to introduce into the
image. The default is 0, meaning not to introduce any
color at all into the image.

UseTagScaling

A flag that indicates whether or not to use the supplied
Tag’s scaling values. The default is false.

MinScaleValue

The minimum scale value to use if the UseTagScaling
flag is not true. The default is 0.

MaxScaleValue

The maximum scale value to use if the UseTagScaling
flag is not true. The default is 100.

DampenIndicator

A flag to indicate whether or not to dampen the indic-
ator movement. Dampened movement creates the
effect of animating the indicator. The default is false.

Comments: This function must be called within a GUITransform state-
ment in order for it to work correctly.
The size of the indicator image is scaled with respect to the
original size of the image and the size of the transform. If
you want a smaller indicator you can simply make a smal-
ler transform.

Example:

GUITransform(706, 212, 856, 192,
1, 1, 1, 1, 1 { Scaling },
0, 0 { Movement },
1, 0 { Visibility, Reserved },
0, 0, 0 { Selectability },
Variable("Code\MeterParts")\LinearIndicator(Invalid,

"Bitmaps\Meter Parts\Indicators\Linear\LIndicator2.png", 0,
2, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 100, 0, 0));

LinearLegend

(Meter Parts Library)

Description Draws a legend (i.e. the text labels) for a linear type meter.
They are drawn in a line, either horizontally or vertically,
with consistent spacing. This function must be called inside
a GUITransform in order to work properly.

Returns Image handle

Usage Steady State only.

Function Groups Graphics

Related to:

Format: \MeterParts\LinearLegend(TagName, Orientation, NumLa-
bels, Font, Color, Reserved, UseTagScaling, MinScaleValue,
MaxScaleValue)

Parameters

TagName

Required. The name of the Tag to use for scaling. If no
tag is specified, then tag scaling cannot be used to
automatically obtain the minimum and maximum
scale values.

Orientation

A flag indicating the orientation of the legend. Set to 0
for horizontal and 1 for vertical. The default is 0 (Hori-
zontal).

NumLabels

The number of Labels to show. The default is 3.

Font

The name of a Font tag to use for the legend text.

Color

A color index for the color of the legend text. The
default is 0 (black).

Reserved n/a

For use at a later time. Should be set to 0.

UseTagScaling

A flag that indicates whether or not to use the supplied
tag’s scaling values. The default is false.

MinScaleValue

The minimum scale value to use if the UseTagScaling
flag is not true. The default is 0.

MaxScaleValue

The maximum scale value to use if the UseTagScaling
flag is not true. The default is 100.

Comments This function must be called within a GUITransform state-
ment in order for it to work correctly.
The text should scale with the size of the transform. If it
does not, then you might have picked a font that doesn’t
scale. Some non true-type fonts will not scale.

Example:

GUITransform(694, 852, 844, 702,
1, 1, 1, 1, 1 { Scaling },
0, 0 { Movement },
1, 0 { Visibility, Reserved },
0, 0, 0 { Selectability },
\MeterParts\LinearLegend(Invalid, 0, 3, Invalid, 0, 0,

0, 0, 0, 100));

ListAdd

Note: Deprecated. Do not use in new code.

(Alarm Manager module)

Description: This subroutine will add the alarm object to a list. This is
useful if a user-defined list has been created.

Returns: Numeric

Usage: Script Only.

Function Groups: Alarm

Related to: Register (Alarm Manager) | CurrentTime

Format: \AlarmManager\ListAdd(AlarmObject, [EventTime], List);

Parameters:

AlarmObject

Required. The object value for the alarm that was
passed to the Register subroutine.

EventTime

The time stamp to use when adding this event to the
alarm lists. If invalid, the default is CurrentTime().

List

Required. Any numeric expression for the number of
the list to which to add the alarm.

Comments: The ListAdd subroutine always returns "0".

Listbox

(System Library)

Description: Draws a list box with scroll bar (if required) and indicates
the selected item.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: CheckBox | Droplist | GridList | HScrollbar |
 RadioButtons | Spinbox | SplitList | VScrollbar

Format: \System\Listbox(X1, Y1, X2, Y2, Data, Index, [Picked, Flat,
DoubleClick, MaxLen, RightClick, PostIt, FocusID, Multi,
PickList, ColWidths, ColLabels, ColDivider, EditSelected])

Parameters:

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the Listbox,
usually the left side.

Y1

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the Listbox, usually bottom.

X2

Required. Any numeric expression giving the X
coordinate on the screen of the side of the Listbox
opposite to X1, usually the right side.

Y2

Required. Any numeric expression giving the Y
coordinate on the screen of the top or bottom of the
Listbox, whichever is the opposite of Y1, usually the
bottom.

Data

Required. An array of data to be displayed in the List-
box.

Index

Required. The index of the highlighted item (i.e. any
variable whose value will be set to the index of the
chosen item (highlight).) If Multi is true, this will be the
index of the last chosen item.

Picked

An optional parameter that may be a variable whose
value is set to true (1) when an item is chosen in the
Listbox. The setting of Index by an external source will
not trigger Picked. If this information is not required
and the next parameter is used, a value of invalid or a
constant may be substituted.

Flat

An optional parameter that is any logical expression. If
true (non-0) the border of the listbox will be a single
black line, if false (0) it appear with a 3-D border. The
default is false.

DoubleClick

An optional parameter that may be a variable whose
value is set to true (1) when an item has been double
clicked upon. If this information is not required and
the next parameter is used, a value of invalid or a con-
stant may be substituted.

MaxLen

An optional parameter that is any numeric expression
giving the maximum length of the list. If omitted or
invalid, the maximum list length is given by the size of
the array Data.

RightClick

An optional parameter that may be a variable whose
value is set to true (1) when an item is selected with the
right mouse button.
If this information is not required and the next para-
meter is used, a value of invalid or a constant may be
substituted.

PostIt

An optional parameter that is any logical expression. If
true (non-0), a tool tip will be displayed if the text in
the list box has been truncated at its right edge. The
default is true.

FocusID

An optional parameter that is any numeric
expression for the focus number of this graphic.
If this value is zero, the list box will not accept
keyboard input, but ouse input will still be recog-
nized.
If it is less than zero, the Listbox will not accept
any input and will appear grayed out. The
default value is 1.
Values above 32767 are treated as if zero.

Multi

An optional parameter that is any logical expression. If
true (non-0), multiple items may be selected in the list.
The default is false.

PickList

An optional parameter that is a variable whose value is
set to the list of items selected if Multi is true (1). If
invalid, no items are selected.
This variable may initially be set to a dynamically alloc-
ated array (one created with the New function) con-
taining items to be highlighted/selected upon the
startup of the listbox.

ColWidths

An optional parameter that indicates the starting
widths for multiple columns.

ColLabels

An optional parameter that provides an array of labels
for the columns.

ColDivider

An optional parameter that indicates the type of
divider to appear between columns. No border
appears if the list is a single column. ColDivider may
have one of the following values: The default is "2".

ColDivider Divider Type

0 No column divider shown;

1 Show a non-moveable column
divider. Or

2 Show a moveable column
divider.

EditSelected

An optional flag that indicates whether a selected item
may be edited in the list. EditSelected will be set to 0
when the editing stops. EditSelected may have one of
the following values:

EditSelected Meaning

Invalid no editing;

0 enable item editing. Or

1 edit current selected item.

Comments: This module is a member of the System Library, and must
therefore be prefaced by \System\, as shown in the
"Format" section. If you are developing a script application,
use "System\..." rather than "\System\..." in the function
call.
If Multi is true, multiple items in the list may be selected by
using the <Shift> or <Ctrl> keys along with mouse input.
If <Ctrl> is held while an item is clicked on by the mouse,
it will become selected (or de-selected if it is already selec-
ted) and will be added to the list of chosen items. If
<Shift> is held while an item is clicked on by the mouse,
all items from the last selected item to the selected item
will be selected. All other items outside of this list will be
deselected. If both <Ctrl> and <Shift> are held while an
item is clicked on by the mouse, all items from the last
selected item to the selected item will be set to the state of
the last selected item.
For any optional parameter that is to be set, all optional
parameters preceding the desired one must be present,
although they may be invalid.

Examples:

\System\Listbox(10, 10, 110, 210 { Outline of list box },
List { Data to display },
Highlight { Index of highlight });

In this example, the listbox is displayed with only a single black line
around it. Notice that since none of the optional parameters are used,
they have been omitted. Also, the listbox will display the full contents of
the array because MaxLen has similarly been omitted.

\System\Listbox(20, 355, 295, 100 { Outline of listbox },
NameList { list of names to display },
ListIndex { Index of highlight },
0 { Picked parm not used },
0 { Drawn 3D },
Double { TRUE when double clicked },
Invalid { MaxLen parm not req'd },
RtClick { TRUE when rt clicked on },
1 { tool tips as req'd },
5 { Focus ID },
1 { Multiple selections },
FinalList { Var containing list of
selected items });

This example illustrates including all of the optional parameters, even
those such as MaxLen that in this case are not used.

ListKeys

Description Returns an array of all keys used within a dictionary. It is
expectd that this function will be used primarily in the con-
text of metadata (extended information attached to a vari-
able). ListKeys also enables you to discover what is in a
dictionary.

Returns Array

Usage Script Only.

Function Groups Dictionary, Variable

Related to: Dictionary | MetaData | DictionaryCopy |
 DictionaryRemove | GetNextKey

Format: ListKeys(dictionary[, order, return value]);

Parameters

Dictionary

Required. The name of the dictionary.

Order

An optional numeric expression. Defines the search
according to the following table of values. Defaults to
0 if missing or invalid

Order Meaning

0 List in forward alphabetic order.

1 Ordered by when the keys were added
to the dictionary with the oldest key
first.

2 List in backward alphabetic order

3 Ordered by when the keys were added
to the dictionary with the newest key
first.

4 Sparse Numeric. Keys must be numeric.
Used to return a sparse array in order
based on the key values.

Return Value

Controls what is returned according to the following

Value Returns

< = 0 Invalid

1 1D array (vector) containing the dic-
tionary keys

2 1D array (vector) containing the dic-
tionary values, ordered by key

3 2D array (table). The first column (left-
most) will contain the dictionary keys
and the second (right-most) will contain
the dictionary values. Ordered by key.

>= 4 Invalid

Example:
(given a dictionary named X as shown)

R = ListKeys(X);
R == ["A", "B", "C"];

Example 2:
Given the code:

IF Watch(1);
[
X = Dictionary(0, 5);
X["A"] = 42;
X["B"] = 86;
X["C"] = 99;
Buf = ListKeys(X, 1, 3);

]

Buff will contain:

ListRemove

Note: Deprecated. Do not use in new code.

(Alarm Manager module)

Description: This subroutine will remove the alarm object from a list.
This is useful if a user-defined list has been added.

Returns: Numeric

Usage: Script Only.

Function Groups: Alarm

Related to: Register (Alarm Manager) | CurrentTime

Format: \AlarmManager\ListRemove(AlarmObject, [EventTime],
List);

Parameters:

AlarmObject

Required. The object value for the alarm that was
passed to the Register subroutine.

EventTime

The time stamp to use when adding this event to the
alarm lists. If invalid, the default is CurrentTime().

List

Required. Any numeric expression for the number of
the list from which to remove the alarm.

Comments: The ListRemove subroutine always returns a "0".

ListVars

Description: Returns a list of variables.

Returns: Array

Usage: Script Only.

Function Groups: Compilation and On-Line Modification, Variable

Related to: FindVariable

Format: ListVars(Module, Name, LowClass, HighClass, Type, Attrib-
utes, Global, Info, Sort)

Parameters:

Module

Required. Any module or object value. This identifies
the module where the variable list begins.

Name

Required. Any text value, which specifies a name to
match when listing. Wildcards are allowed. The wild-
card "?" will match any character in a name. The wild-
card "*" will match any series of characters.
The backslash character has special meaning, in that it
can be added in front of the characters *, ? or \ in
order to search for these characters explicitly. In these
three cases, the leading backslash will be ignored.
Other characters must match exactly. A leading back-
slash in front of any characters other than the three
noted will be included in the search.

LowClass

Required. Any numeric expression. This specifies the
lowest class included in the list. Valid range is 0 to
65535. Default class for variables is 0. See also: Vari-
able Classes.

HighClass

Required. Any numeric expression. This specifies the
highest class included in the list. Valid range is 0 to
65535. Default class for variables is 0.

Type

Required. Any numeric expression that specifies the
type of variable to match, as found by adding together
values in the following table:

Type Bit No. Variable Type

0 - Match all

1 0 Normal

2 1 Array

4 2 Parameter

8 3 Module

Attributes

Required. Any numeric expression that specifies the
attributes of a variable to match, as found by adding
together values in the following table:

Attributes Bit No. Variable Attribute

0 - Match all

1 0 Shared

2 1 Persistent

4 2 Constant

8 3 Simple

16 4 Temporary

32 5 Protected

Global

Required. Any logical expression. If true, all variables
in scope are listed (including parent modules). If false,
only local variables in Module are listed.

Info

Required. Any numeric expression, which specifies the
information to return in the array, as shown in the fol-
lowing table:

Info Information

0 Text name

1 Attributes (bit field - same as for VarAt-
tributes function)

2 Default value

3 Class

4 Module value where defined

5 Module text name where defined

6 Number of instances

7 Current value

8 Pointers to variables

If Info is 7 or 8, then Module should be the
object value of the instance where the variable
instances reside to get all information.
If Module isn't an object value, then the return
value will be invalid unless there are shared or
persistent variables.

Sort

Required. Any logical expression. If true, the variables
are sorted in alphabetical order. If false, the variables
are listed in the order in which they appear in the doc-
ument file.

Comments: The variable used to store the returned array does not need
to be declared as an array. It will be dynamically allocated
as such by the function. If no variables are found, the
return value will be a valid pointer to an array with no ele-
ments.

Data Handling in Statically-declared Arrays vs. Dynam-
ically-allocated Arrays.
ListVars handles data in statically declared arrays dif-
ferently from data stored in dynamically allocated arrays.
In the following example, two arrays have been declared.
The first (A1) is statically-declared, while the second (A2) is
dynamically-allocated.

A1[2][3];
A2;

A2 = New(2, 3);
A1[0][0] = "zerozero";
A2[0][0] = "zerozero";
A1[1][0] = BuffStream("onezero");
A2[1][0] = BuffStream("onezero");
A1[1][1] = 11;
A2[1][1] = 11;
A1[1][2] = 12;
A2[1][2] = 12;

AFiles = ListVars(Self(), "A*", 0, 65535 { class
limits }, 0, 0 { all matches },
0 { local only }, 8 { ptr to variables }, 1 {
sort });

To retrieve the value of each element in the stat-
ically-declared array named, "A1", you can use:

ElemA1_00 = AFiles[0][0][0];
ElemA1_10 = AFiles[0][1][0];
ElemA1_11 = AFiles[0][1][1];

… and so forth. However, this same call for the
dynamically-allocated array named, "A2", will not
retrieve the expected elements. Rather, the correct
syntax for data retrieval in this case is:

ElemA2_00 = (*AFiles[0])[0][0];
ElemA2_10 = (*AFiles[0])[1][0];
ElemA2_11 = (*AFiles[0])[1][1];

The data retrieval method displayed above for the
dynamically-allocated array will also work for static
arrays, thus it is recommended that this be the
method used for general array data retrieval.

Example:

If ! Valid(myList);
[
myList = ListVars(FindVariable("Calculations", Self(), 0, 1)
{ Module to find variables of },
"*" { List all variables },
0, 0 { Class 0 variables only },
0, 0 { All types and attributes },
0 { Variables of this module only },
0 { Name of variable },
1 { List alphabetically });

]
Table(myList[0] { Starting array element },
 ArraySize(myList, 0) { Number of elements },
 10, 10, 0, 10 { Start at (10, 10) list vertically },
 4, 0, 100, 14, 0, 0, 8, 0 { Text values and attributes });

This set of statements will display a list of all variables that belong to the
module Calculations in alphabetical order in the upper left had corner of
the window. Note that the first statement has the potential to become an
"If 1" condition (infinite loop) if there are no variables belonging to mod-
ule Calculations (i.e. the ListVars function returns Invalid).
In the next example, the ListVars statement is returning an array of point-
ers to all variables beginning with the letter A, which in this case is two
arrays, one statically declared (A1) and the other dynamically allocated
(A2):

A1[2][3];
A2;
…
A2 = New(2, 3);
A1[0][0] = "zerozero";
A2[0][0] = "zerozero";
A1[1][0] = BuffStream("onezero");
A2[1][0] = BuffStream("onezero");
A1[1][1] = 11;
A2[1][1] = 11;
A1[1][2] = 12;
A2[1][2] = 12;
AFiles = ListVars(Self(), "A*", 0, 65535 { class limits },
 0, 0 { all matches }, 0 { local vars },
 8 { ptr to variables }, 1 { sort });

The array AFiles will now contain a list of pointers to the two arrays. To
access the individual elements of array A1 and A2, each element of array
AFiles must be de-referenced using the * character:

ElemA1_00 = (*AFiles[0])[0][0];
ElemA1_10 = (*AFiles[0])[1][0];
ElemA2_00 = (*AFiles[1])[0][0];

It is interesting to note that while this method may be used on either
array, the following statement format will only set the variables to the
expected value in the case of the statically declared array (A1):

ElemA1_00 = AFiles[0][0][0];

Ln

Description: Returns the natural logarithm (base e) of a value.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Generic Math

Related to: Exp | Log | Pow

Format: Ln(X)

Parameters:

X

Required. Any numeric expression. The value must be
strictly greater than 0 for the result to be valid.

Comments: This is the inverse function to Exp.

Example:

a = Exp(23);
b = Ln(a);

In this example, b will be equal to 23.

LoadDLL

Description: Loads a Microsoft Windows™ dynamic link library.

Note: 64-bit VTScada can load only 64-bit DLLs.
32-bit VTScada can load only 32-bit DLLs.
VTScada Internet Clients can load only 32-bit DLLs

regardless of whether the VTScada server is 32-bit
or 64-bit.

Returns: DLL handle, numeric error code, or Invalid. See comments

Usage: Steady State only.

Function Groups: Compilation and On-Line Modifications, DLL, Software
and Hardware

Related to: DLL

Format: LoadDLL(FileName[, VICRemoted])

Parameters:

FileName

Required. Any text expression for the file name of the
DLL to load. If the path is not specified the standard
WindowsÔ search pattern for DLLs will be used.

VICRemoted

(Optional). A parameter that indicates whether or not
the handle returned by LoadDLL will be remoted to the
VIC.
If VICRemoted is a valid, non-zero, positive integer,
and the LoadDLL function is being executed in a mod-
ule instance that is within a VIC session, then all DLL
calls using the handle that LoadDLL returns will be
remoted to the VIC.
Whether or not the LoadDLL is in a VIC session is
determined by the call tree from the module instance
running the LoadDLL call. The root of the call tree
must be an instance of BrowserClient. In practical
terms, this means that you cannot expect session-
aware DLL calls to function if you explicitly launch a
module with a caller other than a module instance
within the VIC session tree.
Defaults to 0 if not otherwise specified.

Comments: The return value is either the Windows™ handle of the new
DLL (ValueType == 38), or on failure, the least significant
16-bits of operating system error code (ValueType < 3).
There is no dynamic download of a DLL to the VIC. DLLs
must be manually installed on the VIC in either the system
program folder (e.g. \Windows\System 32), or in a folder
that is on the executable search path (the PATH envir-
onment variable).
LoadDLL is a steady-state statement. If it stops, all VALUEs
holding a copy of the DLLHandle returned from the
LoadDLL statement will be invalidated, and if there are no
other LoadDLLs running for the same DLL, the DLL will be
unloaded. (LoadDLL is not an expensive operation, but it is
good programming not to do this very often.)

Note: LoadDLL will block the calling interpreter thread until
the DLL loaded has completed on the VIC. This means that
nothing else will execute on the VIC session thread until
the DLL load is complete. This has the advantage (from the
programmer's perspective) that the DLL handle returned is
immediately ready for use. LoadDLL will return Invalid if
there is a problem with the parameters, an integer error
code if it cannot load the DLL, or a DLLHandle (ValueType
==38) if the load was successful. On failure, the return
value will be the least significant 16-bits of operating sys-
tem error code (ValueType < 3).

DLL calls do not need to consume the return value, or have
no return value should be written as such (i.e. explicitly
specify a return type of zero to indicate that there is no
return value, or that the return value is irrelevant. If you
specify other than zero for the return type, the DLL call will
block the calling interpret thread until the VIC has run the
DLL call and returned the value. This means that scripts

that rely on synchronous DLL calls will still work, even with
the DLL remoted, however, they will slow down. If you spe-
cify a return value type of zero, a remoted DLL call is dis-
patched to the VIC asynchronously (i.e. your interpreter
thread will not block). If, for example, you have a
sequence of DLL calls that will execute asynchronously, fol-
lowed by one that is synchronous (because you want the
return value), the calling interpreter thread will block only
on the synchronous call. This may take a little longer
because the order of the DLL calls is preserved on the VIC,
and all the asynchronous ones will have to complete exe-
cution before the synchronous one can be executed. This
is much quicker than using all synchronous calls, because
the asynchronous ones are batched together and require
no reply (other than a batch acknowledgment from the
VIC), reducing comms latency.
DLL handles should not be declared as shared if they are
going to be remoted. Shared DLLs will only be created
once, and so will only operate on the server OR client,
depending upon which one started them first.

LoadMIB

Description: Loads a specified MIB or set of MIBs and returns a dic-
tionary describing the hierarchy of the MIBs.

Returns: Dictionary

Usage: Script

Function Groups: File I/O, Software and Hardware

Related to:

Format: LoadMIB(MIBPath[, SubIDIndexing, LoadDescriptions,
ErrorOut])

Parameters:

MIBPath

Required. Apath to any single MIB or a directory con-
taining MIBs (possibly in further subdirectories). The
returned MIB dictionary will also include those ele-
ments of the base MIBs found in <VTSInstallDir>\MIBS
that are referenced in the MIB found in MIBPath. If
Invalid, then the returned MIB dictionary will only
include the base MIBS.

SubIDIndexing

An optional Boolean expression. If TRUE, then items in
the returned MIB dictionary are keyed by numeric por-
tion of the OID for that element. If FALSE, then the
items are keyed by the label for the element. Defaults
to TRUE.

LoadDescriptions

An optional Boolean expression. If TRUE, then the
returned MIB dictionary will contain any description for
the element (which may be lengthy). If FALSE, then no
description is loaded. The default is TRUE.

ErrorOut

An optional variable into which any errors found in
parsing the MIBs will be returned. Will take the form of
a linked list of error message structures. The message
structure will contain two fields: Error, containing the
error text and Next containing the next error message
structure, if any.

Com-
ments:

Label The textual "name" of the element.

SubID The portion of the OID corresponding to the ele-
ment.

OID The full OID for the element.

Desc The textual description of the element (if the
LoadDescriptions parameter is TRUE).

Syntax The type of the element, e.g. "OCTET STRING" or
"INTEGER" etc.

Type The numeric type of the element, e.g. INTEGER is
3. The full list of possible types is:
OTHER0
OBJID1
OCTETSTR2
INTEGER3
NETADDR4
IPADDR5
COUNTER6
GAUGE7
TIMETICKS8
OPAQUE9
NULL10
COUNTER6411
BITSTRING12
NSAPADDRESS 13
UINTEGER14
UNSIGNED3215
INTEGER3216
SIMPLE_LAST16
TRAPTYPE20
NOTIFTYPE21
OBJGROUP22
NOTIFGROUP23
MODID24
AGENTCAP25
MODCOMP26
OBJIDENTITY 27

Access The permitted access to the element, One of "NoAc-
cess", "ReadOnly", "WriteOnly", "ReadWrite",
"Notify", "Create".

Enums If the element provides an enumeration of values,
then this member will be present and contain a
linked list of enumeration structures, each struc-
ture has the following elements; Label - the label
for the enumeration, Value - the value of the enu-
meration, Next - the next enumeration structure
(if any) in the list.

Indexes If the element is a table, this member lists the
indexes of the items in the table. The member con-
tains a linked list of index structures, each struc-
ture has the following elements; Label - the label
for the index, IsImplied and, Next, the next index
structure (if any) in the list

Children If the element is not a leaf element this member
will be present and will contain dictionaries for
each of the elements child elements keyed by the
child's OID SubIndex or Label as specified by the
SubIDIndexing parameter.

LoadModule

Description: Loads a module from its .RUN files and returns a pointer to
that module.

Returns: Module

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: Launch | Thread

Format: LoadModule(FileName, Library, [ModuleName, LoadNow,
AppGUID, RefModule, TestCodeLoad])

Parameters:

FileName

Required. Any text expression giving the name of the
.RUN file from which to load the module.

Library

Required. Any module value that indicates the library
module to which the loaded module will belong.

ModuleName

An optional parameter that is the text expression giv-
ing the module's name. This name will then be asso-
ciated with the module when it is displayed in certain
situations, such as in the debugger and the module
tree diagram. If this parameter is invalid, the module
will appear as "System" when its name is displayed.

LoadNow

An optional parameter that is any logical expression. If
true (non-0), the module and its entire sub-tree are
loaded immediately. If false (0), the module and its sub-
tree are loaded on demand. The default is false.

AppGUID

An optional parameter that should be included and
hold the text GUID of the application when the
LoadModule is loading an application.

RefModule

An optional parameter that has been reserved for use
by the Test Framework and is used when a module is
being loaded in isolation of the application module
tree.
Its presence allows source file offsets returned by the
TextOffset statement to operate off the loaded module.

TestCodeLoad

An optional parameter that has been reserved for use
by the Test Framework to indicate that the LoadMod-
ule is loading actual code to be run.
It can contain any Boolean expression that evaluates to
TRUE to indicate that the code to run is being loaded.

Comments: The return value is a pointer to the module. It can
be used in a Launch or Thread statement.
The usage of the AppGUID and RefModule para-
meters determines how the VTScada engine will
treat the module load:

l If AppGUID and RefModule are both Invalid, this is a
"normal" load. No special processing is performed.

l If AppGUID is a text GUID and RefModule is absent or
Invalid, the load is a load of the root module for the
application. This causes the loading module to
become the "namespace root" for the application.

l If RefModule is valid, the loading module will cross-
reference the reference module, enabling the Tex-
tOffset statement to return the correct source file off-
sets for the loading module. The RefModule must be
part of the complete module tree for the application.
It is also used to ensure that breakpoints are re-

made when the test module reloads.

Example:

If ! Valid(CompiledModule);
[
 ExpressionTemplateRUN = RunFileName(FindVariable("Expres-
sionTemplate", Self, 0, 0));
 CompiledModule = LoadModule(ExpressionTemplateRUN, Expres-
sionParentModule, "Compiled Expression");
]

LocalGroup

Description Returns an indication of whether the current Windows™
user is a member of the specified local group. LocalGroup
interrogates only local groups, not domain groups.

Returns Numeric

Usage Script or steady state.

Function Groups Security

Related to:

Format: LocalGroup(Group)

Parameters

Group

Required. The group parameter, which is a value from
0 to 5. These values are defined in the following table:

Group Local Group

0 Administrators

1 Backup Operators

2 Guests

3 Power Users

4 Replicator

5 Users

Com-
ments

This function returns an indication of whether the current Windows™
user is a member of the specified local group. Its return values are out-
lined in the following table:

Return Value Information

0 Not a member

1 Is a member

2 Not applicable

Invalid Parameter or internal error:
The user must log off and log on if a local group was changed
for the change to be noticed by the LocalGroup function call.
(This behavior is inherent to Windows and is not due to a
VTScada feature or defect.)
Custom local groups (local groups that are not of type Admin-
istrators, Backup Operators, Guests, Power Users, Replicator
or Users) cannot be interrogated by this function.

LocalScope

Description: Equivalent to Scope(Obj, Name, TRUE).
LocalScope is a useful shortcut where the second para-
meter is not a constant string.

Returns: Reference

Usage: Script or steady state.

Function Groups: Basic Module

Related to: Variable | ScopeLocal | Scope

Format: LocalScope(Obj, Name)

Parameters:

Object

Required. Any expression for the object value where
Member may be found.

Member

Required. Any text expression for the member name.

Comments: This function is the same as the '.' operator, when
the '.' operator is used between two operands.
(Object.Member).
As an example, the LocalScope() function is useful
for referencing a tag object where its name contains
special characters or spaces:

TagObj = LocalScope(\VTSDB, "R&R Level")

Example:

TagName = "MyTag";
TagObj = LocalScope(\VTSDB, TagName);

Returns a reference to the given tag object, found within the current mod-
ule.
This is the equivalent to:

\VTSDB.MyTag

Locate

Description: Locates a text string, returning the offset of the first match-
ing string in a buffer.

Returns: Numeric

Usage: Script or steady state.

Function Groups: String and Buffer

Related to: CharCount | BuffWrite

Format: Locate(Buffer, Offset, Search [, Method])

Parameters:

Buffer

Required. The text expression to search.

Offset

Required. Any numeric expression giving the buffer off-
set (in characters or bytes), from which to start search-
ing (i.e. to start at the beginning of the buffer, set this
parameter to 0).

Search

Required. Any text expression for which to search.

Method

An optional numeric expression that controls how the
Search parameter is interpreted as per the following
table. The default value for Method is "0".

Method Description

0 Treat Search as the exact string for
which to search (strstr).

1 Treat Search as the case-insensitive
string for which to search (stristr).

2 Treat Search as a set of characters to
match against (strpbrk).

3 Treat Search as a case-insensitive set
of characters to match against.

Comments: This function returns the buffer offset of the first string
matching Search. If no match is found, or if the length of
Search plus Offset is larger than the length of Buffer, -1 is
returned. The return value could be used in the Offset para-
meter to perform successive searches.

This function can be used to perform fast table searches.
Build a table in a text variable using BuffWrite. Make sure
that all entries in the table are the same length. You can
now use Locate to find the buffer offset of a matching text
string.

Locate() supports case-insensitive search, which is spe-

cified by using Offset < 0. The real start is then calculated
by subtracting it from –1.

Examples:

w = Locate("abcABCabc", 0, "bc");
x = Locate("abcABCabc", 2, "bc");
y = Locate("abcABCabc", 0, "Bc");
z = Locate("abcABCabc", 0, "X");

The values of w, x, y and z will be 1, 7, -1 and -1 respectively.

LocCapture

Description: Capture Locator Input. This statement captures all sub-
sequent input from the locator device and routes it to a
specific window.

Returns: TRUE if capturing. Invalid otherwise.

Usage: Steady State only.

Function Groups: Locator, Window

Related to: WinXLoc | WinYLoc | XLoc | YLoc

Format: LocCapture(Object, Enable)

Parameters:

Object

Required. Any expression that returns an object value
of a window or an object within a window whose
coordinate system is to be used for locator coordinate
reports until capture is released.

Enable

Required. Any logical expression. If true (non-0), the
locator input will be captured by the window con-
taining the module expressed by Object. If false (0),
the locator capture is yielded.

Comments: This statement captures all locator input and routes it to

the window containing the module instance that issued the
LocCapture statement. This is most useful when there are
child windows present that are graphically in front of the
window with capture. With capture disabled (the normal
condition), the coordinates returned to a WinXLoc(Self())
would change from being relative to the parent window's
coordinate origin to the child window's coordinate origin
as the locator moved over the child window. With capture
enabled, the coordinates would always be relative to the
parent window's coordinate origin, no matter which win-
dow the locator was over.

Example:

LocCapture(Self(), 1);

LocSwitch

Description: Returns the current status of the locator (mouse) buttons
over the window which contains the LocSwitch statement.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Locator

Related to: Click | SetXLoc | SetYLoc | Target | WinLocSwitch | XLoc
| YLoc

Format: LocSwitch()

Parameters: None

Com-
ments:

The function has no parameters and therefore the empty parentheses
following the function name are optional.
If the locator is not installed, or if it is over a window other than the
one containing the module with the LocSwitch statement in it, the
function returns 0.
Unlike the WinLocSwitch statement, this function is not triggered by
mouse clicks in parent or child windows, only those occurring over
the owning window. The return value has the following significance:

Return Value Mouse Button(s) No. of Clicks

0 No buttons -

1 Right button Single

2 Middle button Single

3 Right & middle button Single

4 Left button Single

5 Left & right button Single

6 Left & middle Single

7 All three buttons Single

8 No buttons -

9 Right button Double

10 Middle button Double

11 Right & middle button Double

12 Left button Double

13 Left & right button Double

14 Left & middle Double

15 All three buttons Double

Example:

If LocSwitch() == 4 NextState;

This statement causes a state change to NextState at the press of the left
mouse button.

Log

Description: Returns the common logarithm (base 10) of a number.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Generic Math

Related to: Exp | Ln | Pow

Format: Log(X)

Parameters:

X

Required. Any numeric expression. The value must be
strictly greater than 0 for the result to be valid.

Comments: The common antilogarithm can be found using the Pow
function.

Example:

n = Log(10000);

The variable n will be set to 4.

LogNTEvent

Description Logs events to the system event log.

Returns Nothing

Usage Script or steady state.

Function Groups Log

Related to:

Format: LogNTEvent(Severity, Strings [, Source, Category, EventID,
DataSize, Data, UNCServerName])

Parameters

Severity

Required. A numeric code indicating the type of event
to log. Severity can be one of:

Severity Event

0 Informational

1 Warning

2 Error

3 Audit Success (Security Event)

4 Audit Failure (Security Event)

String

Required. A single string or an array of strings to pass
to the event as parameters.

Source

An optional parameter indicating the name of the
source program. The default value for Source is
"VTScada" (see comments section).

Category

An optional parameter indicating the numeric ID of
event category. The default value for Category is "0",
indicating "none" (see comments section).

EventID

An optional parameter indicating the numeric event
code. The default value for EventID is "1001" (see com-
ments section).

DataSize

An optional parameter indicating the size of binary
data in bytes (see comments section).

Data

An optional parameter indicating the binary data to

store with the event (see comments).

UNCServerName

An optional string specifying the UNC server name for
Source (see comments).

Comments Event logs store important events for applications running
on Windows. Because the logging function is designed to
be general purpose, you must decide what information is
appropriate to log. As a general rule, you should only log
information that could be useful in diagnosing a hardware
or software problem. The event logging facility is not inten-
ded to be used as a tracing tool.
Event logging consumes system resources such as disk
space and processor time. The amount of disk space that
an event log requires depends on how much information
you choose to log. For this reason, it is important to log
only essential information.
Following, are some Microsoft guidelines regarding the
types of events you may wish to log for each severity

Informational Information events indicate significant suc-
cessful operations that occur infrequently. It is not gen-
erally considered appropriate for an application to log an
event each time it starts.

Warning Warning events indicate problems that are not
immediately significant, but that may indicate conditions
that could cause problems in the future. Generally, if an
application can continue or recover from an event without
loss of functionality or data, it can classify the event as a
warning.

Error Error events indicate significant problems about
which the user should know. Error events usually result in
or from the loss of functionality or data.

Audit Failure When a security access attempt fails, it is con-
sidered an audit failure. A failed logon attempt is a failure
audit event.

Audit Success When a security access attempt succeeds,
then it is a success audit event. For example, a successful
logon attempt is a success audit event.

For more information on NT Event Logging, please see the
Microsoft MSDN documentation.

The only required parameters for LogNTEvent are the sever-
ity code (Severity) and the string or array of strings to log
with the event (Strings)

You may optionally specify:

l The application event Source (the default value is
"VTScada").

l The Category (numeric starting at "1", where "0" is the
"none" category). The default is "0" (none).

l The EventID (numeric, generally starting at 1000 or
so in order to not conflict with the category numbers.
The first and only defined EventID for source
"VTScada" is "1001", which simply displays the
passed-in string).

l Data and Datasize (used to store binary data with the
event). DataSize should be the size, in bytes, of the
Data array. Data is any array of binary data to be
stored along with the event. And

l UNCServerName, which is the machine to which to
log the event (the default is Invalid, which results in
the event being logged on the local machine. Other-
wise, you may specify the UNC name for the machine
to which you would like the event logged).

Note that specifying values other than the defaults
for Source or EventID will result in the event log dis-
playing the event improperly, unless a custom DLL
is written to handle the case. However, this does not
prevent the event from being logged, and a custom
DLL can be added at a later time.

Example:

databuff = MakeBuff(10, 65);
textstring = "RTU 0015 is offline";
res = LogNTEvent(1,

textstrings,
Invalid {source},
Invalid {category},
Invalid {EventID},
10,
databuff);

This example will log a warning event under the source name "VTScada",
with default category ("none"), and default event ID (1001). The details of
the event will be the string "RTU 15 is offline, and attached to the event
is 10 bytes of binary data – an array of 10 letter A's.

LogOff

Security Manager Module

Description Logs the calling user session off.

Returns Nothing

Usage Script Only.

Related to: AlternateIdCheck | AlternateLogoff | AlternateLogon |
Authenticate | QuietLogon | UserCredChange | User-
LogonDialog

Format: \SecurityManager\LogOff()

Parameters None

Comments After logging off, the user session reverts to the Logged Off

user.

LookUp

Description: Looks up a value in an array and returns the index
of the element containing that value.

Note: This function replaces the deprecated Tex-
tSearchList and SearchForListItem system mod-
ules.

Returns: Numeric

Usage: Script or Steady State

Function Groups: Array

Related to: AMax | AMin | ArrayDimensions | ArraySize | ArrayStart
| AValid | Sort | Sum | TextSearch

Format: Lookup(ArrayElem, N, Match [, CaseInsensitive])

Parameters:

ArrayElem

Required. Any array element giving the starting index
for the array operation. The index for the array may be
any numeric expression.
If processing a multidimensional array, the usual rules
apply to decide which dimension should be examined

N

Required. Any numeric expression giving the number
of array elements to compute. If N extends past the
upper bound of the lowest array dimension, this com-
putation will "wrap-around" and resume at element 0,
until N elements have been processed.

Match

Required. Any value of any type to look for in the
array. In the case of text, the search is case sensitive. If

this value is invalid, the return value will also be
invalid.

CaseInsensitive

An optional parameter that is any logical expression. If
true (non-0) and the array contains text strings, the
comparison will not be case sensitive. If false (0), the
comparison will be case sensitive for text strings. The
default is false.

Comments: It is acceptable for the array to contain invalid val-
ues - these will be skipped over in the search for
Match.
The return value will be invalid if the value of Match
isn't found in the array.
Note that TextSearch should be used for large
arrays due to its considerably faster search
algorithm.

Example:

index = Lookup(labels[0], ArraySize(data, 0), "off", 1);

This searches the array labels for a string of any case that matches the
string "off". If a match is found, its value is assigned to index.

LValue

Description: Left-hand Side Value. This function returns an indication
of whether its argument can be used on the left-hand side
of an assignment.

Returns: Boolean

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Generic Math,
Variable

Related to:

Format: LValue(Expr)

Parameters:

Expr

Required. Any expression.

Comments: This is a compiler function that returns 1 (true) if
data can be stored into Expr (i.e. if it is a variable,
etc.) and 0 otherwise.

M Functions
The sections that follow identify all VTScada functions beginning with
"M".

MACID

Description: Enumerates and returns the MAC IDs registered on a par-
ticular machine.

Returns: A 2D array containing network card names and MACIDs

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Software and Hardware

Related to:

Format: MACID()

Parameters: None

Comments: MACIDs are unique to the NIC cards present within the
machine but are NOT guaranteed to be unique for the vir-
tual NICs generated for things like virtual machines or NIC
emulations.
The name of the resource that generated the ID is provided

with each ID in order to help sift out faux MACs. Note that
Windows appears to always provide the real MACs first,
and since almost all machines have a built-in NIC the first
MAC can be assumed to be real.

Example:

MACIDInfo = MACID();

On a machine, which has two network cards, MACIDInfo will have (for
example):

MACIDInfo[0][0] == Realtek RTL8169/8110 Family PCI Gigabit Ethernet
NIC (NDIS 6.0)
MACIDInfo[0][1] == Realtek PCIe GBE Family Controller
MACIDInfo[1][0] == a buffer containing the binary MAC address for the
card named in MACIDInfo[0][0]
MACIDInfo[1][1] == a buffer containing the binary MAC address for the
card named in MACIDInfo[0][1]

MakeBitmap

Description: Loads an image file of types BMP, EMF, WMF, APM, CUT,
PCX, JPG, PNG, or TIF into memory and returns a handle to
the result. Returns Invalid upon failure.

Returns: Image handle

Usage: Script or steady state.

Function Groups: Graphics

Related to: BitmapInfo | Crop | GUIBitmap | GUIButton | ImageArray
| ImageSweep | ModifyBitmap

Format: MakeBitmap(FileName [, Transparent1, Transparent2])

Parameters:

FileName

Required. Any text expression giving the name of the
file containing the image. A known path Known Path
Aliases for File-Related Functions may be provided in
the form, :{KnownPathAlias}.

Transparent1

An optional parameter giving the first color
value to make transparent. Any of the following
may be used:

l a palette index VTScada Color Palette

l a system color (constant)

l an RGB string in the format, "<RRGGBB>"
If this value is negative 1 (-1), this parameter is
ignored and no first color is made transparent.

Transparent2

An optional parameter giving the second color value to
make transparent. Any of the following may be used:

l a palette index color

l a system color (constant)

l an RGB string in the format, "<RRGGBB>"
If this value is negative 1 (-1), this parameter is
ignored and no second color is made trans-
parent.

Comments: This function creates and returns an image value by load-
ing an image from a file. All images are rendered in 32-bit
color. An indexed color must translate into an exact 32-bit
match in order to cause transparency. Colors may have
their own transparency data via alpha values. Using an
image value can improve speed and reduce memory
requirements over using a file name directly in a function
or statement.

Example:

Image = MakeBitmap("C:\Bitmaps\dial.bmp");

This will create an image value storing the image from the file "C:\Bit-
maps\dial.bmp".

MakeBuff

Description: Creates a buffer and returns its address.

Returns: Address

Usage: Script or steady state.

Function Groups: String and Buffer

Related to: BuffOrder | BuffRead | BuffStream | BuffToArray |
 BuffToParm | BuffToPointer | BuffWrite | MakeFixedBuff

Format: MakeBuff(Length, Value)

Parameters:

Length

Required. Any numeric expression giving the length
(number of bytes) of the buffer to create. This value
must be between 0 and 0x7FFFFFFF.

Value

Required. Any numeric expression giving the initial
value from the ASCII Character Set for every byte in the
new buffer (see "ASCII Character Set"). It must be in the
range 0 to 255.

Comments: This function can be used to create buffers for BuffWrite or
similar functions that require an existing buffer. The return
value is an address to a buffer of Length bytes, with each
byte equal to Value. If the two parameters are integer con-
stants and the buffer length is no more than 256 bytes, the
compiler will convert this statement internally to a constant
text string for speed at execution time.

The maximum buffer size is 0x7FFFFFFF (2,147,483,648)
characters. Any size larger than this will result in an invalid
value.

Example:

buff1 = MakeBuff(5, 0x41);

This will cause buff1 to be assigned the address where the value "AAAAA"
is stored.

MakeCall

Modem Manager

Description This subroutine queues a call request.

Returns Numeric

Related to:

Format: \ModemManager\MakeCall(PhoneNumber, Baud, DataBits,
StopBits, Parity [, CallTime, Tag, Workstation, MediaMode,
Voice, UseLocal, Area, UserData, Service, Attempts,
QTime, ID, InitString, UserName, Password, Domain,
PPPFlags]);

Usage Script Only.

Parameters

PhoneNumber

Any text expression for the phone number to be
called. If required, this may be the canonical inter-
national format.

Baud

Any numeric expression giving the baud rate to be
used on the modem connection. The baud rate must
be in the range of 0 to 115200, and must divide evenly
into 115200 with no more than a 2.5% error. The value
of "0" has special significance. This corresponds to the
maximum baud rate available for the particular device.
See Baud Rate.

DataBits

Any numeric expression giving the number of data bits
per character to be used on the modem connection.
DataBits must be 5, 6, 7, or 8.

StopBits

Any numeric expression giving the number of stop bits
per character to be used on the modem connection.
StopBits must be 1 or 2.

Parity

Any numeric expression giving the parity checking to
be used on the modem connection. This may be one
of:

Value Parity

0 No parity

1 Odd parity

2 Even parity

3 0 Stick (space parity)

4 1 Stick (mark parity)

CallTime

A signed, numeric expression representing the time in
seconds, relative to the current time, at which the call
should be made. A negative value means that the call
should be started as soon as possible; however, the
call will be queued behind calls that specified a more
negative time. If the value CurrentTime() is used here,
then the call will go to the head of the queue. The
default value for this parameter is "0" (i.e. now).

Tag

Any expression resolvable to the name of the tag mak-
ing the call. The default is Caller(Self())\Name. Tag
must be resolvable in the scope of \Code, and must
resolve to an object. That object must contain a vari-
able called DataPort that will be used by the Modem
Manager for call control and progress purposes.

Workstation

Any text expression identifying the computer on
whose behalf the call is to be made. The call progress
and results will be delivered to the DataPort variable in
the object \Code\Tag running in the application iden-
tified by the GUID of the application that originally
called MakeCall() on the workstation identified by the
Workstation parameter (but see also the Service para-
meter). This parameter defaults to the value \RPCMan-
ager\WkstnName on the machine that calls MakeCall
().

MediaMode

A valid numeric expression being a valid MediaMode
constant. Use this when you require particular media
properties (e.g. Voice) of a modem, and not all
modems in the pool posses those properties. The
default value selects any available modem.

Voice

If making an outgoing voice call, then this parameter
specifies the text GUID of the voice to be used by the
Text-to-Speech engine.

UseLocal

Normally, calls are queued for dispatch via one of the
pool modems, which may be on a completely different
machine. If you wish to use a local modem (e.g. a USB
or PC Card modem on a laptop computer), then this
parameter should be set to a numeric, non-zero value.
It is necessary to also configure at least one modem as
a local modem.

Area

The area parameter of modem tags may be used to cre-
ate functional groupings. If this parameter is specified
to MakeCall(), then only a modem that has the same
area parameter will be used to make the call. If there is
no such modem configured in the system, then the

call will be unceremoniously cancelled.

UserData

Opaque user-supplied data that is passed back to the
user when the ModemControl plug-in is called.

Service

The parameter Workstation explains the normal rules
for delivery of the call results. If this Service parameter
is given, and is the text name of a driver service, then
the call results will be delivered to the current server
for that service, rather than the machine identified by
the Workstation parameter.

Attempts

Count of attempts at this connection. This parameter
should be INVALID or 0 initially.

QTime

The time that the call was originally requested. This
parameter should be INVALID initially. It is used on
subsequent attempts.

ID

If valid, then this is the Server's call ID.

InitString

An optional text value that will be sent to the modem
as the final part of initializing it for use, just before it
dials out. The string should include any terminating
characters that the modem will require to complete the
string, such as "\r".

UserName

An optional text value providing the user name for
remote authentication of a PPP connection.

Password

An optional text value providing the password for
remote authentication of a PPP connection.

Domain

The domain name, used for remote authentication of a
PPP connection.

PPPFlags

An optional numeric value indicating parameters of
the PPP connection. See PPPDial for a list of values and
their meanings.

Comments Returns one if the call is successfully queued. If a zero is
returned, the call has not been queued, and will not be
queued.
As soon as MakeCall() is called, the tag's DataPort variable
is set to a valid value. This value will be changed many
times subsequently, but will remain valid until the call is
completed or canceled.

Shortly after calling MakeCall(), DataPort will become a
pointer to an array. This indicates that the call is queued.
When call setup is initiated, DataPort will become an
integer value >= "0". Should the call fail in any way, then
DataPort will become negative.

If the call setup completes successfully, then DataPort will
change to a Stream value (ValueType(DataPort)==8). The
call requestor may now read and write to that stream to
communicate with the called party. To hang-up the call,
call CloseStream(). If the other end hangs up or the call
fails, then DataPort will go invalid.

If the call setup fails, then the call will be retried according
to the configured retry settings. If the call is retried, then
DataPort will once more become an array pointer while the
call is queued. DataPort will not go Invalid until the call is
abandoned.
If the originator requires that a call be canceled before it is

completed, then the CancelCall() method should be used.
If the originator changes the DataPort value, the effect is
undefined.

Related Information:
. Refer to Call Progress and Error Codes. in the VTScada Programmer's
Guide.

MakeDAG

Description: Constructs a Directed Acyclic Graph (DAG - an internal
function representation).

Warning: For use by advanced programmers only. Irrevocable alter-
ation of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications

Related to:

Format: MakeDag(Opcode, Parms)

Parameters:

Opcode

Required. Any numeric expression for the opcode of
the DAG to construct.

Parms

Required. Any numeric expression that indicates the
number of additional parameters to be included in the
new DAG. This is normally 0, except in cases such as a
new FWrite DAG.

Comments: This function constructs a Directed Acyclic Graph (an
internal function representation). This may be used to
build up a function or statement without compiling. This is
only intended to be used to define a new VTScada code syn-

tax.

MakeEditor

Description: Returns an editor value which is used by an editor

Returns: Editor

Usage: Script Only.

Function Groups: Editor

Related to: AddEditorText | CurrentLine | Editor | ForceEvent |
 GoToOffset | SetEditMode

Format: MakeEditor()

Parameters: None

Comments: This function is used by all of the functions that require an
editor.

Example:

aNewEditor = MakeEditor();
AddEditorText(aNewEditor, "The start of my editor");

These functions will create an editor called aNewEditor and put the above
text string in it.

MakeFixedBuff

Description: Creates a buffer value which has its data stored at a spe-
cific memory address. Not supported under 64-bit
VTScada.

Returns: Nothing (uses first parameter)

Usage: Script or steady state.

Function Groups: Memory I/O, String and Buffer

Related to: BuffOrder | BuffRead | BuffStream | BuffToArray |
 BuffToParm | BuffToPointer | BuffWrite | MakeBuff

Format: MakeFixedBuff(ReturnBuff, Address, Size)

Parameters:

ReturnBuff

Required. Any variable in which the newly created buf-
fer is stored.

Address

Required. Any expression which gives a 4 byte select-
or:offset value for the protected mode memory to
access. This is usually returned from a DLL call and is
handled as a long integer type value.

Size

Required. Any numeric expression giving the number
of bytes in the buffer. This value must be between 0
and 65 500.

Comments: This statement is used to access specific addresses in pro-
tected mode memory. This is intended to be used for spe-
cialized inter-program communication tasks such as
accessing a shared memory buffer used by another pro-
gram.

MakeNonPersistent

Description: Takes a variable and makes it not persistent.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Variable

Related to: AddVariable | ChangePersistentSize | FindVariable |
 MakeNonShared | MakePersistent | MakeShared |
 PersistentSize

Format: MakeNonPersistent(Variable)

Parameters:

Variable

Required. Any expression for the variable value. This
value is typically returned from a FindVariable or an
AddVariable call.

Comments: A persistent variable saves its current value on disk and is
automatically restored upon restarting the module. This
function will also make the variable not shared. See
MakeNonShared for the results of making the variable a
non-shared value. The variable will be removed from the
persistent (.VAL) file as well.

MakeNonShared

Description: Takes a shared variable and makes it not shared.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Variable

Related to: AddVariable | FindVariable | MakeNonPersistent |
 MakePersistent | MakeShared

Format: MakeNonShared(Variable)

Parameters:

Variable

Required. Any expression for the variable value. This
value is typically returned from a FindVariable or an
AddVariable call.

Comments: A shared variable has the same value for all instances of its
owning module. An instance will be created for the vari-
able in every running instance where the variable is used.
The instance will be initialized with the value of the shared
variable.
If Variable is a module value, it will be unaffected.

MakePersistent

Description: Takes a variable and makes it persistent (static).

Returns: Nothing

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Variable

Related to: AddVariable | ChangePersistentSize | FindVariable |
 MakeNonPersistent | MakeNonShared | MakeShared |
 PersistentSize

Format: MakePersistent(Variable, Size)

Parameters:

Variable

Required. Any expression for the variable value. This
value is typically returned from a FindVariable or an
AddVariable call.

Size

Required. Any numeric expression giving the number
of bytes of storage allocated in the .VAL persistent vari-
able file for this variable.
For array types, set this to the byte size of the largest
array element (normally 8 bytes for numeric values).
For arrays containing text, enter the character length
of the longest string element.

Comments: Since a variable can not be persistent without being shared
as well it will make Variable shared. (see MakeShared for
the results of this). If the variable is already persistent,.
there will be no change made to the variable. In particular,
the persistent size of the variable will not change.

MakeShared

Description: Takes a variable and makes it shared.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Variable

Related to: AddVariable | FindVariable | MakeNonPersistent |
 MakeNonShared | MakePersistent

Format: MakeShared(Variable)

Parameters:

Variable

Required. Any expression for the variable value. This
value is typically returned from a FindVariable or an
AddVariable call.

Comments: There will only be one instance of the variable's value so
anywhere the variable is set it will set it for all uses. Care
must be exercised that by making a variable shared you do
not create a "double set" on the variable (i.e. setting it in
two different statements at the same time). If you do the
result will be that the variable will become invalid. For
more information on double sets see the "Variable" section
in Chapter 3.
If Variable is a module value, it will be unaffected.

MapDraw

Description: Draws a "slippy" map, showing a list of site tags as pins on
that map.

Returns: Object reference

Usage: Steady State only. (called from a GUITransform)

Function Groups: Graphics

Related to: SlippyMapRemoteTileSource1 | GetSessionContainers

Format: MapDraw([Latitude, Longitude, Sites, InitZoom, MinZoom,
MaxZoom])

Parameters:

Latitude

Optional numeric expression specifying the Y-axis cen-
ter of the map. If not provided, the calculated center of
all sites to be drawn on the map will be used.

Longitude

Optional numeric expression specifying the X-axis cen-
ter of the map. If not provided, the calculated center of
all sites to be drawn on the map will be used. If there
are no sites to display on the map, the initial display
will be centered on North America.

Sites

Optional array of sites to display. Each site item in the
array must be a structure, containing valid pointers for
latitude, longitude and a callback object. See com-
ments.

InitZoom

Optional numeric expression, specifying the initial
zoom factor to use for the map. Ranges from 2 to 18.
If not specified, the maximum zoom level (smallest
area) that encompasses all the sites will be used.

MinZoom

Optional numeric expression, setting the lowest per-
mitted zoom level (corresponding to the set of the
largest tiles to be used, in the sense of maximum dis-
played area per tile).

MaxZoom

Optional numeric expression, setting the greatest per-
mitted zoom level (corresponding to the set of the
smallest tiles to be used, in the sense of minimum dis-
played area per tile).

Comments: The zoom factor corresponds to the tile set that

should be used within the area of the map. To zoom
in or zoom out means switching to a tile set that
shows a greater or lesser amount of detail, and
therefore a corresponding smaller or larger area of
geography.
Tiles are downloaded on request from the url spe-
cified in the property, SlippyMapRemoteTileSource1,
found in Setup.INI file
If a sites array to be used, it is created by first mak-
ing a call to GetSessionContainers. This returns an
array of tag names to be used. This is used as the
basis for a new array that contains structures for
each site, build using the site's latitude, longitude
and a call-back to a method for drawing the site.
The structure of the array is defined as follows:

{***** Structure that holds information for draw-
ing a Site on a map *****}
MapSite Struct [

PtrLatitude { Pointer to site's latitude in
decimal degrees };
 PtrLongitude { Pointer to site's longitude in
decimal degrees };
 Callback { Scope where Draw(MapObj, Lat, Lon)
is called to draw marker on map};
];

The following example shows how this would be
done.

Examples:

Init [
 If 1 Main;
[

 Sites = New(2);
 SiteObj = Scope(\Code, "MySite1");
 Sites[0] = MapSite(&(SiteObj\Latitude), &(SiteObj\Longitude),
SiteObj);
 SiteObj = Scope(\Code, "MySite2");
 Sites[1] = MapSite(&(SiteObj\Latitude), &(SiteObj\Longitude),
SiteObj);
]
]

Main [
 GUITransform(0, 400, 600, 0,
 1, 1, 1, 1, 1,
 0, 0, 1, 0,
 0, 0, 0,
 \MapDraw(Invalid, Invalid, Sites));
]

SiteObj is expected to have a Draw module. Draw is called by MapDraw in
order to draw this site at its location on the map. Draw is called with the
following parameters:
MapObj

Object value of MapDraw in which various helper functions can
be called.

PtrLatitude

A pointer to the site’s latitude value.

PtrLongitude

A pointer to the site’s longitude value.

PtrHide

A pointer to a Boolean value. When true, the result should be
that Draw will hide its graphic objects.

PtrZoomLevel

A pointer to the map's current zoom level, ranging from zero
to twenty where zero shows the entire world.

Draw should use the helper functions LonToX() and LatToY(), to position
its graphics at the correct x,y location on the map. For example:

X = MapObj\LonToX(PtrLongitude);
Y = MapObj\LatToY(PtrLatitude);

MatchKeys

Description: Returns true if the specified keyboard keys have been
pressed in the sequence given.

Returns: Boolean

Usage: Steady State only.

Function Groups: Keyboard

Related to: MakeBuff

Format: MatchKeys(Enable, Keys)

Parameters:

Enable

Required. Any numeric expression that enables
the function. Testing of keyboard input is
enabled when this parameter is true (i.e. not 0).
If it is 0 (false), then the function's value is false.
In addition, the Enable parameter controls the
type of comparison done. If the Enable is 1, a
case-sensitive match is made. If the Enable is 2,
then the match is not case-sensitive.
(Any non-zero value other than 2 will cause a
case-sensitive match. The use of 1 and 2 is
recommended for clarity.)

Keys

Required. A text expression giving the key
sequence to test for. The case of individual let-
ters may be significant, depending on the
Enable parameter.
To generate extended keys that are not already
available as constants defined in the system
layer, use MakeBuff to turn the ASCII code(s)
into a text expression. For example:
PageUp = Concat(MakeBuff(1, 253), MakeBuff(1,

0x49))
CtrlZKey = MakeBuff(1, 26)

Comments: This function should be used in a window or page
module in order to monitor key strokes.
The Enable parameter is a status expression con-
trolling the comparison. The comparison starts
once the Enable becomes true. If the Enable
becomes false, the function's value becomes false
and the comparison starts at the beginning of the
Keys string again once the Enable becomes true.
This feature is useful for resetting the MatchKeys
function once an action using the function's result
has been performed.
The MatchKeys function is also reset automatically
when it occurs in an action trigger that becomes
true.
The function's result is automatically set to 0 (false)
when the state containing the function is entered.
Once the function becomes true, it remains true as
long as the state does not change and the Enable
remains true.
Any key sequence may be used for the Keys para-
meters including the function keys. Note that the
MatchKeys function is case sensitive (upper and
lower case letters are treated as different char-
acters) when the Enable is an odd number. Often
only one key is included in the Keys string. Several
keys may be used in the Keys string and function as
a password. The keys typed are not displayed on the
screen by this function. Several MatchKeys functions
may be active at any time, each comparing the key-
board input against their own Keys parameter.

Example:

If MatchKeys(2,"Y");
[
...

]

When the letter "Y" is typed on the keyboard, regardless of case, the
action will trigger, execute its script, and reset the MatchKeys function to
wait until "Y" is typed again.

Related Information:
ASCII Constants
See: "Latching and Resetting Functions" in the VTScada Programmer's
Guide

Max

Description: Returns the maximum of a group of parameters.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Generic Math

Related to: AMax | AMin | Limit | Min

Format: Max(Parm1, Parm2 [, Parm3, ...])

Parameters:

Parm1, Parm2, Parm3, ...

Required. Any number of parameters giving any
numeric expressions, from which a maximum value
will be selected.

Comments: The order of the values is irrelevant. If any of the para-
meters is invalid, the return value is invalid also.

Examples:

p = Max(2, 3, 2.9, -3);
q = Max(3, 2);
r = Max(Invalid, 6);

The values of p, q, and r will be 3, 3 and Invalid respectively.

MCSInstance

Description: Module Calling Structure Instance. This function returns
the object value of a module called by another module.

Warning: This function should be used by advanced users only.

Returns: Object value

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: MCSMod

Format: MCSInstance(Code)

Parameters:

Code

Required. The code value in which the module call is
embedded.

Example:

startedInstance = MCSInstance(mcs);

This makes startedInstance an object value that points to a running
instance of a module started by the module given by mcs.

Related Functions:

MCSMod

Description Module Calling Structure Module. This function returns the
module value from a line of code that calls that particular
module.

Returns Module

Usage Script or steady state.

Function Groups Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: MCSInstance

Format: MCSMod(Code)

Parameters

Code

Required. The code value in which the module call is
embedded.

Comments This is an advanced function for use in writing and imple-
menting the main toolbar.

Mean

Description Returns the mean (average) of a portion of a numerical
array.

Returns Numeric

Usage Script or steady state.

Function Groups Array, Generic Math

Related to: AMax | AMin | AValid | FiltHigh | FiltLow | FitOffset |
 FitSlope | SDev | Sum | Variance

Format: Mean(ArrayStart, N)

Parameters

ArrayStart

Required. Any numeric array element giving the start-
ing element of the array. The index for the array may
be any numeric expression and specifies the starting
point for the array search. If processing a color array,
the usual rules apply to decide which dimension
should be examined.

N

Required. Any numeric expression giving the number
of array elements to use starting at the element given
by the first parameter. If N extends past the upper
bound of the lowest array dimension, this computation
will "wrap-around" and resume at element 0, until N
elements have been processed.

Comments Invalid array elements are not included as part of the cal-
culation, unless there are no valid numerical array ele-
ments in the specified range, in which case the function
returns invalid. Invalid is also returned if either parameter
is invalid, or if the number of elements to use is 0.

Example:

x[0] = Invalid;
x[1] = Invalid;
x[2] = Invalid;
x[3] = 1;
x[4] = 2;
x[5] = 1;
x[6] = 2;
avg = Mean(x[0], 7);

The value of avg will be set to 1.5.

MemIn

Description: Returns a byte, word, or longword of RAM memory.

Returns: Varies

Usage: Script or steady state.

Function Groups: Memory I/O

Related to: CopyIn | CopyOut | MemOut

Format: MemIn(Address, Type)

Parameters:

Address

Required. Any numeric expression which gives the
RAM address to read. This may be specified using the

@ operator.

Type

Required. Any numeric expression giving the type of
read to perform.

Type Read Type

0 Read 8 bit byte

1 Read 16 bit word

2 Read 32 bit long word

Comments: This function requires that the VTSIO driver be installed.
Please refer to the topic, Communicating Directly With
Hardware for more details.
This is a high priority function. If used in a statement or
action trigger, it will be evaluated at a very fast rate.
MemIn should be used sparingly to avoid reduced system
performance.
In certain cases, the registry may need to be modified to
allow access to the memory location.

Memory

Description: Returns the amount of memory that VTScada has acquired
from the OS heap for internal use.

Returns: Numeric

Usage: Script Only.

Function Groups: Memory I/O

Related to: Memory MemTrace

Format: Memory()

Parameters: None

Comments: The value returned is not the total amount of memory
used by the VTScada process as it does not include other
allocations that may be made from the OS heap.

Example:

If ! Valid(memUsed);
[
memUsed = Memory();

]

MemOut

Description: Writes a byte, word, or longword of RAM memory.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Memory I/O

Related to: CopyIn | CopyOut | MemIn

Format: MemOut(Address, Type, Value)

Parameters:

Address

Required. Any numeric expression that gives the RAM
address to write. This may be specified using the @
operator.

Type

Required. Any numeric expression giving the type of
write:

Type Write Type

0 Write 8 bit byte

1 Write 16 bit word

2 Write 32 bit long word

Value: Required. Any numeric expression giving the value to
write.

Comments: This function requires that the VTSIO driver be installed.
Please refer to the topic, Communicating Directly With
Hardware for more details.

In certain cases, the registry may need to be modified to
allow access to the memory location.

MemTrace

Description: Writes memory allocation information to a file.

Returns: Boolean indication of success or failure.

Usage: Script Only.

Function Groups: Memory I/O functions

Related to: Memory

Format: MemTrace(Tracefile, Lowstamp, Highstamp, Lowsize,
Highsize, LowID, HighID, Done)

Parameters:

Tracefile

Required. Any text expression for the name of the file
to generate.

Lowstamp

Required. The low timestamp range specifier. Defaults
to 0 if Invalid.

Highstamp

Required. The high timestamp range specifier.
Defaults to 1E99 if Invalid.

Lowsize

Required. The low size range specifier. Defaults to 0 if
Invalid.

Highsize

Required. The low size range specifier. Defaults to
0xFFFFFFFF if Invalid.

LowID

Required. The low caller id range specifier. Defaults to
0x0000 if Invalid.

HighID

Required. The high caller id range specifier. Defaults to
4096 if Invalid.

Done

Required. A return variable, which will be set TRUE
after the memory trace file has been written.
MemTrace is a threaded function.

Comments: If the file was generated, TRUE is returned; otherwise,
FALSE is returned

Related Functions:

Merge

Description: Applies a set of changes (the output of a Diff operation) to
a buffer.

Returns: Buffer

Usage: Script Only.

Function Groups: Configuration Management

Related to: Combine | Diff | Merge2

Format: Merge(SourceBuff, DiffBuff)

Parameters:

SourceBuff

Required. The buffer or stream to be modified.

DiffBuff

Required. The buffer or stream containing formatted
instructions for how to modify the source buffer.

Comments: The source buffer must be identical to the origin
buffer used to create the Diff buffer in the first
place. This operation cannot fail, but will produce
unexpected results if either input buffer is corrupt
or if the wrong origin buffer is used. This function

is synchronous and returns the result of the oper-
ation.
The operations in the DiffBuff are formatted as fol-
lows:

l The low 31 bits of the first four bytes hold the length
of the data portion, measured in bytes.

l The highest bit of those first four bytes will be a 0 to
indicate that this is a delete operation or a 1 to indic-
ate that this is an add operation.

l The next four bytes hold the offset into the source
buffer where the operation should take place.

l The final "length" bytes (where length was defined in
the first 31 bits) hold the data to be added in the case
that this is an add operation.

"DiffBuff" could be the result from the Diff function.
Merge assumes that the diffs in DiffBuff are ordered
and correct, hence does no checking for offsets out-
side SourceBuff, etc. It is the responsibility of the
caller to get it right.
Merge relies on "Modify" operations being ordered
as an "Add" in a particular location followed by a
"Delete" in the same location. This is the ordering
generated by the Diff function. Reversing the order
will cause undesirable results.

Examples:

Merge2

(System Library)

Description: Attempts to apply two different Diff buffers to a single ori-
gin buffer.

Returns: Result buffer.

Usage: Script Only.

Function Groups: Configuration Management

Related to: Combine | Diff | Merge

Format: \System\Merge2()

Parameters:

Source

Required. Buffer or stream to be modified .

Diff1

Required. Buffer or stream containing the first set of
Diffs for modifying "SourceBuff"

Diff2

Required.Buffer or stream containing the second set of
Diffs for modifying "SourceBuff"

pConflict1

Optional, pointer to a dictionary of conflicting records
of Diff1

pConflict2

Optional, pointer to a dictionary of conflicting records
of Diff2

pDiffStream

Optional, pointer to a stream contains all non-con-
flicting records from Diff1 and Diff2.

Comments: Similar to Combine, but without automatic conflict
resolution or change priority.
Both Diff buffers must have started from the same
origin and that origin must be the one provided. It
is assumed that the Diff buffers represent different
changes to the same origin.
This function fails if the changes cannot be applied
cleanly, without interfering or conflicting with one

another. A conflict is defined as any of the fol-
lowing:

l Two additions occurring at the same location and
adding different data.

l One deletion and one addition where the addition
occurs within the range of the deletion.

Information describing the nature of the failure is
provided to the fourth and fifth parameters. The
sixth parameter is provided with a combined Diff
buffer containing all of the changes that did not con-
flict.

Rules applied to detect conflicts:
1. Both operations delete and overlapping deletes
are combined to create a composite delete. If the
composite delete conflicts with a subsequent add,
all of the constituent deletes of the composite
delete are also marked as being conflicts.
2. Both are addition operations. Conflict can only
occur at the offset.

l If additions occur at different offsets then there is no
Conflict.

l If additions occur at the same offset with the same
data, then there is no conflict.

l If additions occur at the same offset, but adding dif-
ferent data then there is a conflict.

3. One operation adds and the other deletes.
l If addition occurs within the range of the deletion

operation then there is a conflict.

l If addition occurs outside of the range of the deletion
operation, then there is no conflict.

When two records are determined to be conflicting
based on the previous rules, we need to go through

all previously saved records marked #Pending to
move them to the conflicting dictionary.
If there are conflicts between the two Diffs, the sub-
routine returns conflict information, whereas if
there are none then the two diffs are simultaneously
applied to the source buffer.
This operation is synchronous, the result buffer is
returned by the call.

Examples:

MetaData

Note: Depending on the context in which it is used, this command has
two different purposes.

Description: If used with a variable which is not a dictionary, this com-
mand attaches meta data to that variable, thereby creating
a dictionary object. The primary purpose in this case is to
provide a means of associating extended data with a vari-
able.
If used with a variable which is a dictionary, this command
will return the value associated with the specified key.

Returns: Varies – see description

Usage: Script or steady state.

Function Groups: Dictionary, Variable

Related to: Dictionary

Format: MetaData(dictionary, key, [case sensitive]);

Parameters:

Dictionary

Required. A variable name that will become the dic-
tionary.

Key

Required. A text value. Integers may be used,
but will be cast to text.
This will become the first key within the dic-
tionary.

Case

An optional Boolean, controlling whether the dic-
tionary will use case sensitive keys or non case
sensitive.
TRUE (default) defines a non-case sensitive key.
FALSE defines case sensitive.

Example 1: Adding meta data to a variable

X = 42; { X is an integer variable with the value 42 }
MetaData(X, "A", 1) = 10;

X becomes a case sensitive dictionary having a root value that is the
integer 42 and possessing one key, "A", that has the value 10.

Example 2: Retrieving the meta data from a dictionary

X = Dictionary(5);
X["A"] = 42;
Y = MetaData(X, "A");

Y will now hold the integer 42, being the value stored with the key "A" in
the dictionary X.

Min

s

Description: Returns the minimum of a group of parameters.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Generic Math

Related to: AMax | AMin| Limit | Max

Format: Min(Parm1, Parm2 [, Parm3, ...])

Parameters:

Parm1, Parm2, Parm3, ...

Required. Any number of parameters, giving any
numeric expressions, from which a minimum value
will be selected.

Comments: The order of the values is irrelevant. If any of the para-
meters is invalid, the return value is invalid also.

Examples:

p = Min(62, 3, 2, 2.01);
q = Min(3, 2);
r = Min(Invalid, 6);

The values of p, q, and r will be 2, 2 and invalid respectively.

MkDir

Description: Create a new folder (directory) and returns its own error
code.

Returns: Numeric

Usage: Script Only.

Function Groups: File I/O

Related to: RmDir

Format: MkDir(Name)

Parameters:

Name

Required. Any text expression which is the full path
name of the directory to create. A known path Known
Path Aliases for File-Related Functions for File-Related
Functions may be provided in the form, :
{KnownPathAlias}.

Comments: The return value is as follows

Return Value Meaning

0 Directory successfully created

1 Directory already exists

2 Creation failed

3 Bad path

In VTS version 7.0 and later, MkDir can now create
directories recursively, so that

MkDir("C:\one\two\three");

will create directory one (if it does not already
exist), then create directory two (if it does not
already exist), and then finally create directory three
(if it does not already exist).
If Name is given as a relative path, it will be created
below the VTScada installation directory.

Example 1:

err = MkDir("C:\SAMPLE");

This creates the directory Sample on drive C.

Example 2:

err = MkDir("SAMPLE");

This creates the directory C:\VTScada\SAMPLE

ModemCount

Description Returns the number of data modems configured and oper-
ational in the system.

Returns Numeric

Usage Script or steady state.

Function Groups Modem

Related to: ModemDial | ModemList | ModemMedia | ModemStream
| ModemTransfer

Format: ModemCount()

Parameters None

ModemDev

Description: Obtains the identifier for a modem sub-device. (In order to
use the audio capabilities of a voice modem, the device
identifier for the wave output device is required.)

Returns: See description

Usage: Script Only.

Function Groups: Modem

Related to: ModemMedia | Sound

Format: ModemDev(ModemStream, DeviceName)

Parameters:

ModemStream

Required. The connected modem stream (returned
from a ModemStream or ModemDial function call).

DeviceName

Required. A text value describing the device whose
identifier is required. This should be "wave/out" to
obtain the identifier of the audio output device.

Comments: When called with a DeviceName of "wave/out", this func-
tion returns a value suitable for use with the SpeechSelect
and Sound functions.
Modem audio devices typically require 8-bit mono audio
at 8000 samples/sec. If the audio to be played does not
conform to this format, then the sound will not be played.
Speech engines usually have special voices available for

telephony applications – see the SpeechEnum function.

ModemDial

Description: Dials and attempts to connect to a remote modem and
returns the modem stream or an error code.

Returns: Modem Stream or Error Code

Usage: Script Only.

Function Groups: Modem

Related to: ModemCount | ModemList | ModemMedia |
 ModemStream | ModemTransfer

Format: ModemDial(Modem, PhoneNumber, ReceiveLen, Trans-
mitLen, MinBaud, MaxBaud, DataBits, StopBits, Parity,
XonXOff [, MediaMode, Timeout, InitString])

Parameters:

Modem

Required. Either a numeric expression giving the
modem number between 1 and the number of
modems in the system (the return from ModemCount),
or a modem stream opened via the ModemStream
function.

PhoneNumber

Required. Any text expression specifying the phone
number to dial. It can contain any of the special dialing
characters that WindowsÔ allows. If this parameter is
invalid a pass-through connection will be obtained.

ReceiveLen

Required. Any numeric expression giving the size of
the receive buffer for the serial stream in bytes.
ReceiveLen must be in the range 2 to 32 766. If more
bytes are received than can fit in the receive buffer
before the application removes them, the additional

data will be lost.

TransmitLen

Required. Any numeric expression giving the size of
the transmit buffer for the serial stream in bytes. Trans-
mitLen must be in the range 2 to 32 766. The buffer
must be large enough to hold the maximum number
of bytes pending transmission at any instance.

MinBaud

Required. Any numeric expression giving the min-
imum baud rate which will be acceptable on the
modem connection. The baud rate at which the con-
nection is made may actually be higher than this value
but may not exceed MaxBaud. The baud rate must be
in the range 0 to 115,200, and must divide evenly into
115,200 with no more than 2.5% error. The value of 0
has special significance. This corresponds to the max-
imum baud rate available for the particular device.

MaxBaud

Required. Any numeric expression giving the max-
imum baud rate which will be acceptable on the
modem connection. The baud rate at which the con-
nection is made may actually be lower than this value
but may not be less than MinBaud. The baud rate must
be in the range 0 to 115,200, and must divide evenly
into 115,200 with no more than 2.5% error. The value
of 0 has special significance. This corresponds to the
maximum baud rate available for the particular device.

DataBits

Required. Any numeric expression giving the number
of data bits per character. DataBits must be 5, 6, 7, or
8.

StopBits

Required. Any numeric expression giving the number

of stop bits per character. StopBits must be 1 or 2.

Parity

Required. Any numeric expression giving the parity
checking to use:

Parity Checking Type

0 No parity

1 dd parity

2 Even parity

3 Stick (space parity)

4 1 Stick (mark parity)

XOnXOff

Required. Any logical expression. If true (non-0) soft-
ware flow control is to be used. If false (0) it is not.
Since software flow control is only supported for
DigiBoards, this should normally be set to 0.

MediaMode

An optional numeric expression, specifying the
desired media mode for the call. See ModemMedia for
a description of valid values and their meanings.

Timeout

An optional parameter that should be set to the num-
ber of seconds after the completion of dialing that the
call should be allowed to wait before it is automatically
abandoned as NOANSWER. A value of 0 indicates that
the application does not desire automatic call aban-
donment. The default value of Timeout is 0.

InitString

An optional text value that will be sent to the modem
as the final part of initializing it for use, just before it
dials out. The string should include any terminating
characters that the modem will require to complete the

string, such as "\r".

Com-
ments:

Return Status

0 Idle (no connection), waiting for a call

1 Starting outbound call

2 Outgoing call request accepted by modem

3 Dial tone on outbound call

4 Dialing outbound call

5 Remote phone ringing on outbound call

6 Remote phone busy on outbound call

7 Connected (should not be seen since a stream value
will be returned at this point)

8 Another application is handling the call after a
ModemTransfer

9 Incoming call detected. The modem is being called,
but has not yet answered. Changes to 11 when the
modem answers.

10 The modem is temporarily unavailable. Occurs when
trying to place an outgoing call and either the
modem is still initializing or another TAPI aware
application has the modem.

11 The modem has answered a call. Modem training in
progress. Normally followed by a valid stream con-
nection. If an error has occurred, the return values
will be one of the following error codes:

Error
code

Meaning

-1 The (numeric) first parameter to the function is
out of range

-2 No dial tone detected on outbound call

-3 Remote phone busy on outbound call

-4 No answer on outbound call

-5 Remote hung up on incoming call

-6 Modem unavailable

-7 Other call termination condition

-101 TAPI error code 1
(LINEERR_ALLOCATED)

the serial port is in
exclusive use by
some other pro-
cess

-112 TAPI error code 12
(LINEERR_INCOMPATIBLEAPIVERSION)

the system does
not have the
required version of
telephony support
(TAPI 2.0 required)

-115 TAPI error code 15
(LINEERR_INUSE)

the line device is in
use and cannot
currently be con-
figured, nor can it
allow a party to be
added or a call to
be answered,
placed or trans-
ferred

-147 TAPI error code 47
(LINEERR_INVALMEDIAMODE)

the requested
media mode could
not be accom-
modated (e.g.
voice call request
on a non-voice
modem).

-167 TAPI error code 67
(LINEERR_NODEVICE)

the specified
device identifier,
which was pre-
viously valid, is no
longer accepted
because the asso-
ciated device has
been removed
from the system
since TAPI was last
initialized. Altern-
ately, the line
device has no asso-
ciated device for
the given device
class

-168 TAPI error code 68
(LINEERR_NODRIVER)

either TAPIAd-
dr.DLL could not
be located or the
telephone service
provider for the
specified device
found that one of
its components is
missing or corrupt
in a way that was
not detected at ini-
tialization time.
Use the Telephony
Control Panel to
correct the prob-
lem

-169 TAPI error code 69
(LINEERR_NOMEM)

insufficient
memory to per-
form the oper-
ation, or unable to
lock memory

-175 TAPI error code 75
(LINEERR_RESOURCEUNAVAIL)

insufficient
resources to com-
plete the operation
(e.g. a line cannot
be opened due to
a dynamic
resource over com-
mitment). Also
occurs where a
modem is being
used by a non-
TAPI application

ModemDigits

Description: Controls the receipt of DTMF digits entered from the
keypad of a telephone engaged on a voice call via a voice
modem.

Returns: Nothing

Usage: Script Only.

Function Groups: Modem

Related to: GetStreamLength | ModemDial | ModemMedia |
 ModemStream | SRead

Format: ModemDigits(ModemStream, Enable)

Parameters:

ModemStream

Required. The connected modem stream (returned
from a ModemStream or ModemDial function call).

Enable

Required. Any logical value that is "true" (non-zero) to
enable digit monitoring, and "false" (zero) to cancel
digit monitoring.

Comments: Once digit monitoring is enabled any digits detected by the
modem will appear as text characters (0123456789#*) in
the ModemStream. The presence of these characters can
be determined by using the GetStreamLength function and
they can be read using the SRead function.

ModemList

Descrip-
tion:

Returns a list of the modems in the system. This function should be
used to determine the correct parameter for the ModemStream or
ModemDial functions.

Returns: Array

Usage: Script only.

May be used in optimized Tag Parameter Expressions.

Function
Groups:

Modem

Related
to:

 ModemCount | ModemDial | ModemMedia | ModemStream |
 ModemTransfer

Format: ModemList()

Para-
meters:

None

Com-
ments:

The return value is a two-dimensional array with each row storing the
information for a single modem (i.e. ArraySize(ReturnValue, 0) = =
ModemCount()). There are four columns per row as follows

Column
#

Information

0 The operating system enumeration for this device

1 Comport identifier (e.g. "COM1")

2 'Friendly name" of the modem (e.g. "Standard
Modem")

3 MediaMode. Bit significant value indicating the cap-
abilities of the modem. Please refer to ModemMe-
dia for a description of valid values and their
meanings.

4 If set to1, the modem is controlled by the Tri-
hedral TSP. The Trihedral TSP is to be preferred
over other options.

The Microsoft Telephony Interface (TAPI) enumerates a num-
ber of devices – not just modems. This function enumerates
only the data/voice modems into a compact list. The ordering
of this list should not be relied upon as it may change due to
system hardware changes.

To use this function:
1. Call the ModemList function

2. Iterate through the resulting array, choosing a modem by its
'Friendly Name' or by its 'MediaMode' capabilities.

3. Add one to the array index and use the resulting value as the
first parameter to ModemStream or ModemDial.

ModemMedia

Description: Enables you to determine the media mode of a serial
stream open on a modem, and change it if necessary (for
example, if you require the ability to be able to handle
both incoming voice mode and data mode calls).

Returns: Numeric

Usage: Script Only.

Function Groups: Modem

Related to: ModemDev | ModemDial | ModemDigits | ModemList |
 ModemStream | ModemTransfer | Sound

Format: ModemMedia(ModemStream [, MediaMode])

Parameters:

ModemStream

Required. The connected modem stream (returned
from a ModemStream function call) that is to be
handed off to another interested application.

MediaMode

Required. Specifies the desired media mode for the
call. Valid values are bit significant, and more than one
may be specified.

MediaMode Meaning Comments

2 Unknown Is set whenever more
than one of the other
values is set.

4 Interactive
Voice

A voice mode call
using the modem
microphone/speaker.

8 Automated
Voice

For simulated speech
and wave files. Allows
DTMF digit detection.

16 Datamodem For data calls.

32 Group 3
Fax

For FAX calls.

Comments: MediaMode is important when handling multi-mode calls.
It may be specified when dialing a call (ModemDial) or pre-
paring a modem for answering incoming calls
(ModemStream), and is a consideration before handing off
a call to another service (ModemTransfer). If more than
one MediaMode bit is set, then the call type is undeter-
mined, and Unknown (2) should also be set.
It is not possible to change the media mode to a mode
other than those specified when the ModemStream was cre-
ated. If the requested Media change cannot be imple-
mented, the function will return Invalid. The function will
also return Invalid if there is no active call in progress on
ModemStream.

If Interactive Voice (4), or Automated Voice (8) is specified,
then the modem will be initialized in voice mode. On out-

going calls, this has the effect that progress indication is
unreliable – the call will be reported as connected as soon
as dialing completes. This is a limitation of analog voice
modems.
Changes to media mode may not happen instantly. For
example, changing a call from voice mode to data mode
initiates the modem training sequence that may take sev-
eral seconds to complete. The return value of the
ModemMedia function indicates the current state, and so
can be used to determine when the change has completed.

Example:
As an example, the following steps would be required to provide an auto-
mated alarm reporting system that hands off incoming data calls to the
system RAS service.

1. Enumerate the available modems with ModemList and choose one with
DataModem and Automated Voice facilities.

2. Use ModemStream to prepare the modem for incoming calls, specifying
Datamodem, Automated Voice, and Unknown as the media mode.

3. When a call arrives, it will initially be answered in voice mode. Use ModemDi-
gits to set up digit monitoring.

4. Use ModemDev to obtain the handle for the wave/out device. This handle
can then be used with the Sound function to play a wave file, or with the
SpeechSpeak function to play simulated speech. A typical initial function
would be to request that the caller press a digit key on the phone.

5. If, for example, no DTMF digit is received within a few seconds, then it may
be assumed that this is actually a data call. In this case, ModemMedia should
be called to set the Datamodem media mode. If the return value is valid, then
the mode should be polled approximately every 0.5 second, until ModemMe-
dia returns a value that no longer contains Automated Voice. The
ModemTransfer function may now be called to transfer the call, and the
modem stream can be closed.

ModemStream

Description: Open a serial stream on a modem and returns its status
(prior to the connection being made), a modem stream
(after the connection has been established), or an error
code.

Returns: Varies – see description

Usage: Script Only.

Function Groups: Modem

Related to: ModemCount | ModemDial | ModemList | ModemMedia
| ModemTransfer

Format: ModemStream(Modem [, RingCount, ReceiveLen, Trans-
mitLen, MediaMode])

Parameters:

Modem

Required. Any numeric expression giving the modem
number between 1 and the number of modems in the
system (the return from ModemCount).

RingCount

An optional parameter that is any numeric expression
designating the number of rings after which the
modem should be answered. If this parameter is 0 the
modem will not answer the call. The default is 1.

ReceiveLen

An optional parameter that is any numeric expression
giving the size of the receive buffer for the serial
stream in bytes. ReceiveLen must be in the range 2 to
32 766. The default length is 1024. If more bytes are
received than can fit in the receive buffer before the
application removes them, the additional data will be
lost.

TransmitLen

An optional parameter that is any numeric expression

giving the size of the transmit buffer for the serial
stream in bytes. TransmitLen must be in the range 2 to
32 766. The default length is 1024. The buffer must be
large enough to hold the maximum number of bytes
pending transmission at any instance.

MediaMode

An optional numeric expression, specifying the
desired media mode for the call. See ModemMedia for
a description of valid values and their meanings.

Com-
ments

Typically, this function is used to prepare a modem for the receipt of
incoming calls. Use the ModemDial function to make outgoing calls.
The return value for this function will be one of the following integer
values until the modem has a valid connection with a remote modem

Return
Value

Status

0 Idle (no connection), waiting for a call

1 Starting outbound call

2 Outgoing call request accepted by modem

3 Dial tone on outbound call

4 Dialing outbound call

5 Remote phone ringing on outbound call

6 Remote phone busy on outbound call

7 Connected (should not be seen since a stream value
will be returned at this point)

8 Another application is handling the call after a
ModemTransfer

9 Incoming call detected. The modem is being called,
but has not yet answered. Changes to 11 when the
modem answers

10 The modem is temporarily unavailable. Occurs when
trying to place an outgoing call and either the
modem is still initializing or another TAPI aware
application has the modem

11 The modem has answered a call. Modem training in
progress. Normally followed by a valid stream con-
nection

If an error has occurred, the return values will be one of the
following error codes:

Error
Code

Error

-1 The (numeric) first parameter to the function is
out of range

-2 No dial tone detected on outbound call

-3 Remote phone busy on outbound call

-4 No answer on outbound call

-5 Remote hung up on incoming call

-6 Modem unavailable

-7 Other call termination condition

-101 TAPI error code 1
(LINEERR_ALLOCATED)

the serial port is in
exclusive use by
some other pro-
cess

-112 TAPI error code 12
(LINEERR_INCOMPATIBLEAPIVERSION)

the system does
not have the
required version of
telephony support
(TAPI 2.0 required)

-115 TAPI error code 15
(LINEERR_INUSE)

the line device is in
use and cannot cur-
rently be con-
figured, nor can it
allow a party to be
added or a call to
be answered,
placed or trans-
ferred

-147 TAPI error code 47
(LINEERR_INVALMEDIAMODE)

the
requested media
mode could not be
accommodated
(e.g. voice
call request on a
non voice modem).

-167 TAPI error code 67
(LINEERR_NODEVICE)

the specified
device identifier,
which was pre-
viously valid, is no
longer accepted
because the asso-
ciated device has
been removed
from the system
since TAPI was last
initialized. Altern-
ately, the line
device has no asso-
ciated device for
the given device
class

-168 TAPI error code 68
(LINEERR_NODRIVER)

either TAPIAd-
dr.DLL could not
be located or the
telephone service
provider for the
specified device
found that one of
its components is
missing or corrupt
in a way that was
not detected at ini-
tialization time.
Use the Telephony
Control Panel to
correct the prob-
lem

-169 TAPI error code 69
(LINEERR_NOMEM)

insufficient
memory to per-
form the operation,
or unable to lock
memory

-175 TAPI error code 75
(LINEERR_RESOURCEUNAVAIL)

insufficient
resources to com-
plete the operation
(e.g. a line cannot
be opened due to a
dynamic resource
over commitment).
Also occurs where
a modem is being
used by a non-TAPI
application. It is
not possible to
change the media
mode of a call dur-
ing a call.

ModemTransfer

Description: Transfers a modem call to another application and returns
an indication of success.

Returns: Numeric

Usage: Script Only.

Function Groups: Modem

Related to: ModemCount | ModemDial | ModemList | ModemMedia
| ModemStream

Format: ModemTransfer(ModemStream)

Parameters:

ModemStream

Required. The connected modem stream (returned
from a ModemStream function call) that is to be
handed off to another interested application.

Comments: The call is transferred to the next highest priority applic-
ation interested in the call. When the transfer is made, the
stream value will be set to 8. This function will return true
(1) to indicate a successful transfer or false (0) if the trans-
fer was unsuccessful.
Passing an incoming call to a RAS would be a common use
for this function.

ModifyAccount

Security Manager Module

Description: Used to change any of the elements of an account defin-
ition that may be modified.

Returns: Object value

Usage: Script Only.

Related to: AddAccount | DeleteAccount

Format: \SecurityManager\ModifyAccount (NewAccountData [,
PtrReturnCode, HaveLock]);

Parameters:

NewAccountData

Required. An AccountData structure, a single dimen-
sion array of AccountData structures or a dictionary of
AccountData structures containing the data to modify
in each account.

PtrReturnCode

Optional. A pointer to a value that will contain one of
the defined result codes at the conclusion of the oper-
ation.

HaveLock

Optional. A Boolean value that indicates whether the
working copy lock is held by the calling code. Default
FALSE.

Comments: To use this API, the calling code must be running in a secur-
ity session that has Manager privilege.
Modifying an account is an asynchronous operation. If the
asynchronous operation was not attempted, due to detec-
tion of an error, the return value will be Invalid. If the asyn-
chronous operation is attempted, the return value will be
an object value. The object value will become Invalid when
the asynchronous operation completes. At that time (or
when the method returns Invalid), the value addressed by
PtrReturnCode can be examined to determine the status of
the operation. The contents of the value addressed by
PtrReturnCode is undefined until the method returns
Invalid.
A single account can be modified by supplying a single
AccountData structure in NewAccountData. Multiple
accounts can be modified in one operation by providing a

single dimension array or dictionary of AccountData struc-
tures in NewAccountData.
The result code returned in the value addressed by
PtrReturnCode will be a scalar value if a single structure
was supplied in NewAccountData. If an array of structures
or a dictionary of structures was supplied, a single dimen-
sion array of the same size as NewAccountData will be
returned in the value addressed by PtrReturnCode, each
element containing the result code for the corresponding
NewAccountData element.
Modifying an account requires a working copy write lock.
If such a lock is held by the calling code, the HaveLock
parameter must be set to TRUE. Otherwise omit this para-
meter or set it to FALSE. If the calling code holds a read
lock on the working copy, this must be released before
ModifyAccount can complete its operation.
The AccountData structure(s) provided must have the
AccountID member set to an existing account ID.
Any other member of the structure can be Invalid, in which
case no change is made to that member of the account
record. Only valid members cause modification.
If the password is being changed, the new password must
be conformant with application password strength set-
tings. On return the Password member is not erased. It is
highly recommended that calling code be careful to ensure
that unencrypted passwords are destroyed as soon as pos-
sible after completion of this operation.

ModifyBitmap

Description: Reads an existing image handle and produces a new one
with modifications. The original image is not altered.
Returns invalid upon failure.

Returns: Image

Function Groups: Graphics

Usage: Script or steady state.

Related to: Crop | GUIBitmap | GUIButton | ImageArray |
 ImageSweep | MakeBitmap

Format: ModifyBitmap(Handle[, Reflect, Hue, Saturation, Lightness,
Transparency, Contrast, ColorizeHue, ColorizeSaturation,
AntiAlias, ScalarColor, Rotation])

Parameters:

Handle

Required. The image handle to copy and modify.

Reflect

An optional logical value that can be set to 1 to reflect
the image about the vertical axis. The default is no
reflection (0).

Hue

An optional numeric expression for the hue rotation to
apply to all of the colors in the image. Range -180 to
180. The default is no hue rotation, (0).

Saturation

An optional numeric expression that is a multiplier to
the intensity of each primary color component of
every color in the image. Range: 0+. Defaults to 1 if
missing or invalid.

Lightness

An optional numeric expression that is a multiplier to
the brightness of the image. Range 0+. Defaults to 1 if
missing or invalid.

Transparency

An optional numeric expression for a multiplier to the
transparency (alpha value) of every color in the image.
Range 0 (transparent) to 1 (opaque). Defaults to 1 if
missing or invalid.

Contrast

Optional numeric expression to enhance the dif-
ferences between the colors in the image. Range 0+.
Defaults to 1 if missing or invalid.

ColorizeHue

Optional numeric expression for the hue value of a
color to be mixed with every color in the image. Range
-180 to 180. Defaults to 0 if missing or invalid.

ColorizeSaturation

Optional numeric expression for the intensity of the
added color. Zero means that no color is added. Range
0-1. Defaults to 0 if missing or invalid.

AntiAlias

Bit 0 controls whether anti-aliasing will be done
when the image is stretched. Defaults to 1
(TRUE) if missing or invalid.
By default, feathering will be applied to an anti-
aliased image when it is stretched. Set bit 1 to 1
(TRUE) to suppress feathering.

ScalarColor

Optional color value in the form aRGB1, used to apply
a specific color to a gray-scale image.

Rotation

Optional floating point value, specifying the clockwise
rotation in degrees to be applied when the image is
drawn.

Comments Some image modifications have a greater performance
impact than would typically be assumed, due to the way

1A colour value, defined as four, two-digit hexadecimal values. Alpha -
Red - Green - Blue. An Alpha value of FF is assumed if only the RGB val-
ues are provided.

image rendering is optimized. Scaling and cropping
changes are slow, for example

ModifyConfiguration

Description: Provides a safe way to write to configuration files.

Returns: Nothing

Usage: Script Only.

Function Groups: File I/O

Related to: FRead | GetUserID | ReadConfiguration |
 WritePropertiesFile

Format: ModifyConfiguration(pSuccess, CallBackModuleName[,
ExtraInfo, Deploy])

Parameters:

pSuccess

A required pointer to a value, which will be set to 1 on
successful completion or 0 on failure.

CallBackModuleName

A required text value, containing the name of the call-
back module to be launched into the caller.

ExtraInfo

An optional parameter which may be any value. If
present, it will be passed through to the callback mod-
ule.

Deploy

Optional Boolean. Has no effect while the application is
running in automatic-deploy mode. If auto-deploy is
off, then when this parameter is TRUE (or Invalid) the
modified files will be deployed immediately after the
changes occur. Defaults to TRUE.
Deploy must be present and set to FALSE to prevent
ModifyConfiguration from acting as if auto-deploy is

always on.

Comments: If the caller of ModifyConfiguration is subscribed to
working copy changes (via WCSubscribe), then it will
not get subscription callbacks for its own changes
following a call to this function.
The callback module, named in the second para-
meter, must be either a launched module or a sub-
routine that returns Invalid. The callback module is
allowed to write configuration files and is guar-
anteed that, for the life of the module, no other con-
figuration code can modify that file.

The callback module must have the following para-
meters

pUserID

A pointer variable, to which the current user ID should
be assigned. This will be saved as part of the version
history.

pComment

A pointer variable for a text comment, to be recorded
in the version history.

ChangedFiles

A dictionary that must be populated with the names of
the files to be changed during the callback. For each
file, add an entry with the key being the file name and
the value set to zero. File names may be absolute or rel-
ative.
The callback must record the changed files in this dic-
tionary or else they will not be recorded in the con-
figuration management system or deployed to other
workstations.

ExtraInfo

Extra data to be passed to the callback function.

Example:

If 1 WaitWritten;
[
\ModifyConfiguration(&Success, "WriteConfig", Invalid, FALSE);
]

…
]

<
{============================= \WriteConfig
==============================}
{==-
=====}
WriteConfig
(
pUserID { User that gets recorded with change

};
pComment { Comment that gets recorded with change

};
ChangedFiles { Dictionary to populate with names of

changed
files

};
 ExtraInfo { Accepts whatever was in the third para-
meter
 of
ModifyConfiguration };
)

Main [
If 1;
[
*pUserID = \GetUserID();
*pComment = "Updating MyService configuration";
ChangedFiles["MyConfigFile.txt"] = 0;
{ The first line of the file is written from Info1,

}
{ and the second line is written from Info2.

}
FWrite("MyConfigFile.txt" { file name },

1 { clear file },
0 { offset },
"%s\r\n%s\r\n" { format string },
Info1, Info2 { values to write });

Return(Invalid);
]

]

{ End of WriteMyServiceConfig\WriteConfig }
>

ModifyTags

Description: Can be used to create, modify, or delete running tags.
Replacement for StartTag for the case where persisted tags
were created. See comments for more detail.

Returns: Object reference

Usage: Script Only.

Function Groups: Configuration

Related to:

Format: ModifyTags(pSuccess, TagParameters[, newTags, UserID,
Comment, Merge, HaveLock, pErrors)

Parameters:

pSuccess

An optional pointer to a value, which will be set to 1 on
successful completion or 0 on failure.

TagParameters

Dictionary of tag parameters, each of which is also a
dictionary. See examples.

NewTags

Optional. Dictionary of tag additions. Key is tag
friendly name and value is tag type.
If you have a NewTags entry for a tag that already
exists, then the action will be a deletion and an add of
that tag. The added tag will not have the same
UniqueID as the original tag, and therefore page ref-
erences and history for the old tag will not be asso-
ciated with the new tag,

UserID

Optional. User making change

Comment

Optional. Comment to store with changes

Merge

Optional. On update, true to retain parameters not spe-
cified in parameter dictionary, false to revert all other
parameters to their defaults. Defaults to TRUE

HaveLock

Optional. If false, this module gets the working copy
lock and commits changes and update tags when fin-
ished. If true, caller must have WC lock ModifyTags
will not get WC lock, commit changes, or update run-
ning tags. Defaults to FALSE

pErrors

Optional output: dictionary of errors, keyed by
name of tag with error, containing #MODTAGS_*
error code. Defined in \Code.
Constants used as error codes, returned in the
pErrors dictionary parameter of ModifyTags:

Constant Value Description

#MODTAGS_
BADNAME

1 Name of added tag is
not allowed. Refer to
tag naming rules.

#MODTAGS_BADTYPE 2 Provided type is not
an existing type

#MODTAGS_
MISSINGTAG

3 Attempting to modify
a non-existent tag.

#MODTAGS_
MISSINGPARENT

4 Attempting to add a
child to a non-exist-
ing parent.

Constants used as global error codes returned
in root value of ModifyTags's pErrors dictionary
parameter:

Constant Value Description

#MODTAGS_
NOERROR

0 No error.

#MODTAGS_
TAGERROR

1 One of the errors listed
in the preceding table.

#MODTAGS_
NOTEDITABLE

2 Application cannot be
edited at this time.
(Most likely, a restart is
required.)

Comments: Some readers may have used non-persisted
StartTag calls to create parent/child tag structures.
Now that StartTag is obsolete, those structures
should be created with the Tag Browser, not in
code.
This module launches a worker module into \Code
so that the operation is not interrupted by this mod-
ule's caller being slain. The return value of the func-
tion is a reference to this worker module. By
watching for this to become invalid, you can dis-
cover when the module has finished.

ModifyTags works by modifying root tag declar-
ations or adding overrides for child tags not defined
in the root tag database. It does not modify tag type
definitions.

The TagParameters dictionary is formatted as fol-
lows:

TagParameters[FullFriendlyName] = {TheChange};

l For tag deletion, {TheChange} is simply Invalid.

l For a creation or update, {TheChange} is a dictionary
of parameter values, keyed by parameter name.

When creating a new tag, the NewTags dictionary
must have an entry specifying the tag type. If there
is a tag with the given name already running, it will
be deleted and the new tag will be created with a
new unique ID, even if the type specified in
NewTags is the same as the type of the currently-
running tag. Hence, this is a way to stop a tag and
create a tag having the same friendly name, but a
different unique ID and possibly a different type, all
in a single operation.

When updating a tag, what will happen to tag para-
meters that are not specified in the TagParameters
dictionary will depend on the value of the Merge
parameter. If TRUE (the default), then those para-
meters remain unchanged by the operation. If
FALSE, then those parameters revert to their
default, where default for a root tag is the default
specified in the tag type, and the default for a child
tag is the value specified by its parent's type's child
tag definition record (that is, the value it would have
without any root overrides). The Merge parameter
has no effect on tag additions or deletions.

If HaveLock is TRUE, then when this module fin-
ishes, the memory cache of tag parameters will have
been updated, and those changes will be pending to
be written out to tag files and incorporated into run-
ning tags. Note that there is no guarantee that
those actions have been performed. That will hap-
pen during the next commit. If HaveLock is FALSE,
then it is guaranteed that all running tags affected

by these changes will have been updated or stopped
(whichever applies). Also, while all root tags and all
child tags (whose parents are running and that the
changes cause to bring into existence) will be run-
ning, it is not guaranteed that they will have run
their Refresh modules. It is also not guaranteed that
children of tags just started will be running yet let
alone Refreshed.

Examples:
Example 1 - Modify running tags (A and B exist and are running):

TagParms = Dictionary();
NewTags = Dictionary();

TagParms["A"] = Dictionary();
TagParms["A"]["Description"] = "Updated description1";
TagParms["A\B"] = Dictionary();
TagParms["A\B"]["Description"] = "Updated description2";

Success = Invalid;
Code\ModifyTags(&Success, TagParms, NewTags, GetUserID(), "Modify
tags", TRUE, FALSE, &Errors);

Example 2 - Add child tags (Tag C exists and is running):

TagParms = Dictionary();
NewTags = Dictionary();

NewTags["C\D"] = "AnalogInput";
TagParms["C\D"] = Dictionary();
TagParms["C\D"]["Description"] = "New AI description";
NewTags["C\D\E"] = "DigitalInput";
TagParms["C\D\E"] = Dictionary();
TagParms["C\D\E"]["Description"] = "New DI description";

Success = Invalid;
Code\ModifyTags(&Success, TagParms, NewTags, GetUserID(), "Add tags",
TRUE, FALSE, &Errors);

Example 3 - Delete a tag (Tag C\F exists. The third parameter must be
invalid. The sixth must be false.):

TagParms = Dictionary();
TagParms["C\F"] = Invalid;
Success = Invalid;
Code\ModifyTags(&Success, TagParms, Invalid, GetUserID(), "Delete
Tags", FALSE, FALSE, &Errors);

Example 4 - Add a parent and a child tag (G and H do not exist):

TagParms = Dictionary();
NewTags = Dictionary();

NewTags["G"] = "Calculation";
TagParms["G"] = Dictionary();
TagParms["G"]["Description"] = "New Calc description";
NewTags["G\H"] = "AnalogStatus";
TagParms["G\H"] = Dictionary();
TagParms["G\H"]["Description"] = "New AS description";

Success = Invalid;
Code\ModifyTags(&Success, TagParms, NewTags, GetUserID(), "Add tags",
TRUE, FALSE, &Errors);

After ModifyTags completes, the following changes to the running tags
are guaranteed:

l A and A\B will be updated.

l C\F will be stopped.

l C\D and G will be running but not necessarily refreshed yet.

l C\D\E and G\H (added tags whose parents weren't already running) will not
necessarily be running yet.

If TagParms includes the deletion of a parent tag, then all TagParms and
NewTags records related to the addition/modification/deletion of any
children of that tag are discarded.

ModifyUserPrivilege

(Security Manager Library)

Description: Modifies a privilege for the specified username.

Returns: Numeric (via the first parameter)

Usage: Script Only.

Function Groups: Security

Related to:

Format: \SecurityManager\ModifyUserPrivilege(PtrReturnCode,
Username, Privilege, SetPrivilege[, HaveLock])

Parameters:

PtrReturnCode

Required. A pointer to a variable that will be used for
the return code.

PtrReturnCode Meaning

1 Privilege modified.

2 Denied. The calling context
does not have the Manager
system privilege.

3 The privilege is not valid – no
action taken.

4 The specified user does not
exist – no action taken.

5 The SetPrivilege flag is invalid
– no action taken.

6 The application cannot be
edited.

UserName

Required. Any expression for the name of the user
account to modify.

Privilege

Required. Any numeric expression for the privilege to
be modified. Use a negative value for a system priv-
ilege and a positive value for an application privilege.

SetPrivilege

A Boolean expression. Set TRUE if the privilege is to be
added.

HaveLock

Optional Boolean expression. Set to true if we have the
WC lock. Defaults to 0 or FALSE.

Comments: May only be called from a user-context that has the Man-

ager system privilege. The return value of the function is
the object value of the launched worker module. This will
be set to Invalid when the operation has completed and
may be used to discover when that occurs.
Use of this function requires an understanding of the
VTScada security system and the system privileges. Please
refer to System Privileges in the chapter Security Manager
Service.

ModuleFileName

Description: Returns the full path (including the drive letter) and file
name of the document (.SRC) file of a module.

Returns: Text

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, File I/O,
Advanced Module

Related to:

Format: ModuleFileName(Module)

Parameters:

Module

Required. Any expression for the module to enquire
about.

Example:

If 1 Next;
[
PageFiles = ChildDocs(Scope(\Code, PageName), 10);
I = 0;
WhileLoop(I < ArraySize(PageFiles, 0),

PageFiles[I] = ModuleFileName(PageFiles[I]);
I++;

);
]

ModuleHighlighted

Note: Deprecated. Do not use in new code.

Description: Returns true if the module is highlighted.

Returns: Boolean

Usage: Script or steady state.

Function Groups: Module Tree Diagram

Related to: HighlightModule

Format: ModuleHighlighted(ModuleTree, Module)

Parameters:

ModuleTree

Required. Any expression for the module tree value.

Module

Required. Any expression for the module.

Month

Description: Returns the month for a given date number.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Time and Date

Related to: Date | DateNum | Day | Today | Year

Format: Month(Date)

Parameters:

Date

Required. Any numeric expression giving the number
of days since January 1, 1970.

Comments: This function works in conjunction with the Day and Year
functions to decompose a date number into the cor-

responding day, month and year. January is month 1.

Example:

myMonth = Month(8394 { 25 December 1992 });

The variable myMonth will be given the value 12.

MoveEditor

Note: Deprecated. Do not use in new code.

Description Moves the Editor to the given line and column.

Returns Nothing

Usage Script or steady state.

Function Groups Editor

Related to: AddEditorText | Editor | MakeEditor

Format: MoveEditor(EditorVal, Line, Column)

Parameters

EditorVal

Required. An editor Value which is returned by MakeEd-
itor.

Line

Required. Any numeric expression that specifies the
line to move the editor to.

Column

Required. Any numeric expression that specifies the
column to move the editor to.

Example:

aNewEditor = MakeEditor();
...
MoveEditor(aNewEditor, 22, 1);

This statement will cause the cursor to move to line 22, column 1 of
aNewEditor.

MoveSibling

Note: Deprecated. Do not use in new code.

Description: Moves the position of a module in a module tree diagram.

Warning: This statement should be used by advanced users only
since irrevocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Module Tree Diagram

Related to: MoveSelState | MoveState

Format: MoveSibling(Source, Destination)

Parameters:

Source

Required. Any expression for the module to be moved.

Destination

Required. Any expression for the module code value of
the sibling module where Source will be moved.

Comments: Source will be moved to the position occupied by Destin-
ation. Source and Destination must have exactly the same
parent module.

MoveWindow

Description: Will move a window to the specified coordinates.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics, Window

Related to: CurrentWindow | SizeWindow | WindowOptions | Window

Format: MoveWindow(Win, X, Y)

Parameters:

Win

Required. Any expression that gives an object value
contained in the window to move.

X

Required. Any numeric expression giving the pixel
coordinate to place the left hand side of the window.

Y

Required. Any numeric expression giving the pixel
coordinate to place the top of the window.

Comments: The pixel coordinates given are relative to the
upper left hand corner of the screen if this is a non-
child window. If this is a child window, then the
coordinates are relative to the top left corner of the
virtual client area of the parent window. This is con-
sistent with the Window function.
The corner being point (0,0). The X coordinates
increase as you move right across the screen. The Y
coordinates increase as you move towards the bot-
tom of the screen.

Example:

MoveWindow(CurrentWindow(), 20, 20);

This statement will cause the current window to move to the upper left
corner of the screen. (Will not cause an error in script mode, but this is
not common usage)

MuteSound

(Alarm Manager module)

Description This subroutine is used to turn off alarms sounds for all
alarms, both current and future.

Returns Numeric

Usage Script

Function Groups Alarm, Speech and Sound

Related to:

Format: \AlarmManager\MuteSound([Invalid, MuteState,
ExpiryTime]);

Parameters None.

Invalid

Placeholder. This parameter is now obsolete.

MuteState

Optional Boolean. Set TRUE to mute sound or FALSE to
unmute. Defaults to TRUE.

ExpiryTime

Optional numeric. Time at which a muted alarm
should unmute (UTC). Leave empty to toggle alarm
muting immediately according to the MuteState set-
ting.

Comments This subroutine will check the current user session
to ensure that the logged-on user has the required
privilege to toggle alarm muting before proceeding.

Note: The alarm Mute button can be selected or
released for each individual user or for computers
in the network, according to application con-
figuration. See: ApplyMuteSilencePerComputer,
and ApplyMuteSilencePerUser in the Manager's
Guide.

Example:

IF AlarmShouldBeMuted;
[
 \AlarmManager\MuteSound();
]

N Functions
The sections that follow identify all VTScada functions beginning with
"N".

New

Description Allocates memory for an array from RAM and returns a
pointer to that array.

Returns Pointer

Usage Script Only.

Function Groups Array, Memory I/O

Related to: AddVariable | AdjustArray

Format: New([Dimensions, Start], Size) { Mode 1 }
Or
New(FirstDimension, SecondDimension) { Mode 2 }

Parameters

{ Mode 1 }
Dimensions

An optional parameter that is any numeric expression
giving the number of array dimensions to allocate. To
allocate a simple value, use 0, and for a one dimen-
sional array, use 1.
If this parameter is omitted and the function has only 1
parameter, a single dimensional array is created. If it is
omitted and the function has 2 parameters (see FirstDi-

mension and SecondDimension), a two dimensional
array is created.

Start

An optional parameter that is either a numeric expres-
sion, or an array.
If Dimensions is omitted, this parameter must also be
omitted.
If Dimensions is 0, this is ignored. If Dimensions is 1,
this is treated as a number, which is the index of the
first element in the array allocated.
If Dimensions is greater than 1, this is must be the first
element of an array of numbers, each element indic-
ating the starting index for a dimension.

Size

Required. Either a numeric expression or an array. If
Dimensions and Start are omitted, a single value will
define the number of elements in the single dimension
array that is created.
If Dimensions is 0, this parameter is ignored. If Dimen-
sions is 1, this is treated as a number, which is the
number of elements in the array allocated. If Dimen-
sions is greater than 1, this must be the first element of
an array of numbers, each element indicating the num-
ber of elements in a dimension.

{ Mode 2 }
FirstDimension

Required. A numeric value that determines the number
of elements in the first dimension of the two dimen-
sional array that is created.

SecondDimension

Required. A numeric value that determines the number
of elements in the second dimension of the two dimen-
sional array that is created.

Comments The New function is limited to a maximum of 2,000,000
elements for each dimension.

Examples:

If 1 NextState;
[
simple = New(0, 0, 0); { Creates a simple value }
array1Ptr = New(1, 1, 10);{ Creates a 1-dimensional array }
start[0] = 1; { Dimension 1 - Starting index }
start[1] = 2; { Dimension 2 - Starting index }
length[0] = 3; { Dimension 1 - Number of elements }
length[1] = 4; { Dimension 2 - Number of elements }
array2Ptr = New(2, start[0], length[0]);
{ Creates a 2-dimensional array }

]

The above script allocates memory for 3 variables:
simple is a simple value
array1Ptr is a 1-dimensional array with 10 elements, numbering from 1
to 10
array2Ptr is a 2-dimensional array having 3 elements in its first dimen-
sion, numbering from 1 to 3, and 4 elements in its second dimension,
numbering from 2 to 5.
array1Ptr could also have been created with the same attributes by using
the following statement:

array1Ptr = New(10);

array2Ptr could have been created with same number of rows and
columns, but whose indices started from 0 by using:

array2Ptr = New(3, 4);

NextFocusID

Description: Moves the focus position to a specific ID number.

Returns: Nothing

Usage: Script Only.

Function Groups: Graphics, Keyboard

Related to: FocusID

Format: NextFocusID(Object, ID)

Parameters:

Object

Required. Any expression for the object that defines
the window where the focus is found.

ID

Required. Any numeric expression for the new focus
ID number.

Comments: This statement is useful for forcing the focus to a specific
object in a window.

Example:

If Change(myVar, 0);
[
IfThen(FocusID(Self()) != myFocus,

NextFocusID(Self(), myFocus));
]

These statements check a variable called myVar, whose value is set in pre-
vious code by an edit field, and whenever its value changes (i.e. the edit
field received the focus) the focus is checked, then reverted to another
object (such as an OK button).

Normal

Note: Deprecated. Do not use in new code.

(Alarm Manager module)

Description: Use this function to tell the Alarm Manager when an alarm
clears. This subroutine will deactivate the alarm. It will not
affect the unacknowledged status.

Returns: Numeric

Usage: Script Only.

Function Groups: Alarm

Related to: Register (Alarm Manager) | CurrentTime | IsActive

Format: \AlarmManager\Normal(AlarmObject[, EventTime]);

Parameters:

AlarmObject

Required. The object value for the alarm that was
passed to the Register subroutine.

EventTime

Optional. The time stamp to use when adding this
event to the alarm lists. If invalid or not defined, the
default is CurrentTime().

Comments: The Normal subroutine always returns "0".

Example:
To avoid an IF 1 condition when normalizing an alarm, it is common prac-
tice to include a variable to ensure that the script runs only once. This
should take its value from the current alarm state.

Init [
AlarmOn = AlarmManager\IsActive(MyAlarm);

]
Main [
IF value < SomeSetPoint && AlarmOn;
[
AlarmOn = 0;
AlarmManager\Active(MyAlarmObj);

]

Normalize

Description: Returns a normalized value.

Returns: Nothing

Usage: Steady State only. See: Rules for Usage.

Function Groups: Graphics

Related to: Limit | Scale | Tag

Format: Normalize(Value, LowScale, HighScale)

Parameters:

Value

Required. Any numeric expression which represents
the value to normalize.

LowScale

Required. Any numeric expression, which represents
the lowest normal scaled value of Value. This is not a
limit.

HighScale

Required. Any numeric expression, which represents
the highest normal scaled value of Value. This is not a
limit.

Comments: This function encapsulates an expression with low
and high scale values. Typically, this is used in a tra-
jectory, rotation or layered graphics function for
scaling. The return value is a Normalize value. The
function does not limit the value to be within the
range defined by LowScale and HighScale, but
rather, makes it such that when Value equals
HighScale the object (if using in a layered graphics
function) will fill its bounding box. If Value exceeds
HighScale, the object will extend past its bounding
box.
Low and high scale values may be calculated expres-
sions. The compiler will reduce them to constants if
they evaluate to constants. If any parameters are
invalid, the resulting value will still be valid nor-
malized value.
For example:

Valid(Normalize(Invalid, 1, 2))

will evaluate to 1 (true) and

ValueType(Valid(Normalize(Invalid, 1, 2)))

will evaluate to 21 - a normalize value.

Example:

GUIRectangle(0, 100, 100, 0 { Bounding box of rectangle },
1, 1, 1 { No scaling of left, bottom or right },
Normalize(reactorTemp, 0, 150), 1
{ Scale top only, not whole object },
0, 0 { No trajectory or rotation },
1, 0 { Rectangle is visible; reserved },
0, 0, 0 { Cannot be focused },
12, 15 { Bright red outlined in white });

The variable reactorTemp will be scaled for upper and lower values of 0
and 150. As the value of reactorTemp changes, the top of the rectangle
will move proportionately. If it exceeds 150, the top of the rectangle will
move outside of the original bounding box.

NormalTrip

Deprecated. Do not use in new code. (Alarm Manager module)

Description: This subroutine will deactivate an alarm and signal it as
unacknowledged.

Returns: Numeric

Usage: Script Only.

Function Groups: Alarm

Related to: Register (Alarm Manager) | CurrentTime

Format: \AlarmManager\NormalTrip(AlarmObject[, EventTime]);

Parameters:

AlarmObject

Required. The object value for the alarm that was
passed to the Register subroutine.

EventTime

Optional. The time stamp to use when adding this
event to the alarm lists. If invalid or not defined, the
default is CurrentTime().

Comments: The NormalTrip subroutine always returns "0".

Not

Description: Returns the result of a 32 bit unsigned bitwise logical NOT
operation.

Returns: 32 bit unsigned integer

Function Groups: Bitwise Operation

Usage: Script or steady state.

Related to: And | Or | XOr

Format: Not(Value)

Parameters:

Value

Required. Any numeric expression. The expression will
be truncated to a 32 bit unsigned integer.

Comments: If Value is invalid, the return value is invalid.

Examples:

r = Not(1);
s = Not(-1);
t = Not(0);
u = Not(-3);

The values of r, s, t and u will be -2 (0xFFFFFFFE), 0 (0x00000000), -1
(0xFFFFFFFF) and 2 (0x00000002) respectively.

NotifyVIC

Description: Sends a message to the VTScada Internet Client (VIC). The
message sent depends on the parameter given to the func-
tion.

Warning: For use by advanced programmers only. Effective use of
this function requires a thorough understanding of
VTScada programming.

Returns: Nothing

Usage: Script Only.

Function Groups: VTScada Internet Client

Related to:

Format: NotifyVIC(Value)

Parameters:

Value

Required. Any numeric expression from the following
table.

Value Meaning

0 No Op

1 App is stopping

2 Authentication Failure

3 User stopped the session

4 User logged out

5 The operator terminated the session
(from the Internet Client Monitor)

6 The operator forced a server
changeover (from the Internet Client
Monitor)

7 Refused due to license limits

Comments: none

Now

Description: Returns the current time in seconds since midnight.

Returns: Numeric

Usage: Steady State only. See: Rules for Usage.

Function Groups: Time and Date

Related to: Seconds | Time

Format: Now(Interval)

Parameters:

Interval

Required. Any numeric expression giving the update
time in seconds. Fractions of a second may be spe-
cified however, Interval must be greater than or equal
to 0.

Comments: This function is similar to Seconds, except that the update
interval can be specified. The Now function is re-evaluated
every Interval seconds, and the return value is the time in
seconds since midnight, rounded to the next lowest whole
multiple of Interval.
Now will report time to an accuracy of 0.001 seconds, how-
ever it would be unreasonable to expect the function to
trigger reliably each millisecond under normal operating
conditions. Your CPU speed and the load placed upon it by
other processes will both affect the maximum number of
times that Now can be triggered each second.

Example:

ZText(20, 20 { Window location of text },
Time({ Convert from seconds to standard time }

Now(1 { Update the time every second }),
 2 { Use hh:mm:ss format }),
 5, 0 { Color is dark magenta, use default font });

This displays the time on the screen. It updates every second on the
second.

Related Information:
See: "Latching and Resetting Functions" in the VTScada Programmer's
Guide

NParm

Description: Returns the number of parameters listed in a module
instance.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: AddParameter | FormalParms | NumParms | Parameter |
 RemoveParameter | ResetParm

Format: NParm(Object)

Parameters:

Object

Required. Any object value, variable, or expression for
a Module.

Comments: This function is for experienced users, and is not needed
for normal operation. Any user-defined module can be
called with any number of parameters. This function
returns the actual number of parameters in the call made
to the module instance Object. For launched modules the
return value is the minimum of the actual and the formal
parameters.

Example:

<
Show
(
parm1;
parm2;

)
Main [
myParms = NParm(Self());

]
>

When called in steady-state as Show("A", "b", "C"), the value of myParms
will be "3". When launched as Launch("Show", Invalid, Invalid, "A", "b",
"C"), the value of myParms will be "2".

NumericParameterEdit

Description: Wrapper for ParameterEdit, used when adding a numeric
parameter to a control.

Returns: Self

Usage: Steady State only.

Function Groups: Basic Module, Variable

Related to: ParameterEdit

Format: NumericParameterEdit(Left, Bottom, Right, Top, ParmVal,
ParmCodePtr, TagObjPreferred, Title, PtrWaitClose, Dia-
logRoot, MinLimit, MaxLimit, PTypeIdx[, TitleWidth,
ShowDrawnTagProperty, FocusID, Type])

Parameters:

Left

Required. Any numeric expression for the left edge of
the object.

Bottom

Required. Any numeric expression for the bottom
edge of the object.

Right

Required. Any numeric expression for the right edge
of the object.

Top

Required. Any numeric expression for the top edge of
the object.

ParmVal

The parameter value to be altered.

ParmCodePtr

The code pointer to the parameter.

TagObjPreferred

Set to TRUE in order to obtain a tag object when pos-
sible.

Title

The title to display.

PtrWaitClose

Wait to close.

DialogRoot

Root dialog calling this control.

MinLimit

Minimum limit of the selection.

MaxLimit

Maximum limit of the selection.

PTypeIdx

Index of the Parameter type selection.

TitleWidth

Optional, number of pixels allotted for the width of the
title.

ShowDrawnTagProperty

Optional Boolean, set to TRUE to show "Drawn Tag
Property". Defaults to TRUE.

FocusID

Optional value for the focus ID of this control.

Type

Optional value specifying the type for the parameter.
Defaults to Double.

Comments: Automatically determines what module to use for display
and entry of the existing value.

Example:

ParmEditObj = \NumericParameterEdit(0, 2 * (EditHt + Space), PanelWd,
0,

Parms[#DataSource] { Parameter Value

},
ParmCodePtrs[#DataSource] { Pointer to Parm

Code },
1 { Tag object pre-

ferred },
\DataSourceLabel { Title

},
&SubWaitClose { Wait to close

},
DialogRoot { Calling dialog

window},
LowScale { MinLimit

},
HighScale { MaxLimit

});

NumInstances

Description: Returns the number of module instances currently run-
ning.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Basic Module

Related to: GetInstance | Instance | CalledInstances

Format: NumInstances(Module)

Parameters:

Module

Required. Any module or object value of the module to
count.

Comments: This function is useful for counting both the number of act-
ive instances of the current module as well as the number
of active instances of another module.

Example:

numThis = NumInstances(Self());
If ! Valid(numAnother);
[
numAnother = NumInstances(FindVariable("Calculations", Self(),
0, 1));

]

These statements count the number of active instances of the current
module and the Calculations module. Notice that the script is necessary
in the second case, not because of the NumInstances function, but
because of the FindVariable function.

NumParms

Description: Returns the number of parameters of a statement.

Warning: This function should be used by advanced users only.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: FormalParms | NParm

Format: NumParms(Statement)

Parameters:

Statement

Required. Any expression for the statement code value
or code pointer value.

Comments: This function returns the number of parameters of a state-
ment.

NumSelected

Description: Returns the number of selected graphics statements in a
window.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Graphics

Related to: SelectGraphic | UnselectGraphics | UnselectObject

Format: NumSelected(Object)

Parameters:

Object

Required. Any expression for the object that defines
the window.

Example:

selGraphic = NumSelected(CurrentWindow());

This will set selGraphic to the number of currently selected objects in the
window that the mouse is presently over.

NumSets

Description: Returns the number of statements that are currently active
in setting a particular variable.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Variable

Related to: Watch

Format: NumSets(Variable)

Parameters:

Variable

Required. Any variable for which the number of sets is
required.

Example:

setsOnX = NumSets(x);

This will set setsOnX to the number of statements that are currently act-
ive in setting the value of variable x.

NumVariables

Description: Returns the number of variables in a module.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Variable

Related to: SelectGraphic | UnselectGraphics | UnselectObject

Format: NumVariables(Module)

Parameters:

Module

Required. Any expression for the object or module
value.

Example:

numVars = NumVariables(Self());

This will set numVars to the number of variables in the current module.

O Functions
The sections that follow identify all VTScada functions beginning with
"O".

ODBC

Description Performs an ODBC command and returns a dynamically
allocated array if required.

Returns Array

Usage Script Only.

Function Groups Database and Data Source, ODBC

Related to: ODBCConfigureData | ODBCConnect | ODBCDisconnect |
 ODBCSources | ODBCStatus | ODBCTables | TODBC |

 TODBCConnect | TODBCDisconnect

Format: ODBC(DB, SQLCommand [, Attrib, ErrorMsg, SQLState,
ErrorCode])

Note: Refer to the comments section of TODBC for
a discussion on the differences between blocking
and non-blocking ODBC calls.

Parameters

DB

Required. An ODBC value for the ODBC database as
returned by ODBCConnect.

SQLCommand

Required. Any text expression for the SQL command
to perform on the ODBC database driver. If the query
involves long binary data types, then a structure
should be used. See examples.

Attrib

An optional parameter that returns a 2D array, with
each row in the array holding detailed attributes for
one column of the result set, as per the following

Attrib Attribute

Attrib[col][0] Name of the column

Attrib[col][1] Type of data VTScada will
return for the column:
0 == text
1 == numeric

Attrib[col][2] Type SQL Data Types indic-
ation for the field:

Attrib[col][3] A numeric value that is either
the maximum or actual char-
acter length of a character
string or binary data type. It is
the maximum character
length for a fixed-length data
type, or the actual character
length for a variable-length
data type.

ErrorMsg:

A descriptive error or status message, returned by the
function. If valid, both ErrorMsg and SQLState will be
valid.

SQLState:

A 5-character SQL State code. SQL State codes are
defined by Microsoft and by the vendor of each ODBC
driver.

ErrorCode:

An unsuccessful operation always returns a non-zero
value, which is a numeric error code specific to the

DBMS vendor's ODBC driver or Microsoft's ODBC Driver
Manager.
A successful operation will always return a 0. ErrorMsg
and SQLState may or may not be set valid in the event
of a successful connection. If set valid, they should be
examined for relevant status information.

Comments: There may or may not be a return value for this function,
depending on the nature of the SQL command that was
executed. If a return value exists, it will be a dynamically
allocated, two-dimensional array that contains the rows res-
ulting from the query. The format for the array is Result
[Field][Record].
If any error, no matter how minor, occurs as a result of the
SQL command, and if the ODBCConnect that connected to
the database had its Disconnect parameter set true, then
the value of DB will become invalid (i.e. the connection to
the database will be dropped).
All ODBC operations can result in one or more status or
error conditions arising. VTScada records the entire set of
status/error conditions arising and buffers them internally.
Use the ODBCStatus function to retrieve the entire set. Only
the first condition that occurred or, if both error and advis-
ory conditions occur, the first error condition, is returned in
the ErrorMsg and SQLState values.
From VTS 10.0 onwards, VTScada uses ODBC 3.x compliant
operations (formerly ODBC 2.x). This has the side effect
that different SQLState return values are returned for some
SQLState values. If you have written code that depends on
the value returned by SQLState, you may need to change
the value you expect. See http://msdn.microsoft.com/en-
us/library/ms712451%28VS.85%29.aspx for a reference on
the value changes.
In the case of the optional parameters, any parameter that
is not required may be set to 0 if it is followed by a valid
parameter, or may be simply omitted if no valid parameters

follow it.
This command requires a knowledge of SQL (Structured
Query Language). The examples provide several SQL state-
ments which you can use as templates.

Example 1
Optional entities are enclosed in square brackets [], while required ones
are enclosed by angled brackets < >. Italicized text represents names of
tables, fields, etc. Embedded quotes need to appear twice to signify to
VTScada that they are part of the string, and do mark the close of the
string.
To create a table, the basic format is:

Create Table "TableName" (< list of fields/types >)

where
< list of fields/types > is a comma separated list of fields and their types
(the field and type are separated by a white space character) that define
the table. The field names must be enclosed in quotation marks if they
duplicate an SQL reserved word or if they contain a white space char-
acter. Field types include (but are not limited to):

Int or Integer, SmallInt, Float, Real, Double, Precision, Dec(p,d) or
Decimal(p,d), Numeric(p, d)
Char(n) or Character(n), VarChar(n) or Char Varying(n) or Character
Varying(n)
Bit(n), Bit Varying(n)
Date, Time

where p is the precision (total number of decimal digits) and d is the
number of places after the decimal point.
To create a table for a custom tag type called Motor, the SQL command
might look something like the following:

Create Table "Motor" ("Name" Char(32), "Area" Char(32), "Description"
Char(32), "Input" Char(32), "Status" Int, "Temperature" Decimal(5,
1))

To insert an entry into a table, the basic format is:

Insert Into "TableName"
[(<list of fields >)]
Values (<list of values >)

where
[(< list of fields >)] is an optional clause that is a comma separated list
of fields defining which fields to assign the values to. The field names
must be enclosed in quotation marks if they duplicate an SQL reserved
word or if they contain a white space character. If this field list is omit-
ted, all fields must have an assigned value, even if they are null, in which
case the reserved word NULL (no quotes) is used.
< list of values > is a comma separated list of field values that define the
record and take the form:

'Value'

Values must be enclosed in single quotes if they are text strings.

Example 2:
To insert a record with binary large objects:

{ Declare and initialize the structure }
ODBCQuery STRUCT [
QueryString;
Parameters;

];
Query = ODBCQuery();

Query\QueryString = "INSERT INTO TestLargeBlobs (id, Blob1, Blob2)
VALUES (1, ?, ?)";
Query\Parameters = New(2);
Query\Parameters[0] = MakeBuff(10000000, 65);
Query\Parameters[1] = MakeBuff(20000000, 66);
ODBC(DBHandle, Query);

Similarly, to do an update:

Query = ODBCQuery();
Query\QueryString = "UPDATE TestLargeBlobs SET Blob2=? WHERE id=1";
Query\Parameters = MakeBuff(30000000, 67);
ODBC(DBHandle, Query);

Example 3:

To insert a record with a valid name and status (but all other fields
invalid) into the table created in the previous example, the SQL command
might look something like the following:

Insert Into "Motor" ("Name", "Status") Values ('Motor 1234', 1)

To retrieve data from a table, the basic format is:

Select [number of records]< list of fields >
From <list of tables >
[Where < conditions >]
[Order By < list of fields >]

where
[number of records] is an optional statement that limits the number of
records retrieved. It takes the form:

Top N

where N is the number of records.
< list of fields > is a comma separated list of fields to retrieve for each
record, or by which the records are sorted. The field names must be
enclosed in quotation marks if they duplicate an SQL reserved word or if
they contain a white space character. If all of the fields for a record are
to be retrieved, an asterisk should be used. The asterisk must not be
enclosed in quotation marks.
<list of tables > is a comma separated list of tables from which to
retrieve the data. As with the attribute list, the table names must be
enclosed in quotation marks if they duplicate an SQL reserved word or if
they contain a white space character.
[< conditions >] is an optional clause giving the list of conditions that
take the form:

"FieldName" = 'Value'

where FieldName is the actual name of the field and Value is the numeric
or text value to match. Note that once again, each field name need only
be enclosed in quotation marks if it duplicates an SQL reserved word or
contains a white space character. Similarly, the value needs to be
enclosed in single quotes only if it is a text string. Multiple conditions
are separated by the key word And.

Example 4
Suppose that in a VTScada application a user wanted retrieve the first 10
entries of an alphabetical list of names and descriptions for standard ana-
log input tags that belonged to the system area and had questionable
data:

Select Top 10 "Name", "Description" From "AnalogInput"
Where "Area" = 'System' And "Questionable = 1 Order by "Name"

To modify an entry in a table, the basic format is:

Update "TableName" Set <list of fields/values >

Where < conditions >
where
< list of fields/values > is a comma separated list of fields and their val-
ues that define the record and take the form:

"FieldName" = 'Value'

Field names must be enclosed in quotation marks if they duplicate an
SQL reserved word or if they contain a white space character. Values
must be enclosed in single quotes if they are text strings.
< conditions > is a list of conditions that define which record to modify.
For more information, see the < conditions > section in item number 3.

Example 5
To change an existing record (tag) in the standard analog input table (tag
type), the SQL command might look something like the following:

Update "AnalogInput" Set "Area" = 'System', "UnscaledMin" = 10,
"UnscaledMax" = 80 Where "Name" = 'AI36'

To delete an entry from a table, the basic format is:

Delete From "TableName" Where < conditions >

where
< conditions > is a list of conditions that define which record to delete.
For more information, see the < conditions > section in item number 2.

Example 6

To delete the record that was modified in the previous example entirely,
the SQL command might look something like the following:

Delete From "AnalogInput" Where "Name" = 'AI36'

Example 7
To connect to an ODBC data source and create a table whose name is
held in the variable tableName, and whose text string lengths are limited
to the value of the variable maxLen, the calls might look something like
the following:

If Valid(dsName) Main;
[
dbHandle = ODBCConnect(dsName, "", "", eMsg, eState, eCode);
eType = ODBCStatus(0);
IfThen(eType != 0,

Slay(Self(), 0);
);
commandString = Concat("Create Table """, tableName,

""" (""Name"" Char(", maxLen, "), ""Area"" Char(", maxLen,
""Description""", Char(", maxLen, "), "Input" Char(", maxLen,
"), "Status" Int, "Temperature" Decimal(5, 1));

result = ODBC(dbHandle, commandString, fieldAttrib, eMsg,
eState, eCode);

IfThen(eType != 0,
Slay(Self(), 0);
);

]

The following example shows an SQL command placed into a VTScada
parameter:

ODBC(DB, "Create Table ""Motor"" (""Name"" Char(32), ""Area"" Char
(32), ""Description"" Char(32), ""Input"" Char(32), ""Status"" Int,
""Temperature"" Decimal(5, 1))");

 Note that all embedded quotes need to appear twice to tell VTScada that
they are part of the string and not the end of the string. This applies to
all text constants used anywhere in VTScada.

ODBCBeginTrans

Description: Indicates to a specified ODBC-compliant database that a
transaction is to be started.

Returns: Nothing (return values in parameters)

Usage: Script Only.

Function Groups: Database and Data Source, ODBC

Related to: ODBCCommit | ODBCRollback | TODBCBeginTrans |
 TODBCCommit | TODBCRollback

Format: ODBCBeginTrans(DB [, ErrorMsg, SQLState, ErrorCode])

Parameters:

DB

Required. An ODBC-compliant database as returned by
ODBCConnect.

ErrorMsg

A descriptive error or status message, returned by the
function. If valid, both ErrorMsg and SQLState will be
valid.

SQLState

A 5-character SQL State code. SQL State codes are
defined by Microsoft and by the vendor of each ODBC
driver.

ErrorCode

An unsuccessful operation always returns a non-zero
value, which is a numeric error code specific to the
DBMS vendor's ODBC driver or Microsoft's ODBC Driver
Manager.
A successful operation will always return a 0. ErrorMsg
and SQLState may or may not be set valid in the event
of a successful connection. If set valid, they should be
examined for relevant status information.

Comments: A transaction is a unit of work that is done as a single oper-
ation. The operation succeeds or fails as a whole. ODBCBe-
ginTrans indicates that a transaction is to be started on the
specified ODBC database. Note that each ODBC database
driver may have different levels of transaction support (or

none at all), and the documentation for that driver should
be consulted to determine the level of transaction support.
The transaction should be terminated either with an
ODBCCommit or an ODBCRollback.
If any error (no matter how minor) occurs as a result of the
statement, and the TODBCConnect or ODBCConnect that
connected to the database had its Disconnect parameter
set to true, the value of DB will become invalid (i.e. the con-
nection to the database will be dropped).

Example:

[
ODBCBeginTrans(DB);
ODBC(DB, "DELETE * FROM TEST");
ODBC(DB, "INSERT INTO TEST VALUES('KeyString', 'Value')");
ODBCCommit(DB);

]

ODBCCommit

Description: Indicates to a specified ODBC-compliant database that a
transaction is to be committed.

Returns: Nothing (return values in parameters)

Usage: Script Only.

Function Groups: Database and Data Source, ODBC

Related to: ODBCBeginTrans | ODBCRollback | TODBCBeginTrans |
 TODBCCommit | TODBCRollback

Format: ODBCCommit(DB [, ErrorMsg, SQLState, ErrorCode])

Parameters:

DB

Required. An ODBC value for the specified ODBC data-
base as returned by ODBCConnect.

ErrorMsg

A descriptive error or status message, returned by the

function. If valid, both ErrorMsg and SQLState will be
valid.

SQLState

A 5-character SQL State code. SQL State codes are
defined by Microsoft and by the vendor of each ODBC
driver.

ErrorCode

An unsuccessful operation always returns a non-zero
value, which is a numeric error code specific to the
DBMS vendor's ODBC driver or Microsoft's ODBC Driver
Manager.
A successful operation will always return a 0. ErrorMsg
and SQLState may or may not be set valid in the event
of a successful connection. If set valid, they should be
examined for relevant status information.

Comments: Commits a transaction defined as all the SQL statements
executed on an ODBC-compliant database since the trans-
action began.
If any error, no matter how minor, occurs as a result of the
statement, and the TODBCConnect or ODBCConnect that
connected to the database had its Disconnect parameter
set to true, the value of DB will become invalid (i.e. the con-
nection to the database will be dropped).

Example:

[
ODBCBeginTrans(DB);
ODBC(DB, "DELETE * FROM TEST");
ODBC(DB, "INSERT INTO TEST VALUES('KeyString', 'Value')");
ODBCCommit(DB);

]

ODBCConfigureData

Description: Configures an ODBC data source and returns its error
code.

Returns: Numeric

Usage: Script Only.

Function Groups: Database and Data Source, ODBC

Related to: ODBC | ODBCConnect | ODBCDisconnect | ODBCSources
| ODBCStatus | ODBCTables | TODBC | TODBCConnect |
 TODBCDisconnect

Format: ODBCConfigureData(Mode, DriverName [, Settings])

Parameters:

Mode

Required. Any numeric expression for the mode as fol-
lows:

Mode Meaning

0 Add data source

1 Configure data source

2 Remove data source

Note: In order for 64-bit VTScada to work
with 64-bit data sources, add 64 to the Mode
parameter. 32-bit VTScada cannot configure a
64-bit data source.

DriverName

Required. Any text expression for the ODBC driver
name, as configured in the ODBC setup menu under
Microsoft Windows™. In the case of Excel, use
"Microsoft Excel Driver (*.xls)".

Settings

A variety of optional parameters that are text expres-
sions, giving the variable and value pairs used to spe-
cify the configuration of the ODBC data source.
Any number of these parameter pairs may be used by
simply listing the text string containing the variable
name, followed by the value that the variable is to be
set to. The variables to use include

Settings Description

DBQ Name of the workbook
(database) file

DefaultDir Workbook directory

Description Text description for data
source

Driver Path to the driver .DLL

DriverID Integer ID for the driver

DSN Data source name

FileType File type

FirstRowHasNames Sets if first row contains
column names

MaxScanRows Rows to scan in setting
data type of column (range
is 0 - 16)

ReadOnly Sets the database file as
read only

If the DriverID option was selected, the Excel
driver values that may be used are as follows:

Value Driver

534 Microsoft Excel 3.0

278 Microsoft Excel 4.0

22 Microsoft Excel 5.0/7.0

790 Microsoft Excel 97

Keyword Description

ADDRESS The network address of
the SQL Server database
management system
from which the driver
retrieves data.

DATABASE The name of the
SQL Server database.

DESCRIPTION A description of the
data in the data source.

LANGUAGE The national language
to be used by
SQL Server.

NETWORK The network library that
connects the platforms
on which SQL Server and
the SQL Server driver
reside.

OEMTOANSI Enables conversion of
the OEM character set to
the ANSI character set if
the SQL Server client
machine and SQL Server
are using the same non-
ANSI character set. Valid
values are YES for on
(conversion is enabled)
and NO for off. The
default value is set by
using the SQL Client
Configuration Utility.

SERVER The name of the net-
work computer on which
the data source resides.

TRANSLATIONDLL The name of the DLL
that translates data
passing between an
application and a data
source.

TRANSLATIONNAME The name of the trans-
lator that translates
data passing between an
application and a data
source.

TRANSLATIONOPTION Enables translation of
data passing between an
application and a data
source.

USEPROCFORPREPARE Disables generation of
stored procedures for
SQLPrepare. Valid values
are NO for off (gen-
eration is disabled) and
YES for on. The default
value (set in the Setup
dialog box) is YES.

Comments: If the data source already exists, it will be reconfigured as
per the specs given and "0" (no error) will be returned.
The data source name may not contain apostrophes or an
ODBC error will occur. The function will return the error
code.
Some types of ODBC data sources, such as Microsoft™
Excel, do not require the file to be created prior to execut-
ing SQL commands on the data source, but will create a
blank file when the first SQL Create Table command is
executed. Others, such as Microsoft™ Access require the
file to be created prior to execution of any SQL statements.

Note: Please note that configuration of ODBC Data
Sources requires write permission to the registry
key "HKEY_LOCAL_
MACHINE\SOFTWARE\ODBC\ODBC.INI". If the cur-
rent user doesn't have write permission to the key,
then the string "Insufficient permissions" will be
returned. If running in Windows Vista, this means
that VTScada must be run as Administrator for the
function to work.

The following table identifies some possible errors
and their meaning:

Error Message Significance

General Installer
Error

An error occurred for which
there was no specific ODBC
installer error.

Invalid Type of
Request

The Mode parm was some-
thing other than 0, 1, or 2.

Invalid Driver or
Translator Name

The DriverName parm was
not a valid ODBC driver name
(found in the registry).

Invalid Keyword-
value pairs

One of the Settings parms
contained a syntax error. For
example, spaces are not per-
mitted around the equals
sign in the keyword-value
pair, nor are certain illegal
characters (listed under the
"Invalid Data Source Name"
error).

Request Failed The installer could not per-
form the operation reques-
ted.

Could Not Load the
Driver or Translator
Setup Library

The driver setup library could
not be loaded.

Out Of Memory The ODBC installer could not
perform the function because
of a lack of memory.

Invalid Data Source
Name

The length of the data source
name exceeded the max-
imum length of 32 char-
acters, consisted entirely of
blanks, or contained one of
the following illegal char-
acters: [] { } () , ; ? * = ! @ \

Examples:

{ Create a data source }
If ZButton(10, 30, 110, 10, "Create DS", 1);
[
{ Make sure name doesn't contain apostrophes }
Replace(DSName, 0, StrLen(DSName), "'", "");
ODBCConfigureData(0, "Microsoft Access Driver (*.mdb)",

"DSN", DSName,
"DefaultDir", Concat(DSDrive, DSPath),
"DBQ", Concat(DSFileName, ".MDB"),
"Description", DSDesc,
"FileType", "Access",
"ReadOnly", 0);

]
{ Create the data source's file }
If ZButton(10, 70, 110, 40, "Create file", 2);
[
ODBCConfigureData(1, "Microsoft Access Driver (*.mdb)",

"DSN", DSName,
"CREATE_DB",
Concat(DSDrive, DSPath,
DSFileName, ".MDB"));

]
{ Delete the data source }
If ZButton(10, 110, 110, 80, "Delete DS", 3);
[
ODBCConfigureData(2, "Microsoft Access Driver (*.mdb)",

"DSN", DSName);
]
{ Create a MS SQL Server data source }
If ZButton(10, 150, 110, 120, "Create SQL DS", 3);
[
ErrorCode = ODBCConfigureData(0, "SQL Server", "DSN",ODBCName,

"Description",
"SQL server connection created by

VTS.",
 "SERVER",

ComputerName, "NETWORK",
"DBMSSOCN");

]

To remove a 64-bit data source (using 64-bit VTS):

ODBCConfigureData(66, …)

To add a 32-bit data source (using either 64-bit or 32-bit VTS):

ODBCConfigureData(0, …)

ODBCConnect

Description: Forms a connection to an ODBC-compliant database and
returns the ODBC value associated with that database.

Returns: ODBC database

Usage: Script Only.

Function Groups: Database and Data Source, ODBC

Related to: ODBC | ODBCConfigureData | ODBCDisconnect |
 ODBCSources | ODBCStatus | ODBCTables | TODBC |
 TODBCConnect | TODBCDisconnect

Format: ODBCConnect(DSName, UserName, Password [, ErrorMsg,
SQLState, ErrorCode, Disconnect, LoginTimeout, Con-
nectTimeout])

Parameters:

DSName

Required. Any text expression for the ODBC data
source name, as configured in the ODBC setup menu
under Microsoft Windows™.

UserName

Required. Any text expression for the ODBC login user
name.

Password

Required. Any text expression for the ODBC login pass-
word.

ErrorMsg

A descriptive error or status message, returned by the
function. If valid, both ErrorMsg and SQLState will be
valid.

SQLState

A 5-character SQL State code. SQL State codes are
defined by Microsoft and by the vendor of each ODBC
driver.

ErrorCode

An unsuccessful operation always returns a non-zero

value, which is a numeric error code specific to the
DBMS vendor's ODBC driver or Microsoft's ODBC Driver
Manager.
A successful operation will always return a 0. ErrorMsg
and SQLState may or may not be set valid in the event
of a successful connection. If set valid, they should be
examined for relevant status information.

Disconnect

An optional parameter that is any logical expression
that determines how errors are to be handled. If true
(non-0), the connection to the database will be dis-
connected should any error (no matter how minor)
occur.
If false (0) an error will not cause a disconnect to
occur. The default value is false.

LoginTimeout

Optional. An SQLUINTEGER (unsigned long) value cor-
responding to the number of seconds to wait for a
login request to complete before returning to the
application. The default is driver-dependent. If the
value is 0, then the timeout is disabled and a con-
nection attempt will wait indefinitely.
If the specified timeout exceeds the maximum login
timeout in the data source, then the driver substitutes
that value and returns SQLSTATE 01S02 (Option value
changed).

ConnectTimeout

Optional. An SQLUINTEGER value corresponding to the
number of seconds to wait for any request on the con-
nection to complete before returning to the applic-
ation. The driver should return SQLSTATE HYT00
(Timeout expired) any time that it is possible to time
out in a situation not associated with query execution
or login.

If the value is equal to 0 (the default) then there is no
timeout.

Comments: If the UserName and Password parameters are spe-
cified as invalid, the DSName parameter is treated as
a literal connection string for the ODBC connection.
For example, in the statement ODBCConnect("DSN-
N=MyData;UID=;PWD=", Invalid, Invalid), the first
parameter is used to set the attributes of the con-
nection, which makes this statement equivalent to
ODBCConnect("MyData", "", "").

In the case of the optional parameters, any para-
meter that is not required may be set to 0 if it is fol-
lowed by a valid parameter, or may be simply
omitted if no valid parameters follow it.

On successful completion of the ODBC and ODBCCon-
nect functions, the native error code will be set to 0,
allowing the user to tell if a command that has no
result set has been completed. The user should not
assume that since a 0 is returned, then the command
has been executed successfully. Some drivers (such
as Excel) will return a 0 in the native error code,
even when an error has occurred.

All ODBC operations can result in one or more status
or error conditions arising. VTScada records the
entire set of status/error conditions arising and buf-
fers them internally. Use the ODBCStatus function to
retrieve the entire set. Only the first condition that
occurred or, if both error and advisory conditions
occur, the first error condition, is returned in the

ErrorMsg and SQLState values.

From VTS 10.0 onwards, VTS uses ODBC 3.x com-
pliant operations (formerly ODBC 2.x). This has the
side effect that different SQLState return values are
returned for some SQLState values. If you have writ-
ten code that depends on the value returned by
SQLState, you may need to change the value you
expect. See http://msdn.microsoft.com/en-us/lib-
rary/ms712451%28VS.85%29.aspx for a reference on
the value changes.

64-bit VTScada is able to connect to either 64-bit or
32-bit ODBC data sources. ODBCConnect will first try
to connect to the database through a 64-bit ODBC
driver. If this fails for any reason it will then try the
connection through a 32-bit ODBC driver. This
means that any ODBC code that worked under 32-bit
VTScada should not need to be modified for use with
64-bit VTScada, but 64-bit VTScada has the extra
ability of being able to use 64-bit ODBC drivers.

ODBCDisconnect

Description: Stops a connection to the ODBC database.

Returns: Nothing

Usage: Script Only.

Function Groups: Database and Data Source, ODBC

Related to: ODBC | ODBCConfigureData | ODBCConnect |
 ODBCSources | ODBCStatus | ODBCTables | TODBC |
 TODBCConnect | TODBCDisconnect

Format: ODBCDisconnect(DB)

Parameters:

DB

Required. An ODBC value for the ODBC database as
returned by ODBCConnect.

Comments: none.

ODBCRollback

Description: Indicates to a specified ODBC-compliant database that a
transaction is to be rolled back (discarded).

Returns: Nothing (return values in parameters)

Usage: Script Only.

Function Groups: Database and Data Source, ODBC

Related to: ODBCBeginTrans | ODBCCommit | TODBCBeginTrans |
 TODBCCommit | TODBCRollback

Format: ODBCRollback(DB [, ErrorMsg, SQLState, ErrorCode])

Parameters:

DB

Required. An ODBC value for the specified ODBC data-
base as returned by ODBCConnect.

ErrorMsg

A descriptive error or status message, returned by the
function. If valid, both ErrorMsg and SQLState will be
valid.

SQLState

A 5-character SQL State code. SQL State codes are
defined by Microsoft and by the vendor of each ODBC
driver.

ErrorCode

An unsuccessful operation always returns a non-zero
value, which is a numeric error code specific to the

DBMS vendor's ODBC driver or Microsoft's ODBC Driver
Manager.
A successful operation will always return a 0. ErrorMsg
and SQLState may or may not be set valid in the event
of a successful connection. If set valid, they should be
examined for relevant status information.

Comments: Discards a transaction defined as all the SQL statements
executed on an ODBC-compliant database since the trans-
action began.
If any error, no matter how minor, occurs as a result of the
statement, and the TODBCConnect or ODBCConnect that
connected to the database had its Disconnect parameter
set to true, the value of DB will become invalid (i.e. the con-
nection to the database will be dropped).

Example:

[
ODBCBeginTrans(DB);
ODBC(DB, "DELETE * FROM TEST");
ODBC(DB, "INSERT INTO TEST VALUES('KeyString', 'Value')");
ODBCRollback(DB);

]

ODBCSources

Description: Retrieves a list of ODBC data sources and returns it as a
dynamically allocated array.

Returns: Array

Usage: Script Only.

Function Groups: Database and Data Source, ODBC

Related to: ODBC | ODBCConfigureData | ODBCConnect |
 ODBCDisconnect | ODBCStatus | ODBCTables | TODBC |
 TODBCConnect | TODBCDisconnect

Format: ODBCSources()

Parameters: None

Comments: The return value is a pointer to a two-dimensional array,
which contains a list of ODBC data sources. The first row of
the array ([0][N]) contains the data source names, while
the second describes the driver.
64-bit VTScada only... The returned list will include both
32-bit and 64-bit data sources.

Example:

If ! Valid(sources);
[
sources = ODBCSources() { Find the list of sources };
count = ArraySize(sources, 1) { The number of sources };

]

This will obtain the list and number of ODBC data sources.

ODBCStatus

Description: Returns the requested information about the last ODBC
statement to execute.

Returns: Varies – see comments

Usage: Script Only.

Function Groups: Database and Data Source, ODBC

Related to: ODBC | ODBCConfigureData | ODBCConnect |
 ODBCDisconnect | ODBCSources | ODBCTables | TODBC
| TODBCConnect | TODBCDisconnect

Format: ODBCStatus(Option[, ODBCHandle])

Parameters:

Option

Required. Any numeric expression for the option to
indicate what information is desired about the last
ODBC statement executed as follows:

Option Information desired

0 Return 0 if information or 1 if error

1 SQL state text

2 Native error code

3 ODBC error text

4 Error text length

ODBCHandle

Optional ODBC Handle value, as returned from
ODBCConnect or TODBCConnect, for which you want a
status report.
Omitting the ODBCHandle parameter returns a status
report for the last ODBC operation that was executed.
As ODBC operations can be concurrently executed,
there is no guarantee that this is the operation for
which you intend to obtain status, unless you explicitly
provide an ODBC handle value

Comments: The return value for this function may be a single value, an
array of values (if more than one error was generated), or
invalid (if the last ODBC operation did not generate any
status information).
This function may be used with threaded ODBC calls, how-
ever, if multiple ODBC calls are executing simultaneously,
there is no indication as to which one generated the mes-
sage.

ODBCTables

Description: Retrieves a list of the tables present in an ODBC-compliant
database and returns it as a dynamically allocated array.

Returns: Array

Usage: Script Only.

Function Groups: Database and Data Source, ODBC

Related to: ODBC | ODBCConfigureData | ODBCConnect |
 ODBCDisconnect | ODBCSources | ODBCStatus | TODBC |
 TODBCConnect | TODBCDisconnect

Format: ODBCTables(DB [, Search][, TableType])

Parameters:

DB

Required. An ODBC value for the ODBC database as
returned by ODBCConnect.

Search

An optional parameter which is any text string indic-
ating the pattern to match for table names.
If this parameter is omitted, the search pattern defaults
to "%", where the percent sign is the SQL wildcard (i.e.
all table names are returned).

TableType

An optional parameter which is a list of table types to
match. Parameters include the following:
"TABLE", "VIEW", "SYSTEM TABLE",..., or a data source–
specific type name.

Comments: If TableType is not an empty string, it must contain a list of
comma-separated values for the types of interest. Each
value may be enclosed in single quotation marks (') or
unquoted for example, 'TABLE', 'VIEW' or TABLE, VIEW. An
application should always specify the table type in upper-
case. If the data source does not support a specified table
type, no results will be returned for that type

Example:

If 1 Next;
[
tables = ODBCTables(dBase, "Analog%");
]

This will obtain the list of all tables in the database beginning with the
string "Analog".

OffNormal

Note: Deprecated. Do not use in new code.

(Alarm Manager module)

Description: This subroutine will activate the alarm. However, it will not
affect the unacknowledged status.

Returns: Numeric

Function Groups: Alarm

Usage: Script Only.

Related to: Register (Alarm Manager) | CurrentTime

Format: \AlarmManager\OffNormal(AlarmObject[, EventTime]);

Parameters:

AlarmObject

Required. The object value for the alarm that was
passed to the Register subroutine.

EventTime

Optional. The time stamp to use when adding this
event to the alarm lists. If invalid or not defined, the
default is CurrentTime().

Comments: The OffNormal subroutine always returns "0".

Ones

Description: Returns the number of bits set in an integer number.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Bitwise Operation

Related to: Bit | SetBit

Format: Ones(Value)

Parameters:

Value

Required. Any numeric expression.

Comments: Value must be a valid number and is truncated to an
integer. The number of bits set is returned.

Examples:

a = Ones(0b010110);
b = Ones(0b001100);
c = Ones(2.3);

The values of a, b and c will be 3, 2 and 1 respectively.

OpChange

Description: Wrapper for TagMigrator\OpChange. Performs an imme-
diate deploy of a single tag change without disturbing any
other tag changes already in place on the local branch. The
tags must already exist.

Returns: Object value of the worker module.

Usage: Script Only.

Function Groups: Configuration

Related to: SimpleOpChange | ModifyTags

Format: \Code\OpChange(TagName, ParmsDict, User[, Comment,
Merge])

Parameters:

Tagname

Required. The name of the tag to be changed.

ParmsDict

Required. A dictionary of tag parameters to change.
Must also include the Name parameter. Refer to the
examples in ModifyTags.

User

Required. The user responsible for the operational
change.

Comment

Optional text. A descriptive comment about the
change.

Merge

Optional Boolean. Defaults to TRUE. Controls whether
the parameters are to be merged with the existing tag's
parameters. If false, the parameters replace the tag's
parameters and are expected to contain user and
timestamp metadata.

Comments: If your application is set to auto-deploy, then OpChange
and ModifyTags accomplish the same result.
If auto-deploy is not set, then there is a difference in the
result of the two functions. ModifyTags makes a tag
change locally, whereas OpChange will immediately
deploy that tag change. Running a deploy operation after
ModifyTags' change, results in the entire tag file (and all
the included tags and their parameters) being deployed.
OpChange is able to deploy just the one change to the one
tag within the file, leaving other modified tags in that file as
local changes.

OpChanges are used for any tag change that is expected to
be performed during systems operation, as opposed to
changes made during configuration. The example is an
operator changing a tag's questionable status by using the
context menu rather than opening the configuration dia-
log.

OPCServer

Description: Adds a new top-level branch to the VTScada OPC Server’s
namespace hierarchy.

Returns: Handle – see comments

Usage: Steady State only.

Function Groups: Network

Related to: SetOPCData

Format: OPCServer(BranchName, CallbackContext)

Parameters:

BranchName

Required. The name of the branch added at the highest
level of the hierarchy.

CallbackContext

Required. The object value of a running module con-
taining some or all of the following callback modules
(these callback modules must be implemented by the
programmer).
In each case the Item ID passed to the callback will
not contain the top-level branch name specified in
the call to OPCServer.

Modules: OPCGetItemAttributes(itemID) – Given an OPC item
ID, returns a structure containing the attributes of
the item. Structure format:

ItemAttributes STRUCT [
AccessRights;
Type;
HasChildren

];

Where:
AccessRights is one of the following values:
1 = READABLE,
2=WRITEABLE,

3= READWRITEABLE

Type is the COM data type of the item value:
2 = VT_I2,
3 = VT_I4,
5 = VT_R8,
8 = VT_BSTR,
11 = VT_BOOL

HasChildren is one of the following values:
0 = has no children,
1 = has children
OPCGetChildNodes(itemID) - Given an OPC item ID,
returns an array of strings that are the names of
child items.
OPCReadItem(itemID) – Given an OPC item ID,
returns a structure containing the value, quality and
UTC timestamp of the item. Structure format:

OPCVQT Struct [
Value;
Quality;
Timestamp;

];

OPCWriteItem(itemID, Value) -- Given an OPC item
ID and a value, attempts to write the value to the
item.
OPCGetInternalName(itemID) – Given an OPC item
ID, returns the internal name used for that item.
This is useful for the case when two or more dif-
ferent item Ids might refer to the same internal
"item".
OPCGetProperties(itemID) – Given an OPC item ID,
returns an array of structures describing the prop-
erties found on that item. Structure format:

OPCProperty Struct [
ID { Property ID number

};
Type { Data type of the property

};
Name { Name of the property

};
Description { Description of the property

};
InvalidMeansBadQuality { TRUE to indicate

that an invalid property value implies Bad qual-
ity data };
];

OPCGetPropertyValue(itemID, propertyID) – Given
an OPC item ID and a numeric property ID, returns
the current value of the specified property.

Comments: This function returns a handle to the OPC server
namespace branch (to be used in calls to SetOPCData).

Example:

<
{==================== SimulateOPCServer =====================}
{ This module runs a simulated OPC server. }
{==}
SimulateOPCServer
(
ServerName;

)
[
OPCGetChildNodes Module;
OPCGetPropertyValue Module;
OPCGetProperties Module;
OPCReadItem Module;
OPCWriteItem Module;
OPCGetInternalName Module;
OPCGetItemAttributes Module;

CONSTANT OPC_QUALITY_BAD = 0x00;
CONSTANT OPC_QUALITY_UNCERTAIN = 0x40;
CONSTANT OPC_QUALITY_GOOD = 0xC0;

CONSTANT VT_EMPTY = 0;
CONSTANT VT_NULL = 1;
CONSTANT VT_I2 = 2;
CONSTANT VT_I4 = 3;
CONSTANT VT_R4 = 4;
CONSTANT VT_R8 = 5;
CONSTANT VT_CY = 6;
CONSTANT VT_DATE = 7;
CONSTANT VT_BSTR = 8;

]

ServerOn [
OPCServer(ServerName, Self());

]

<
OPCGetChildNodes
(
itemID;

)
[
returnVal = 0;

]

Main [
If watch(1);
[
IfThen(itemID == "",
returnVal = New(1);
returnVal[0] = "tags";

);
IfThen(itemID == "tags",
returnVal = New(7);
returnVal[0] = "ai1";
returnVal[1] = "ai2";
returnVal[2] = "NeverSet";
returnVal[3] = "TextTag";
returnVal[4] = "ao1";
returnVal[5] = "AnalogInputs";
returnVal[6] = "ao2";

);

IfThen(itemID == "tags\AnalogInputs",
returnVal = New(1);
returnVal[0] = "ai1";

);
Return(returnval);

]
]
>

<
OPCGetPropertyValue
(
itemID;
propertyID;

)
[
returnVal;

]
Main [
If watch(1);
[
IfThen(propertyID == 5555,
returnVal = 888;

);
IfThen(propertyID == 104,

returnVal = 99.5;
);
IfThen(propertyID == 5000,
returnVal = "TestArea";

);
Return(returnVal);

]
]
>

<
OPCGetProperties
(
itemID;

)
[
returnVal;
I;
OPCProperty Struct [
ID { Property ID number };
Type { Data type of the property };
Name { Name of the property };
Description { Description of the property };

];

OtherStruct Struct [
TestComment;
Name;
ItemHandles;
Value;
Quality;
Timestamp;

];
]
Main [
If watch(1);
[

IfThen(itemID == "tags\ai1",
returnVal = New(3);
I = 0;
returnVal[I++] = OPCProperty(104, VT_R8, "HighRawValue",

"High Instrument Range");
returnVal[I++] = OPCProperty(5000, VT_BSTR, "Area", "Area");
returnVal[I++] = OPCProperty(5555, VT_I2, "Type",

"myVTSProp");
);
IfThen(itemID == "tags\ai2",
returnVal = 0;

);
Return(returnVal);

]
]
>

<
OPCWriteItem
(

itemID;
Value;

)
Main [
If watch(1);
[
{ Do a write to the specified item. }
Return(0);

]
]
>

<
OPCGetInternalName
(
itemID;

)
[
retval;

]

Main [
If watch(1);
[
IfThen(itemID == "tags\ai1",
retval = "ai1";

);
IfThen(itemID == "tags\ai2",
retval = "ai2";

);
IfThen(itemID == "tags\TextTag",
retval = "TextTag";

);
IfThen(itemID == "tags\ao1",
retval = "ao1";

);
IfThen(itemID == "tags\ao2",
retval = "ao2";

);
IfThen(itemID == "tags\AnalogInputs\ai1",
retval = "ai1";

);

Return(retval);
]

]
>

<
OPCReadItem
(
itemID;

)
[
returnVal;

OPCVQT Struct [

Value;
Quality;
Timestamp;

];

]
Main [
If watch(1);
[
ReadItemTimestamp = CurrentTime();

IfThen(itemID == "tags\NeverSet",
returnVal = OPCVQT("NeverSetValue",

OPC_QUALITY_UNCERTAIN,
ReadItemTimestamp + TimeZone(0));

);

Return(returnVal);
]

]
>

<
OPCGetItemAttributes
(
itemID;

)
[
retval;

Constant OPCACCESS_READABLE = 1;
Constant OPCACCESS_WRITEABLE = 2;
Constant OPCACCESS_READWRITEABLE = 3;

ItemData Struct [
AccessRights { Property ID number };
Type { Data type of the property };
HasChildren;

];
]

Main [
If watch(1);
[
IfThen(itemID == "tags\ai1",
retval = ItemData(OPCACCESS_READABLE, VT_I4, 0);

);
IfThen(itemID == "tags\ai2",
retval = ItemData(OPCACCESS_READABLE, VT_R8, 0);

);
IfThen(itemID == "tags\TextTag",
retval = ItemData(OPCACCESS_READWRITEABLE, VT_BSTR, 0);

);
IfThen(itemID == "tags\ao1",
retval = ItemData(OPCACCESS_READWRITEABLE, VT_R8, 0);

);
IfThen(itemID == "tags\ao2",

retval = ItemData(OPCACCESS_READWRITEABLE, VT_I4, 0);
);
IfThen(itemID == "tags\AnalogInputs\ai1",
retval = ItemData(OPCACCESS_READABLE, VT_I4, 0);

);
IfThen(itemID == "tags\NeverSet",
retval = ItemData(OPCACCESS_READABLE, VT_BSTR, 0);

);

{ The following elements are just structural - they have no data }
IfThen(itemID == "", { A top-level name }
retval = 0;

);
IfThen(itemID == "tags",
retval = 0;

);
IfThen(itemID == "tags\AnalogInputs",
retval = 0;

);

Return(retval);
]

]
>

{ End of SimulateOPCServer\CallbacksParent }
>

{ End of SimulateOPCServer }
>

Or

Description: Performs a bit-wise OR operation and returns the result.

Returns: 32 bit unsigned integer

Usage: Script or steady state.

Function Groups: Bitwise Operation

Related to:

Format: Or(Parm1, Parm2)

Parameters:

Parm1, Parm2

Required. Any numeric expressions. The expressions
will be truncated to 32 bit unsigned integers. A and B
must be in the range 0 to 4 294 967 294.

Comments: If either parameter is invalid, the return value is invalid.

Example:

newVal = Or(0b1010, 0b1100);

The value of newVal will be 0b1110.

Out

Description: Writes an 8 bit byte to an I/O port.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Memory I/O

Related to: In | InWord | OutWord

Format: Out(, Value)

Parameters:

Port

Required. Any numeric expression giving the I/O
address of the port to write. Port must be in the range
0 to 65535.

Value

Required. Any numeric expression giving the byte to
write. Value must be in the range 0 to 255.

Comments: This function requires that the VTSIO driver be installed.
Please refer to the topic, Communicating Directly With
Hardware for more details.
If Port or Value is out of range or invalid, nothing is writ-
ten. If this statement appears in a state, Value is written
when its value changes. If it is in a script, Value is written
when the script is executed.

Example:

Out(0x300, reg);

This writes reg to CPU output port 300 (hex).

Output

Note: Deprecated. Do not use in new code.

Description: Places formatted numbers or text on the screen.

Returns: Nothing

Usage: Steady State only. See: Rules for Usage.

Function Groups: Graphics

Related to: Format | GUIText | TextAttribs | ZText

Format: Output(X, Y, Type, Width, Precision, Value, Foreground,
Fill, Background, Size, Obsolete)

Parameters:

X

Required. Any numeric expression giving the X screen
coordinate of the lower left corner of the number or
text on the screen.

Y

Required. Any numeric expression giving the Y screen
coordinate of the lower left corner of the number or
text on the screen.

Type

Required. Any numeric expression giving the type of
the data to display. The valid values for this parameter
are:

Type Data Type

1 Short

2 Long

3 Float

4 Text

5 Binary

6 Octal

7 Hexadecimal

Status variables can be output using a Type
value of 1 that will produce either a 0 or 1 on
the screen. The type of the Value parameter
does not have to match the Type parameter,
except for text.

Width

Required. Any numeric expression giving the min-
imum number of characters to display. If fewer char-
acters are required to produce the output, the area is
filled with blank spaces on the left to make up the
required number of characters. This is useful for align-
ing numbers up on the right. If more characters are
required than the Width parameter specifies, the extra
characters are extended to the right.
By making Width zero, the output will be aligned on
the left. If the Width parameter is greater than or equal
to 100 and the Type parameter is 3, the format of the
floating point number displayed is in the most com-
pact form which may be in exponential form if the
exponent is less than -4 or is greater than the specified

Precision parameter.
The actual width used in this mode is 100 less than the
specified width. Trailing zeroes are not displayed in
this mode. Values of Width outside the range of 0 to
255 inclusive are invalid.

Precision

Required. Any numeric expression giving the precision
of the output. This has different meanings for the dif-
ferent output types.
For types 1 and 2 (short and long), it gives the min-
imum number of digits to appear. If fewer digits are
required to display the number, leading zeroes are
added to the number.
For type 3 (float), it gives the number of digits to
appear after the decimal point if Width is less than 100.
If Width is greater than or equal to 100, it specifies the
maximum number of significant digits to appear.
For type 4 (text), it gives the maximum number of
characters to display. If the string is longer than this
parameter, only the number of characters given by the
Precision parameters are displayed.
Note: Values of Precision outside the range of 0 to 255
are invalid.

Value

Required. Any numeric or text expression giving the
value to be displayed. If the Type is 4, this value may
only be a text expression. Otherwise, this value is not
required to have the same type as specified by the
Type parameter – VTScada does the conversion.

Foreground

Required. Any numeric expression giving the color of
the characters to be displayed.

Fill

Obsolete - set to zero.

Background

Required. Any numeric expression giving the color of
the background area for the output characters.

Size

Required. Any numeric expression giving the height of
the characters in units of Y screen coordinates. If this
value results in a specification of less than 12 screen
pixels high, the text will be the small text (8 pixels
high). Otherwise, the text will be the large text. If Size
is negative, it will be interpreted as a dot text output of
size equivalent to the absolute value of the size. The
number will be displayed to the nearest multiple of the
base 8 pixel by 8 pixel text. This produces faster, non-
destructive large characters than the normal large text
characters.

Obsolete n/a

No longer used, but is maintained for backward com-
patibility with previous versions of VTScada. Set to 0.

Comments: Should not be used for new code. Maintained for back-
ward-compatibility only. This statement is the general
statement for displaying numbers and text on the screen.
For small characters, or large characters with a negative
Size, the statement is non-destructive (can change without
destroying the underlying image). Large character output
is destructive. For non-destructive out put, care must be
taken when choosing the colors on a colored (non-zero)
background since the characters are exclusive ORed with
the background. This gives a more general method of dis-
playing text than the Text statement but requires more
parameters.

OutWord

Description: Writes a 16 bit word to an I/O port.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Memory I/O

Related to: In | InWord | Out

Format: OutWord(Port, Value)

Parameters:

Port

Required. Any numeric expression giving the I/O
address of the port to write. Port must be in the range
0 to 65535.

Value

Required. Any numeric expression giving the word to
write. Value must be in the range 0 to 65535.

Comments: This function requires that the VTSIO driver be installed.
Please refer to the topic, Communicating Directly With
Hardware for more details.
This function writes a 16 bit unsigned value to a CPU I/O
port. If this statement appears in a state, Value is written
when its value changes. If it is in a script, Value is written
when the script is executed.

Example:

OutWord(0x300, reg);

This writes reg to I/O port 300 (hex).

OwningModule

Description Returns the module which contains a certain variable.

Warning This function should be used by advanced users only.

Returns Module

Usage Script or steady state.

Function Groups Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: FindVariable

Format: OwningModule(Variable)

Parameters

Variable

Required. Any expression for the variable value.

Comments None

P Functions
The sections that follow identify all VTScada functions beginning with "P".

Pack

Description: Packs a set of module parameters or an array of values
into a stream, and returns the number of items that were
not packed.

Returns: Numeric

Usage: Script Only.

Function Groups: Advanced Module, Stream and Socket

Related to: Unpack | BuffStream | TempFileStream

Format: Pack(Data, Start, End, StreamVarPtr)

Parameters:

Data

Required. An object value, an array, or a structure.

Contains the data or the object value of the module
whose parameters are to be packed.
For example, if you have 5 numeric values to pack,
you would allocate a 1-dimensional array, 5 elements
in length. You would then assign the 5 numerics to this
array's elements, and pass the array to this parameter.
You would specify that you wish to pack from sub-
script 1 to 5. Refer to the example section for more
information.

Start

Required. The starting array index (zero-based), or
parameter number (one-based) of the data to pack.

End

Required. For arrays this is the last array index. For
parameters, it is the parameter number of the data to
pack. If packing a structure rather than an array, this
must be the number of elements rather than the final
index.

StreamVarPtr

Required. A pointer to a variable holding the stream
into which the data will be packed. The variable can
also hold Invalid - see Comments section for more
details.

Key

Optional. A short name or number. May be used
to pack the data into a form that is significantly
smaller than would otherwise be obtained. Note
that integers will consume one quarter the
space of text for this part of the packed data.
There is no requirement for the Pack Key para-
meter and the Unpack MirrorKey parameter to
have the same number of elements. All that is
required is that the Unpack MirrorKey dictionary

has all of the structures that are in that par-
ticular packed stream. If the Key doesn’t have
the structure that was packed, the returned data
is a simple array rather than a structure.

Comments: Pack() is recursive. If the values contain arrays, then those
are packed and so on.

StreamVar must be a pointer to a variable, not simply the
name of a variable that holds a stream. This is because the
Pack function will create a new stream under certain cir-
cumstances and store the packed data in it.

If the variable that StreamVarPtr addresses contains a
stream, then the data will be packed into that stream.
If the variable that StreamVarPtr addresses contains
Invalid, Pack will create a new buffer stream, pack the data
into it and store the new stream in the variable pointed at
by StreamVarPtr.
If a buffer stream is supplied, or Pack creates a buffer
stream, it will be replaced by a temporary file stream if the
output stream exceeds 2Mb. This provides a balance
between performance and memory use.
If a stream is provided, packing starts at the current stream
position. After packing, the stream current position is left
at the end of the packed data.
Only variables of numeric, text, or stream types will be
packed. Arrays of those types, up to and including 3
dimensions, will also be packed.

Any illegal values are packed as Invalid. Further, the Pack
function has been designed in such a way that mul-
tidimensional arrays that have not had a value assigned
can be handled. The correct number of Invalids for the
unallocated array dimensions are written to the packed
stream in place of the data values that would be there if the

elements were allocated. Once the stream is unpacked, the
array elements are allocated, but are assigned Invalid.
Generally called in the form:

Pack(Self(), 1, NParm(Self()), &Stream);

This works because NParm(Self()) equals the highest
index.

Examples:
Parameters:

Pack(Self, 1, NParm(Self), &Stream); { Pack all parameters }

Pack(Self, 2, 2, &Stream); { Pack only the second parameter }

Arrays:

Pack(Array, 0, ArraySize(Array, 0) - 1, &Stream); { pack whole array
(0 based) }

Pack(Array, 1, 1, &Stream); { pack only the second array item }

Multi-dimensional array:
If you wish to pack 2 3-dimensional arrays, you would allocate a 1-
dimensional array, 2 elements in length. You would then assign the 3-
dimensional arrays to the 1-dimensional array elements, and then Pack
the 1-dimensional array.

Array1D = New(2);
Array1D[0] = Array3D_1;
Array1D[1] = Array3D_2;
Pack(Array1D, 0, 1, &Stream);

Unpacking this is almost an identical operation:

Array1D = New(2);
UnPack(Array1D, 0, 1, Stream);
Array3D_1 = Array1D[0];
Array3D_2 = Array1D[1];

All you need to know is how many things you wish to pack and unpack,
not the sizes or types of the things (a ValueType(Array1D[0]) will tell you
the type). As the stream position is moved after each pack or unpack, you
can simply unpack one item at a time and check the return value of
UnPack.

Example 2:
In this example, the presence of a Key parameter allows the example to
be packed into a stream that is less than half the size that would be
obtained without the Key parameter. (Exact number depending on the
names used in the structure definitions.)
"Record", "Values", and "AA_Info" are all STRUCTs.

Rec = Record(GetGUID(1) { GUID },
1 { Priority },
Values(87, 54, "feet") { Values },
System\MakeDictionary("AA",

 AA_Info("AAData1", 2)) { Extensions });

{ Omitted: Place record in ArrayToPack }

Key = \System\MakeDictionary("Record", 0,
 "Values", 1,
 "AA_Info", "AA")

Pack(ArrayToPack, 0, 0, &PackStream, Key);

{ Omitted: Rewind stream }

MirrorKey = \System\MakeDictionary("0", Record,
 "1", Values,
 "AA", AA_Info));

UnPack(UnpackedArray, 0, 0, PackStream, Invalid, Invalid, MirrorKey);

PackParms

(RPC Manager Library)

Description: This method packs supplied parameters into a stream.
Subroutine call only.

Returns: Nothing

Usage: Script Only.

Function Groups: Network, Stream and Socket

Related to: UnpackParms

Format: \RPCManager\PackParms(Stream [, P1, P2, …]);

Parameters:

Stream

Required. The initial packed RPC stream. The para-
meters provided in parameters P1, P2, etc. will be
packed and appended onto this stream. If Invalid, a
new BuffStream will be created to hold the packed para-
meters.

P1, P2, …

Optional parameters that will be packed into the
stream. Up to 100 parameters are allowed.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
The stream contents can be unpacked into variables using
the UnpackParms method. The parameters can be any of
the permitted RPC data types. If a parameter is provided
which is other than one of those data types, an Invalid is
packed in its place.

PackRPC

(RPC Manager Library)

Description: Packs an RPC call and a set of parameters into a stream.
Subroutine call only.

Returns: BuffStream

Usage: Script Only.

Function Groups: Network, Stream and Socket

Related to: RunPack

Format: \RPCManager\PackRPC(Stream, ModuleName, Scope [,
Parameters]);

Parameters:

Stream

Required. The initial packed RPC stream. The RPC spe-
cified in this call will be appended onto the end of this
stream. If Invalid, a new BuffStream will be created to
hold the RPC.

ModuleName

Required. The textual name of the RPC subroutine to
be executed. Must be valid.

ModuleContext

Required. The context in which the "ModuleName" will
be executed. The "base" context for a VTScada layer-
based application is "\Code". For a non-VTScada (pure
script) application, the base context is "\System". Must
be valid.

Parameters

Required. A set of up to 32 parameters to the RPC sub-
routine. Can be any mixture of the legal types. Sup-
plying a parameter of an illegal type will cause it to be
replaced with Invalid when the RPC subroutine is
invoked.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
The return value from this method is a BuffStream con-
taining the original contents as specified in the Stream para-
meter with the new RPC appended. This can be used to
build a stream of RPCs for transmission as one atomic unit.

PAddressEntry

(Dialog Library)

Description: To be used for Tag I/O address entry. Checks
whether the attached driver has an AddressAssist
module and uses that if available. Otherwise,
presents a standard edit field into which the I/O
address may be entered.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | PAreaSelect | PCheckBox | PContributor
| PDroplist | PEditfield | PPageSelect | PRadioButtons |
 PSecBit | PSelectObject | PSpinbox | PTypeToggle

Format: \DialogLibrary\PAddressEntry(ParmNum, IODevice, Sup-
portedData, FunctionType, Title, FocusID[, Trigger,
DrawBevel, MinVal])

Parameters:

ParmNum

Any numeric expression giving the parameter number
(from 0) in the caller to alter.

IODevice

Any expression for the object value of the I/O device
driver being used.

SupportedData

A bitwise expression, indicating the data type.

Bit Meaning when set

0 Digital

1 Analog

2 Text

FunctionType

Any Boolean expression, indicating whether the func-
tion should be read (0) or write (1).

Title

Any text expression to use as the title for the field.

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

Trigger

A parameter whose value is derived from ZEditField
and can therefore be set to "0" (internal buffer
changed), "1" ("Enter" key pressed), or "2" (focus lost).
If this information is not required and the next para-
meter is used, a value of invalid or a constant may be
substituted.

DrawBevel

Any logical expression. If TRUE, a bevel is drawn
around the graphic.

MinVal

Optional. Any expression giving the minimum value or
minimum number of characters to be accepted by the
edit field (depending on the data type).
This value may be a decimal, octal or hexadecimal
value. If this parameter is valid and a value less than
LowLimit is entered in the field (or there are too few
characters, in the case of text value), the variable set
by the field will revert to the previous value. No
default:

Comments: This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.

The "P" tools (PCheckBox, PContributor, PCo-
lorSelect, PDroplist, and PEditfield) were intended
only for use in configuration folders and drawing
panel modules, and therefore are subject to the sys-
tem security restraints.

PAddressEntry should not be used with the Ana-
logStatus tag as that tag stores Address, History
Address and History Scan Rate together in one para-
meter. Use AddressEntry instead.
Usual height of the GUITransform: 45 - 55 pixels.

Example:

{***** Address *****}
GUITransform(30, 160, 230, 115,
 1, 1, 1, 1, 1 { No scaling },
 0, 0, 1, 0 { No movement; visible; reserved },
 0, 0, 0 { Not selectable },
 \DialogLibrary\PAddressEntry(\#Address { Parm number },
 Scope(\Root, Parms[\#SitePoint]) { IO Device },
 0b010 { SupportedData: Analog },
 1 { FunctionType: Write },
 \AddressLabel { Title },
 3 { Focus ID },
 Trigger { trigger }));

PAlmPriority

(Dialog Library)

Description: Draws a droplist of the currently available alarm pri-
orities with an optional title and bevel.

Returns: Image handle

Usage: Steady State only.

Function Groups: Alarm

Related to: GUITransform | PAreaSelect | PCheckBox | PColorSelect
| PContributor | PDroplist | PEditfield | PPageSelect |
 PRadioButtons | PSecBit | PSelectObject | PSpinbox |
 PTypeToggle

Format: \DialogLibrary\PAlmPriority(ParmNum, Title[, AlignTitle,
FocusID, Trigger, Init, DrawBevel, VertAlign])

Parameters:

ParmNum

Required. Any numeric expression giving the para-
meter number (from 0) in the caller to alter.

Title

Required. Any text expression to be used as a title for
the droplist.

AlignTitle

Optional. Any logical expression. Indicates the title
alignment such that if it is true (non-zero), the title is
included in the calculation for vertical alignment. If
false (0), it is added to the droplist after it, and its bevel
(if one exists) has been vertically aligned.
The default is true.

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

Trigger

Optional. Any logical expression. A variable whose
value is set to true (1) when the ParmNum parameter's

value has been set by the droplist. The setting of the
parameter will not cause Trigger to be set.
If this information is not required, a constant may be
used.

Init

Optional. Any expression for the initial value displayed
in the field. The default value is Data[Index]. If Index is
invalid, then the droplist will initially appear blank.

DrawBevel

Optional. Any logical expression. If true (non-0), a
bevel is drawn around the droplist. If false (0), no bevel
is drawn. The default value is true.

VertAlign

Optional. Any numeric expression that sets the vertical
alignment of the unopened droplist according to one
of the following:

Value Vertical Alignment

0 Top

1 Center

2 Bottom

Whether or not the title is included when the ver-
tical alignment is calculated is determined by
the value of AlignTitle.
The default value is 0.

Comments: This module is a member of the VTScada Dialog
Library, and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
The "P" tools are intended only for use in con-
figuration folders and drawing panel modules, and
therefore are subject to the system security
restraints.

This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters. It will then set the element indicated by
ParmNum to the text string displayed in the selec-
ted line of the droplist.
The height of the unopened droplist is constant,
with the horizontal boundaries of its calling trans-
form defining its width, and the vertical boundaries
of its calling transform defining its opened height,
which will include the added height of the bevel
above the field, but may or may not include the
title, depending on the alignment used. Note that if
the entire list can be displayed in a smaller area
than indicated by the vertical boundaries of the call-
ing transform, the dropped list height will be
decreased. The dropped height of the list will
always have a minimum height of 1 line (below the
field).
Usual height: 45 pixels.

Example:

GUITransform(30, 200, Width/2 – 5, 155
 1, 1, 1, 1, 1 { No scaling },
 0, 0, 1, 0 { No movement; visible; reserved },
 0, 0, 0 { Not selectable },
 \DialogLibrary\PAlmPriority(\#Priority {Parm to edit },

\PriorityLabel { Label },
0 { Align Title },
5 { ID },
1 { Trigger },
0 { Init },
1 { Draw bevel },
1 { Vert align }));

PalStatus

Description: Returns the color intensities of the current palette. Main-
tained for backward compatibility only.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Color, Graphics

Related to:

Format: PalStatus(Color, RGBIndex)

Parameters:

Color

Required. Any expression giving the color to examine.
May be a number from 0 to 255 (from the VTScada
palette) or an RGB value with alpha channel, expressed
as "<AARRGGBB>".

RGBIndex

Required. Any numeric expression giving the color
component to return. Red, green, blue, or alpha.

RGBIndex Color Content

0 Red

1 Green

2 Blue

3 Alpha channel

Comments: The returned number ranges from 0 to 1, and indicates the
red, green, or blue color content of a color index, or the
alpha channel (opacity) in the case of index 3.

Example:

ZText(10, 10, Concat("Red = " , PalStatus(14, 0)), 14, 0);
ZText(10, 20, Concat("Green = ", PalStatus(14, 1)), 14, 0);
ZText(10, 30, Concat("Blue = " , PalStatus(14, 2)), 14, 0);

This displays the color mix for color index 14 (yellow - FFFFFF00) in that
color. The values displayed in this case will be 1, 1 and 0 respectively.

Parameter

Description: Returns the value of (or may assign a value to) a parameter
of a module, specified by the index.

Returns: varies

Usage: Script Only.

Function Groups: Basic Module, Variable

Related to: BuffToParm | NParm | ParmToBuff | PType | ResetParm

Format: Parameter(Object, Index)

Parameters:

Object

Required. Any object (the object value of any module
instance).

Index

Required. Any numeric expression giving the number
of the parameter of interest, starting from 1.

Comments: This function returns the value passed in the module call in
the position Index. It may also appear on the left side of an
assignment operator (=), in which case it will try to assign
the value to the parameter in Index. The parameter must
be a reference type parameter to receive an assignment
(all undeclared parameters default to reference type).
Assignment to a non-reference parameter or function has
no effect. The return value of Parameter is invalid if there is
no parameter at Index.
For launched modules, this function will not look at para-
meters beyond the number of formal parameters.

Example:

If 1 Main;
[
Parameter(Self(), 5) = 4;

]

This attempts to set parameter #5 to 4. Either the module must have
parameter 5 declared as a reference parameter, or have no declaration
for parameter 5 at all. The module call must have at least 5 parameters
listed, and the fifth parameter must be a variable or array element. If any
of these conditions are not met, nothing happens. If the module call is:

Show Normalize(1, 2, 3, 4, X);

Then X is set to 4.

ParameterEdit

Description: Draws an interface to allow the user to choose how to edit
a parameter. Used in tag widgets.

Returns: Self

Usage: Steady State only.

Function Groups: Graphics, Variable

Related to: NumericParameterEdit | ParameterSet

Format: \ParameterEdit(ParmVal, ParmPtr, Enable, Title, Modules,
Contexts, Parameters, TitleWidth, StartIndex, PtrWaitClose,
DialogRoot[, FocusID, Description])

Parameters:

ParmVal

The variable to be changed. Metadata indicating the
revision number (always 0) must be attached.

ParmPtr

Code Pointer to the parameter value so the Para-
meterEdit modules can dissect and categorize it

Enable

Flag - TRUE to enable the drawing of this parameter
edit module.

Title

Title for this parameter

Modules

Array of module names (snap-ins such as ParmEditCo-
lor, etc.) for parameter editing

Contexts

Contexts of where to find the Parameter edit modules
(usually, \Code)

Parameters

Parameters for the parameter edit modules. A mul-
tidimensional array, where each sub-array is a para-
meter list for each of the entries in the Modules array.

TitleWidth

Width allotted for the title. If Invalid, uses a standard
size (160px).

StartIndex

Starting Index for Parm Edit Modules

PtrWaitClose

Set to true to tell caller to wait to close

DialogRoot

Calling dialog window

FocusID

Optional focus ID value. Defaults to 1 if the control is
enabled, otherwise 0. The parameter edit control will
have two parts and thus use two ID values: the one spe-
cified (or the default) and one greater than that.

Description

Optional text, describing this parameter

Comments: Metadata indicating the version number must be added to
the ParmVal parameter. For example,

{ Set up variables for ParameterEdit }
MetaData(Value, "Revision") = 0;

Wrappers such as NumericParameterEdit exist to

make this function easier to use. See: ParameterEdit
Snap-ins

Example:

GUITransform(0, 1, 1, 0 { Unit Outline
},

1 - (Left) { Left Scaling
},

Top + PickValid(Height, 0) { Bottom Scaling
},

Right { Right Scaling
},

1 - (Top + TitleBarHeight) { Top Scaling
},

1 { Overall Scaling
},

0, 0 { Trajectory, Rotation
},

PickValid(DrawOptions, 1), 0 { Visibility, Reserved
},

0, 0, 0 { Selectability
},

ParmEditObj = \ParameterEdit(
TextHAlign { Parameter Value

},
CodePtr { Pointer to Parm Code

},
PickValid(DrawOptions, 1) { Enable Flag

},
PickValid(ParmLabel, \Hor-

izAlignmentLabel)
{

Title },
Modules { Array of Parm Edit Mod-

ules },
Contexts { Contexts for Edit

Modules },
Parameters { Parameters for Edit

Modules},
Invalid { Title Width

},
Invalid { Start Index

},
PtrWaitClose { Wait to close

},
DialogRoot { Calling dialog window

}
));

Related Information:
ParameterEdit Snap ins

ParameterSet

Description: When passed a set of up to 256 parameters, will return
them as an array.

Returns: Array

Usage: Steady State only.

Function Groups: Array, Variable

Related to: ParameterEdit

Format: \ParameterSet(Parm0[Parm1, ... Parm256])

Parameters:

Parm0

The first parameter to include.

Parm1 to Parm256

More parameters.

Comments: The returned array of parameters is suitable for use with
ParameterEdit.

PAreaSelect

(Dialog Library)

Description: Draws a droplist of area options with optional title
and bevel.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | PAddressEntry | PCheckBox |
 PColorSelect | PContributor | PDroplist | PEditfield |

 PPageSelect | PRadioButtons | PSecBit | PSelectObject |
 PSpinbox | PTypeToggle

Format: \DialogLibrary\PAreaSelect(CanEdit, FocusID, Init,
DrawBevel, VertAlign, AlignTitle, ParmNum, ExtTrigger,
OKPressed)

Parameters:

CanEdit

Any logical expression. If true (non-0) the text dis-
played in the area droplist can be edited in the same
manner as an editfield, if false (0) it cannot be edited
directly. Defaults to true (1) if invalid.

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

Init

Any numeric expression indicating the initial value. No
default is provided.

DrawBevel

Any logical expression. If true (non-0) a bevel is drawn
around the area droplist, if false (0) no bevel is drawn.
Defaults to true (1) if invalid.

VertAlign

Any numeric expression that sets the vertical align-
ment of the unopened area droplist according to one
of the following:

VertAlign Vertical Alignment

0 Top

1 Center

2 Bottom

Whether or not the title is included when the ver-
tical alignment is calculated is determined by
the value of AlignTitle. Defaults to 0 if invalid.

AlignTitle

Any logical expression. If true (non-0) the title is
included in the calculation for vertical alignment. If
false(0) it is added to the area droplist after it (and its
bevel if one exists) has been vertically aligned.
Defaults to true (1) if invalid.

ParmNum

A parameter number (starting from 0), that will be
edited instead of the default Area parameter. Specify
the parameter to which you wish to add an area.

ExtTrigger

An external trigger, to be set when the area changes.
Output value only.

OKPressed

Required. Linked to the OK button on the Config
folder.

Comments This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters. It will then set the second element (element
1) to the text string that designates the selected
area.
The height of the (unopened) area droplist is con-
stant, with the horizontal boundaries of its calling
transform defining its width, and the vertical bound-
aries of its calling transform defining its opened
height, which will include the added height of a

bevel, but may or may not include the title, depend-
ing on the alignment used. Note that if the entire
list can be displayed in a smaller area than indic-
ated by the vertical boundaries of the calling trans-
form, the dropped list height will be decreased. The
dropped height of the list will always have a min-
imum height of 1 line (below the field).
Usual height: 100 pixels.

Examples:

GUITransform(30, 180, 210, 80,
1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\PAreaSelect(0 { Not editable },
1 { Focus ID },
0 { No bevel },
Invalid
{ Use default },
0 { Align bevel }));

GUITransform(10, 120, 110, 20,
1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\PAreaSelect());

GUITransform(10, 120, 110, 20,
1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\PAreaSelect(1 { Not editable },
2 { Focus ID },
1 { Draw bevel },
0 { Top align },
1 { Align title }));

Notice that the last two examples produce the exact same results,
because the last duplicates the default settings.

ParentModule

Description: Returns the parent module of a module.

Returns: Module

Usage: Script or steady state.

Function Groups: Advanced Module

Related to: Caller | ParentObject

Format: ParentModule(Module)

Parameters:

Module

Required. Any expression for the module.

Comments: The parent module is the module in which Module is
defined.

Example:

ZText(10, 20, ParentModule(Self()), 15, 0);

This will display the parent module of the current module on the screen.

ParentObject

Description: Returns the parent of an object.

Returns: Module

Usage: Script or steady state.

Function Groups: Advanced Module

Related to: Caller | ParentModule

Format: ParentObject(Object)

Parameters:

Object

Required. The object you are inquiring about.

Comments: Returns the parent object of the given object instance.

Example:

parent = ParentObject(Self());
If ! Valid(Parent);
[

Slay(Self(), 0);
]

This example illustrates how the function may be used to monitor a mod-
ule's parent to prevent orphaning of the object.

ParentWindow

Description: Returns the object value of the nearest non-child window.

Returns: Window Object

Usage: Script or steady state.

Function Groups: Graphics, Window

Related to: ActiveWindow | RootWindow

Format: ParentWindow(Object)

Parameters:

Object

Required. Any object (the object value of any running
module instance).

Comments: This function will start at the object value given and
find the first window which is not a child window. If
there is no window found the return value will be
invalid.

For modules in non-child windows (i.e. one without
bit 9 set), RootWindow and ParentWindow will
return the same value.
For child windows, RootWindow will return the root
module in the child window, while ParentWindow
will return the root module in the child window's
closest non-child calling window.
To test whether a custom widget is being displayed
while in "editing mode" (that is, in the Idea Studio)
you can test whether ParentWindow()\Editing is

TRUE or FALSE.

ParmToBuff

Description: Returns a buffer of formatted numeric parameter values.

Returns: Buffer

Usage: Script Only.

Function Groups: Advanced Module, String and Buffer

Related to: ArrayToBuff | BuffToArray | BuffToParm

Format: ParmToBuff(Object, Index, N, Option, Size, Skip [,
BadData])

Parameters:

Object

Required. Any object (the object value of any running
module instance).

Index

Required. Any numeric expression giving the first para-
meter to format, starting from 1.

N

Required. Any numeric expression giving the number
of parameters to format. If there are fewer actual para-
meters than N + Index, this statement stops at the last
parameter.

Option

Required. Any numeric expression which specifies the
format of the buffer read.

Option Format

0 Unsigned binary (low byte first)

1 Signed binary (low byte first)

2 BCD (binary coded decimal) (low byte
first)

3 ASCII octal (high byte first)

4 ASCII decimal (high byte first)

5 ASCII hex (high byte first)

6 ASCII floating point (high byte first)

7 IEEE float/double (low byte first)

8 <obsolete>

9 Allen-Bradley® PLC/3 floating point

10 VAX single precision floating point

Size

Required. Any numeric expression giving the number
of digits in each datum. It has a different meaning for
each option as indicated:

Option Size Meaning Size Range

Binary
types

Number of
bits

1 - 32 bits

BCD Number of
4-bit digits

1 - 8 digits

ASCII
types

Number of
bytes

1 - 32 bytes

Float
types

Precision 1 for single precision, 2
for double precision

For Options 7 and 9 the data is written as appro-
priate binary format.

Skip

Required. Any numeric expression giving the number
of buffer bits/digits/bytes to skip after writing each
non-floating point element. For floating point types,
this parameter must be set to 0.

BadData

An optional parameter that designates how invalid data
is to be handled, according to the following table:
Defaults to 0 if missing or invalid.

BadData Handled

0 Output to buffer as invalid values

1 Causes buffer to be invalid

2 Output to buffer as valid 0s

Comments: This function may only be used with parameters con-
taining numeric data. It is useful for encoding serial port
data when writing I/O drivers.

Example:
If a module call looks like:

Write(1, 2, 3, x, y, z);

And there is a statement in module Write that looks like:

If ! Valid(writePacket);
[
writePacket = ParmToBuff(Self(){ Current module },

4 { Skip first 3 parameters },
NParm(Self()) - 3
{ Use rest of parameters },
0 { Unsigned binary format },
16 { Bits },
0 { No skip });

]

Since this statement encodes x, y, and z as 16 bit unsigned integers, the
returned buffer will be 16 bytes long, byte-ordered as follows:

Byte Description

0 Low byte of x

1 High byte of x

2 Low byte of y

3 High byte of y

4 Low byte of z

5 High byte of z

ParserSRO

Description: Adds a scope resolution reference to a variable on the top
of the PARSER_STACK given the stack and the object vari-
able.

Warning: This function should be used by advanced users only since
irrevocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications

Related to: Compile

Format: ParserSRO(ParserStack, Variable)

Parameters:

ParserStack

Required. Any expression for the parser stack value.

Variable

Required. Any expression for the variable value that
will be referenced by scope resolution.

Comments: The ParserStack is returned from the Compile function.
This assumes that the text value for the variable after the \
is already added as a parameter. This is only used when

compiling text and is not required for normal operation.

PasteObjects

Description: Pastes the code for multiple GUITransforms into a page
source file.

Returns: Nothing

Usage: Script Only.

Function Groups: Graphics

Related to: CopyObjects

Format: PasteObjects(ObjectText, SelDAGs)

Parameters:

ObjectText

Required. The text string containing objects.

SelDAGs

Required. An array of code pointers of the pasted
objects.

Path

Description: Returns a graphics path value.

Returns: Path

Usage: Steady State only.

Function Groups: Graphics

Related to: GUIPolygon | Point | Trajectory | Vertex

Format: Path(Closed, V1, V2, ...)

Parameters:

Closed

Required. Any logical expression. If true, this is a
closed path, and the last Vertex is considered to be

connected to the first point. If false, this is an open
path ending at the last Vertex.

V1, V2, ...

Required. Any expressions that return Vertex values.

Comments: Paths are used to determine the shape of polygons, and as
trajectories (animation motion paths).

Example:

truckPath = Path(0 { Open path, doesn't close on self },
Vertex(0 { Rectangular mode },
Point(20, 200, Invalid, Invalid),
Point(20, 200, Invalid, Invalid),
Point(20, 200, Invalid, Invalid)),
Vertex(0 { Rectangular mode },
Point(200, 200, Invalid, Invalid),
Point(200, 200, Invalid, Invalid),
Point(200, 200, Invalid, Invalid)),
endVertex { A variable containing a vertex });

This shows a 3 vertex path with one vertex found in a variable. This ver-
tex might be used in other functions, such as another path.

PathDraw

Description: Used within a Idea Studio handler to inform the engine that
a path is being drawn, and to set the appearance of that
path. Used for both lines and pipes. The resulting object
will be a GUIPolygon.

Returns: Numeric

Usage: Steady State only.

Function Groups: Graphics

Related to:

Format: PathDraw(Pen, Brush);

Parameters:

Pen

Required. Defines the color, style and width of

the path. May be any of the following:

Value Notes

Pen object If the pen color is transparent,
invisible, or has a zero width,
then a 1-pixel black line will
be shown only while the path
is being drawn to show the pos-
ition.

Palette index Defines only the color of the
line. A 1-pixel, solid line will
be drawn.

System color Defines only the color of the
line. A 1-pixel, solid line will
be drawn.

-1 (transparent line) The line will not be shown,
except that a 1-pixel solid
black line will be used while
the path is being drawn.

aRGB string Defines only the color of the
line. A 1-pixel, solid line will
be drawn.

Brush

Required. Defines the fill color of a closed figure
or the color of a pipe. May be any of the fol-
lowing:

Value Notes

Brush object Defines a foreground, back-
ground and pattern for the fill.

Palette index Defines only the color of the
fill.

System color Defines only the color of the
fill.

-1 (transparent line) The fill will not be shown.

aRGB string Defines only the color of the
fill.

Comments: Do not confuse PathDraw with the function
DrawPath().
This function will work only inside the context of a
window with the Drop Target bit (22) set.
The path may have multiple vertices. If the function
stops during drawing, no portion will be drawn.
When drawing a pipe, set the style for the Pen() to
100.

Examples:
Render a path as a narrow black line:

PathDraw(Pen(("<FFFFFFFF>", 1, 1), Brush(("<FF000000>", 0, 1));

Render a path as a pipe:

PathDraw(Pen("<FF80FF80>", 100, 29), Brush(-1, 0, 1));

PatternMatch

Description: Compares a string against a reference pattern and returns
true if the string matches the pattern. Along with literal
characters, PatternMatch currently supports the * and ?
wildcard characters within the reference pattern (see Pat-
tern parameter).

Returns: Boolean

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: String and Buffer

Related to:

Format: PatternMatch(String, Pattern [, CaseInsensitive])

Parameters:

String

Required. The string you wish to compare to Pattern.

Pattern

Required. The reference pattern to which you wish
String to be compared. PatternMatch currently sup-
ports the * and ? wildcard characters in the reference
pattern.
These wildcards may be escaped with a backslash (\),
as can the backslash character itself. The backslash
does not have to be escaped, so a lone backslash (that
does not precede a * or ? character) is interpreted just
like a double one: as a literal backslash.

CaseInsensitive

An optional Boolean parameter that indicates whether
or not PatternMatch should be case insensitive when it
performs the matching. The default for this parameter
is FALSE, indicating that PatternMatch should be case
sensitive.

Comments: If any of the arguments to PatternMatch are Invalid, Pat-
ternMatch returns Invalid.

PCheckBox

(Dialog Library)

Description: Parameter Setting check box. This module draws a
check box with optional label.

Returns Nothing

Usage:: Steady State only.

Function Groups: Graphics

Related to: GUITransform | PAddressEntry | PAreaSelect |
 PColorSelect | PContributor | PDroplist | PEditfield |

 PPageSelect | PRadioButtons | PSecBit | PSelectObject |
 PSpinbox | PTypeToggle

Format: \DialogLibrary\PCheckBox(ParmNum [, Label, BoxOnLeft,
Alignment, FocusID, PrivNotReq])

Parameters:

ParmNum

Required. Any numeric expression giving the para-
meter number (from 0) in the caller to alter.

Label

An optional parameter that is any text expression to be
used as a label with the check box. The default value is
a blank label.

BoxOnLeft

An optional parameter that is any logical expression. If
true (non-0) the check box will appear to the left of the
label, if false (0) it will be to the right. The default value
is true.

Alignment

An optional parameter that is any numeric expression
that sets the alignment of the check box and its label
according to one of the following options:

Alignment
Horizontal Align-

ment
Vertical Align-

ment

0 Left Top

1 Right Top

2 Full Top

3 Left Centered

4 Right Centered

5 Full Centered

6 Left Bottom

7 Right Bottom

8 Full Bottom

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

PrivNotReq

An optional parameter that is any logical expression. If
set to true (non-0), anyone can change the value in
this editfield. If set to false (0), only those users whose
user accounts have been granted the "TagModify" priv-

ilege may set it. The default value is false.

Comments: This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
The "P" tools (Pcheck box, PContributor, PCo-
lorSelect, PDroplist, and PEditfield) were intended
only for use in configuration folders and drawing
panel modules, and therefore are subject to the sys-
tem security restraints.
This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters. It will then set the element indicated by
ParmNum to the logical value set by the check box.
The size of the check box is constant, with the
boundaries of its calling transform defining the pos-
ition of the check box and its label.
Usual height: 12 pixels.

Examples:

GUITransform(70, 190, 210, 170,
1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\PCheckBox(3 { Parm num },
"Invert Output" { Label },
0 { Box on right },
2 { Full, top alignment },
4 { Focus ID }));

PColorEdit

(Dialog Library)

Description: Wrapper module for the standard Color editing Para-
meters including Hue, Saturation, Brightness, Trans-
parency, Contrast and Colorizing Hue and Intensity.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | PAddressEntry | PAreaSelect |
 PColorSelect | PContributor | PDroplist | PEditfield |
 PHueSelect | PPageSelect | PRadioButtons | PSecBit |
 PSelectObject | PSpinbox | PTypeToggle

Format: \DialogLibrary\PColorEdit(Parms, Hue, Saturation,
Brightness, Transparency, Contrast, ColorizeHue, Col-
orizeInt[, Title, FocusID, Trigger])

Parameters:

Parms

Required. A pointer to the array of parameters.

Hue

The parameter number for the Hue.

Saturation

The parameter number for the Saturation.

Brightness

The parameter number for the Brightness.

Transparency

The parameter number for the Transparency.

Contrast

The parameter number for the Contrast.

ColorizeHue

The parameter number for the ColorizeHue.

ColorizeInt

The parameter number for the Colorize Intensity.

Title

An optional parameter that is any expression for a title
to be applied.

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

Trigger

Set when the variable is changed.

Comments: This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
The "P" tools (PCheckBox, PContributor, PCo-
lorSelect, PDroplist, and PEditfield) were intended
only for use in configuration folders and drawing
panel modules, and therefore are subject to the sys-
tem security restraints.
This parameter tool expects the first parameter of
its calling module to contain a pointer to an array of
tag parameters. It will then set the elements indic-
ated by Hue, Saturation, Brightness, Transparency,
Contrast, ColorizeHue and ColorizeInt to the logical
value set by the matching input field.
This module provides an easier way to add color

editing to a Panel module. It will default invalid
parameters.
Usual height: 260 pixels.

Note: This module uses 7 Focus ID's.

Examples:

GUITransform(0, 1, 1, 0,
1 { Scale Left },
PanelHt – TitleSpace { Scale Bottom },
PanelWd { Scale Right },
1 { Scale Top },
1 { Scale Whole },
0, 0, 1, 0 { No movement; visible; reserved

},
0, 0, 0 { Not selectable

},
\DialogLibrary\PColorEdit(Parms,

#Hue,
#Saturation,
#Lightness,
#Transparency,
#Contrast,
#ColorizeHue,
#ColorizeIntensity,
\ColorOptionsLabel { Title

},
9 { to 15 - ID

},
Trigger { Trigger

}));

PColorSelect

(Dialog Library)

Description: Draws a button that opens a color selection dialog
and an area that displays the currently selected
color.

Returns: Nothing

Usage: Steady State only.

Function Groups: Color, Graphics

Related to: GUITransform | PAddressEntry | PAreaSelect |
 PCheckBox | PContributor | PDroplist | PEditfield |
 PPageSelect | PRadioButtons | PSecBit | PSelectObject |
 PSpinbox | PTypeToggle

Format: \DialogLibrary\PColorSelect(ParmNum [, BtnLabel,
BtnOnLeft, Standard, VertAlign, FocusID, Open])

Parameters:

ParmNum

Required. Any numeric expression giving the para-
meter number (from 0) in the caller to alter.

BtnLabel

An optional parameter that is any text expression to be
used as a label on the color selection button.

BtnOnLeft

An optional parameter that is any logical expression. If
true (non-0) the button will appear to the left of the
color display area, if false (0) it will be to the right. The
default value is true.

Standard

An optional parameter that is any logical expression. If
true (non-0) the button and color display area will be
standard system size, if false (0) they will be sized to fit
their boundaries and VertAlign will be ignored. The
default value is true.

VertAlign

An optional parameter that is any numeric expression
that sets the vertical alignment of the button and dis-

VertAlign Vertical Alignment

0 Top

1 Center

2 Bottom

Note: If Standard is true, this parameter is
ignored. The default value is 0, top alignment.

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

Open

An optional parameter that is any logical expression. If
true (non-0) the dialog will be open. If false (0), it will
be closed. The default is true.

Comments: This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
The "P" tools (PCheckBox, PContributor, PCo-
lorSelect, PDroplist, and PEditfield) were intended
only for use in configuration folders and drawing
panel modules, and therefore are subject to the sys-
tem security restraints.
This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters. It will then set the element indicated by
ParmNum to the chosen color index.
If the button and display area are set to be standard
size, the button size will remain a constant size
(101 x 31 pixels) regardless of the calling trans-
form, but the display area will vary between a min-
imum (square) size to a maximum length equal to
the length of the button, depending on the trans-
form. Once the maximum display area size has been
reached, the button and area will be fully justified
to cover the entire width of the transform (the ver-

tical alignment will be set by the value of VertAlign).
For any optional parameter that is to be set, all
optional parameters preceding the desired one
must be present, although they may be invalid.
Usual height: 21 pixels.

Example:

GUITransform(70, 200, 290, 170,
1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\PColorSelect(8 { Parm num },
"Set Color" { Label },
1 { Button on left },
1 { Standard size },
1 { Centered vertically },
4 { Focus ID }));

PContributor

(Dialog Library)

Description: Draws a split list displaying all contributors to a spe-
cific tag.

Returns: Nothing

Usage: Steady State only.

Function Groups: Containers and Contributors, Graphics

Related to: AddContributor | GetContributors | GUITransform |
 PAddressEntry | PAreaSelect | PCheckBox | PColorSelect |
 PDroplist | PEditfield | PPageSelect | PRadioButtons |

 PSecBit | PSelectObject | PSpinbox | PTypeToggle

Format: \DialogLibrary\PContributor(HolderName, ContainerObj,
ContribType, TagType [, Title, FocusID, NoAdd])

Parameters:

HolderName

Required. Any text expression giving the variable
name for container information.

ContainerObj

Required. The object value of the container.

ContribType

Required. Any text expression giving the contribution
type.

TagType

Required. Any text expression for the type of Tag for
which the contributors are being sought.

Title

An optional parameter that is any text expression to be
used as a title for the splitlist.

FocusID

Required. A parameter that is any numeric expression
for the focus number of the splitlist and its two but-
tons. The splitlist will have a focus ID equal to FocusID,
the left button will have one of FocusID + 1, while the
right button will have a focus ID of FocusID + 2.
If FocusID is 0, the splitlist will display its current set-
ting, but its accompanying buttons will not be able to
be selected.

NoAdd

An Boolean optional expression. Set TRUE when the
Add button is disabled.

Comments: This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
The "P" tools (PCheckBox, PContributor, PCo-
lorSelect, PDroplist, and PEditfield) were intended
only for use in configuration folders and drawing
panel modules, and therefore are subject to the sys-
tem security restraints.
This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters. It will then set the element indicated by
ParmNum to the chosen tag's name.
For any optional parameter that is to be set, all
optional parameters preceding the desired one
must be present, although they may be invalid.
This function provides a split list containing the
names and descriptions of all contributors stored in
HolderName. Double-click on an item in this list to
obtain the Properties dialog for the tag. Click on the
Add button to add a new contributor of the tag type
"PointType", which is owned by "ContainerObj", and
which has a contribution type "ContribType". Click
on the Delete button to terminate the con-
tainer/contributor relationship for the currently
highlighted contributor. The former contributor is
not deleted from the application, or from the data-
base.
Usual height: 200-250 pixels.

Examples:

GUITransform(10, 410, 310, 10,
1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\PContributor(

"" { Holder name },
Var { Container object },
"" { Contributor type },
"AnalogInput" { Tag type },
"Contributors" { Title },
4 { Focus ID }));

PDroplist

(Dialog Library)

Description: Parameter Setting Droplist. This module draws a
droplist with (optional) title and bevel.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | PAddressEntry | PAreaSelect |
 PCheckBox | PColorSelect | PContributor | PEditfield |
 PPageSelect | PRadioButtons | PSecBit | PSelectObject |
 PSpinbox | PTypeToggle

Format: \DialogLibrary\PDropList(ParmNum, Title, DataOrA-
lignTitle [, CanEdit, Index, FocusID, Trigger, Init,
DrawBevel, VertAlign, AlignTitle_L0, RetArray_L1, L2, ...,
L16])

Parameters:

ParmNum

Required. Any numeric expression giving the para-
meter number (from 0) in the caller to alter.

Title

Required. Any text expression to be used as a title for
the droplist.

DataOrAlignTitle

Required. A flexible parameter that is either an array of
data to be displayed in the droplist, or a logical expres-
sion indicating the alignment of the droplist's title.
If this is an array, the parameter called AlignTitleOrL1
indicates the title alignment.
If this parameter is invalid or numeric, it indicates the
title alignment such that if it is true (non-0) the title is
included in the calculation for vertical alignment, if
false(0) it is added to the droplist after it (and its bevel
if one exists) has been vertically aligned. The default is
true.

CanEdit

An optional parameter that is any logical expression. If
true (non-0) the text displayed in the droplist can be
edited in the same manner as an editfield, if false (0) it
cannot be edited directly. The default value is false.

Index

An optional parameter that is a variable whose value
indicates the array index of the highlighted item in the
list. If this information is not required, a constant may
be used. This value will be used to calculate the initial
value displayed in the droplist (see Init).

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

Trigger

Optional. If the droplist is editable, Trigger provides
feedback. While editing, the value will be 0. When edit-
ing is complete (tab, enter or loss of focus) the value
will change to non-zero; 1 if enter is pressed, 2 oth-
erwise.

Init

An optional parameter that is any expression for the ini-
tial value displayed in the field. The default value is
Data[Index]. If Index is invalid, the droplist will initially
appear blank.

DrawBevel

An optional parameter that is any logical expression. If
true (non-0) a bevel is drawn around the droplist, if
false (0) no bevel is drawn. The default value is true.

VertAlign

An optional parameter that is any numeric expression
that sets the vertical alignment of the unopened
droplist according to one of the following:

VertAlign Vertical Alignment

0 Top

1 Center

2 Bottom

Whether or not the title is included when the ver-
tical alignment is calculated is determined by
the value of AlignTitle. The default value is 0.

AlignTitle_L0

A flexible parameter that is either a logical expression
indicating the alignment of the title, or it is the first
label (option) in the list that is displayed by this
graphic. If the parameter called DataOrAlignTitle is a
data array of options, this parameter will indicate the
title alignment (see the summary for the DataOrA-
lignTitle parameter) otherwise this will be any text
expression that gives the first label in the dropped list.

RetArray_L1

A flexible parameter that is either the second label in

the list displayed by this graphic, or it can be an array
of values to which the parameter at ParmNum will be
set. This allows PDropList to be used in places that
would otherwise need to use System\Droplist and
manually set the value of Paramter[#ParmNum]

L2, L3, ...L16

A list of text expressions giving the remaining options
in the dropped list. Any number of these may be left
invalid. The resulting list displayed when droplist is
opened will contain all valid entries in the 16 available
positions.

Comments: This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
The "P" tools (PCheckBox, PContributor, PCo-
lorSelect, PDropList, and PEditfield) were intended
only for use in configuration folders and drawing
panel modules, and therefore are subject to the sys-
tem security restraints.
This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters. It will then set the element indicated by
ParmNum to the text string displayed in the selec-
ted line of the droplist.
The height of the (unopened) droplist is constant,
with the horizontal boundaries of its calling trans-
form defining its width, and the vertical boundaries
of its calling transform defining its opened height,
which will include the added height of the bevel
above the field, but may or may not include the
title, depending on the alignment used. Note that if
the entire list can be displayed in a smaller area

than indicated by the vertical boundaries of the call-
ing transform, the dropped list height will be
decreased. The dropped height of the list will
always have a minimum height of 1 line (below the
field).
For any optional parameter that is to be set, all
optional parameters preceding the desired one
must be present, although they may be invalid.
Usual height: 40

Example:
The following example illustrates the data options being stored in an
array:

GUITransform(70, 210, 210, 170,
1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\PDroplist(6 { Parm num },
"PLC Type" { Title },
PLCTypes { Array of data },
0 { Not editable },
Idx { Chosen element },
3 { Focus ID },
0 { Trigger not req'd },
Invalid { Use default for init },
1 { Draw bevel },
1 { Center list },
0 { Align top of bevel }));

The next example shows how data options may be entered as a grouping
of text strings:

GUITransform(70, 210, 210, 170,
1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\PDroplist(6 { Parm num },
"PLC Type" { Title },
1 { Align title with top },
0 { Not editable },
Idx { Chosen element },
3 { Focus ID },
0 { Trigger not req'd },
Invalid { Use default for init },
1 { Draw bevel },
1 { Center list },

"PLC-2", "PLC-3", "PLC-5", "PLC-5/250",
"SLC-500" { Options in list }));

PEditfield

(Dialog Library)

Description: Parameter Setting Editfield. This module draws an
editfield with (optional) title and bevel.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | PAddressEntry | PAreaSelect |
 PCheckBox | PColorSelect | PContributor | PDroplist |
 PPageSelect | PRadioButtons | PSecBit | PSelectObject |
 PSpinbox | PTypeToggle

Format: \DialogLibrary\PEditField(ParmNum [,Title, DataType,
FocusID, Trigger, View, DrawBevel, VertAlign, AlignTitle,
LowLimit, HighLimit, PrivNotReq, Style, PrefixValue, Post-
fixValue])

Parameters:

ParmNum

Required. Any numeric expression giving the para-
meter number (from 0) in the caller to alter.

Title

An optional parameter that is any text expression to be
used as a title for the field.

DataType

Defaults to 4 unless otherwise specified.

DataType Type

0 Byte (unsigned)

1 Short (2 byte signed)

2 Long (4 byte signed)

3 Double precision floating point (8
byte signed)

4 Text

5 Octal (4 byte unsigned)

6 Hexadecimal (4 byte unsigned)

For types 0 - 2, if the number entered into the
field is prefaced by a "0x" the value is taken to
be hexadecimal format, and if it is prefaced by a
"0" it is considered to be octal. In either case,
the value is converted to decimal format when
return is pressed or the focus is lost.
For type 5, regardless of whether or not the
number entered into the field is prefaced by a
"0" the value is taken to be octal and will be dis-
played as such. The actual type of Variable will
be text.
Type 6, like type 5 will be kept in its declared
format of hexadecimal regardless of whether or
not the number entered into the field is pre-
faced by a "0x". The actual type of Variable will
be text

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-

out).

Trigger

Optional. Trigger provides feedback. While editing, the
value will be 0. When editing is complete (tab, enter or
loss of focus) the value will change to non-zero; 1 if
enter is pressed, 2 otherwise.

View

An optional parameter indicating how to display the
editfield , as follows. The default value is 2 if FocusID is
0 and 1 otherwise.

View Display mode

0 Invisible

1 Normal (color scheme - no graying)

2 Grayed-out (only if FocusID is 0)

This parameter may be used to force an editfield
with a FocusID of 0 to be displayed normally,
rather than allowing it to default to its grayed
color.
Note that if the FocusID is not 0, setting this
value as 2 will not force the field to gray out.

DrawBevel

An optional parameter that is any logical expression. If
true (non-0) a bevel is drawn around the editfield, if
false (0) no bevel is drawn. If the editfield is beveled, its
size will become fixed and will be the same as that for
a droplist. The default value is true.

VertAlign

An optional parameter that is any numeric expression
that sets the vertical alignment of the editfield accord-
ing to one of the following options:

VertAlign Vertical Alignment

0 Top

1 Center

2 Bottom

Whether or not the title is included when the ver-
tical alignment is calculated is determined by
the value of AlignTitle. The default value is 0.

AlignTitle

An optional parameter that is any logical expression. If
AlignTitle is true (non-0), the title will be included in
the calculation for vertical alignment. If AlignTitle is
false (0), the title will be added to the editfield after
both the editfield and its bevel have been vertically
aligned. The default is true.

LowLimit

An optional parameter that is any expression giving
the minimum value or minimum number of characters
to be accepted by the editfield (depending on the data
type). This value may be a decimal, octal or hexa-
decimal value. If this parameter is valid and a value
less than LowLimit is entered in the field (or there are
too few characters, in the case of text value), the vari-
able set by the field will revert to the previous value.
No default

HighLimit

An optional parameter that is any numeric expression
giving the maximum value or maximum number of
characters to be accepted by the editfield (depending
on the data type). This value may be a decimal, octal

or hexadecimal value. If this parameter is valid and a
value greater than HighLimit is entered in the field (or
there are too many characters, in the case of text
value), the variable set by the field will revert to the pre-
vious value.

PrivNotReq

An optional parameter that is any logical expression. If
set to true (non-0), anyone can change the value in
this editfield. If set to false (0), only those users whose
user accounts have been granted the "TagModify" priv-
ilege may set it. The default value is false.

Style

An optional parameter indicating the style of the
PEditField object. It is a bit-wise field made up of the
sum of the following values, to yield the desired
effects.

Bit Value Definition

0 1 Reserved for bit compatibility with
WinComboCtrl, and should be set to
"0"

1 2 Reserved for bit compatibility with
WinComboCtrl, and should be set to
"0"

2 4 Input is converted to all uppercase
(note 1)

3 8 Input is converted to all lowercase
(note 1)

4 16 Input is masked. Any characters
typed will appear as asterisks. This
is useful for such things as password
fields

5 32 Multiline editing. Setting this bit
causes a typed <CR> (Enter or
Return) to be interpreted as "move
to the start of the next line". Text
that contains <CR> characters has a
line break inserted at each

6 64 Reserved

7 128

8 256 Reserved

9 512 Not used. Height is defined by
\EditHt or TEditHt (with title).

If neither values 4 or 8 are set, input is passed
to script code as typed.

PrefixValue

An optional parameter indicating the text expression
that should be displayed immediately before (i.e. to
the left of) the editable part of the control.

SuffixValue

An optional parameter indicating the text expression
that should be displayed immediately after (i.e. to the
right of) the editable part of the control. No Default

Comments: This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
The "P" tools (PCheckBox, PContributor, PCo-
lorSelect, PDroplist, and PEditField) were intended
only for use in configuration folders and drawing
panel modules, and therefore are subject to the sys-
tem security restraints.
This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters. It will then set the element indicated by
ParmNum to the value in the editfield.
The height of the editfield is constant, with the hori-
zontal boundaries of its calling transform defining
its width, and the vertical boundaries of its calling
transform defining the boundaries in which it is to
be confined vertically, which will include the added
height bevel, but may or may not include the title,
depending on the alignment used.
Usual height: 45 pixels.

Examples:

GUITransform(10, 215, 225, 15,
1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\PEditField(1 { Parm num },
"Manual Data" { Title },
3 { Type float },
6 { Focus ID },
0 { Trigger not req'd },
Invalid { Use default view },
0 { No bevel },
Invalid { Default alignment },
1 { Align title },
98.6 { Minimum value },
Invalid { No maximum value }));

Notice in the above example that the last parameter could have been
omitted, because it is optional and its setting matches the default.

PEditName

(Dialog Library)

Description: An edit field for setting tag names. This module
draws an edit field that is to be connected to the
name of a tag. Should be used by all tag Con-
figFolder modules for setting the name parameter.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | PEditfield

Format: \DialogLibrary\PEditName(Trigger[, DrawBevel, Title, ID])

Parameters:

Trigger

Required. Set when the name variable is changed.

DrawBevel

Optional Boolean. When TRUE, a bevel will be drawn.

Defaults to TRUE.

Title

Optional. Any text that you would like display as the
title of the edit field. Defaults to "Name".

ID

Optional. Any numeric expression providing the Focus
ID of the edit field. Defaults to 1.

Comments: This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
The "P" tools (PCheckBox, PContributor, PCo-
lorSelect, PDroplist, and PEditField) were intended
only for use in configuration folders and drawing
panel modules, and therefore are subject to the sys-
tem security restraints.
Usual height: 45 pixels.

Example:

{***** Name of the tag *****}
GUITransform(30, 90, 470, 45,

1, 1, 1, 1, 1 { No scaling },
0, 0, 1, 0 { No movement. Visible. Reserved},
0, 0, 0 { Not selectable },
\DialogLibrary\PEditName(Trigger));

PeekStream

Description: Returns a string of bytes from a stream without removing
them from the stream.

Returns: See description

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Stream and Socket

Related to: GetStreamLength | PipeStream | SRead | StreamEnd

Format: PeekStream(Stream, N)

Parameters:

Stream

Required. Any expression returning a pipe stream.

N

Required. Any numeric expression giving the number
of bytes to get from the pipe.

Comments: Execution of this function doesn't affect the stream pos-
ition pointer.
Second parameter must be 65,523 characters or less, oth-
erwise invalid will be returned.

Example:

If ! Valid(data);
[
data = PeekStream(strm, 10);

]

This stores the last 10 bytes from strm in data. The stream is unaffected.

Pen

Description: Returns a pen value.

Returns: Pen

Usage: Steady State only.

Function Groups: Color, Graphics

Related to: Brush

Format: Pen(Color, Style, Width)

Parameters:

Color

Required. Any numeric expression giving the color of
the line.. Any of the following may be used:

l a palette VTScada Color Palette

l a Constants for System Colors (constant)

l -1 (transparent)

l an RGB string with optional Alpha value in the
format, "<AARRGGBB>", or "<RRGGBB>", where
AA, RR, GG and BB are hexadecimal digits.

Style

Required. Any numeric expression giving the Line
Types. Valid line styles are from 1 to 5 inclusive for
standard lines. A line style of 1 is a solid line.
If the Pen command is used within a GUIPolygon to
draw a pipe, the use line style 100 (constant: PEN_
STYLE_PIPE).

Width

Required. Any numeric expression that gives the line
width in pixels.

Comments: Pen values are used in layered graphics statements that
draw lines (such as GUIArc or GUIRectangle).

Example:

GUIArc(728, 227, 477, 50 { Bounding box for arc },
1, 1, 1, 1, 1 { No scaling },
0, 0 { No trajectory or rotation },
1, 0 { Arc is visible; reserved },
0, 0, 0 { Cannot be focused/selected },
Pen(14 { yellow }, 3 { dotted }, 2 { pixel width }),
Vertex(1 { Double smooth mode },
Point(602.5, 138.5, Invalid, Invalid),
Point(710, 293, Invalid, Invalid),
Point(413, 52, Invalid, Invalid)));

This shows how a Pen statement may be used to affect the attributes of a
drawing object. In the above example, the arc will be drawn with a dotted
yellow line 2 pixels wide.

Pending

Description: Returns the number of statements of a certain type
pending.

Returns: Numeric

Usage: Script Only.

Function Groups: Graphics

Related to: Priority | PriorityWeight

Format: Pending(StatementType)

Parameters:

StatementType

Required. Any numeric expression giving the type of
statement for which to get the number pending as fol-
lows:

StatementType Pending type

0 High priority statement

1 Normal priority statement

2 Timer

3 Priority statement

4 Logger queue length
(logQsize in LogFile.cpp)

Example:

If 1 Next;
[
numPending = Pending(0);

]
This script finds the number of high priority statements pending at
the time of execution and assigns the value to the variable numPend-
ing.

PersistentSize

Description: Returns the size in bytes of a variable's persistent value size
in the persistent value (.VAL) file.

Warning: This function should be used by advanced users only.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Variable

Related to: AddVariable | ChangePersistentSize | FindVariable |
 MakeNonPersistent | MakePersistent

Format: PersistentSize(Variable)

Parameters:

Variable

Required. Any expression for the variable value. This
value is usually returned from a call to AddVariable or
FindVariable.

Comments: If Variable is not a persistent variable the function will
return invalid.

PHSliderBar

(Dialog Library)

Description: Called graphic module that connects a horizontal
slider bar to a given parameter number.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | PAddressEntry | PAreaSelect |
 PCheckBox | PContributor | PDroplist | PEditfield |
 PPageSelect | PRadioButtons | PSecBit | PSelectObject |
 PSpinbox | PTypeToggle

Format: \DialogLibrary\PHSliderBar(ParmNum [, Title, FocusID,
Trigger, DrawBevel, MinValue, MaxValue, EnableEditField])

Parameters:

ParmNum

Required. Any numeric expression giving the para-
meter number (from 0) in the caller to alter.

Title

An optional parameter that is any text expression to be
used as a the title to put on the bevel.

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

Trigger

Set when the variable is changed.

DrawBevel

Any Boolean expression which, when set to TRUE, indic-
ates that a bevel is to be drawn around the control.

MinValue

Any numeric expression for the minimum of Value's
range.

MaxValue

Any numeric expression for the maximum of Value's
range.

EnableEditField

An optional parameter that is any logical expression. If
true (non-0) the edit field will be shown. The default is
FALSE.

Comments: This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
The "P" tools (PCheckBox, PContributor, PCo-

lorSelect, PDroplist, and PEditfield) were intended
only for use in configuration folders and drawing
panel modules, and therefore are subject to the sys-
tem security restraints.
This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters. It will then set the value of the element
indicated by ParmNum.
Usual height: 40 pixels.

Example:

GUITransform(70, 200, 290, 160,
1, 1, 1, 1, 1 { No scaling

},
0, 0, 1, 0 { No movement; visible;

reserved },
0, 0, 0 { Not selectable

},
\DialogLibrary\PHSliderBar(#RelativeSize,

"Set Size", { Title
},

5 { ID
},

Trigger { Trigger
},

0 { No Bevel
},

0 { Min scale value
},

100 { Max scale value
},

1 { Enable edit
}));

PHueSelect

(Dialog Library)

Description: Called graphic module that connects a hue selection
tool to a given parameter number.

Returns: Nothing

Usage: Steady State only.

Function Groups: Color, Graphics

Related to: GUITransform | PAddressEntry | PAreaSelect |
 PCheckBox | PColorEdit | PContributor | PDroplist |
 PEditfield | PPageSelect | PRadioButtons | PSecBit |
 PSelectObject | PSpinbox | PTypeToggle

Format: \DialogLibrary\PHueSelect(ParmNum [, Title, FocusID,
Trigger, DrawBevel, EnableEditField])

Parameters:

ParmNum

Required. Any numeric expression giving the para-
meter number (from 0) in the caller to alter.

Title

An optional parameter that is any text expression to be
used as a the title to put on the bevel.

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

Trigger

Set when the variable is changed.

DrawBevel

Any Boolean expression which, when set to TRUE, indic-
ates that a bevel is to be drawn around the control.

EnableEditField

An optional parameter that is any logical expression. If
true (non-0) the edit field will be shown. The default is
FALSE.

Comments: This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
The "P" tools (PCheckBox, PContributor, PCo-
lorSelect, PDroplist, and PEditfield) were intended
only for use in configuration folders and drawing
panel modules, and therefore are subject to the sys-
tem security restraints.
This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters. It will then set the value of the element
indicated by ParmNum.
Usual height: 77 pixels.

Example:

GUITransform(30, 200, 300, 270,
1, 1, 1, 1, 1 { no scaling

},
0, 0, 1, 0 { No movement; visible;

reserved },
0, 0, 0 { Not selectable

},
\DialogLibrary\PHueSelect(#MismatchHue,

Invalid { Title },
10 { ID },
Trigger,
0, 1));

Pick

Description: Returns an indication of whether the locator (e.g. mouse)
has had a specified change in its button status.

Returns: Numeric

Usage: Steady State only.

Function Groups: Graphics, Locator

Related to: Click | LocSwitch | SetXLoc | SetYLoc | Target |
 WinLocSwitch | WinXLoc | WinYLoc | XLoc| YLoc |

 GUITransform

Format: Pick(X1, Y1, X2, Y2, Button)

Parameters:

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the screen area
("target").

Y1

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the screen area ("target").

X2

Required. Any numeric expression giving the X
coordinate on the screen of the side of the "target"
opposite to X1.

Y2

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the target, whichever is the opposite of Y1.

Button

Required. Any numeric expression giving the button
combination that activates this graphic when the loc-
ator cursor is within the "target" screen area.

Button Button Locator

0 No buttons

1 Right button

2 Middle button

3 Right and middle buttons

4 Left button

5 Left and right buttons

6 Left and middle buttons

7 All three buttons

If the value is:
- multiplied by 8 the meaning for multiple but-
tons pressed becomes "OR" rather than "AND."
For example, to accept any button on a 2 or 3
button mouse, use 56 (8 * 7). To accept the left
mouse button regardless of whether or not the
right button is pressed, use 32 (8 * 4)
- increased by 64, the function will become true
when the mouse buttons are released rather
than when they are pressed
- increased by 128, the button(s) must be
double-clicked
- increased by 256, forces the control with the
input focus (in the same window as the Pick) to
simulate the Enter key being pressed prior to
the Pick function returning a value of true. In
other words, with code similar to:

If Pick(X1, Y1, X2, Y2, 0X104);
[
…script statements…
]

any value affected by the control with input
focus will be set to the current value of the con-
trol prior to the script statements being run.
- increased by 512, horizontal panning is dis-
abled over the region.
- increased by 1024, vertical panning is disabled
over the region.
These last two options, 512 and 1024, allow
Pick, WinLocSwitch and other events to be
handled by a region within the window - for
example a map within a Sites page when viewed
using the VTSCada Anywhere Client. These
should be used only by advanced users.

Comments: This function returns true if the locator button com-
bination changes as specified by the Button para-
meter while the locator position is within the
boundaries of the "target" ((X1,Y1) - (X2,Y2)). This
function is "edge triggered" which means that it
only acts upon the changes in locator button status.
Making the button combination specified by the But-
ton parameter outside the target area and then slid-
ing the cursor into the target will not cause the
function to return true. If the locator is not
installed, the function will return false (0).
This function is very useful for capturing fast mouse
button presses by the operator. VTScada remem-
bers the locations where the mouse buttons were
pressed and released. The actual buttons do not
have to be pressed when the Pick is actually
executed since it will examine the list of all button

changes since the last time it was executed.
This function is latched on once it becomes true.
Use Click() for steady state feedback rather than
Pick().
Note: This function is disabled when using a
GUITransform as a GUIStrectch.

Example:

If Pick(300, 500, 600, 700, 56) MixerScreen;

This action will switch to the MixerScreen state when the mouse is inside
the target box and any mouse button is pressed.

Related Information:
See: "Latching and Resetting Functions" in the VTScada Programmer's
Guide

PickValid

Description: Attempts to return a valid value given a list of parameters.

Returns: Varies

Usage: Script or steady state.

Function Groups: Logic Control

Related to: Valid

Format: PickValid(Parm1, Parm2 [, Parm3, ...])

Parameters:

Parm1, Parm2, Parm3...

Required. Any number of parameters giving any
expressions, from which the first valid value will be
selected.

Comments: This function continues its search through its parameter
list in order until the first valid value is found.

Examples:

a = Invalid;
b = 83;
c = Invalid;
d = -1;
validAns1 = PickValid(a, b, c, d);
validAns2 = PickValid(a, c, d, b);

The value of validAns1 and validAns2 will be 83 and -1 respectively. A
typical use for this function is in setting default values as follows:

<
MyEditfield
(
left;

)
SetDefaults
[
If 1 Main;
[
left = PickValid(left, 100);
]

]
...
>

Given that module MyBox draws a box in the window, adding the Pick-
Valid statement ensures that even if an invalid value is given as a para-
meter, the box will still be displayed, because its invalid parameter will
have been replaced with the default value.

PID

Description Perform PID Controller Function. This function returns a
control value to maintain a parameter at a given setpoint.

Returns Numeric

Usage Steady State only. See: Rules for Usage.

Function Groups Variable

Related to: Deriv | Intgr

Format: PID(PV, SP, Mode, Track, LowLimit, HighLimit, P, I, D, Bias,
Time)

Parameters

PV

Required. Any numeric parameter which gives the "pro-
cess variable" to be maintained at the given setpoint.

SP

Required. Any numeric parameter that gives the value
to use for the "setpoint." The PID function will change
its return value to make the PV value match the SP
value.

Mode

Required. Any numeric parameter giving the manu-
al/auto mode for the function. When the parameter is
not equal to 0, the function is in auto mode and uses
the PID algorithm to control the output.
When the parameter is equal to 0, the function simply
returns the value of the Track parameter. When the
mode switches from manual to auto, the PID function
implements a "bumpless transfer." This results in a
smooth output change rather than an abrupt change.
This is done by forcing the internal integral to assume
a value which forces the PID function to output a value
which matches the Track parameter at the moment of
the change. The integral value will not, however,

Mode Algorithm Derivative Gains

0 Manual N/A N/A

1 Normal Uses PV Independent

2 Normal Uses PV Dependent

3 Normal Uses Error Independent

4 Reverse Uses Error Dependent

5 Reverse Uses PV Independent

6 Reverse Uses PV Dependent

7 Reverse Uses Error Independent

The PID function operates in eight automatic
modes and one manual mode. These modes are
listed in the above table. If in doubt, use mode 1
or 5.
The Action column in the above table indicates
whether the PID function operates using normal
action (SP - PV) or reverse action (PV - SP). With
normal action, when PV increases, the function
output decreases. With reverse action, when PV
increases, the function output increases also.
The Derivative column in the above table indic-
ates whether the PID function derivative bases
its value upon PV or the error between PV and
SP. For normal action, the error is (SP - PV). For
reverse action, the error is (PV - SP). The dif-
ference between the two modes is only clear
when the setpoint (SP) is changed. If the deriv-
ative uses PV, the response to setpoint changes
is normal. If the derivative uses the error, the
response to setpoint changes is faster but usu-
ally produces an abrupt change in the PID func-
tion output which is often undesirable.
The Gains column in the above table indicates
which PID equation is used. Refer to the "Com-
ments" section for these equations. The inde-
pendent gains equation uses seconds as the
time base and the gain parameter (P) does not
affect either the integral or derivative. The
dependent gain equation is the ISA equation. It
uses minutes as the time base and the gain para-
meter (P) affects both the integral and deriv-
ative.

Track

Required. Any numeric parameter that gives the func-
tion output value when in manual mode (i.e. Mode
equal to 0). When in auto mode, this parameter is
ignored except at the instant immediately following
the change from manual to auto mode.

LowLimit

Required. Any numeric expression giving the min-
imum value allowed for the PID function. The integral
component may grow to a very large value if the set-
point (SP) is outside the controllable range.
Physical plant limitations may prevent the PV value
from reaching the SP value. In such situations, the con-
troller will respond very slowly to bringing the SP
within the controllable range since it will take a long
time for the large integral value to increase to the cor-
rect value.
The LowLimit parameter puts a lower bound on the
value of the PID function. It does this by limiting the
value of the internal integral that results in instantly
regaining control once the setpoint is brought back
into the controllable range. This feature is sometimes
called "anti-reset windup."

HighLimit

Required. Any numeric expression giving the max-
imum value allowed for the PID function. This is similar
to the LowLimit parameter except that it handles the
upper limit for the PID function output.

P

Required. Any numeric expression giving the "pro-
portional" or "gain" contribution to the PID output. It
has no units (dimensionless).

I

Required. Any numeric expression giving the "integral"
or "reset" contribution to the PID output. For inde-
pendent gains, the units are inverse seconds and the I
parameter is used directly as the gain for the integral
portion of the PID equation.
For dependent gains, the units are minutes and the P
parameter divided by I is used as the gain for the integ-
ral portion of the PID equation. Refer to the "Com-
ments" section for the equations.

D

Required. Any numeric expression giving the "deriv-
ative" or "rate" contribution to the PID output. For inde-
pendent gains, the units are seconds and the D
parameter is used directly as the gain for the derivative
portion of the PID equation.
For dependent gains, the units are minutes and P times
D is used as the gain for the derivative portion of the
PID equation. Refer to the "Comments" section for the
equations.

Bias

Required. Any numeric expression giving the output
offset or feed forward input. This value is added to the
output value. Refer to the equations in the "Comments"
section.

Time

Required. Any numeric expression giving the time
interval in seconds between integral and derivative
updates for the PID function. This value results in a
smoothing of the derivative values for the sampled pro-
cess data of VTScada .
The longer the time, the greater the smoothing. The
shorter the time, the faster the controller response. A
suggested time interval is the I/O update time for the
PV parameter.

Comments Typically, this function is used to set a variable that con-
trols a process output point. The equations used for this
function follow.
Independent Gains Equation:

CV = P * E + I *∫ E dt + D * dA/dt + Bias

Dependent Gains Equation (ISA):

CV = P * (E + 1/I *∫ E dt + D * dA/dt) + Bias

Where:
l CV PID function output.

l E Error. E = (SP - PV) for normal action modes and E
= (PV - SP) for reverse action modes.

l A Derivative selection. For modes with the derivative
based upon the PV value, A = PV. For modes with the
derivative based upon the error value, A = E.

PID control may be done by a PLC or other device
rather than VTScada. Setpoints, coefficients, and so
forth may be read and written by VTScada I/O
drivers. This form of PID control does not involve
use of the VTScada PID function. See the reference
manual of the PLC or other device and the VTScada
I/O driver manual for more.

Example:

{ Valve loop controller for heat exchanger }
valvePos = PID(cooledTemp { Process value },

cooledSP { Setpoint for cooled temperature },
Cond(valveManual, 0, 5)
{ Manual or reverse acting deriv
uses PV, independent gains },
manValvePos { Track value used in manual mode },
0, 1 { Lower/upper limits of valve position },
0.1 { P coefficient - proportional gain },
0.5 { I coeff - integral gain or reset time },
0.02 { D coefficient - derivative gain or rate },
0 { Output bias },
0.5 { Update loop every half second });

This performs PID control of a heat exchanger. A valve is used to control
a temperature given a setpoint. If valveManual is true, the PID simply
updates its internal integrators every half second using manValvePos. If
valveManual is false, PID control is updated every half second. The P, I,
and D gains are constants, but might be variables, to allow online tuning.

Pie

Note: Deprecated. Do not use in new code.

Description Draws a pie shaped wedge on the screen.

Returns Nothing

Usage Steady State only.

Function Groups Graphics

Related to: Arc | Ball | Circle | Ellipse | GUIArc | GUIChord |
 GUIEllipse | GUIPie

Format: Pie(X, Y, Radius, Angle1, Angle2, Foreground, Pattern,
Background)

Parameters

X

Required. Any numeric expression giving the X
coordinate of the center of the pie on the screen.

Y

Required. Any numeric expression giving the Y
coordinate of the center of the pie on the screen.

Radius

Required. Any numeric expression giving the radius of
the pie specified in units of X screen coordinates.

Angle1

Required. Any numeric expression giving the starting
angle of the pie in radians. An angle of 0 lies on the X
axis to the right of the center of the pie.

Angle2

Required. Any numeric expression giving the ending
angle of the pie in radians.

Foreground

Required. Any numeric expression giving the color
index for the foreground color of the pie fill pattern.

Pattern

Required. Any numeric expression giving the hatch Fill
Patterns to use for the fill. The valid hatch style num-
bers are from 1 to 25 inclusive.

Background

Required. Any numeric expression giving the back-
ground color for the hatch pattern. This value is only
significant if the Pattern parameter is not equal to 1.

Comments This statement has been superseded by the GUIPie
function and is maintained for backwards com-
patibility only.
The pie is drawn in a counterclockwise direction
from the Angle1 to Angle2.
As of version 11, this is now drawn in the same z-
order as other graphics, making it similar to the z-
graphics functions.

Example:

Pie(100,200 { X-Y coordinates for the center of the pie },
200 { Radius in pixels },
0 { Start angle (3 o'clock position) },
3.14 { Draw counterclockwise for 180 degrees },
10, 1, 0 { Light green solid (background ignored });

This draws the top half of a light green circle.

PIPAddressList

(Dialog Library)

Description: Uses an IPAddressList to set a parameter with a
semicolon-delimited IP address list.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | IPAddressList | PAddressEntry |
 PAreaSelect | PCheckBox | PColorEdit | PContributor |
 PDroplist | PEditfield | PPageSelect | PRadioButtons |
 PSecBit | PSelectObject | PSpinbox | PTypeToggle

Format: \DialogLibrary\PIPAddressList(ParmNum [, Trigger,
FocusID, Title, DrawBevel, AlignTitle])

Parameters:

ParmNum

Required. Any numeric expression giving the para-
meter number (from 0) in the caller to alter.

Trigger

Set when the variable is changed.

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

Title

An optional parameter that is any text expression to be
used as a the title to put on the bevel.

DrawBevel

Any Boolean expression which, when set to TRUE, indic-
ates that a bevel is to be drawn around the control.

AlignTitle

An optional parameter that is any logical expres-
sion. If true (non-0) the title is included in the
calculation for vertical alignment, if false(0) it is
added to the droplist after it and its bevel has
been vertically aligned. The default is true.
Usual height: 130 pixels.

Comments: This module should be used whenever the user needs an IP
Allow filter for use with the SocketManagerServer.

The module is a member of the VTScada Dialog Library
and must therefore be called from within a GUITransform
and prefaced by \DialogLibrary\.
The "P" tools (PCheckBox, PContributor, PColorSelect,
PDroplist, and PEditfield) are intended only for use in con-
figuration folders, and therefore are subject to the system
security restraints.
This parameter tool expects the first parameter of its call-
ing module to contain an array of tag parameters. It will
then set the value of the element indicated by ParmNum.
The recommended minimum height ranges from 100
pixels for a plain list to 130 pixels for a list with an aligned
titled bevel. The up/down buttons will hide if there is not
enough room for them to be displayed.

Example:

{***** Allowed incoming IP address (or ranges) -- optional *****}
GUITransform(30, 309, 240, 177, { Ht 130 }

1, 1, 1, 1,
1, 0, 0, 1, 0, 0, 0, 0,
\DialogLibrary\PIPAddressList(\#IPAddressAllow { ParmNum

},
Trigger,

Valid(Parms[\#ListenerGroup]) ? 10 { FID to 19} : 0,

\IPAllowLabel { Title},
TRUE { DrawBevel },
TRUE { AlignTitle }));

PIPListenerGroup

Dialog Library

Description: Draws a droplist of all available IP Listener Groups.
(In general, the groups will be the IP Listener tag
names.)

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | PAddressEntry | PAreaSelect |
 PCheckBox | PContributor | PDroplist | PEditfield |
 PPageSelect | PRadioButtons | PSecBit | PSelectObject |
 PSpinbox | PTypeToggle

Format: \DialogLibrary\PIPListenerGroup(ParmNum, Trigger,
FocusID [, Title, DrawBevel, VertAlign, AlignTitle])

Parameters:

ParmNum

Required. Any numeric expression giving the para-
meter number (from 0) in the caller to alter

Trigger

Set when the variable is changed.

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

Title

An optional parameter that is any text expression to be
used as a the title to put on the bevel.

DrawBevel

Any Boolean expression that, when set to TRUE, indic-
ates that a bevel is to be drawn around the control.

VertAlign

An optional parameter that is any numeric
expression that sets the vertical alignment of
the droplist according to one of the following
options:

VertAlign Vertical Alignment

0 Top

1 Center

2 Bottom

Whether or not the title is included when the ver-
tical alignment is calculated is determined by
the value of AlignTitle. The default value is 0.

AlignTitle

An optional parameter that is any logical expression. If
true (non-0) the title is included in the calculation for
vertical alignment, if false(0) it is added to the droplist
after it and its bevel has been vertically aligned. The
default is true.

Comments: This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
The "P" tools are intended for use only in con-
figuration folders and drawing panel modules, and
therefore are subject to the system security
restraints.

This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters. It will then set the value of the element
indicated by ParmNum.
Usual height: 45 pixels.

Examples:

{***** Network Listener group *****}
GUITransform(30, 168, 240, 123, { Ht 45 }
 1, 1, 1, 1, 1 { No scaling },
 0, 0, 1, 0 { No movement; visible; reserved },
 0, 0, 0 { Not selectable },
 \DialogLibrary\PIPListenerGroup(\#ListenerGroup, Trig-
ger,9 {ID},
 \IPNetworkListenerGroup));

Pipe

Note: Deprecated. Do not use in new code.

Description: Draw a double line

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUIPipe | Line | ZPipe

Format: Pipe(Width, Color, Curvature, X1, Y1, X2, Y2, ...)

Parameters:

Width

Required. Any numeric expression giving the spacing
of the lines in units of X screen coordinates. The width
is always rounded to result in an odd number of pixels
on the screen. The minimum width displayed will be 1
pixel.

Color

Required. Any numeric expression giving the VTScada

Color Palette of the pipe.

Curvature

Required. Any numeric expression giving the radius of
curvature of the corners for the pipe. This is specified
in units of X screen coordinates.
If the number of endpoints is 2, the Curvature is
ignored.

X1, Y1, X2, Y2, ...

Required. Any numeric expressions giving the screen
coordinates of the pipe endpoints.

Comments: The radius of curvature of the pipe corners is the
radius of the arc that joins the line endpoints. A
Curvature of 0 results in sharp (square) pipe
corners. Larger Curvature numbers result in greater
rounding of the pipe corners.
This statement is useful for drawing piping on the
screen, especially if it changes dynamically.

Note: Within an Anywhere Client session, this func-
tion does nothing.

Example:

Pipe(10 { Width of pipe in pixels },
11 { Light cyan color },
20 { Radius of curvature in pixels },
100, 100 { Coordinates of first point },
0, 900 { Coordinates of second point },
100, 200 { Coordinates of third point },
200, 500 { Coordinates of fourth point });

This statement draws a cyan colored pipe, 50 pixels wide between four
points.

PipeStream

Description: Returns a stream based on an operating system named
pipe.

Returns: Stream

Usage: Script Only.

Function Groups: Stream and Socket

Related to: BlockWrite| BuffStream | CloseStream | FileStream |
 GetStreamLength | PeekStream | SRead | StreamEnd |
 SWrite

Format: PipeStream(Name, Mode)

Parameters:

Name

Required. Any text expression giving the name of the
named pipe.

Mode

Required. Any numeric expression giving the manner
in which the pipe is opened, as shown in the following
table:

Mode Open state

0 Not opened yet

1 Opened for read

2 Opened for read or write

Comments: None

Example:

If ! Valid(pStream);
[
pStream = PipeStream("\\dataserv\datapipe", 1);

]

This opens a pipe named pStream as a stream from which to read data.

PixelColor

Description: Returns the color of a pixel in the window.

Returns: Numeric or String (see 4th parameter)

Usage: Script or steady state.

Function Groups: Color, Graphics

Related to: GetSystemColor

Format: PixelColor(Object, X,Y[,UseRGB])

Parameters:

Object

Required. Any expression that returns an object value.
This identifies the window where the pixel is drawn.

X

Required. Any numeric expression, giving the x-axis
coordinate of the location of the pixel.

Y

Required. Any numeric expression, giving the y-axis
coordinate of the location of the pixel.

UseRGB

Optional. Any Boolean expression, which when true,
will cause the pixel color to be returned as an RGB
string. If false, the numeric palette value will be
returned.

Comments: Location (x, y) is taken to be in the window where the mod-
ule instance identified by Object is drawn.

Example:

mouseColor = PixelColor(Self(),XLoc(),YLoc());

This finds the color under the mouse in the window where this function
is defined.

Platform

Descrip- Returns a twelve element structure that indicates the platform under

tion: which VTScada is currently running.

Returns: Structure – see comments

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function
Groups:

Network, Software and Hardware

Related
to:

 WKStaInfo

Format: Platform()

Para-
meters:

None

Com-
ments:

Element Value

PlatformId 0 = Windows ME, Windows 98 SE, Win-
dows 95
1 = Windows NT, Windows 2000, Win-
dows XP,

Windows Server 2003, Windows
Server 2008,

Windows Vista, Windows 7

MajorVersion Major version number

MinorVersion Minor version number

ProductType Additional information about the system.

SuiteMask Identifies the product suites available on
the system.
For a list of the codes and their mean-
ings, please refer to
http://msdn2.microsoft.com/en-us/lib-
rary/ms724833.aspx

BuildNumber The build number of the operating sys-
tem

SPName Service Pack Name

SPMajorVersion Major version # of latest service pack
installed

SPMinorVersion Minor version # of latest service pack
installed

ProductInfo For a list of the codes and their mean-
ings, please refer to
http://msdn2.microsoft.com/en-us/lib-
rary/ms724358.aspx

CPUArchitecture A 0 indicates x86 architecture, while a 9
indicates x64 architecture

NumberOfCPUs The number of processors in the
machine.

PhysicalMemory The number of bytes available.

Common Name Type
Major

Version
Minor Ver-

sion

Windows 95 Windows 4 0

Windows 98 Windows 4 10

NT 3.51 Windows NT 3 51

NT 4 Windows NT 4 0

Windows 2000,
NT 5

Windows
2000

5 0

Windows XP Windows 5 1

Windows XP Pro.
64

Windows 5 2

Windows Server
2003

5 2

Windows Vista 6 0

Windows 7 6 1

Windows Server
2008

6 0

http://msdn2.microsoft.com/en-us/library/ms724833.aspx
http://msdn2.microsoft.com/en-us/library/ms724833.aspx
http://msdn2.microsoft.com/en-us/library/ms724358.aspx
http://msdn2.microsoft.com/en-us/library/ms724358.aspx

Example:

If 1 Main;
[
p = Platform();
IfThen(p\MajorVersion == 6 && p\MinorVersion == 0

&& p\ProductType == 1,
UsingVista = 1;

);
];

This script checks to see if the platform is Windows Vista

Play

Description: Plays a multimedia sound file as installed in the operating
system. It differs from Sound in that it is a steady-state
statement and is supported by VTScada Internet Client.

Returns: Nothing

Usage: Steady State only. See: Rules for Usage.

Function Groups: Speech and Sound

Related to: Sound

Format: Play(File, Option, Enable [, DevID])

Parameters:

File

Required. Any text expression giving the file name to
play. If the extension is omitted, the default extension
".WAV" is added. If an empty string is provided here,
then any currently playing sound is stopped.

Option

Required. Any numeric expression that indicates how
to play the file. The value of Option may be obtained
by adding together numbers from the following table:

Value
Bit
No.

Option

1 0 Play asynchronously (don't wait)

2 1 Don't use default sound if file miss-
ing.

4 2 Reserved for future use.

8 3 Loop the sound until next Sound
function executed.

16 4 Don't stop any currently playing
sound.

If Option is "0", VTScada will halt all execution
until the sound is finished. This is not recom-
mended. Add "1" to avoid this behavior.

Enable

Required. A value indicating whether or not the sound
is played. This can be one of:

Value Description

1 Sound is played.

0 or
Invalid

The sound being played is
stopped.

DevID

An optional parameter that is required when you wish
to play a sound through a device other than the default
system audio device. The ModemDev function can
return the identifier of the wave device for a voice
modem.
Option value 8 is the only option considered when

DevID has been set.
Note: DevID is ignored for VIC sessions. Options must
be configured appropriately if there is a chance that
playback might occur over a VTScada Internet Client.

Comments: The return value is a Boolean flag that indicates
whether the file has begun playback. There is no
return value to signal when playback has finished.
Playback will stop when any of the following con-
ditions occur:

l Enable is set to false

l File is set to Invalid or ""

l The steady state call, Play() is stopped.
If the session is remote via a VTScada Internet Cli-
ent, the return value of this function will not be set
to true until the audio file has been completely
transferred and the playback has begun remotely.

Plot

Description: Displays a plot of a subsection of a numeric array in a par-
ticular area of the window.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: PlotBuff | PlotXY

Format: Format version 1:
Plot(ArrayElem, N, Low, High, X1, Y1, X2, Y2, Style,
Color, Pattern, PatternBackground)
Format version 2:
Plot(ArrayElem, N, Low, High, X1, Y1, X2, Y2, Pen,
Brush [, XORMode, Direction, DrawStepped, BitNum-
ber, Average])

Note: Plot takes the first parameter set or else
detects that the Style parameter is a Pen, in which
case the second parameter set is used.

Parameters:

ArrayElem

Required. Any numeric expression specifying the start-
ing array element to plot. If processing a mul-
tidimensional array, the usual rules apply to decide
which dimension should be used.

N

Required. Any numeric expression giving the number
of array elements to plot starting at the element given
by the first parameter. N must be greater than or equal
to 2, and no greater than 32000.
If this parameter is greater than the dimension of the
first array, the number of points plotted will be the
array dimension.
If N extends past the upper bound of the lowest array
dimension, this computation will "wrap-around" and
resume at element 0, until N elements have been pro-
cessed.

Low

Required. Any numeric expression that defines the
limit of data values to be plotted. This value need not
be less than High but must not be equal to it.
In the standard case, when this value is less than High,
it will define the minimum value to be displayed. For
example, if Low was 10, a data value of 10 would fall
on the edge of the bounding box, on either the line
described by X1, if the plot is vertical, or on the line
described by Y1, if the plot is horizontal. Any values
below 10 in this case would not be shown since they
would be outside the clipped box.

High

Required. Any numeric expression that defines the
limit of data values to be plotted. This value need not
be greater than Low but must not be equal to it. In the
standard case, when this value is greater than Low, it
will define the maximum value to be displayed. For
example, if High was 1000, a data value of 1000 would
fall on the edge of the bounding box, on either the line
described by X2, if the plot is vertical, or on the line
described by Y2, if the plot is horizontal. Any values
above 1000 in this case would not be shown since they
would be outside the clipped box.

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the plot area.
This is typically, although not necessarily, the left side
of the plot.
For horizontal plots, this is the screen coordinate of
the first point or bar plotted. For vertical plots, this is
the value which corresponds to the Low parameter
value. For vertical bar plots, X1 is the base coordinate
for the bars.

Y1

Required. Any numeric expression giving the Y
coordinate on the screen of one side of the plot area.
This is typically, although not necessarily, the bottom
of the plot.
For vertical plots, this is the screen coordinate of the
first point or bar plotted. For horizontal plots, this is
the value which corresponds to the Low parameter
value. For horizontal bar plots, Y1 is the base coordin-
ate for the bars.

X2

Required. Any numeric expression giving the X

coordinate on the screen of the side of the plot area
opposite to X1. This is typically, although not neces-
sarily, the right side of the plot.
For horizontal plots, this is the screen coordinate of
the last point or bar plotted. For vertical plots, this is
the value which corresponds to the High parameter
value.

Y2

Required. Any numeric expression giving the Y
coordinate on the screen of the side of the plot area
opposite to Y1. This is typically, although not neces-
sarily, the top of the plot.
For vertical plots, this is the screen coordinate of the
last point or bar plotted. For horizontal plots, this is
the value which corresponds to the High parameter
value.

Style

Required (Format version 1 only). Any numeric expres-
sion giving the style of the plot. The plot Style gives the
line style, direction, bit number for bits plots, and the
number of points to average per point displayed.

The Style is determined by adding together the fol-
lowing values:
Line style + Direction + Path + Bit number + Average

Line style is a number between 1 and 5 inclusive which
gives the line style for line plots. A line style of 1 indic-
ates a solid line (see Chapter 9 for more styles). For bar
plots, the line style portion of the Style parameter is
ignored.

Direction is either 0 or 10. Use 0 for a standard hori-

zontal plot (array index runs along the X axis and val-
ues are plotted up or down). Use 10 for a vertical plot
(array index runs along the Y axis and values are plot-
ted left or right).

Path is either 0 or 50. A 0 indicates that line plots are
to be drawn directly from point to point. A 50 indicates
that plots are to be drawn in a step fashion with two
line segments between each point. The first segment
runs parallel to the X-axis and the second segment
runs parallel to the Y-axis. This produces a square-
looking plot. These step plots are useful for plotting
status values which change in jumps rather than con-
tinuously. The Path value is ignored for bar plots.

Bit number is either 0 or a value starting at 100. This is
the number of the bit to use in the array data for plot-
ting. If the normal entire value of the data is to be plot-
ted, use 0 for this value. If only one of the bits from the
data is to be plotted, use the bit number plus 1. The
value to add is (Bit number + 1) * 100 or 0. The ability
to plot only a single bit from an array of short or long
values allows status data to be stored very efficiently
by not requiring a separate array for each status value.
For bit plots, the value plotted is always a 0 or a 1 cor-
responding to the value of the selected bit. The use of
this plotting option is usually done in conjunction with
a Path value of 50 for step plots.

Average is either 0 or a value starting at 10000. This is
the number of consecutive array points to average to
give a single point on the screen. It can be used to plot
a very large array of values on the screen without hav-
ing to draw all of the points on the screen. This will pro-
duce a smoothed plot and reduce the drawing time.

The number to add is (Data points per displayed point
- 1) * 10000.

Color

Required (Format version 1 only). Any numeric expres-
sion giving the VTScada Color Palette of the line and
the foreground color for filled plots. If the number is
less than 10000, the plot is non-destructive. If the
number is greater than or equal to 10000, the plot is
destructive and the actual color used is Color - 10000.
RGB color strings may not be used.

Pattern

Required (Format version 1 only). Any numeric expres-
sion giving the bar Fill Patterns for the plot. For a Pat-
tern value of 0, the plot is a line plot.
For Pattern values in the range of 1 to 25 inclusive, the
plot is a bar plot with the hatch pattern corresponding
to the Pattern parameter value. If the parameter is 1,
the bars are a solid color and the Background para-
meter is ignored.

PatternBackground

Required (Format version 1 only). Any numeric
expression giving the color number of the plot
fill background color. This number is ignored if
the Pattern parameter is equal to 1. For values
of Pattern greater than one, it gives the back-
ground color for the bar.
RGB color strings may not be used.

Pen

Required (Format version 2 only). The pen to be used
(if any). Must be provided, but will be ignored for bar
plots.

Brush

Required (Format version 2 only). The brush to be

used (if any). For line drawing, this parameter must be
provided with pattern 0.

XORMode

(Format version 2 only) An optional parameter spe-
cifying whether or not the plot is destructive (if
destructive, the plot line won't be affected by the back-
ground color).
If set to 0 or Invalid (default), the destructive drawing
mode will be used. If set to 1, the non-destructive or
XOR drawing mode will be used.

Direction

An optional parameter specifying the horizontal or ver-
tical direction for the plot. 0 or Invalid indicates hori-
zontal, while 1 indicates vertical.

DrawStepped

(Format version 2 only) An optional parameter spe-
cifying whether the plot is to be drawn from point-to-
point, or stepped. 0 or Invalid indicates point-to-
point, while 1 indicates stepped.

BitNumber

(Format version 2 only) An optional parameter spe-
cifying the use of a whole value or a bit number.
Invalid indicates a whole value should be used, while
>=0 indicates that the specified bit number should be
used. No default

Average

(Format version 2 only) An optional parameter spe-
cifying whether or not consecutive points should be
averaged to give a single point. Invalid or 0 indicates
that averaging should not be used, while >0 indicates
that the number of consecutive points should be aver-
aged to give a single point. No default.

Comments: This function is a layered graphics statement.
The Plot statement will execute timer functions during the
plotting process. This will allow time critical functions such
as driver I/O and data logging to continue running during
the relatively long times it takes to update a plot on the
screen.

Through the ordering of the Low, High, X1, X2, Y1, and Y2
parameters, the plot may have 8 different orientations for
line plots and 16 different orientations for bar plots. The
normal left to right plot with the minimum at the bottom
will have Low < High, X1 < X2, and Y1 < Y2.

By exchanging Low and High (i.e. Low > High), the plot
will have the minimum value at the top with bars still
drawn from the bottom. Exchanging X1 and X2 (i.e. X1 >
X2) will plot values from right to left. Exchanging Y1 and
Y2 (i.e. Y1 > Y2) will plot values with the minimum at the
top with bars being drawn from the top also. Combining
these actions with the Style (horizontal or vertical) gives all
possible plot orientations.
The plot ignores invalid data elements in the array and
leaves blank spaces for them on the display. If the number
of points extends past the end of the array, the plot will
continue at the first of the array until N points or all the
points of the array have been plotted.

The plot area defined by X1, Y1, X2, and Y2 limits the area
which can be plotted on the screen. Any points which fall
outside this area will not appear on the screen but will be
"clipped" at the boundary.

Example:
Given an array with 10 elements whose values range from 0 to 100.

IF Watch(1);
[

Data = new(10);
 Data[0] = 0;
 Data[1] = 1;
 Data[2] = 20;
 Data[3] = 25;
 Data[4] = 26;
 Data[5] = 40;
 Data[6] = 55;
 Data[7] = 60;
 Data[8] = 75;
 Data[9] = 99;
]

A plot of the data may be done with the following:

Plot(data[0] { Starting element },
10 { Number of elements to plot },
0 { Low limit },
100 { High limit },
100, 150, 200, 50 { Bounding box for plot area, offset for 42

pixel title bar},
1+10+50 { Style: Solid line style, vertical plot, step fashion

},
4 { Color: dark red},
0 { Pattern: Line plot (not bars) },
0 { Pattern Background: Ignored for line plot });

This statement will result in a line plot of 10 data points in an area in the
upper left corner of the window. The line will be vertically orientated
meaning that Data[0] is at the bottom left corner and each successive
array value is plotted one step higher, with values increasing to the right.
It is a single line in style and dark red in color. It will follow a step pat-
tern. That is, it will look like the outline of a bar graph of the points.

Example 2:
Plotting the same values as a horizontal plot, using Pen and Brush val-
ues:

Plot(Data[0],
 10,
 0,
 100,
 200, 150, 300, 50,
 Pen("<FFFFFF00>" { yellow }, 3 { dotted }, 2 { pixel width }),
 Brush("<FFFFFF>", 0, 2 { Stripe pattern });

{, XORMode, Direction, DrawStepped, BitNumber, Average});

PlotBuff

Description: Displays a plot of a subsection of a buffer in a particular
area of the window after converting the buffer to element
values. Extends Plot.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics, String and Buffer

Related to: Plot | PlotXY

Format: PlotBuff(Buffer, Offset, N, Type, Low, High, X1, Y1, X2, Y2,
Style, Color, Pattern, Background)
...OR...
PlotBuff(Buffer, Offset, N, Type, Low, High, X1, Y1, X2, Y2,
Pen, Brush [, XORMode, Direction, DrawStepped, BitNum-
ber, Average])

Parameters:

Buffer

Required. Any text expression that contains data to be
plotted.

Offset

Required. Any numeric expression that gives the start-
ing buffer position in data elements (not bytes or char-
acters) of the first data element.

N

Required. Any numeric expression giving the number
of elements to plot starting at the element given by the
offset parameter. N must be greater than or equal to 2,
and no greater than 32000.
If this parameter is greater than the length of the buf-
fer, the number of points plotted will be the number of
points available in the buffer. If the end of the buffer is
encountered before N points have been plotted, plot-
ting continues with the first point in the buffer (offset
0).

Type

Required. Any numeric expression giving the type of
data held in the buffer. The types are described in the
following table:

Value Type

0 Byte (0-255)

1 Short (2 bytes. -32768 to 32767)

2 Long (4 byte signed integer)

3 Float (4 byte IEEE floating point)

Low

Required. Any numeric expression that defines the
limit of data values to be plotted. This value need not
be less than High but must not be equal to it. In the
standard case, when this value is less than High, it will
define the minimum value to be displayed.
For example, if Low was 10, a data value of 10 would
fall on the edge of the bounding box, on either X1, if
the plot is vertical, or on Y1, if the plot is horizontal.
Any values below 10 in this case would not be shown -
they would be outside the clipped box.

High

Required. Any numeric expression that defines the
limit of data values to be plotted. This value need not
be greater than Low but must not be equal to it. In the
standard case, when this value is greater than Low, it
will define the maximum value to be displayed.
For example, if High was 1000, a data value of 1000
would fall on the edge of the bounding box, on either
X2, if the plot is vertical, or on Y2, if the plot is hori-
zontal. Any values above 1000 in this case would not
be shown - they would be outside the clipped box.

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the plot area.
This is typically, although not necessarily, the left side
of the plot.
For horizontal plots, this is the screen coordinate of
the first point or bar plotted. For vertical plots, this is
the value which corresponds to the Low parameter
value. For vertical bar plots, X1 is the base coordinate
for the bars.

Y1

Required. Any numeric expression giving the Y
coordinate on the screen of one side of the plot area.
This is typically, although not necessarily, the bottom
of the plot.
For vertical plots, this is the screen coordinate of the
first point or bar plotted. For horizontal plots, this is
the value which corresponds to the Low parameter
value. For horizontal bar plots, Y1 is the base coordin-
ate for the bars.

X2

Required. Any numeric expression giving the X
coordinate on the screen of the side of the plot area
opposite to X1. This is typically, although not neces-
sarily, the right side of the plot.
For horizontal plots, this is the screen coordinate of
the last point or bar plotted. For vertical plots, this is
the value which corresponds to the High parameter
value.

Y2

Required. Any numeric expression giving the Y
coordinate on the screen of the side of the plot area
opposite to Y1. This is typically, although not neces-
sarily, the top of the plot. For vertical plots, this is the
screen coordinate of the last point or bar plotted. For

horizontal plots, this is the value which corresponds to
the High parameter value.

Style

Required. Any numeric expression giving the style of
the plot - the line style, direction, bit number for bits
plots, and the number of points to average per point
displayed.

If PlotBuff senses that the Style parameter is a Pen, the
Destructive, XORMode, DrawStepped, BitNumber, and
Average parameters will become relevant. The Style is
determined by adding together the following values.

Line style + Direction + Path + Bit number + Average

Line style is a number between 1 and 5 inclusive, giv-
ing the line style for line plots. A line style of 1 indic-
ates a solid line. For bar plots, the line style portion of
the Style parameter is ignored.
Direction is either 0 or 10, where 0 is a horizontal plot
and 10 is a vertical plot.
Path is either 0 or 50. A 0 indicates that line plots are
to be drawn directly from point to point. A 50 indicates
that plots are to be drawn in a step fashion with two
line segments between each point. The first segment
runs parallel to the X-axis, the second, parallel to the
Y-axis. This produces a square-looking plot. These
step plots are useful for plotting status values which
change in jumps rather than continuously. The Path
value is ignored for bar plots.
Bit number is the number of the bit to use in the data
for plotting. If the normal entire value of the data is to
be plotted, use 0 for this value. If only one of the bits
from the data is to be plotted, use the bit number plus

1. The value to add is (Bit number + 1) * 100 or 0. The
ability to plot only a single bit from short or long val-
ues allows status data to be stored very efficiently by
not requiring a separate buffer for each status value.
For bit plots, the value plotted is always a 0 or a 1 cor-
responding to the value of the selected bit. This plot-
ting option is usually done in conjunction with a Path
value of 50 for step plots.
Average is the number of consecutive points to aver-
age to give a single point on the screen. It can be used
to plot a very large number of values on the screen
without having to draw all of the points on the screen.
This will produce a smoothed plot and reduce the draw-
ing time. The number to add is (Data points per dis-
played point - 1) * 10000.

Color

Required. Any numeric expression giving the VTScada
Color Palette of the line and the foreground color for
filled plots. If the number is less than 10000, the plot is
non-destructive. If the number is greater than or equal
to 10000, the plot is destructive and the actual color
used is Color - 10000.

Pattern

Required. Any numeric expression giving the bar Fill
Patterns for the plot. For a Pattern value of 0, the plot
is a line plot. For Pattern values in the range of 1 to 25
inclusive, the plot is a bar plot with the hatch pattern
corresponding to the Pattern parameter value. If the
parameter is 1, the bars are a solid color and the Back-
ground parameter is ignored.

Background

Required. Any numeric expression giving the color
number of the plot fill background color. This number
is ignored if the Pattern parameter is equal to 1. For val-

ues of Pattern greater than 2, it gives the background
color for the bar.

Pen

Required. The pen to be used (if any).

Brush

The brush to be used (if any).

XORMode

An optional parameter specifying whether or not the
plot is destructive (if destructive, the plot line won't be
affected by the background color). If set to 0 or Invalid
(default), the destructive drawing mode will be used. If
set to 1, the non-destructive or XOR drawing mode will
be used.

Direction

An optional parameter specifying the horizontal or ver-
tical direction for the plot. 0 or Invalid indicates hori-
zontal, while 1 indicates vertical.

DrawStepped

An optional parameter specifying whether the plot is to
be drawn from point-to-point, or stepped. 0 or Invalid
indicates point-to-point, while 1 indicates stepped.

BitNumber

An optional parameter specifying the use of a whole
value or a bit number. Invalid indicates a whole value
should be used, while >=0 indicates that the specified
bit number should be used.

Average

An optional parameter specifying whether or not con-
secutive points should be averaged to give a single
point. Invalid or 0 indicates that averaging should not
be used, while >0 indicates that the number of con-
secutive points should be averaged to give a single

point.

Comments: This function is a layered graphics statement.
This statement will execute timer functions during the plot-
ting process, allowing time critical functions such as driver
I/O and data logging to continue running during the rel-
atively long times it takes to update a plot on the screen.

Through the ordering of Low, High, X1, X2, Y1, and Y2,
there are 8 different orientations possible for line plots and
16 for bar plots. The normal left to right plot with min-
imum at the bottom will have Low < High, X1 < X2, and Y1
< Y2. By exchanging Low and High (i.e. Low > High), the
plot will have minimum at the top with bars drawn from
the bottom. Exchanging X1 and X2 (i.e. X1 > X2) will plot
values from right to left. Exchanging Y1 and Y2 (i.e. Y1 >
Y2) will plot values with minimum at the top and bars
drawn from the top also. Combining these actions with the
Style (horizontal or vertical) gives all possible plot ori-
entations.

If the number of points extends past the end of the buffer,
the plot will continue at the first of the buffer until N points
or all the points of the buffer have been plotted.
The plot area defined by X1, Y1, X2, and Y2 limits the area
which can be plotted on the screen. Any points which fall
outside this area will not appear on the screen but will be
"clipped" at the boundary.

The PlotBuff statement works the same as the Plot state-
ment. However, invalid values cannot exist in the buffer.
The RAM memory savings of using buffers rather than
arrays is in the range of 45% to 73%.

Example:

{ Create the buffer and store the data in it }
If ! Valid(data);

[
data = MakeBuff(5, 0);
SetByte(data, 0, 1);
SetByte(data, 1, 9);
SetByte(data, 2, 0);
SetByte(data, 3, 6);
SetByte(data, 4, 10);

]
PlotBuff(data { Buffer name },

0, 10 { Start at first point and plot 10 points },
0 { Data in the range of 0-255; a single byte },
0, 10 { Low and high limits },
100, 500, 600, 100 { Bounding box for clipped area },
0 { Horizontal plot },
12 { Light red },
6 { Bar plot with vertical line pattern },
4 { Dark red background for pattern });

This plots a bar graph of 5 points in an area centered in the window. The
bars will be vertical (points run along the horizontal), with light red ver-
tical line pattern on dark red background.

PlotXY

Description: Displays a plot of a curve in the window given the X and Y
values in two arrays.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: Plot | PlotBuff | Sort

Format: PlotXY(XArrayElem, YArrayElem, N, LowX, HighX, LowY,
HighY, X1, Y1, X2, Y2, Style, Color)
< OR >
PlotXY(XArrayElem, YArrayElem, N, LowX, HighX, LowY,
HighY, X1, Y1, X2, Y2, Pen, Reserved [, XORMode, Dir-
ection, DrawStepped, BitNumber, Average])

Note: PlotXY takes the first parameter set or else
senses that the Style parameter is a Pen, in which
cast the second parameter set is used:

Parameters:

XArrayElem

Required. Any array element giving the starting point
in the array of X coordinates. The subscript for the
array may be any numeric expression. If processing a
multidimensional array, the usual rules apply to decide
which dimension should be used.

YArrayElem

Required. Any array element giving the starting point
in the array of Y coordinates. The subscript for the
array may be any numeric expression. If processing a
multidimensional array, the usual rules apply to decide
which dimension should be used.

N

Required. Any numeric expression giving the number
of array elements to plot starting at the element given
by the first parameters. N must be greater than or
equal to 0, and no greater than 16384.
If this parameter is greater than the dimension of the
first array, the number of points plotted will be that
array dimension.
If N extends past the upper bound of the lowest array
dimension, this computation will "wrap-around" and
resume at element 0, until N elements have been pro-
cessed.

LowX

Required. Any numeric expression that defines the
limit of data values to be plotted. This value need not
be less than HighX but must not be equal to it. In the
standard case, when this value is less than HighX, it
will define the minimum value to be displayed from the
array of X-values.
For example, if LowX was 10, a data value of 10 would
fall on the edge of the bounding box, on either X1, if
the plot is vertical, or on Y1, if the plot is horizontal.

Any values below 10 in this case would not be shown -
they would be outside the clipped box.

HighX

Required. Any numeric expression that defines the
limit of data values to be plotted. This value need not
be greater than LowX but must not be equal to it. In the
standard case, when this value is greater than LowX, it
will define the maximum value to be displayed from
the array of X-values.
For example, if HighX was 1000, a data value of 1000
would fall on the edge of the bounding box, on either
X2, if the plot is vertical, or on Y2, if the plot is hori-
zontal. Any values above 1000 in this case would not
be shown - they would be outside the clipped box.

LowY

Required. Any numeric expression that defines the
limit of data values to be plotted. This value need not
be less than HighY but must not be equal to it. In the
standard case, when this value is less than HighY, it
will define the minimum value to be displayed from the
array of Y-values.
For example, if LowY was 10, a data value of 10 would
fall on the edge of the bounding box, on either Y1, if
the plot is vertical, or on X1, if the plot is horizontal.
Any values below 10 in this case would not be shown -
they would be outside the clipped box.

HighY

Required. Any numeric expression that defines the
limit of data values to be plotted. This value need not
be greater than LowY but must not be equal to it. In the
standard case, when this value is greater than LowY, it
will define the maximum value to be displayed from
the array of Y-values.
For example, if HighY was 1000, a data value of 1000

would fall on the edge of the bounding box, on either
Y2, if the plot is vertical, or on X2, if the plot is hori-
zontal. Any values above 1000 in this case would not
be shown - they would be outside the clipped box.

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the plot area.
This is typically, although not necessarily, the left side
of the plot. This corresponds to the LowX parameter
for horizontal plots and to the LowY parameter for ver-
tical plots.

Y1

Required. Any numeric expression giving the Y
coordinate on the screen of one side of the plot area.
This is typically, although not necessarily, the top of
the plot. This corresponds to the LowY parameter for
horizontal plots and to the LowX parameter for vertical
plots.

X2

Required. Any numeric expression giving the X
coordinate on the screen of the side of the plot area
opposite to X1. This is typically, although not neces-
sarily, the right side of the plot. This corresponds to
the HighX parameter for horizontal plots and to the
HighY parameter for vertical plots.

Y2

Required. Any numeric expression giving the Y
coordinate on the screen of the side of the plot area
opposite to Y1. This is typically, although not neces-
sarily, the bottom of the plot. This corresponds to the
HighY parameter for horizontal plots and to the HighX
parameter for vertical plots.

Style

Required. Any numeric expression giving the style of
the plot - the line style, direction, bit number for bits
plots, and the number of points to average per point
displayed. If PlotXY senses that the Style parameter is a
Pen, XORMode, DrawStepped, BitNumber, and Average
parameters will become relevant. The Style is determ-
ined by adding together the following values.

Line style + Direction + Path + Bit number + Average

Line style is a number between 1 and 10 inclusive
which gives the line style for line plots. A line style of 1
indicates a solid line. For other line styles, the back-
ground color is set to the current background screen
color.
Direction is either 0 or 10. A 0 indicates a horizontal
plot and a 10 indicates a vertical plot.
Path is either 0 or 50. A 0 indicates that line plots are
to be drawn directly from point to point. A 50 indicates
that plots are to be drawn in a step fashion with two
line segments between each point. The first segment
runs parallel to the X-axis and the second segment
runs parallel to the Y-axis. This produces a square-
looking plot. These step plots are useful for plotting
status values which change in jumps rather than con-
tinuously.
Bit number is the number of the bit to use in the YArray
data for plotting. If the normal entire value of the data
is to be plotted, use 0 for this value. If only one of the
bits from the data is to be plotted, use the bit number
plus 1. The value to add is (Bit number + 1) * 100 or 0.
The ability to plot only a single bit from an array of
short or long values allows status data to be stored
very efficiently by not requiring a separate array for
each status value. For bit plots, the value plotted is

always a 0 or a 1 corresponding to the value of the
selected bit. The use of this plotting option is usually
done in conjunction with a Path value of 50 for step
plots.
Average is the number of consecutive array points to
average to give a single point on the screen. Both XAr-
ray and YArray values are averaged. It can be used to
plot a very large array of values on the screen without
having to draw all of the points on the screen. This will
produce a smoothed plot and reduce the drawing
time. The number to add is (Data points per displayed
point + 1) * 10000.

Color

Any numeric expression giving the VTScada Color
Palette of the line and the foreground color for filled
plots. If the number is less than 10000, the plot is non-
destructive.
If the number is greater than or equal to 10000, the
plot is destructive and the actual color used is Color -
10000.

Pen

The pen to be used (if any).

Reserved

Reserved has been allocated to permit the addition of a
Brush parameter, should such a parameter become
necessary in the future. Reserved can currently be any
value or Invalid.

XORMode

An optional parameter specifying whether or not the
plot is destructive (if destructive, the plot line won't be
affected by the background color).
If set to 0 or Invalid (default), the destructive drawing
mode will be used. If set to 1, the non-destructive or
XOR drawing mode will be used.

Direction

An optional parameter specifying the horizontal or ver-
tical direction for the plot. 0 or Invalid indicates hori-
zontal, while 1 indicates vertical.

DrawStepped

An optional parameter specifying whether the plot is to
be drawn from point-to-point, or stepped. 0 or Invalid
indicates point-to-point, while 1 indicates stepped.

BitNumber

An optional parameter specifying the use of a whole
value or a bit number. Invalid indicates a whole value
should be used, while >=0 indicates that the specified
bit number should be used.

Average

An optional parameter specifying whether or not con-
secutive points should be averaged to give a single
point.
Invalid or 0 indicates that averaging should not be
used, while >0 indicates that the number of con-
secutive points should be averaged to give a single
point.

Comments: This function is a layered graphics statement.
The PlotXY statement will execute timer functions during
the plotting process. This will allow time critical functions
such as driver I/O and data logging to continue running
during the relatively long times it takes to update a plot on
the screen.

Through the ordering of the LowX, HighX, LowY, HighY,
X1, X2, Y1, and Y2 parameters, the plot may have 8 dif-
ferent orientations. The normal left to right orientation
with the minimum at the bottom will have LowX < HighY,
LowY < HighY, X1 < X2, and Y1 > Y2.

Exchanging either LowX and HighX (i.e. LowX > HighX) or
X1 and X2 (i.e. X1 > X2), the plot will be from right to left.
This means that the minimum X-value will be on the right
rather than the left. Exchanging either LowY and HighY
(i.e. LowY > HighY) or Y1 and Y2 (i.e. Y1 > Y2),will result
in the plot will having its minimum Y-value at the top
rather than the bottom.
PlotXY ignores invalid data elements in the arrays and
leaves blank spaces for them on the display. If the X-val-
ues are not in order, the plot will appear as a scatter of
lines. The Sort statement may be used to order the points
in the arrays prior to plotting.

The plot area defined by X1, Y1, X2, and Y2 limits the area
which can be plotted on the screen. Any points which fall
outside this area will not appear on the screen but will be
"clipped" at the boundary.

Example:
Two arrays called speed and efficiency exist that each have 100 ele-
ments. The array called speed has values that range from 0 to 1800,
while efficiency has values ranging from 0 to 100 (percent). A plot of
speed against efficiency may be done with the following:

PlotXY(speed[0] { Starting element of X-values },
efficiency[0] { Starting element of Y-values },
100 { Number of elements to plot },
0, 1800 { Low/high limits for speed },
0, 100 { Low/high limits for efficiency },
0, 500, 500, 0 { Bounding box for clipped area },
1 { Solid line style, horizontal plot },
15 { Plot is white });

This statement will result in a line plot of 100 data points in an area in
the upper left corner of the window. The line will be horizontally ori-
entated, solid in style and white in color.

PMultiCheckBox

(Dialog Library)

Description: Tool used to display the standard set of check
boxes. Commonly used in the Owner tab of a con-
figuration folder.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | PAddressEntry | PAreaSelect |
 PCheckBox | PContributor | PDroplist | PEditfield |
 PPageSelect | PRadioButtons | PSecBit | PSelectObject |
 PSpinbox | PTypeToggle

Format: \DialogLibrary\PMulticheck box(ParmNum [, LeftToRight,
CheckBoxLabels, FocusID, DrawBevel, Label, BitOffset])

Parameters:

ParmNum

Required. Any numeric expression giving the para-
meter number (from 0) in the caller to alter.

LeftToRight

An optional parameter that is any logical expression. If
TRUE, the ordering will be left-to-right instead of top-
to-bottom. Defaults to FALSE.

CheckBoxLabels

An array of labels for the check boxes.

FocusID

Boolean. If this value is FALSE (0), the field will display

its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

DrawBevel

An optional flag indicating whether a bevel should be
drawn around the set of check boxes. Defaults to
FALSE.

Label

An optional title to be displayed above the check
boxes.

BitOffset

An offset at which to start bit-setting.

Comments: This tool handles the shortcut menu and optionally
highlights it's entire area when the an override is
specified. Feedback is also provided to allow custom
controls to be highlighted in a more attacrive fash-
ion.
This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
The "P" tools (Pcheck box, PContributor, PCo-
lorSelect, PDroplist, and PEditfield) were intended
only for use in configuration folders and drawing
panel modules, and therefore are subject to the sys-
tem security restraints.
This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters.
Usual height: 155 pixels.

Example:

HasPv = \SecurityManager\SecurityCheck(\Se-
curityManager\PrivBitTagModify, 1);
GUITransform(40, 203, 460, 115,

1, 1, 1, 1, 1 { No scaling
},

0, 0, 1, 0 { No movement; visible;
reserved },

0, 0, 0 { Not selectable
},

\DialogLibrary\PMulticheck box(\#ContributionType,
0,
SetOwnerLabels,
HasPv ? 3 : 0 { ID },
0 {

DrawBevel },
Invalid { Label

}));

Point

Description: Returns a two-dimensional point, or location, in a window.

Returns: Point

Usage: Steady State only.

Function Groups: Graphics

Related to: Path | Rotate | Trajectory | Vertex

Format: Point(X, Y, Rotation, Trajectory)

Parameters:

X

Required. A numeric constant, that describes the ref-
erence x-axis location of the point. Expressions are
not permitted here. If it is desired to change the x
coordinate, use the Trajectory or Rotation parameters.

Y

Required. A numeric constant, that describes the ref-
erence y-axis location of the point. Expressions are
not permitted here. If it is desired to change the y
coordinate, use the Trajectory or Rotation parameters.

Rotation

Required. Any expression that returns a Rotate value.
This specifies any translation of this point from its ref-
erence position (X, Y) by rotation about another point.
If this is invalid, no rotation is performed, but the Point
is still valid.

Trajectory

Required. Any expression that returns a Trajectory
value. This specifies any translation of this point from
its reference position of (X, Y) along a path. If this is
invalid, no translation is performed, but the Point is
still valid.

Comments: Points are used in the Rotate and Vertex functions.

Examples:

centerPt = Point(489, 122.5, INVALID, INVALID);
startAnglePt = Point(609, 27, INVALID, INVALID);
endAnglePt = Point(586, 243, INVALID, INVALID);

This defines 3 points that are neither translated nor rotated. They can be
used in a Vertex or a Rotate function, like in the following example.

GUIPie(395, 187, 583, 58 { Bounding box for pie },
1, 1, 1, 1, 1, 0, 0 { No scaling, trajectory or rotation },
1, 0 { Pie is visible; reserved },
0, 0, 0 { Cannot be focused/selected },
12, 15 { Red fill outlined in white },
Vertex(1 { Double smooth },
centerPt, startAnglePt, endAnglePt));

PointerToBuff

Description: Returns a buffer containing the numeric data from the vari-
ables pointed at by each element of the array.

Returns: Buffer

Usage: Script or steady state.

Function Groups: Array, String and Buffer

Related to: BuffToArray | BuffToParm | BuffToPointer | GetByte |
 ParmToBuff | SetByte

Format: PointerToBuff(ArrayStart, N, Option, Size, Skip)

Parameters:

ArrayStart

Required. Any expression that specifies the starting
array element. This array contains the pointers to the
variables whose values will be written to a buffer. If pro-
cessing a multidimensional array, the usual rules apply
to decide which dimension should be used.

N

Required. Any numeric expression giving the number
of array elements to convert starting at the element
given by the first parameter.
If N extends past the upper bound of the lowest array
dimension, this computation will "wrap-around" and
resume at element 0, until N elements have been pro-
cessed.

Option

Required. Any numeric expression that specifies the
format of the buffer write:

Option Format

0 Unsigned binary (low byte first)

1 Signed binary (low byte first)

2 BCD (binary coded decimal) (low byte
first)

3 ASCII octal (high byte first)

4 ASCII decimal (high byte first)

5 ASCII hex (high byte first)

6 ASCII floating point (high byte first)

7 IEEE float/double (low byte first)

8 <obsolete>

9 Allen-Bradley® PLC/3 floating point

10 VAX single precision floating point

For Options 7 and 9 the data is written as appro-
priate binary format.

Size

Any numeric expression giving the number of digits in

Option Size Meaning Size Range

Binary
types

Number of
bits

1 - 32 bits

BCD Number of
4-bit digits

1 - 8 digits

ASCII
types

Number of
bytes

1 - 32 bytes

Float
types

Precision 1 for single precision, 2
for double precision

Skip

Any numeric expression giving the number of buffer
bits/digits/bytes to skip after writing each non-float-
ing point element. For floating point types, this para-
meter must be set to 0.

Comments: This function may only be used with pointers pointing at
numeric data. Any invalid array elements, or invalid data
pointed at by array elements are written to the buffer as
formatted zeroes. This function is useful for writing I/O
drivers and saving arrays of data in RAM with a fraction of
the memory requirement.

Example:

buff1 = PointerToBuff(dataPtr[0]{ Starting point in array },
100 { No. of elements to convert },
5 { Write as ASCII hex },
4 { Number of bytes per },
0 { No skip between writes });

This produces a formatted buffer 400 bytes long (100 four byte groups).
Each 4 bytes is a hex number corresponding to a variable pointed at by
an element in the array. Invalid array elements and invalid data are writ-
ten as 0.

PointList

Description: Returns an array of tag names within the current scope,
given the name of a tag type or group.
NOTE: GetTagList should be used in place of PointList for
all new code.

Returns: Array

Usage: Script Only.

Function Groups: Basic Module

Related to: GetTagList | ListVars

Format: \PointList(TagType[, SearchString, NoFilterSimulation])

Parameters:

TagType

Required. Any text expression giving a type of tag or
the name of a tag group.

SearchString

An optional text expression. The search will be limited
to tags with matching names. May include wildcards.
The default is "*" (any name).

NoFilterSimulation

Obsolete.

Comments: This utility function reduces the effort required to obtain a
list of tags of a particular type or group membership. If no
matching tags are found, the first element of the array will
be Invalid.

Examples:

{ Get a list of the Stations }
Stations = \PointList("LiftstationDrivers", "*", 0);
NStations = ArraySize(Stations, 0);

Popup

Note: Deprecated. Do not use in new code.

(Alarm Manager module)

Description: Causes an alarm pop-up dialog to be displayed.

Returns: Numeric

Usage: Script Only.

Function Groups: Alarm, Graphics

Related to:

Format: \AlarmManager\Popup(ModuleName, Title, Width, Height,
X, Y);

Parameters:

ModuleName

Required. Any expression providing a text result.
Name of module to draw in the window

Title

Required. Any expression providing a text result. Win-
dow title

Width

Required. Numeric expression. Number of pixels wide
for the dialog

Height

Required. Numeric expression. Number of pixels high
for the dialog

X

Required. Numeric expression. Location on the screen
for the dialog, measured from the left.

Y

Required. Numeric expression. Location on the screen
for the dialog measured from the top.

Comments: The Popup subroutine always returns "1".

POverride

(Dialog Library)

Description: Tool used to override non-standard ConfigFolder controls
for child tags.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | PAddressEntry | PAreaSelect |
 PCheckBox | PContributor | PDroplist | PEditfield |
 PPageSelect | PRadioButtons | PSecBit | PSelectObject |
 PSpinbox | PTypeToggle

Format: \DialogLibrary\POverride(ParmNum [, ShowHotbox,
ShowHighlight, HighlightColor, IntTrigger, ShowProperties,
ValType, MinVal, MaxVal, ValArray])

Parameters:

ParmNum

Required. Any numeric expression giving the para-
meter number (from 0) in the caller to alter.

ShowHotbox

An optional parameter that is any logical expression. If
TRUE, the click-able area will be shown.

ShowHighlight

An optional parameter that is any logical expression. If
TRUE the area will be emphasized with the High-
lightColor.

HighlightColor

An optional output giving the highlight color to be dis-
played if ShowHighlight is true.

IntTrigger

An optional trigger used by the caller's Edit field.

ShowProperties

An optional Boolean, controlling whether the Prop-
erties item should appear in the menu.

ValType

Optional. The VTScada value type of the parameter.

MinVal

Optional numeric. The minimum for the parameter
value.

MaxVal

Optional numeric. The maximum for the parameter
value.

Comments: This tool handles the shortcut menu and optionally
highlights it's entire area when the an override is
specified. Feedback is also provided to allow custom
controls to be highlighted in a more attractive fash-
ion.
This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
The "P" tools (PCheckBox, PContributor, PCo-
lorSelect, PDroplist, and PEditfield) were intended
only for use in configuration folders and drawing
panel modules, and therefore are subject to the sys-
tem security restraints.
This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters.
Usual height: 45 pixels.

Example:

GUITransform(30, 145, WIDTH/2 - 5, 100,
1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\POverride(\#Address,

0,
0,
HighlightColor,
PickValid(Trigger1, 1) &&
PickValid(Trigger2, 1) &&
PickValid(Trigger3, 1)));

Pow

Description: Returns a number raised to a power.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Generic Math

Related to: Exp | Ln | Log

Format: Pow(X, Exponent)

Parameters:

X

Required. Any numeric expression giving the number
to be raised to the power of Exponent.

Exponent

Required. Any numeric expression giving the number
to which X should be raised.

Comments: This function may be used to perform the common anti-
logarithm by using 10 for X. The return value is invalid if X
is less than or equal to 0 and Y is not an integer.

Examples:

r = Pow(2, 4);
s = Pow(10, 2);
t = Pow(64, 0.5);

The values of r, s, and t will be 16, 100, and 8 respectively.

PPageSelect

(Dialog Library)

Description: Draws a titled, beveled droplist of pages in the sys-
tem.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | PAddressEntry | PAreaSelect |
 PCheckBox | PColorSelect | PContributor | PDroplist |
 PEditfield | PRadioButtons | PSecBit | PSelectObject |
 PSpinbox | PTypeToggle

Format: \DialogLibrary\PPageSelect(ParmNum [, Title, FocusID,
VertAlign, AlignTitle])

Parameters:

ParmNum

Required. Any numeric expression giving the para-
meter number (from 0) in the caller to alter.

Title

An optional parameter that is any text expression to be
used as a title for the droplist.

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

VertAlign

An optional parameter that is any numeric expression
that sets the vertical alignment of the droplist accord-
ing to one of the following options:

VertAlign Vertical Alignment

0 Top

1 Center

2 Bottom

Whether or not the title is included when the ver-
tical alignment is calculated is determined by
the value of AlignTitle. The default value is 0.

AlignTitle

An optional parameter that is any logical expression. If
true (non-0) the title is included in the calculation for
vertical alignment, if false(0) it is added to the droplist
after it and its bevel has been vertically aligned. The
default is true.

Comments: This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters. It will then set the element indicated by
ParmNum to the name of the chosen page.
The height of the (unopened) droplist is constant,
with the horizontal boundaries of its calling trans-
form defining its width, and the vertical boundaries
of its calling transform defining its opened height,
which will include the added height of the bevel
above the field, but may or may not include the
title, depending on the alignment used. Note that if
the entire list can be displayed in a smaller area
than indicated by the vertical boundaries of the call-
ing transform, the dropped list height will be
decreased. The dropped height of the list will
always have a minimum height of 1 line (below the
field).
For any optional parameter that is to be set, all
optional parameters preceding the desired one
must be present, although they may be invalid.
Usual height: 45 pixels.

Examples:

GUITransform(10, 125, 210, 25,
1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\PPageSelect(2 { Parm num },
"Select Page" { Title },
3 { Focus ID },
Invalid { Default alignment },
1 { Align title }));

Notice in the above example that the last two parameters could have
been omitted, because they are optional and their settings match those
used as a default.

PPPDial

Description: Creates a PPP connection to a remote peer. The connection
can be via a dial-up or direct device connection.

Returns: PPPhandle if succesful, otherwise an error value.

Usage: Script Only.

Function Groups: Modem, Serial Port

Related to: PPPHandles | PPPStatus

Format: PPPDial(DeviceName[, PhoneNumber, UserName, Pass-
word, Domain, Flags, DeviceType, DeviceSubType])

Parameters:

DeviceName

Required. Any text expression giving the name of the
modem as configured in Windows™. The function will
return Invalid if this parameter is not a valid text value.

PhoneNumber

An optional text expression giving the phone number
to be used when making a PPP call. Required only for
use with modems. Defaults to Invalid.

UserName

An optional text expression, providing the user name
for remote authentication.

Password

An optional text expression, providing the password
for remote authentication.

Domain

An optional text expression, providing the domain
name for remote authentication.

Flags

An optional numeric expression, specifying com-
pression, encryption and other options to be provided.
A bit-wise AND operation is done between this value
and the following constants.

Value Constant Meaning

0x0001 PPPDF_IpHead-
erCompression

Use IP header
compression

0x0002 PPPDF_SwCompression Use software
compression

0x0004 PPPDF_Dis-
ableLcpExtensions

 Disable LCP
extensions.

0x0008 PPPDF_RequireEn-
cryptedPw

Require
encrypted
password.

0x0010 PPPDF_RequireDataEn-
cryption

Require data
encryption

DeviceType

An optional numeric expression identifying the class of
RAS device referred to by DeviceName. Possible values
are
1 (Phone),
2 (VPN),
3 (Direct - serial/parallel/USB),
4 (Internet) and

5 (Broadband).
To create a PPPoE connection, use 5.

DeviceSubType

An optional text expression specifying the type of
device referred to by DeviceName. Possible values are
"modem", "isdn", "x25", "vpn", "pad", "GENERIC",
"SERIAL", "FRAMERELAY", "ATM", "SONET", "SW56",
"IRDA", "PARALLEL" and "PPPoE".

Comments: PPPDial works by creating a phonebook entry in a tem-
porary phone book in the installation folder. The entry is
GUID named and has a lifespan the same as the PPPHandle
this method creates. A RAS call is then initiated and a
PPPHandle created to represent the call.
This function looks for the subroutine, PPPStatus in the
scope of the caller. After initiation of the call, this sub-
routine is called to notify the caller of the progress and
status of the call.
The call is terminated and the phonebook entry removed
once the PPPHandle destructs. Invalidating the last ref-
erence will do this. Destruction is asynchronous. VTScada
shutdown waits for all PPP handles to gracefully close.

PPPHandles

Descrip-
tion:

Returns an array of all Point-to-Point Protocol handles on the local
machine. This includes all such handles, whether inbound or out-
bound and whether or not made by VTScada.

Returns: An array of PPP handles

Usage: Steady State only.

Function
Groups:

Modem, Serial Port

Related
to:

 PPPDial | PPPStatus

Format: PPPHandles()

Para-
meters:

None

Com-
ments:

A PPP handle is a structure, defined as follows.
To access these values, use the PPPStatus command as fol-
lows:

PPPStruct = PPPStatus(Handles[I]);
rr1 = PPPStruct\ConnectionID;

Variable Contents

ConnectionID Only valid for outbound connections. The
GUID used in the temporary phone book
used to dial the call. PPPDial creates a tem-
porary RAS phone book in the Data\Temp
folder of the VTScada installation folder. It is
removed on graceful exit of VTScada. Each
outbound call is given a unique call ID (a
GUID) that is entered into the phone book.

State A numeric value identifying the state of the
connection. There are many intermediate
states, but the significant ones are 2 (dial-
ling), 8192 (connected) and 8193 (dis-
connected).

Error Zero indicates no errors. When non-zero,
this holds a standard RAS error code, nor-
mally in the range 600-800.

RemoteIP The IP of the remote end of a connected or
disconnected connection.

LocalIP The IP of the local end of a connected or dis-
connected connection. The IP is not inval-
idated once set, so that script code can
handle transient connections.

DeviceName The same as the DeviceName parameter of
PPPDial. This is the Windows-assigned
friendly name for the device that the con-
nection is made through.

PPPStatus

Description: Obtains the structure of a PPP connection.

Returns: A structure describing the state. See comments

Usage: Script or steady state.

Function Groups: Modem, Serial Port

Related to: PPPDial | PPPStatus

Format: PPPStatus(PPPHandle)

Parameters:

PPPHandle

The PPP Handle to be monitored.

Comments: If called in script mode, the current state will be returned. If
called in steady state, the function will be retriggered each
time there is a state change in the parameter, PPPHandle.
The return value is a structure containing the fol-
lowing members:

ConnectionID: Actually the phonebook entry
name, which is a GUID.
State: See enumeration RASCONNSTATE
(defined in the Visual Studio file, ras.h)
Error: Last error code from RAS (defined in the
Visual Studio file, raserror.h)
RemoteIP: The IP address of the remote peer.
Only valid when State is RASCS_Projected or
greater.
LocalIP: The IP address on this machine that
the remote peer is connected to. Only valid
when State is RASCS_Projected or greater.

If the PPPHandle parameter is bad, this function will
return an Invalid.

Related Functions:

PRadioButtons

(Dialog Library)

Description: Parameter Setting Radio Buttons. This module draws
a set of labeled radio buttons with optional title and
border.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | PAreaSelect | PCheckBox | PColorSelect |
 PContributor | PDroplist | PEditfield | PPageSelect |
 PSecBit | PSelectObject | PSpinbox | PTypeToggle

Format: \DialogLibrary\PRadioButtons(ParmNum, FocusID, Border,
Title, Options, AlignTitle, L1 [, L2, ..., L16])

Parameters:

ParmNum

Required. Any numeric expression giving the para-
meter number (from 0) in the caller to alter.

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

Border

Any logical expression. If true (non-0) the buttons will
have a raised border, if false (0) there will be no border
around the buttons.

Title

Any text expression to be used as a title with the radio
buttons. The default value is to have no title.

Options

A bit-wise expression.
Bit 0 controls left/right placement of the buttons. If
set, buttons will be placed to the left of the labels.
Bit 1 controls vertical/horizontal orientation. If set, the
radio buttons will be displayed horizontally. Bit 0 has
no effect while bit 1 is set.
Defaults to 0 – neither bit set.

AlignTitle

Any logical expression; if true (non-0) the title is
drawn within the radio buttons' boundaries, if false(0)
the buttons fill their bounding area and the title is
added at the top (i.e. it extends past the top bound-
ary). The default is true.

L1, L2, ...L16

Labels. The number of labels determines the
number of buttons displayed. There must be at
least two labels.
L1 may be an array of text labels, or the first of
a series of up to sixteen individual text labels
for the radio buttons.
If L1 is an individual label, then up to L16 indi-
vidual labels may follow.
If L1 is an array of labels, L2 may (optionally) be
defined as an array of Return values, similar to
the return array in PDropList. No further para-
meters may follow.

Comments: This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.

This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters. It will then set the element indicated by
ParmNum to the selected item.
The boundaries of the calling transform define the
outline of the buttons including their border, if
there is one. If the area is too small to fully display
the buttons they will extend beyond their right and
bottom boundaries. Buttons and their border will
not overlap each other and will always be shown in
their entirety, although the labels may be clipped or
entirely deleted.
Usual height: varies according to number of but-
tons. Seldom less than 50px.

Example:

GUITransform(50, 400, 450, 100,
1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\PRadioButtons(7 { Parm num },
2 { Focus ID },
1 { Draw a border },
"" { No title required },
0 { Buttons on right },
Invalid { Not req'd (no title) },
"On", "Off", "Reverse", "Out of Service"
{ Labels }));

Related Functions:

Print

Description: Allows text to be printed.

Returns: Nothing

Usage: Script Only.

Function Groups: Printer

Related to: FWrite | PrintLine | PrtScrn | Redirect | SWrite

Format: Print(PrinterSpec, Text)

Parameters:

PrinterSpec

...will accept any of the following:

l Local Printer:

l Port name (including virtual ports) with or
without a trailing colon (e.g. DEF or DEF:. COM1
or COM1:; USB001 or USB001:; etc.)

l Windows printer share (e.g. "XYZ Laser Printer")

l Windows share name (if the printer is shared)
(e.g. "XYZLaser")

l Local or Remote Printer:

l UNC share name (which includes the host and
share name (e.g. "\\localhost\XYlaser" or
"\\lab1\NetPrinter")

Text

Required. Any text expression that gives the text to
print. Control characters may be included in the text.

Comments: This statement is very similar to the PrintLine statement
except it does not add the carriage return or line feed after
the text.
All print functions are compatible with the values returned
in either of the first two parameters of the PrintDialogBox
function.

Example:

If 1 NextScreen;
[
Print(1, "Daily Report: ");

]

This prints the string "Daily Report: " to LPT1:.

Related Functions:

PrintDialogBox

Description: Displays a threaded system common printer selection dia-
log box.

Returns: Nothing

Usage: Script Only.

Function Groups: Graphics, Printer

Related to: FontDialog | FileDialogBox | FileStream

Format: PrintDialogBox(PrinterName, PrinterDevice, MinPage,
MaxPage, FirstPage, LastPage, NumCopies, Result [,
AllowSelection])

Parameters:

PrinterName

Required. Any text expression giving the initial printer
name to display as selected. If this is not a valid text
value, the default printer (as configured under Win-
dows) will initially be selected.
If PrinterName refers to a variable and the user clicks
the "Print" button on the dialog, thereby closing it, the
variable will be set to the name of the selected printer.
If the user cancels the dialog box, the variable is
unchanged.

PrinterDevice

Required. Any variable that will be set to the device
name for the selected printer when the user clicks the
"Print" button on the dialog.
If the user cancels the dialog box, the variable is
unchanged. The text expression returned here can be
supplied to a FileStream statement to open a stream to
the selected printer.

MinPage

Required. Any positive integer expression specifying

the minimum page number in the printed output (see
Comments section for further details).

MaxPage

Required. Any positive integer expression specifying
the maximum page number in the printed output (see
Comments section for further details).

FirstPage

Required. Any integer expression specifying the first
page to be printed (see Comments section for further
details).

LastPage

Required. Any integer expression specifying the last
page to be printed (see Comments section for further
details).

NumCopies

Required. Any integer expression specifying the num-
ber of copies to be printed (see Comments section for
further details).

Result

Required. A variable that will be set to one of the fol-
lowing values:

l Invalid when this statement is run,

l Zero (0) to indicate that the user has cancelled
the dialog, or

l One (1) to indicate that the user has clicked the
"Print" button.

AllowSelection

An optional parameter. If provided, it must be a non-
constant variable. This enables and controls the "Selec-
tion" radio button in the print dialog box. See the Com-
ments section for further details.

Comments: This function creates a printer selection dialog that runs in
its own thread, thereby avoiding blocking the calling code.
The calling code can use the Result parameter to determ-
ine when the user has completed the dialog box (see Result
above).

In addition to the Result parameter, the function itself will
return an error code to indicate whether the dialog was suc-
cessfully opened. A "1" indicates failure to open while a "0"
indicates success.

The caller of this function is expected to supply the
MinPage and MaxPage parameters, representing the min-
imum and maximum page number from which the user
may select. FirstPage and LastPage can be initially set to
any values between MinPage and MaxPage. If the com-
bination of the four values is not logical (e.g. LastPage is
smaller than FirstPage), VTScada will force logical values
for the dialog. When Result is set to one, FirstPage and
LastPage will contain the page range that the user selected.
If Result is set to zero (i.e. the user has cancelled the dia-
log), FirstPage and LastPage are left at their initial values.
Setting MinPage and MaxPage to Invalid or to equal values
will disable the page range field. NumCopies can likewise
contain an initial value, and will be set to the user-selected
number of copies if Result returns a value of one.
The initial value of the Selection radio button is con-
trolled by the value of the variable provided for the
AllowSelection parameter:

l If the variable's value evaluates to a non-zero pos-
itive number, the Selection radio button will be selec-
ted.

l If the variable's value is zero, the radio-button will ini-
tially be unselected.

When the Print button on the print dialog box is

clicked, this variable receives a zero if the Selection
radio-button was not selected and one if it was
selected.

Note: Within an Anywhere Client session, this func-
tion does nothing.

Example:

If ZButton(10, 90, 110, 120, "Browse Print", 1, System\DefFont);
[
PrintDialogBox(PrinterName, PrinterDevice, MinPage, MaxPage,

FirstPage, LastPage, NumCopies, Result);
]
ZText(120, 112,

Concat("Printer chosen: ", PickValid(PrinterName, "Invalid"),
" (", PickValid(PrinterDevice, "Invalid"), ") Page ",
PickValid(FirstPage, "Invalid"), " to ",
PickValid(LastPage, "Invalid"), " Copies: ",
PickValid(NumCopies, "Invalid")),

0, System\DefFont);

PrintLine

Description: Allows text to be printed and is followed by a carriage
return-line feed to the printer.

Returns: Nothing

Usage: Script Only.

Function Groups: Printer

Related to: FWrite | Print | PrtScrn | Redirect | SWrite

Format: PrintLine(PrinterSpec, Text)

Parameters:

PrinterSpec

...will accept any of the following:

l Local Printer:

l Port name (including virtual ports) with or
without a trailing colon (e.g. DEF or DEF:. COM1
or COM1:; USB001 or USB001:; etc.)

l Windows printer share (e.g. "XYZ Laser Printer")

l Windows share name (if the printer is shared)
(e.g. "XYZLaser")

l Local or Remote Printer:

l UNC share name (which includes the host and
share name (e.g. "\\localhost\XYlaser" or
"\\lab1\NetPrinter")

Text: Required. Any text expression that gives the text to print.
Control characters may be included in the text.

Comments: This statement adds a carriage return and line feed to the
end of the text so that the printer goes to the start of a new
line after the text is printed.
All print functions are compatible with the values returned
in either of the first two parameters of the PrintDialogBox
function.

Example:

If 1 NextScreen;
[
PrintLine(1, "Daily Report: ");

]

This prints the string "Daily Report: " to LPT1:, followed by a carriage
return and a line feed.

Priority

Description: Sets the execution priority for a module, variable or object.

Returns: Nothing

Usage: Script Only.

Function Groups: Advanced Module, Variable

Related to: Pending | PriorityWeight

Format: Priority(Data, PriorityNum)

Parameters:

Data

Required. The module, variable, or object value to set
the priority for.

PriorityNum

Required. A numeric value that sets the priority as
indicated:

PriorityNum Priority

0 Normal

1 High

2 Default

Default priority is only valid for modules and
variables. It causes variables to assume the pri-
ority of the instance in which they occur.

Comments: This function sets the execution priority for a value so that
any statements which use that value will execute before
other statements triggered from normal priority values. If
Priority is applied to a module, all instances of that module
will have that priority unless otherwise set. Priority for an
object value will set all values in an instance and all module
instances called from that instance to that priority unless
otherwise set. Setting priority for a variable will set the pri-
ority for all instances of that variable and will override the
priority setting of the module or instance in which it is con-
tained.
Priority can be used to improve the performance of I/O
drivers, alarm modules, control modules and other mod-
ules for which increased responsiveness is required. Use
Priority sparingly since its results are only effective if there
are non-priority values which can be preempted to
improve the performance.

This function returns the previous priority of the object.

Example:

prevPriority = Priority(Self(), 1);

This sets the priority of the module that contains this statement to a high
priority.

PriorityWeight

Description: Sets the system-wide weighting for priority values.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Software and Hardware

Related to: Pending | Priority

Format: PriorityWeight(NumStatements)

Parameters:

NumStatements

Required. A numeric value that specifies the number of
priority triggered statements that will execute before a
normal priority statement executes. The default value
at startup is 10.

Comments: This function returns the previous priority weight if the
parameter is valid, and invalid otherwise.

Example:

prevPriorWt = PriorityWeight(5);

This ensures that only 5 high priority statements execute before a nor-
mal priority statement is allowed to execute.

ProcInfo

Description: Returns basic information about the VTScada process.

Returns: Numeric

Usage: Script Only.

Function Groups: Software and Hardware

Related to:

Format: ProcInfo(DataType)

Parameters:

DataType

Required. A numeric value that specifies the type of
process information to be retrieved by the function.

DataType Function returns

0 Process ID

1 GDI Handle Count

2 User Handle Count

Comments: Used by the workstation status tag.

Example:

GDIHndl = ProcInfo(1);

Profile

Description: Returns an array profiling the execution of statements in
the application.

Returns: Array – see comments

Usage: Script Only.

Function Groups: Software and Hardware

Related to: ThreadList | Watch | WatchArray

Format: Profile(StartStop)

Parameters:

StartStop

Required. A numeric value of 0 or 1 that toggles the
function on or off. A value of 1 causes the function to
begin profiling the system, while a value of 0 stops the
profiling and causes the return value to be set.

Com-
ments:

This function returns a two-dimensional array with each column rep-
resenting a different statement and each row containing the following
information:

Row Data

0 Count of a statement

1 Statement value

2 Approximate execution time of statement in mil-
liseconds

It is important to note that in the case of a script executed by
a trigger statement, the sum of the execution times for the
script statements may be less than the execution time recor-
ded for the trigger statement. This is because the script state-
ments may be of sufficient duration to lose their processor
time-slice and be suspended for a short time. While the sus-
pended statement will have its timings adjusted to account
for this, the trigger statement will not have any adjustments
made.

Example:

If MatchKeys(2, "g");
[
Profile(1);

]
If MatchKeys(2, "s");
[
whatHappened = Profile(0);

]

These two scripts start and stop the profiling when the user presses the
appropriate keys.

ProgressBar

(System Library)

Description: Displays a horizontal progress bar.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to:

Format: \System\ProgressBar(LeftReference, BottomReference,
RightReference, TopReference, Value[, Low, High, LeftLa-
bel, RightLabel, Align, Delay, ContinuousLoop)

Parameters:

LeftReference

A constant number that gives the left side reference
coordinate.

BottomReference

A constant number that gives the bottom side ref-
erence coordinate. The top and bottom references are
measured down from the top of the screen.

RightReference

A constant number that gives the right side reference
coordinate.

TopReference

A constant number that gives the top side reference
coordinate.

Value

Required. The value to be displayed as the progress.

Low

Optional numeric, specifying the minimum value for
the progress bar. Defaults to zero.

High

Optional numeric, specifying the maximum value for
the progress bar. Defaults to 100.

LeftLabel

Optional text providing the left-justified label.

RightLabel

Optional text providing the right-justified label.

Align

Optional numeric. If 0 (the default if unspecified) the
graphic will be top-justified. If 1, the graphic will be
center-justified.

Delay

Optional numeric. The number of seconds to wait
before the graphic is displayed. Defaults to zero.

ContinuousLoop

Optional Boolean. When set true, the progress bar will
loop continuously rather than representing the value.

Comments: None

PrtScrn

Description: Prints the image in a window on the default Windows™
printer and returns an error code.

Returns: Numeric

Usage: Script Only.

Function Groups: Printer

Related to: Print | PrintLine | Redirect

Format: PrtScrn([Window, PaletteChanges, PrinterSpec])

Parameters:

Window

An optional object value of a module instance that spe-
cifies the window to print. If it is not specified, it
defaults to Self which will print the window from which
the PrtScrn function is executed.

PaletteChanges

An optional two-dimensional array of RGB values. Each
RGB value overrides the default printed color for the
palette index, which is the same as the first array sub-
script.
The first array subscript may have any size (e.g.
[0..255] for the whole palette, or [123..125] for just
palette indices 123 to 125). (Please see the example in
the "Example" section.)
The second array subscript should be sized [0..2] and
holds the red, green, and blue components of the
color respectively. Each color value must be a real
number between zero and one. "0" represents a total
absence of that color, while "1" represents the full
intensity of the color.

Note: Colors that are in other indexed pos-
itions of the palette, but which have the same
RGB value as the indexed color to be changed,
will usually also change. The danger is that the
process of mapping colors from VTS’s palette
to that of the printer may cause results to dif-
fer from those expected. If using the
PaletteChanges parameter, you are advised to
test this function to determine the actual res-
ults.

PrinterSpec

An optional parameter that will accept any of the fol-
lowing:

l Local Printer:

l Port name (including virtual ports) with or
without a trailing colon (e.g. DEF or DEF:. COM1
or COM1:; USB001 or USB001:; etc.)

l Windows printer share (e.g. "XYZ Laser Printer")

l Windows share name (if the printer is shared)
(e.g. "XYZLaser")

l Local or Remote Printer:

l UNC share name (which includes the host and
share name (e.g. "\\localhost\XYlaser" or
"\\lab1\NetPrinter")

A note to OEM programmers:
When the VTScada Display Manager or Trend
Manager performs a screen print, printer palette
color substitution is performed by calling mod-
ule "GetPrinterPalette". This module is searched
for in \Code. The VTS layer does not provide
this module. The default printing palette is the
display palette. If you wish to provide a separate
palette, provide a GetPrinterPalette module. This
should be a subroutine module that returns an
array of palette color substitution values in the
same format required by the PrtScrn statement's
PaletteChanges parameter.

Com-
ments:

The return value for this function is as follows

Return Value Description

0 Success

1 Printing

2 Failure

When printing using this function, make sure that the print
job is spooled to the Windows™ Print Manager, otherwise exe-
cution of the application will be suspended for the duration of
the print job.

Care should be taken to ensure that the graphics in the win-
dow you are printing do not change while printer output is
being generated. If the graphics do change, the printer output
is unpredictable.
In VTS 7.0 and later, all print functions are now compatible
with the values returned in either of the first two parameters
of the new PrintDialogBox function.

Note: Within an Anywhere Client session, this function does
nothing.

Example:

If MatchKeys(2, "p") && ! wait;
[
wait = PrtScrn();

]

This will cause the window containing the PrtScrn statement to be prin-
ted out when the "P" key is pressed so long as another print job is not
already printing or has failed.
Another example might be:

 PalValues = New(256, 3); { Sized enough for entire palette }
 PalValues[0][0] = 1; { Red – Full intensity }
 PalValues[0][1] = 1; { Green – Full intensity }
 PalValues[0][2] = 1; { Blue – Full intensity }
 .
 .
 .
 PrtScrn(Self(), PalValues);

This will set the color for palette index 0 (default black) to be white.

PSecBit

(Dialog Library)

Description: Parameter Setting Security Bit. This module draws a
titled, [beveled] droplist of options for setting the
security bit.

Returns: Nothing

Usage: Steady State only.

Function Groups: Bitwise Operation, Graphics, Security

Related to: GUITransform | PAddressEntry | PAreaSelect |
 PCheckBox | PColorSelect | PContributor | PDroplist |
 PEditfield | PPageSelect | PRadioButtons | SelectGraphic |
 PSpinbox | PTypeToggle

Format: \DialogLibrary\PSecBit(ParmNum, Title, FocusID[, Ver-
tAlign, AlignTitle, DrawBevel])

Parameters:

ParmNum

Required. Any numeric expression giving the para-
meter number (from 0) in the caller to alter.

Title

Required. Any text expression to be used as a title for
the droplist.

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

VertAlign

An optional parameter that is any numeric expression

Value Vertical Alignment

0 Top

1 Center

2 Bottom

Whether or not the title is included when the ver-
tical alignment is calculated is determined by
the value of AlignTitle. The default value is 0.

AlignTitle

An optional parameter that is any logical expression. If
AlignTitle is true (non-0), the title will be included in
the calculation for vertical alignment.
If AlignTitle is false (0), the title will be added to the
editfield after both the editfield and its bevel have been
vertically aligned. The default is true.

DrawBevel

An optional parameter that is any logical expression. if
true, a bevelled edge will be added around the control.

Comments This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters. It will then set the element indicated by
ParmNum to the chosen security bit.
The height of the (unopened) droplist is constant,
with the horizontal boundaries of its calling trans-
form defining its width, and the vertical boundaries
of its calling transform defining its opened height,
which will include the added height of the bevel
above the field, but may or may not include the
title, depending on the alignment used. Note that if
the entire list can be displayed in a smaller area
than indicated by the vertical boundaries of the call-
ing transform, the dropped list height will be
decreased. The dropped height of the list will
always have a minimum height of 1 line (below the

field).
For any optional parameter that is to be set, all
optional parameters preceding the desired one
must be present, although they may be invalid.
Usual height: 45 pixels.

Example:

GUITransform(50, 400, 450, 100,
1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\PSecBit(9 { Parm num },
"Security Bit" { Title },
3 { Focus ID },
1 { Centered },
0 { Align bevel }));

PSelectObject

(Dialog Library)

Description: Parameter Setting Select Tag Object Tool. This mod-
ule draws a beveled, titled droplist of existing tags
of a certain type and a new tag creation button.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | PAddressEntry | PAreaSelect |
 PCheckBox | PColorSelect | PContributor | PDroplist |
 PEditfield | PPageSelect | PRadioButtons | PSecBit |
 PSpinbox | PTypeToggle

Format: \DialogLibrary\PSelectObject(ParmNum, TagType [, Title,
FocusID, VertAlign, AlignTitle, DisableDeselect, DrawBevel,
AllowRootSelection])

Parameters:

ParmNum

Required. Any numeric expression giving the para-
meter number (from 0) in the caller to alter.

TagType

Required. May be a text expression for the type or
type-group of tag to be used to create the droplist.
(Type-groups include "ports", "drivers", "analogs", etc.)
Alternatively, this may be an array of types. The array
may not include groups.
All existing tags of the type or types will be listed.

Title

An optional parameter that is any text expression to be
used as a title for the droplist. If not provided, the title
will be blank.

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

VertAlign

An optional parameter that is any numeric expression
that sets the vertical alignment of the unopened
droplist according to one of the following:

VertAlign Vertical Alignment

0 Top

1 Center

2 Bottom

Whether or not the title is included when the ver-
tical alignment is calculated is determined by
the value of AlignTitle. The default value is 0.

AlignTitle

An optional parameter that is any logical expression. If
AlignTitle is true (non-0), the title will be included in
the calculation for vertical alignment.
If AlignTitle is false (0), the title will be added to the
editfield after both the editfield and its bevel have been
vertically aligned. The default is true.

DisableDeselect

Optional Boolean. Set TRUE to disable the Deselect but-
ton

DrawBevel

Optional Boolean. Set FALSE to disable the bevel.
Defaults to TRUE.

AllowRootSelection

Optional Boolean. Set TRUE to allow the Root tag to be
selected. Default is FALSE

Comments: This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters. It will then set the element indicated by
ParmNum to the chosen item.
The height of the (unopened) droplist and the create
new tag button are constant, with the horizontal
boundaries of the calling transform defining their
combined width, and the vertical boundaries of the
calling transform defining the droplist's opened
height, which will include the added height of the
bevel above the field, but may or may not include
the title, depending on the alignment used. Note
that if the entire list can be displayed in a smaller
area than indicated by the vertical boundaries of the

calling transform, the dropped list height will be
decreased. The dropped height of the list will
always have a minimum height of 1 line (below the
field).
For any optional parameter that is to be set, all
optional parameters preceding the desired one
must be present, although they may be invalid.
Usual height: 45 pixels.

Example:

GUITransform(170, 160, 370, 60,
1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\PSelectObject(2 { Parm num },
"AnalogInput" { Tag type },
"Analog Inputs" { Title },
2 { Focus ID },
1 { Center list },
0 { Align top of bevel }));

IF Watch(1);
[
TagTypes = New(3);

 TagTypes[0] = "Calculation";
 TagTypes[1] = "AnalogInput";
 TagTypes[2] = "AnalogStatus";
 TagTypes[3] = "AnalogOutput";
 TagTypes[4] = "AnalogControl";
]
GUITransform(170, 160, 370, 60,

1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\PSelectObject(2 { Parm num },
TagTypes { Tag type },
"Analog Ins, Outs & Calculations" { Title },
2 { Focus ID },
1 { Center list },
0 { Align top of bevel }));

PSpinbox

(Dialog Library)

Description: Parameter Setting Spinbox. This module draws a
spinbox with optional label.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | PAddressEntry | PAreaSelect |
 PCheckBox | PColorSelect | PContributor | PDroplist |
 PEditfield | PPageSelect | PRadioButtons | PSecBit |
 PSelectObject | PTypeToggle

Format: \DialogLibrary\PSpinBox(ParmNum, Label, BoxOnLeft,
LowLimit, HighLimit [, Alignment, NumChars, CanEdit,
FocusID, TextOption, TextValue, Trigger])

Parameters:

ParmNum

Required. Any numeric expression giving the para-
meter number (from 0) in the caller to alter.

Label

Required. Any text expression to be used as a label
with the spinbox.

BoxOnLeft

Required. Any logical expression. If true (non-0) the
spinbox will appear to the left of the label, if false (0) it
will be to the right. Defaults to TRUE.

LowLimit

Required. Any numeric expression giving the lowest
permissible value. If the spinbox is editable and a value
less than LowLimit is entered, it will revert to the
LowLimit value.

HighLimit

Required. Any numeric expression giving the highest
permissible value. If the spinbox is editable and a value

greater than HighLimit is entered, it will revert to the
HighLimit value.

Alignment

An optional parameter that is any numeric expression
that sets the alignment of the spinbox and its label
according to one of the following options. The default
value is 0.

Alignment
Horizontal Align-

ment
Vertical Align-

ment

0 Left Top

1 Right Top

2 Full Top

3 Left Centered

4 Right Centered

5 Full Centered

6 Left Bottom

7 Right Bottom

8 Full Bottom

NumChars

An optional parameter that is any numeric expression
giving the number of digits wide to make the spinbox.
A value of 0 or invalid results in the spinbox being auto-
matically sized to fit the widest number (or text string
if TextOption and TextValue are set). The default value
is 0.

CanEdit

An optional parameter that is any logical expression. If
true (non-0), the number in the field may be edited dir-
ectly, if false (0), it may not. The default value is false.
Note that the value of this parameter directly affects

the TextOption and TextValue parameters' effect-
iveness. If CanEdit is true, both are ignored.

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

TextOption

An optional parameter that is any text expression used
to replace a certain value (expressed by TextValue) in
the spinbox field. This parameter will be ignored if
CanEdit is true.

TextValue

An optional parameter that is any numeric expression
for the value in the spinbox that is to be replaced by
the text string in TextOption. This parameter will be
ignored if CanEdit is true.

Trigger

An optional numeric expression. The value in Trigger
will become 0 if the user changes the internal buffer
(i.e. when the value of the WinEditCtrl as logged in the
variable Change transits from invalid to zero). If the
user presses any of Enter, the spin box arrows or the
arrow buttons on the keyboard, Trigger becomes 1. If
the spinbox loses focus, the value of Trigger becomes
2.

Comments: This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters. It will then set the element indicated by

ParmNum to the value displayed in the spinbox.
The size of the spinbox is constant, with the bound-
aries of the calling transform defining the position
of the check box and its label.
For any optional parameter that is to be set, all
optional parameters preceding the desired one
must be present, although they may be invalid.
Usual height: 22 pixels.

Example:

GUITransform(30, 100, 130, 20,
1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\PSpinbox(4 { Parm num },
"Number of retries" { Label },
1 { Box on left },
0, 100 { Limits },
5 { Full align, centered },
0 { Autosize box },
1 { Editable },
1 { Focus ID },
"None" { Text option },
0 { Index of text option },
Trigger {Trigger}));

PType

Description: Returns the actual type of parameter at an index.

Returns: Numeric – see comments

Usage: Script Only.

Function Groups: Advanced Module, Variable

Related to: NParm | Parameter | ResetParm

Format: PType(Object, Index)

Parameters:

Object

Required. Any object (the object value of a running

module instance).

Index

Required. Any numeric expression giving the number
of the parameter of interest, starting from 1.

Com-
ments:

This function is for experienced users, and is not needed for normal
operation. The return value reveals the type of parameter passed to
the module from the module call, and is determined by the following
table

Value Meaning

0 Status reference

1 Short reference

2 Long reference

3 Float reference

4 Text reference

5 Object reference

6 Status value (formal parameter type)

7 Short value (formal parameter type)

8 Long value (formal parameter type)

9 Float value (formal parameter type)

10 Text value (formal parameter type)

11 Object value (formal parameter type)

12 Calculated value (not a reference or constant)

13 Short constant without formal parameter

14 Long constant without formal parameter

15 Float constant without formal parameter

16 Text constant without formal parameter

PTypeToggle

(VTS Library)

Description: Parameter Setting Type Toggled Field. This module
draws a beveled droplist or editfield with title that
sets a tag or numeric value.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics, Variable

Related to: GUITransform | PAddressEntry | PAreaSelect |
 PCheckBox | PColorSelect | PContributor | PDroplist |
 PEditfield | PPageSelect | PRadioButtons | PSecBit |
 PSelectObject | PSpinbox

Format: \DialogLibrary\PTypeToggle(ParmNum, TagType, Title,
FocusID, VertAlign, AlignTitle[, LowLimit, HighLimit, Trig-
ger, EnableExpressions, DrawBevel, PtrValue, Immutable,
AllowRootSelection, ParmValueType, StatusLabel])

Parameters:

ParmNum

Required. Any numeric expression giving the para-
meter number (from 0) in the caller to alter.

TagType

Required. Any text expression for the type of tag used
to create the droplist portion of the graphic. All exist-
ing tags of this type will be listed.

Title

An optional parameter that is any text expression to be
used as a title for the tool. May be left as Invalid for no
title.

FocusID

Boolean. If this value is FALSE (0), the field will display
its current setting, but cannot be opened (i.e. its value
cannot be changed), and will appear disabled (grayed-
out).

VertAlign

Required. Any numeric expression that sets the ver-
tical alignment of the unopened droplist according to
one of the following:

VertAlign Vertical Alignment

0 Top

1 Center

2 Bottom

Whether or not the title is included when the ver-
tical alignment is calculated is determined by
the value of AlignTitle. The default value is 0.

AlignTitle

Required Boolean. If AlignTitle is true (non-0), the title
will be included in the calculation for vertical align-
ment.
If AlignTitle is false (0), the title will be added to the
editfield after both the editfield and its bevel have been
vertically aligned. The default is true.

LowLimit

An optional parameter that is any numeric expression
giving the minimum value to be accepted by the edit-
field portion of the tool (it does not affect the tag's
value if a tag is accepted).
If this parameter is valid and a value less than LowLimit
is entered in the field, the variable set by the field will
revert to the previous value.

HighLimit

An optional parameter that is any numeric expression
giving the maximum value to be accepted by the edit-
field portion of the tool (it does not affect the tag's
value if a tag is accepted).
If this parameter is valid and a value greater than
HighLimit is entered in the field, the variable set by the
field will revert to the previous value.

Trigger

An optional parameter that is set when the variable is
changed.

EnableExpressions

An optional parameter that indicates the initial state of
DoEnableExpressions.
If EnableExpressions is set to 1, a radio button will be
shown that toggles display of the ExpressionEdit wid-
get, which in turn allows users to enter an expression.
EnableExpressions defaults to 0, but if the value con-
trolled by the PTypeToggle is already an expression,
then the expressions option will be displayed regard-
less.

DrawBevel

TRUE to draw Bevel

PtrValue

Used to return the value of expressions/tags

Immutable

TRUE if we want to force all tag references to generate
immutable reference code. Defaults to FALSE.

AllowRootSelection

TRUE to allow the Root tag to be selected. Default is
FALSE

ParmValueType

ValueType of the parameter:
0 = Status (boolean)
1 = Short
2 = Long
3 = Double
4 = Text
5 = Octal
6 = Hexadecimal
7 = Color

StatusLabel

Label for the type Status radio button

Comments: This module is a member of the VTScada Dialog
Library and must therefore be called from within a
GUITransform and prefaced by \DialogLibrary\.
This parameter tool expects the first parameter of
its calling module to contain an array of tag para-
meters. It will then set the element indicated by
ParmNum to the numeric value or the name of the
selected tag.
The height of the (unopened) droplist, the create
new tag button and the radio buttons beneath them
are constant, with the horizontal boundaries of the
calling transform defining the combined width of
the droplist and button, and the vertical boundaries
of the calling transform defining the droplist's
opened height, which will include the added height
of the bevel above the field, but may or may not
include the title, depending on the alignment used.
Note that if the entire list can be displayed in a smal-
ler area than indicated by the vertical boundaries of
the calling transform, the dropped list height will be
decreased. The dropped height of the list will always

have a minimum height of 1 line (below the field).
For any optional parameter that is to be set, all
optional parameters preceding the desired one
must be present, although they may be invalid.
This control is not to be used in Panel modules as it
creates undesired output and does not support the
range of type selections required for widget con-
figuration. In panel modules, use ParameterEdit or
NumericParameterEdit instead.
Usual height: 55-100 pixels.

Example:

GUITransform(10, 160, 270, 60,
1, 1, 1, 1, 1,
0, 0, 1, 0,
0, 0, 0,
\DialogLibrary\PTypeToggle(1 { Parm num },
"DigitalOutput" { Tag type },
"Choose tag" { Title },
1 { ID },
0 { Top align list },
1 { Align title },
10, 20 { Limits for the value }));

Q Functions
The sections that follow identify all VTScada functions beginning with
"Q".

QuietLogon

Security Manager Module

Description: Authenticates the AuthToken and, if successful logs the
calling user session on as the user specified in the
AuthToken

Returns: Boolean

Usage: Script Only.

Related to: AlternateIdCheck | AlternateLogoff | AlternateLogon |
Authenticate | LogOff | UserCredChange | UserLogonDialog

Format: \SecurityManager\QuietLogon(AuthToken [, Device,
Namespace]);

Parameters:

AuthToken

The concatenation of the user name, a colon (:) and
the password.

Device

Optional. Name of the device that is making the
request. Defaults to none.

Namespace

Optional. The namespace of the user. Defaults to
none.

Comments: If the authentication fails, a failure event is recorded in the
security event log.
Returns TRUE if the user was logged on successfully, oth-
erwise FALSE.

R Functions
The sections that follow identify all VTScada functions beginning with
"R".

RadialIndicator

(Meter Parts Library)

Description: Will draw a radial type indicator that sweeps from a min-
imum angle to a maximum angle in the same fashion that
a real radial meter would. Call from within a GUITransform.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | RadialLegend

Format: \MeterParts\RadialIndicator(DataSource, IndicatorImage[,
OffsetFromCenter, Direction, MinimumAngle, Max-
imumAngle, Hue, Saturation, Brightness, Transparency,
Contrast, ColorizeHue, ColorizeIntensity, UseTagScaling,
MinScaleValue, MaxScaleValue, DampenIndicator])

Parameters:

DataSource

Required. A Tag name, constant or expression that rep-
resents the value to show.

IndicatorImage

Required. The full path to the name of an image file to
use as the indicator. Typically, this is an image of a
needle.

OffsetFromCenter

The offset from the center to translate the image. This
allows the user to change the rotation center point of
the indicator image. The default is 0 which sets the bot-
tom of the indicator image as the rotation center point.

Direction

A flag indicating the direction from the minimum to
the maximum value representation. 0 means increase
in a clockwise manner while 1 indicates a counter-
clockwise manner. The default is 0 (clockwise).

MinimumAngle

The start angle of the sweep. 0 is defined as up or the
12 o’clock position. The default is 225.

MaximumAngle

The end angle of the sweep. 0 is defined as up or the

12 o’clock position. The default is 135.

Hue

The Hue translation to perform on the Indicator image.
This enables you to change the color of the indicator
image. The image must have color in it already in
order to perform a hue translation. If there is no color
to start with, then changing this value does nothing.
You can add color by setting a value for the Col-
orizeHue parameter, described later.
The default is 0, indicating that no hue translation is
done and the indicator is in its native color.

Saturation

The amount of saturation of the colors in the indicator
image. A value of 0 will make the image black and
white (no color saturation). A value of 2 produces a
brightly colored (saturated) indicator. The default is 1
which corresponds to the native saturation of the indic-
ator image.

Brightness

An adjustment of the brightness of the indicator
image. Higher numbers produce a brighter indicator
image. A 0 produces a black image. The default is 1
which corresponds to the native brightness of the indic-
ator image.

Transparency

An adjustment of the opacity of the indicator where 1
means 100% opacity and 0 means %100 transparent.
The default is 1.

Contrast

An adjustment of the contrast of the colors in the indic-
ator image. A value of 0 produces a flat looking image
and a value of 2 gives a high contrast image. The
default is 1 which corresponds to the native contrast of

the indicator image.

ColorizeHue

A value that works in conjunction with Col-
orizeIntensity. This is the hue of the color that is intro-
duced by colorizing an image. Colorizing an image will
introduce color into an image that previously was
black and white or grayscale. The default value is 0.

ColorizeIntensity

A value to define how much color to introduce into the
image. The default is 0, meaning not to introduce any
color at all into the image.

UseTagScaling

A flag that indicates whether or not to use the supplied
Tag’s scaling values. The default is FALSE.

MinScaleValue

The minimum scale value to use if the UseTagScaling
flag is not true. The default is 0.

MaxScaleValue

The maximum scale value to use if the UseTagScaling
flag is not true. The default is 100.

DampenIndicator

A flag to indicate whether or not to dampen the indic-
ator movement. Dampened movement creates the
effect of animating the indicator. The default is false.

Comments: This function must be called within a GUITransform state-
ment in order for it to work correctly.
The size of the indicator is scaled with respect to the ori-
ginal size of the image and the size of the transform. If you
want a smaller indicator you can simply make a smaller
transform. Using the offset from center in conjunction with
the size of the transform allows for extensive cus-
tomization of the size and position of the needle.

Example:

GUITransform(458, 392, 608, 242,
1, 1, 1, 1, 1 { Scaling },
0, 0 { Movement },
1, 0 { Visibility, Reserved },
0, 0, 0 { Selectability },
\MeterParts\RadialIndicator(Invalid,
"Bitmaps\Meter Parts\Indicators\Radial\Needle5.png",
0, 0, 225, 135, 0, 1, 1, 1, 1, 0, 0, 0, 0, 100, 0));

RadialLegend

(Meter Parts Library)

Description: Draws a legend (i.e. the text labels) for a radial type meter.
They are drawn at a constant radius from the center point
of the drawing coordinates, beginning at a defined min-
imum angle and ending at a defined maximum angle. To
be called from within a GUITransform.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUITransform | RadialLegend

Format: \MeterParts\RadialLegend(TagName[, MinimumAngle,
MaximumAngle, NumLabels, Font, Color, Direction, Ori-
entation, UseTagScaling, MinScaleValue, MaxScaleValue])

Parameters:

TagName

Required. The name of the Tag to use for scaling. If no
tag is specified, then tag scaling cannot be used to
automatically obtain the minimum and maximum
scale values.

MinimumAngle

The start angle of the sweep. 0 is defined as up or the
12 o’clock position. The default is 225.

MaximumAngle

The end angle of the sweep. 0 is defined as up or the
12 o’clock position. The default is 135.

NumLabels

The number of Labels to show. The default is 5.

Font

The name of a font tag to use for the legend text.

Color

A color index for the color of the legend text. The
default is 0 (black).

Direction

A flag indicating the direction from the minimum to
the maximum value representation. 0 means increase
in a clockwise manner while 1 indicates a counter-
clockwise manner. The default is 0 (clockwise).

Orientation

A reserved parameter and should be set to 0.

UseTagScaling

A flag that indicates whether or not to use the supplied
Tag’s scaling values. The default is false.

MinScaleValue

The minimum scale value to use if the UseTagScaling
flag is not true. The default is 0.

MaxScaleValue

The maximum scale value to use if the UseTagScaling
flag is not true. The default is 100.

Comments: This function must be called within a GUITransform state-
ment in order for it to work correctly.
The text should scale with the size of the transform, if it
does not, then you might have picked a font that doesn’t
scale. Some non true-type fonts won’t scale.

Example:

GUITransform(478, 616, 628, 466,
1, 1, 1, 1, 1 { Scaling },
0, 0 { Movement },
1, 0 { Visibility, Reserved },
0, 0, 0 { Selectability },
\MeterParts\RadialLegend(Invalid, 225, 135, 5, Invalid,

0, 0, 0, 0, 0, 100));

RadioButtons

(System Library)

Description: Draws a set of labeled radio buttons with (optional) title
and border.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: CheckBox | Droplist | Listbox | Spinbox | SplitList |
 ToolBar | VScrollbar

Format: \System\RadioButtons(X1, Y1, X2, Y2, Labels, Select [,
FocusID, Border, Title, BtnsOnLeft, AlignTitle, AllowTex-
tResizing, LeftToRight, BGColor, FGColor, Spacing])

Parameters:

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the radio but-
tons.

Y1

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the radio buttons.

X2

Required. Any numeric expression giving the X
coordinate on the screen of the side of the radio but-
tons opposite to X1.

Y2

Required. Any numeric expression giving the Y
coordinate on the screen of the top or bottom of the
radio buttons, whichever is the opposite to Y1.

Labels

Required. An array of text expressions used to label
the buttons. The number of labels determines the num-
ber of buttons.

Select

Required. A variable whose value will be set to the
index from 0 of the selected button. If the value of this
variable is initially invalid, it will default to 0.

FocusID

An optional parameter that is any numeric expression
for the focus number of the first radio button. Each
radio button following will have a focus ID number
equal to the next number in sequence.
If this value is 0, the radio buttons will display the cur-
rent setting of Select, but its value will not be able to be
changed and the buttons will appear grayed out. The
default value is 1.

Border

An optional parameter that is any logical expression. If
true (non-0) the buttons will have a background out-
line, if false (0) there will be no outline around the but-
tons. The default is true.

Title

An optional parameter that is any text expression to be
used as a title with the radio buttons. The default value
is to have no title.

BtnsOnLeft

An optional parameter that is any logical expression. If
true (non-0) the radio buttons will appear to the left of
their labels, if false (0) they will be to the right. The

default value is true.

AlignTitle

An optional parameter that is any logical expression. If
true (non-0) the title is drawn within the radio buttons'
boundaries, if false(0) the buttons fill their bounding
area and the title is added at the top (i.e. it extends
past the top boundary). The default is true.

AllowTextResizing

An optional flag. If true, then text will resize with the
control.

LeftToRight

An optional flag. If true, the buttons will be drawn from
left to right.

BGColor

Optional. Any numeric expression for the background
color of the control. No default value.

FGColor

Optional. Any numeric expression for the foreground
color of the control (text color). No default value.

Spacing

Optional. An array of numeric values, providing the
spacing in pixels to be used between one button and
the next.

Comments: This module is a member of the System Library, and must
therefore be prefaced by \System\, as shown in the
"Format" section. If you are developing a script application,
use "System\..." rather than "\System\..." in the function
call.
The parameters X1, Y1, X2 and Y2 define the outline of the
buttons including their border, if there is one. If the area is
too small to fully display the buttons they will extend bey-
ond their right and bottom boundaries. Buttons and their

border will not overlap each other and will always be
shown in their entirety, although the labels may be clipped
or entirely deleted.
For any optional parameter that is to be set, all optional
parameters preceding the desired one must be present,
although they may be invalid.

Example:

System\RadioButtons(10, 10, 300, 210 { Outline of buttons },
Types { An array of labels },
Selected { Selected btn (from 0)},
4 { First btn's focus ID },
1 { Show border },
"PLC Types" { Title of the buttons },
0 { Buttons on the right });

Rand

Description Returns a random number between 0 and 1.

Returns Numeric

Usage Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups Generic Math

Related to: Scale

Format: Rand()

Parameters None

Comments This function is useful for simulations.

Example:

If TimeOut(1, 2);
[

simulatedTemperature = Scale(Rand(), 0, 1, 50, 150);
]

Every 2 seconds, this sets simulatedTemperature to a random value
between 50 and 150.

Read

(VTSDriver Library)

Description: Used by a tag to create a request for a single read of a
given driver address. (This is in contrast to the polled read
request of the AddRead function).

Returns: Object value of underlying read module.

Usage: Script Only.

Function Groups: Stream and Socket

Related to: AddRead

Format: …\Driver\Read(Address, N, PtrDataDest[, OriginalAddr])

Parameters:

Address

Required. The starting address of the data to be read.

N

Required. The number of elements to read.

PtrDataDest

Required. A pointer to destination for the data. May be
a pointer to a variable, an array or the object value of a
module. Will be set to Invalid if the read fails.

OriginalAddr

The original address string from an I/O tag. May be dif-
ferent from the address for a DriverMUX.
If provided, this will become the first parameter to a
NewData call.

Comments: Allows the reading of a specific address on demand.
The resulting data will be sent only to the request-
ing machine. This will also be the case when the
function is run in a client-of-a-client configuration.
The object value of the underlying read module is

returned from the function. When the read finishes,
the returned object’s value will go to Invalid, sig-
naling the end of read.
This function does not support bit extraction or
type conversions. Use BuffRead on the result, fol-
lowed by BuffWrite to do a type conversion. Depend-
ing on how the float was formed by the PLC a call to
BuffOrder might be needed to arrange the bytes cor-
rectly. To perform bit extraction, use the Bit func-
tion on the result of the Read.

Example:

If 1 WaitForReadToEnd;
[
Obj = ModDrv1\Driver\Read(40001, 5, &Val);

]

WaitForReadToEnd [
If !Valid(Obj);
[
{ … process data from read … }
{ When Obj is Invalid, read operation is complete and Val }
{ will be an array of 5 values. }
{ If the read did not succeed, such as in the case of server }
{ failover, Val would be an array of 5 Invalid elements. }

]
]

This example reads from addresses 40001 to 40005 of a Modbus driver
tag named ModDrv1 and returns the result as an array in the variable
Val.

Related Information:
 Bit, BuffRead, BuffWrite, BuffOrder

ReadBlock

(VTSDriver Library)

Description Is launched to read a block of data from the PLC. It main-
tains a linked list of pointers to tag values with their abso-
lute offset into the PLC file being read by this instance.

Warning This function is for use by advanced programmers only. It
is used only as a part of the VTSDriver module. Engineers
writing a driver will not need to call this function directly.

Returns Linked List

Usage Script Only.

Function Groups Stream and Socket

Related to:

Format: …\Driver\ReadBlock(Info1, Info2, Info3, DType)

Parameters

Info1

Driver dependant. The first grouping parameter.

Info2

The second grouping parameter.

Info3

The third grouping parameter.

DType

The data type to read from the I/O device.

Comments Launched from a script, runs in steady state.
This module itself is in a global linked list of instances
maintained by the VTSDriver module. This block rep-
resents all of the data to be read from a specific file in a
specified PLC. All scan rates are handled by this one
instance. This module keeps a list of nodes sorted by scan
rates. These nodes point to another list of all the memory
requests within that scan rate. This module will determine
the best organization of blocks and launch a separate read
module for each actual block of data read.

ReadConfiguration

Description: This function provides a safe way to read configuration

files.

Returns: Nothing

Usage: Script Only.

Function Groups: File I/O

Related to: ModifyConfiguration | ReadPropertiesFile | WCSubscribe

Format: \ReadConfiguration(CallBackModuleName)

Parameters:

CallBackModuleName

Required text value, which is the name of the module
(either launched or a subroutine that returns Invalid) .
The named module is launched in the caller.

Comments: The callback object is allowed to read configuration files
and is guaranteed that, for the life of the module, no other
configuration code can modify the file. The callback mod-
ule need not have parameters of its own. ReadCon-
figuration will not put values in them if they exist.

Example:

If SomeTrigger;
[
SomeTrigger = 0;
\ReadConfiguration("ConfigReader");

]
…
]

<
{============================= \ConfigReader
==========================}
{==-
==}
ConfigReader

Main [
If 1;
[

{ The first line of the file is read into InfoVal1, and the
second }

{ line is read into InfoVal2.

}
FRead("MyConfigFile.txt" { filename },

0 { offset },
"%l%l" { format string },
InfoVal1, InfoVal2 { return variables });

Return(Invalid);
]

]
{ End of \ConfigReader }
>

ReadINI

(System Library)

Description: This subroutine read a variable entry from an INI file or a
buffer containing one and returns its value. Will not access
.Startup or .Dynamic files.

Note: Access to configuration files is not reliable unless the caller
holds the working copy lock. Acquiring the lock is a
steady-state only operation, and therefore legacy oper-
ations that used script-mode access to these files are
deprecated or no longer supported (see comments)

Returns: Varies

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: File I/O

Related to: ReadConfiguration | CheckFileExist | CheckPathExist |
 ReadSectINI | WriteINI | WriteSectINI |

Format: \System\ReadINI(File, Section, VarName [, UseBuff])

Parameters:

File

Required. Any text expression giving the absolute path
and file name of the configuration file or the actual buf-
fer containing its contents, depending on the UseBuff
parameter.

Section

Required. Any text expression giving the name of the
section in the file. This should not include the square
brackets delimiting the section.

VarName

Required. Any text expression giving the name of the
variable for which the value is required.

UseBuff

An optional parameter that is any logical expression. If
true (non-0) the value of File must be a buffer, if false
(0) it is a file that is to be used. The default used if this
parameter is omitted is false.

Comments: For developers the lock means that access to VTScada
working copy files, both reading and writing, should not
be done without having the lock. The lock is across all
applications and system layer VTScada code. The lock pre-
vents two different piece of code from changing the same
code such that one piece of code sees inconsistent data
while the other code is in the middle of changing it
This subroutine was a member of the System Library, and
must therefore be prefaced by \System\, as shown in the
"Format" section. If you are developing a script application,
use "System\..." rather than "\System\..." in the function
call.
The return value will be invalid if the configuration file, sec-
tion or variable was not found. Searches performed by this
function are case insensitive.

Example:

If 1 Main;
[
DSource = System\ReadINI("C:\VTScada\Setup.INI" { Name of file },

"System" { Name of section },
"OrderlyShutdown" { Name of variable },
0 { Read file format });

]

This assigns the value of the variable OrderlyShutdown in the System sec-
tion of the Setup.INI file to the variable called DSource.

ReadINIProperties

Description: Gathers the sum of all of the properties files in this layer
and all of its parents including the local workstation files.

Returns: Dictionary (see comments)

Usage: Script Only.

Function Groups: Configuration Management

Related to: ReadINI | ReadConfiguration | ReadPropertiesFile

Format: Layer\ReadINIProperties(Result[, ExternalLock, Sup-
pressOrphanedComments]);

Parameters:

Result

Required. A pointer to a value that, when all
files have been read, is set to the dictionary of
structures described in the comments section.
If this is already a valid dictionary and the
FileName parameter is valid, the data for the
single file will be updated in the dictionary. This
feature allow the publisher calls to Notifiy to
update the structures.

ExternalLock

Optional Boolean. Set to TRUE if you do not want to
acquire and release the lock. Defaults to FALSE.

SuppressOrphanedComments

Optional Boolean. Set to TRUE to ignore "+PseudoProp-
erty" - comments that are not associated with a prop-
erty. Defaults to FALSE.

Optional. Any

Comments: This is a long operation, but is useful for reading
properties that could be inherited. The data is
returned in a dictionary of structures, as follows.
The key is the layer's GUID.The dictionary must be
ordered with the application layer first and the base
layer last. The Result parameter must be a valid dic-
tionary that is populated by this module.

LayerProperties Struct [
 Layer { Instance of application layer owning
the files };
 Files { Dictionary of INIFiles structures for
a layer };
]

INIFiles Struct [
 FileName { Name (without the path) of the set-
tings file };
 Workstation { Name of the workstation or
invalid if global };
 Dynamic { TRUE if a dynamic property };
 Sections { Dictionary of sections each element
of which is an array of Property structures };
 Changed { User sets to true if the file has
been changed, initialized to false };
]

INIProperty Struct [
 Name { Variable name in the settings file };
 Value { Simple Value or an ordered array of
Values if the variable occurs more than once in
the section of the file };
 Comment { Text comment if present in the file
};
]

A simpler function, ReadPropertiesFile, is much
more direct if the location of the setting to be read
is known.

Examples:

ReadLock

(RPC Manager Library)

Description: Attempts to acquire a Read lock for the specified service.
Subroutine call only.

Returns: Nothing

Usage: Script Only.

Related to: WriteLock

Format: \RPCManager\ReadLock(ActivePtr, Service [, OptGUID]);

Parameters:

ActivePtr

Required. A pointer to a variable that will be set to "1"
when the Read lock is obtained.

Service

Required. The name by which the service is known.

OptGUID

An optional parameter that is any expression giving
the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service
instance is located. The default is the application to
which the caller belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
This module maintains a Read lock on a per service basis.
This module is intended to be launched. It will set the value
pointed to by ActivePtr to 1 when the lock is obtained. To
release the lock, or stop waiting for it, simply stop this
module by stopping the caller or explicitly slaying it.

ReadPropertiesFile

(System Library)

Description Reads a single Settings file and returns an INIFile Structure.
Replaces ReadINI and ReadSectINI

Returns INIFile Structure. See comments.

Usage Script Only.

Function Groups Configuration Management, File I/O

Related to: WritePropertiesFile | GetINIProperty | ReadConfiguration
| SetINIProperty

Format: \System\ReadPropertiesFile(File[, IsBuffer, Sup-
pressOrphanedComments])

Parameters

File

Required. Any text expression giving the full path and
file name of the Settings file or the buffer containing its
contents, depending on the IsBuffer parameter.

IsBuffer

An optional logical expression. Set TRUE if the File para-
meter is a buffer. Defaults to FALSE (0).

SuppressOrphanedComments

An optional logical expression. If TRUE then
"+PseudoProperty"s – comments that aren't associated
with a property will be left out. Defaults FALSE.

Comments The INIFile structure returned is as follows:

INIFiles Struct [
FileName { full path and file name to the

settings file };
OEM { TRUE if an OEM layer file

};
Workstation { Name of the workstation or

invalid if global };
Layer { Instance of application layer

owning the file };
Dynamic { TRUE if a dynamic property

};
Sections { Dictionary of sections each ele-

ment of which
is an array of Property struc-

tures };
Changed { User sets to true if the file has

been changed,
initialized to false

};
]

The INIProperty structure is…

INIProperty Struct [
Name { Variable name in the .star-

tup/.dynamic file };
Value { Simple value

};
Comment { Text comment if present in the

file };
Hidden { TRUE if not visible in Edit

Properties GUI };
];

The INIFiles structure can be modified using
SetINIProperty.
Note that if your intention is to read a configuration
file, this function should be called from within a
ReadConfiguration callback or a Modi-
fyConfiguration callback.

Example:

Properties = ReadPropertiesFile(Concat(GetWCPath(),
#APP_INI_FILENAME,
#DYNAMIC_INI_EXT));

Name = GetINIProperty(Properties\Sections["Application"],
"Name");

ReadSectINI

Description: This subroutine read an entire section entry from a con-
figuration file or a buffer containing one and returns a 2-
dimensional array containing variable names and their val-
ues. Will not access .Startup or .Dynamic files.
Note: Access to configuration files is not reliable unless the
caller holds the working copy lock. Acquiring the lock is a

steady-state only operation, and therefore legacy oper-
ations that used script-mode access to these files are
deprecated or no longer supported (see comments)

Returns: Array

Usage: Script Only.

Function Groups: File I/O

Related to: CheckFileExist | CheckPathExist | ReadINI | WriteINI |
 WriteSectINI |

Format: \System\ReadSectINI(File, Section [[, UseBuff] , PtrSec-
tionStatus)

Parameters:

File

Required. Any text expression giving the absolute path
and file name of the Settings file or the name of the buf-
fer containing its contents.

Section

Required. Any text expression giving the name of the
section in the file. This should not include the square
brackets delimiting the section.

UseBuff

An optional parameter that is any logical expression. If
true (non-0) the value of File must be a pointer to a buf-
fer, if false (0) it is a file that is to be used. The default
used if this parameter is omitted is false.

PtrSectionStatus

A flag used to inform the caller of what was found,
according to the following table:

Value Meaning

Invalid when either of the first 2 parameters
are invalid

0 when both section and settings exist

1 when no section is found

2 when section is found, but not set-
tings

Comments: For developers the lock means that access to VTScada
working copy files, both reading and writing, should not
be done without having the lock. The lock is across all
applications and system layer VTScada code. The lock pre-
vents two different piece of code from changing the same
code such that one piece of code sees inconsistent data
while the other code is in the middle of changing it.
This subroutine was a member of the System Library, and
must therefore be prefaced by \System\, as shown in the
"Format" section. If you are developing a script application,
use "System\..." rather than "\System\..." in the function
call.
The array that is returned gives the variable names in its
first row (Array[0][N]) and the variables' values in its
second row (Array[1][N]). The return value will be invalid if
the Settings file or section was not found, or if the section
did not contain any variables. Searches performed by this
function are case insensitive.

Example:

If 1 Main;
[
Vars = System\ReadSectINI("C:\VTScada\Setup.ini" { Name of file },

"System" { Name of section },
0 { Read file format });

]

This creates the array Vars and stores in it all variables in the System sec-
tion of the Settings.Dynamic file.

ReadX

Description Reads numeric data from a text file into the elements of an
array.

Returns Array

Usage Script Only.

Function Groups Array, File I/O

Related to: FRead | SRead | ReadXY

Format: ReadX(ArrayElem, N, File)

Parameters

ArrayElem

Required. Any array element giving the starting point
in the array in which to store the data. The subscript
for the array may be any numeric expression.
If processing a multidimensional array, the usual rules
apply to decide which dimension should be used. The
array may be either statically declared or dynamically
allocated.

N

Required. Any numeric expression giving the number
of array elements to read starting at the element given
by the first parameter.
If N extends past the upper bound of the lowest array
dimension, this computation will "wrap-around" and
resume at element 0, until N elements have been pro-
cessed.

File

Required. A text expression giving the file name of the
data file. It should be enclosed in double quotes if it is

a constant. A known path Known Path Aliases for File-
Related Functions for File-Related Functions may be
provided in the form, :{KnownPathAlias}.

Comments The data should be stored in the file with one numeric
value per line. The EOF marker for the file must not be on
the same line as the last numeric value, as per the fol-
lowing rule

If more than one value exists on a line, if the line is left
blank, or if it contains a non-numeric character, the cor-
responding element in the array will be set to invalid.
If the file contains fewer than N values, the remaining val-
ues will also be invalid.
This statement is useful for importing data from other data-
bases into VTScada.

Example:

If MatchKeys(1, "G");
[
ReadX(chlorineCon[0] { Starting point in array },

30 { Number of elements to read },
"CHLORINE.TXT" { File from which to read data });

]

This reads 30 numbers from the text file called CHLORINE.TXT into ele-
ments 0 to 29 of chlorineCon when a capital G is pressed on the key-
board.

ReadXY

Description: Reads data points from a file into the elements of two
arrays.

Returns: Array

Usage: Script Only.

Function Groups: Array, File I/O

Related to: FRead | ReadX | SRead

Format: ReadXY(XArrayElem, YArrayElem, N, File)

Parameters:

XArrayElem

Required. Any array element giving the starting point
in the array in which to store the X coordinates. The
subscript for the array may be any numeric expres-
sion.
If processing a multidimensional array, the usual rules
apply to decide which dimension should be used. The
array may be either statically declared or dynamically
allocated.

YArrayElem

Required. Any array element giving the starting point
in the array in which to store the Y coordinates. The
subscript for the array may be any numeric expres-
sion.
If processing a multidimensional array, the usual rules
apply to decide which dimension should be used. The
array may be either statically declared or dynamically
allocated.

N

Required. Any numeric expression giving the number
of array elements to read starting at the elements
given by the first two parameters.
If N extends past the upper bound of the lowest array
dimension, this computation will "wrap-around" and
resume at element 0, until N elements have been pro-
cessed.

File

Required. A text expression giving the file name of the
data file. It should be enclosed in double quotes if it is
a constant. A known path Known Path Aliases for File-
Related Functions for File-Related Functions may be

provided in the form, :{KnownPathAlias}.

Comments: The data should be stored in the file with one numeric
value per line. The data are then alternately placed into
each of the two arrays. If more than one value exists on a
line, if the line is left blank, or if it contains a non-numeric
character, the corresponding element in that array will be
set to invalid. If the file contains fewer than N values, the
remaining values will also be invalid.

The arrays need not start at the same index number.
This statement is useful for importing (X, Y) data from
other databases or spreadsheets into VTScada.

Example:

If MatchKeys(1, "R");
[
ReadXY(chlorineCon[0] { Starting point in first array },

pumpSpeed[0] { Starting point in second array },
60 { Number of elements to read },
"CHLORINE.TXT" { File from which to read data });

]

This reads 60 numbers from the text file called CHLORINE.TXT into ele-
ments 0 to 29 of chlorineCon and pumpSpeed when a capital R is
pressed at the keyboard. Numbers are placed in alternating arrays as
they are read.

RecommendAlternate

(RPC Manager Library)

Description: Instructs RPC Manager that the local service instance does
not consider itself a good server candidate.

Returns: Nothing

Usage: Script Only. (Subroutine call only)

Function Groups: Network

Related to:

Format: \RPCManager\RecommendAlternate(Service [, OptGUID]);

Parameters:

Service

The name by which the service is known.

OptGUID

An optional parameter that is any expression giving
the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service
instance is located. The default is the application to
which the caller belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\ as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.

RecommendPrimary

(RPC Manager Library)

Description: Instructs RPC Manager that the local service instance con-
siders itself a good server candidate.

Returns: Nothing

Usage: Script Only. (Subroutine call only)

Function Groups: Network

Related to:

Format: \RPCManager\RecommendPrimary(Service [, OptGUID]);

Parameters:

Service

The name by which the service is known.

OptGUID

An optional parameter that is any expression giving
the 16-byte binary form of the globally unique iden-
tifier (GUID) for the application in which the service
instance is located. The default is the application to
which the caller belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.

RecordProperty

Description: Helper function used to record settings without needing to
explicitly interact with the settings files. Can modify one or
more properties within a single specified file, and commits
the result.

Returns: Object (which becomes invalid on completion)

Usage: Script Only.

Function Groups: Configuration Management

Related to:

Format: LayerRoot\RecordProperty(SettingsFile, Section, Name,
Value, Comment, CommitComment[, Deploy, Caller-
HasLock, ClearSection, Workstation])

Parameters:

SettingsFile

Required. Text or Integer. The name of the settings file
to be altered.
As a convenience this parameter can also be an integer
representing any of the four standard settings file
types as follows:
0 => workstation.Dynamic

1 => Settings.Dynamic
2 => workstation.Startup
3 => Settings.Startup

Section

Required. May be the name of the section that the prop-
erty belongs to, or an array of section names.

Name

Required. May be the name of the property to modify,
or an array of property names.

Value

Required. May be the value to be set for the property,
or an array of values matching the array of property
names.

Comment

Optional. May be the comment to add to the property
or an array of comments matching the array of prop-
erty names.
If invalid, the existing comment will be used.

CommitComment

Optional. The comment to be added when the change
is committed to the repository.

Deploy

Optional Boolean. Set TRUE to deploy the change imme-
diately.

CallerHasLock

Optional Boolean. Set TRUE if the caller holds the layer
lock in write mode.

ClearSection

Optional Boolean. Set TRUE to empty the section (or
sections if an array was provided), before writing the
new value(s).

Workstation

Optional text. If an integer 0 or 2 was used for the Set-
tingsFile parameter, then the name of the workstation
should be provided.
Defaults to the current workstation (WkStaInfo(0)) if
missing or invalid.

Comments: This function returns an object which becomes invalid
when the operation (handled asynchronously) is complete.

Examples:

Redirect

Description: Redirects a local device to network resource.

Returns: Nothing

Usage: Script Only.

Function Groups: Printer, Software and Hardware, Network

Related to: DefaultPrinter

Format: Redirect(Local, Remote)

Parameters:

Local

Required. Any text expression giving the local device
to redirect, for example "G:", "LPT1:", "DEF:" (default
printer), etc.

Remote

Required. Any text expression giving the network
resource to map the local device to. If this parameter is
an empty string or invalid, the current connection for
the device Local is disconnected.
If Local has any value other than "DEF:", this parameter
must be the same form used by the Windows™ com-

mand prompt, "net use" function:
"\\MyServer\MyPrinter"
If Local has a value of "DEF:", the value of this para-
meter has three elements separated by commas, as fol-
lows:
<printer name>, <driver name>, <port>
Each of these elements must be valid in order to have a
valid Remote parameter. If any are invalid, programs
such as Print Manager may revert back to the previous
valid printer, while other programs may have unpre-
dictable behavior.

Comments: Caution should be exercised when using this statement,
since the redirection of the device is permanent - exe-
cution of the statement causes the change to be written to
the Windows™ registry. For this reason, when using "DEF:"
(the Windows™ default printer), it is always a good idea to
use the DefaultPrinter function prior to doing the Redirect,
so that the original default printer may be restored at a
later date.

Example:

If ZButton(10, 40, 110, 10, "Print", 1);
[
oldP = DefaultPrinter() { Keep track of original printer };
Redirect("DEF:" { The Windows default printer },

"\\Serve1\NPrinter, HPPCL5MS, Ne00:"
{ The printer on the server });

PrtScrn() { Do a printout of the screen };
]

A press of the button causes the default Windows™ printer to be redir-
ected to the printer called NPrinter on the server called Serve1. The rest
of the string indicates the driver to be used in this redirection.

Register (Alarm Manager)

Note: Deprecated. Do not use in new code.

(Alarm Manager module)

Description: Inform the Alarm Manager that a module instance may
wish to generate alarms in the future.

Returns: Numeric

Usage: Script Only.

Function Groups: Alarm

Related to: Commission

Format: \AlarmManager\Register(AlarmObject[, Enable]);

Parameters:

AlarmObject

Required. The object value of the new alarm to add to
the configured alarm list. A variable called "Name"
must exist within the scope of AlarmObject. This vari-
able uniquely defines the text name of the alarm.

Enable

Required Logical Expression. Set to true if the alarm
should start enabled. Defaults to "Enabled" if invalid or
not defined.

Comments: The Register subroutine always returns "0".
Registering an alarm does not trigger an alarm. It informs
the Alarm Manager that the AlarmObject module instance
may wish to generate alarms in the future.

Register (Modem Manager)

(Modem Manager module)

Description: This module registers a discriminator that accepts incom-
ing calls.

Returns: Numeric

Usage: Script Only.

Function Groups: Alarm

Related to:

Format: \ModemManager\Register(Context, Station, Priority [,
MediaMode, Voice, TimeOutVal, Name]);

Parameters:

Context

An object value of the context in which the dis-
criminator module is to be called.

Station

A unique identifier for this discriminator instance.

Priority

The relative priority of this discriminator to others. Pri-
orities are in the range of 0..99 with numerically
higher priorities being called first.

MediaMode

specifies the media mode that this discriminator
wishes to handle. Typically, this would specify AUDIO
to handle incoming audio calls. The default is
DATAMODEM which handles normal data calls. Please
refer to the Comments section.

Voice

If this discriminator is to handle AUDIO calls, then this
parameter specifies the text GUID of the voice to be
used by the Text-to-Speech engine.

TimeOutVal

An AUDIO discriminator generally relies on some
human-generated response. This parameter sets the
number of seconds that the discriminator runs from
before giving up. The default value is 20 seconds.
Please refer to the Comments section for further
information.

Name

Usually Context will, when cast to a text value, identify
the name of a variable in \Code whose value is the
object context for the discriminator. If this is not the
case, then the name should be given here.

Challenge

A string to send in response to incoming calls that
don't initially transmit any data.

Comments: In order to receive incoming calls, you must first
call the Modem Manager's Register method, passing
the driver's object value, its station number, and a
priority (relative to other drivers).

\ModemManager\Register(Root, Station, 10 { Pri-
ority]);

You must also provide a discriminator subroutine.
This subroutine will be called by the Modem Man-
ager when it offers you an incoming call. The
Modem Manager passes as a parameter a BUFFER
which contains the initial data received from the line
(see HelloPacketLength). You should parse this data
and decide whether or not it is supported by your
driver, and for which station it is intended.
Return Invalid to reject this call.
Return the (valid) station identifier to accept the
call.
If you accept the call, then the Port\IsConnected()
module will go true, and you may acquire the serial
port semaphore Port\Sem() and read and write data
via the serial port.
If Port\IsConnected() goes false, the call has been
disconnected. If you wish to hang up the call, call
the subroutine Port\CallComplete().

Register (RPC Manager)

(RPC Manager Library)

Description This subroutine registers a service for RPC and returns a
pointer to the variable containing the current RPC status of
the service.

Returns Pointer containing the current RPC status.

Usage Script Only. (Subroutine call only)

Function Groups Network

Related to: ConnectToMachine | DisconnectFromMachine |
 GetServer | GetServersListed | GetStatus | IsClient |
 IsPotentialServer | IsPrimaryServer | Send |
 SetRemoteValue

Format: \RPCManager\Register(ServiceName [, ListSource,
ListName, SemObj, StartMode, PrioritySync, ServerList,
Sticky])

Parameters

ServiceName

Required. The name of the tag to register.

ListSource

The object that is the source of this service's
server list. Should have the following callbacks
(like LayerModule):

l ServerListSubscribe

l ServerListUnsubscribe

l GetServerList

l GetRPCServiceSettings
Defaults to Layer object with this service's
LocalGUID.

ListName

Name of the server list to use for this service.

If invalid, the section name will be ServiceName.
If ListSource is a Layer, then the list used fol-
lows the following rules of precedence: service
and workstation-specific list, service-specific
list, workstation-specific list, then default server
list.
If no lists can be found at all, this machine is
assumed to be the sole server.

SemObj

An object value for an instance of the system Sem-
aphore module. If Invalid, the RPC Manager will launch
an instance of Semaphore for this service.

StartMode

The mode that the service instance will start up
in or become when it loses its connection to the
server instance. The mode of a service determ-
ines whether or not the RPC Manager transmits
service broadcast messages from the server.
You should supply the constant \RPC_ACCEPT_
ALL (default) if your service requires no syn-
chronization whatsoever. Otherwise, set it to
\RPC_SYNC_MODE.
Set TRUE to prevent server from sending Broad-
cast messages to us.

PrioritySync

When set to non-zero, the PrioritySync flag prevents
higher priority servers from syncing with lower priority
servers, forcing the lower server to synchronize with
itself. Most system services do not set this flag.

ServerList

An optional parameter that is an array of server names
for this service. If used, it overrides any server list con-

figuration that has been done in the .RPC files. If not
used, the usual method of determining the server list is
used.

Sticky

An optional flag that causes this service to stick to a
server, even if a higher order server comes online (see
also sticky status).

Comments Subroutine call only.
This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.

The return value from this call is a pointer to a variable that
contains the current RPC status of this service instance.
Dereferencing this pointer will yield one of the following
values
0 – the status of the service instance is unknown at this
time.
1 – this service instance is a client to another service
instance.
2 – this service instance is the server instance.
Invalid – the caller of Register() has been slain.

This value will almost certainly be required by the service
instance's code to allow it to operate correctly.

The ServiceLayer parameter is almost always used for sys-
tem-level services (services that don't run within running
applications). Unless writing a system-level service, leave
this parameter as invalid and set the server list via the Edit
Server Lists panel of the application properties GUI.

Related Information:
Refer to "RPC API Reference" in the VTScada Programmer's Guide for a
listing of Service Control Methods, RPC Methods, and Deprecated RPC
Methods.

RegisterCustomTable

(VTSSQLInterface library)

Description: A launched module that registers a name for a virtual data-
base table and defines what information will be available
from that table.

Returns: Varies. 0 if array size is invalid,

Usage: Script Only.

Function Groups: Database and Data Source, ODBC

Related to: SQLQuery

Format: \VTSSQLInterface\RegisterCustomTable(Name, Descrip-
tion, Columns, IsReadOnly, CallbackObj, SupportsTPP)

Parameters:

Name

Required. Any text value for the name of the table.

Description

Required. Any text value for the description of the
table

Columns

Required. May be either a dictionary or a call-
back module.
If the first, then Columns will be a dictionary of
structures that describing the column contained
in the table. The dictionary keys should be the
names of the columns. Use this option when the
table will refer to a single tag or type of inform-
ation where the column format is known.

If the second, then a callback context may be
provided where the module SQLQueryGetColum-
nInfo is called to retrieve the column info. If the
current module contains this submodule (as is
usually the case) then you will use Self() for this
parameter.
Use this option if the custom table may refer to
multiple tag types, each having its own struc-
ture.
Further information is provided in the com-
ments section.

IsReadOnly

Required numeric. Set to 1 for read only. Writes
(value 0) are not currently supported through
the SQL interface.

CallbackObj

Required. The object value of a module which
must contain a submodule named
SQLQueryRetrieveData. In most cases, this will
be stored in the current file, in which case self()
should be used for this paramter.
SQLQueryRetrieveData will be called by
VTSSQLInterface\SQLQuery when it needs to
retrieve data from the custom table. Further
information is provided in the comments sec-
tion.

SupportsTPP

Required Boolean. Set TRUE if the table has support for
additional TPP tables. In this case
SQLQueryRetrieveData will be called with a TPP value
specified at query-time.

Comments: Columns Parameter
If the Columns parameter is defined as a dictionary,
each element must be a VTSSQLColumnInfo struc-
ture. This structure is defined as follows:

VTSSQLColumnInfo STRUCT [
 SQLType { One of the SQL type
constants };
 IsPrimaryKey { 1 for primary
key column, 0 if not };
];

For example, VTScada uses the following code to
define the columns when registering the table name,
AlarmHistory:

AlarmHistoryColumns = Dictionary();
{ Standard fields that will always exist for

the alarm history table }
AlarmHistoryColumns["Timestamp"] = ColumnInfo
(\#SQL_DATETIME, 1, "Timestamp"
AlarmHistoryColumns["Id"] = ColumnInfo
(\#SQL_VARCHAR, 0, "Name");
AlarmHistoryColumns["Name"] = ColumnInfo
(\#SQL_VARCHAR, 0, "Name");
AlarmHistoryColumns["SubName"] = ColumnInfo
(\#SQL_VARCHAR, 0, "Name");
AlarmHistoryColumns["Event"] = ColumnInfo(\#SQL_
VARCHAR, 0);

If using a callback object for the Columns para-
meter, your code must include a module named
SQLQueryGetColumnInfo. This subroutine will be
called by the SQLQuery module, and must return a
dictionary of VTSSQLColumnInfo structures, keyed
by column name, for each column that to be queried
in the given custom table.

RawTableName

Required. Any text value for the custom table
name without _TPP modifiers.

SplitColumnName

Optional text. If specified, the returned dic-
tionary is only guaranteed to return that column
(if it exists), but may contain other columns as
well. This allows for performance optimization
for custom tables that contain large numbers of
columns.

SQLQueryGetColumnInfo will normally start with
code to strip off any prefix or delimiter from the
table name, then obtain the object value of the tag
type:

{ code to clean up the name followed by...}
TagModuleVal = Scope(\Code, CleanTagTypeName);

This will be followed by a call to ListVars to obtain
the variables in the specified tag object, then a loop
to add each required variable to the dictionary of
VTSSQLColumnInfo structures.

CallbackObj Parameter: SQLQueryRetrieveData
SQLQueryRetrieveData is a launched module that
must be implemented on the CallbackObj. Note that
zero is the proper return if the array size is zero.
Its parameters are as follows:

PtrResult

Required. A pointer to the variable, within which
the results will be returned.
The returned results must be a 2-dimensional
array (even if only one column is returned),
indexed in the form: Result[Col][Row]. This vari-
able should not be set until the results are com-
plete.

TableName

Required. The name of the table being queried. This is

required in case the caller decides to register more
than one table with the same CallbackObj.

RequestedColumns

Required. An array of the names of the columns
needed to satisfy the SQL query.

MaxRecords

Required numeric. The maximum number of res-
ult rows that this module is allowed to return.

StartTime

Optional. If the WHERE clause of the query resolves to
a starting timestamp, it will be passed here, otherwise
Invalid.

EndTime

Optional If the WHERE clause of the query resolves to
an ending timestamp, it will be passed here, otherwise
Invalid.

TPP

Optional. The time period per row to apply to the
query.

FilterHints

Optional. A dictionary containing structured
entries for each field in the WHERE clause that
can be filtered to one or more ranges or exact
values.
The structure definition follows:

HintStruct STRUCT [
 Ranges; { Array of RangeDescriptors, field
value must fall into one or more of the
ranges }
 ExactMatches; { Array of values that field
value must match one of. Only valid if all
Ranges have min=max }
 OverallMin; { Overall minimum for the field
value, may be Invalid }
 OverallMax; { Overall maximum for the field
value, may be Invalid }

];

In turn, a RangeDescriptor is a simple structure
to contain a min/max range. No distinction is
made between inclusive and exclusive ranges.
One of min or max may be Invalid, indicating an
open-ended range, but not both. For queries
that are exact matches, Min and Max will be
identical.

RangeDescriptor STRUCT [
 Minimum;
 Maximum;
];

SQLQueryRetrieveData may ignore any or all of
the information received in FilterHints. A simple
implementation might use only OverallMin and
OverallMax, or just the ExactMatches array.
More advanced implementations could use the
complete information from the Ranges. Note
that ExactMatches, OverallMin, and OverallMax
are all derivable from Ranges. They are derived
by ParseWhereClause itself for convenience of
the consumer.
SQLQuery itself will always apply a post-filter
derived from the WHERE expression to filter out
any rows that do not match the expression. So
SQLQueryRetrieveData need only filter out some
of the rows suggested by FilterHints. Filtering
out not enough rows will not result in incorrect
results returned from the query. (This is also
why no distinction is made between inclusive
and exclusive ranges in FilterHints. If the range
was meant to be exclusive in the original WHERE
clause it will be post-filtered correctly.)

Example: for the WHERE clause:

... WHERE WellKey="MyWell1" AND Timestamp >=
'2015-06-01' AND Timestamp < '2015-07-01'

the dictionary passed to SQLQueryRetrieveData
will contain two keys: WellKey and Timestamp.
WellKey's value is a HintStruct containing the fol-
lowing elements:

l Ranges - In this example the Ranges array would
contain one element of the Range structure with
Minimum="MyWell1" and Maximum="MyWell1".

l ExactMatches - In this example ExactMatches
array would contain one element set to
"MyWell1".

l OverallMin - In this example would be set to
"MyWell1".

l OverallMax - In this example would be set to
"MyWell1".

Timestamp's value is a HintStruct containing
these elements, where the timestamps use the
VTSCada timestamp type.

l Ranges - Array(Range('2015-06-01 00:00:00',
'2015-07-01 00:00:00'))

l ExactMatches - Invalid

l OverallMin - '2015-06-01 00:00:00' -- Note that
if the Timestamp is set to be the primary key on
this custom table, this same timestamp value will
be passed as StartTime to
SQLQueryRetrieveData.

l OverallMax - '2015-07-01 00:00:00' -- Note
that if the Timestamp is set to be the primary key
on this custom table, this same timestamp value
will be passed as EndTime to
SQLQueryRetrieveData.

Related Information:
See: "VTScada SQLInterface Module" in the VTScada Programmer's Guide

ReleaseLock

Description: Releases a working copy semaphore that was acquired by
AcquireLock.

Returns: Nothing

Usage: Script Only.

Function Groups: Configuration Management

Related to: AcquireLock |

Format: Layer\ReleaseLock()

Parameters: none

Comments: Call only you currently have the working copy semaphore.

Examples:
none

RemoveParameter

Description: Removes a parameter from a module's parameter list.

Warning: This statement should be used by advanced users only
since irrevocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Advanced Mod-
ule

Related to:

Format: RemoveParameter(Module, ParmNum)

Parameters:

Module

Required. Any expression for the module or object
value.

ParmNum

Required. Any numeric expression for the parameter
to remove, beginning at 1.

Comments: The parameter variable removed by this function becomes
a normal local variable.

RemWSDL

(System Library)

Description Disconnects a Realm from a WSDL file and the associated
set of VTScada modules, cleaning up any resourced used
by that web service.

Returns Nothing

Usage Script Only.

Function Groups XML

Related to: SetWSDL | XMLProcessor | XMLAddSchema | XMLParse |
 XMLWrite

Format: \System\Webservice\RemWSDL(Realm)

Parameters

Realm

Required. The name of the VTScada Realm to have its
web service removed.

Comments Once RemWSDL is called, the associated web service will
immediately stop processing messages, however any oper-
ations set in motion by that service will run to completion.
This function is called implicitly if the connected module is
destroyed.

Rename

Description: Renames an existing file.

Returns: Nothing

Usage: Script Only.

Function Groups: File I/O

Related to: GetFileAttribs | SetFileAttribs

Format: Rename(OldName, NewName)

Parameters:

OldName

Required. Any text expression for the current name of
the file to be changed. A known path Known Path Ali-
ases for File-Related Functions may be provided in the
form, :{KnownPathAlias}.

NewName

Required. Any text expression for the new name that
the file is to be changed to. A known path alias may be
provided in the form, :{KnownPathAlias}.

Comments: This statement will rename the file regardless of its attrib-
utes and the attributes will not be changed. If the file to be
renamed does not exist, a file will not be created.

Example:

Rename(Concat(appPath, "TestMod.SRC"),
Concat(appPath, "Test1.SRC"));

This statement changes the name of a file from "TestMod.SRC" to
"Test1.SRC".

Replace

Description: Performs a case sensitive search and replace operation on
a buffer and returns the resulting buffer.

Returns: Buffer

Usage: Script or steady state.

Function Groups: String and Buffer

Related to: Locate

Format: Replace(Buffer, Offset, N, Search, Replace)

Parameters:

Buffer

Required. Any text expression giving the buffer to
search. The size of the buffer is limited to 65 500
bytes.

Offset

Required. Any numeric expression giving the buffer off-
set from 0 to start the search.

N

Required. Any numeric expression giving the number
of buffer characters (bytes) to search.

Search

Required. Any text expression or array of text expres-
sions, giving the search string(s). Search must be at
least 1 byte long. The search is case sensitive.

Replace

Required. Any text expression giving the replace
string.

Comments: This function returns a buffer that is the same as
Buffer, except that within the first N bytes following
Offset, all occurrences of Search are replaced with
Replace.
Since the search and replace strings are delimited
by quotation marks, to include a set of quotation
marks as part of either, you must use two sets of
quotation marks inside of the quotation marks that

delimit the string (see example).

Example:
If a variable exists such that:

txt = "abcdefABCDEF";

And the following statement is executed:

txt = Replace(txt { Buffer },
0 { Start at beginning of buffer },
12 { Search through 12 characters },
"fA" { Search for this string },
"-wow-" { Replace string with this });

The result will be that txt will contain the string "abcde-wow-BCDEF".
As a further example of how this function is used, if quotation marks
were considered illegal characters in a certain context and therefore
needed to removed from a string, the following statement could be used
to achieve this:

txt = Replace(stringWithQuotes { Search buffer },
0 { Start at beginning },
StrLen(stringWithQuotes) { Search entire string },
"""" { Find all quotes },
"" { Replace with nothing });

ReplaceStatement

Description: Replaces a statement with another statement.

Warning: This function should be used by advanced users only since
irrevocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, States

Related to: Compile

Format: ReplaceStatement(NewS, Location, Size, Adjust)

Parameters:

NewS

Required. Any expression for the statement value of
the new statement. (This value can be obtained using
the Compile function.)

Location

Required. Any expression for the code value that indic-
ates what statement to replace. (This value can be
obtained using the Compile function.)

Size

Required. Any numeric expression for the size of the
new statement text, in characters.

Adjust

Required. Any logical expression. If true, the text in
the file will be moved to allow for the statement that is
being replaced. If false, the text will not be moved.

Comments: This statement is disabled in the run time version of
VTScada. It will do nothing.

ReportError

(System Library)

Description: Post error information to VTS Trace and optionally, to the
display.

Returns: Nothing

Usage: Script Only.

Function Groups: Error Manager

Related to:

Format: \System\ReportError(eMsg, QualifierSet[, User-
AndSession, Silent, HelpFile, HelpID, TraceCategory,
ApplicationGUID])

Parameters:

eMsg

Required. Any text containing the error message.

QualifierSet

Required. An additional error data dictionary.
This dictionary can accept any keys and values
that can cast to strings. Each error generates a
two-column table of information, built using
this dictionary. The keys are displayed in the
first column and the values are displayed in the
second. Note that VTScada system code typically
uses Setup.INI values to generate these strings
so that they can be changed to suit different lan-
guages, but this is not a requirement.

UserAndSession

Optional. This parameter should be generated by a call
to \LayerRoot\GetUserID() from the closest GUI-called
module to the error. The purpose is to capture the user
responsible for the operation that lead to the error.
This call is required since users are linked to sessions
that are only available to modules ultimately called by
the Display Manager (that is, GUI objects). As a result,
the "user and "session" often need to be captured
earlier and passed to any modules likely to generate
errors.

Silent

Optional Boolean. If TRUE, the error dialog will be sup-
pressed. Defaults to the application property, ReportEr-
rorSilenceAll, or FALSE if not otherwise set.

HelpFile

Optional text. If the dialog is to have a help button, and
you are using a custom help file, provide its name
here. May be left blank if you are using the VTScada
help file.

HelpID

Optional numeric. If the dialog is to have a help but-
ton, provide the ID value from the help file's Alias file
in order to link to the correct topic.

TraceCategory

Optional. The category to use in the VTScada Trace
program.

ApplicationGUID

Optional text. Defaults to the current application's
GUID. In the rare case where there can be ambiguity
over which application caused the error, a GUID may
be supplied for the source application.

Comments: If this function displays the error message to the
operator, it will use the newer format, which was
introduced in VTS 10.0. This format enables you to
display multiple error messages in one screen, each
with its own Help ID value.
The error will be recorded in the Error Log file at
the VTScada level, as well as being stored for use by
the TraceViewer. The log file ("errors.log") records
every error that is raised via ReportError.

Examples:

IfThen(PickValid(!Bit(VarAttributes(FindVariable(VarName, TagMod, 0,
0)), 8 {Temporary}), FALSE),
{ A non-temporary variable of a disallowed name was present. Produce
an error. }
 ErrorInfo = Dictionary();
 ErrorInfo[\TypeNameLabel] = Cast(TagMod, \#VTypeText);
 ErrorInfo[\VariableNameLabel] = VarName;
 ErrorInfo[\IncompatibleVersionLabel] = Ver;
 ReportError(\BadTagVariableErr, ErrorInfo, Invalid, 0, DlgHelpFile,
12009 { HelpID 12009 });
);

Related Information:
| See: "Using the Trace Viewer" in the VTScada Programmer's Guide.

RepoSubscribe

Description: Allows the caller to specify a callback which will be
triggered whenever the application’s repository changes

Returns: Nothing

Usage: Script Only.

Function Groups: Configuration Management

Related to: WCSubscribe |

Format: RepoSubscribe(Subscriber[, Callback])

Parameters:

Subscriber

Required. Scope of the destination for the published
messages.

CallBack

Optional. Name of the module to call in the Subscriber
when something is published. If invalid, this will
default to "RepoNotify".

Comments: The callback is provided with a dictionary of the changed
files.
Note that since these changes may not be reflected in the
working copy (and therefore not affect the application) the
WCSubscribe function is recommended in most cases.

Examples:

Reset

(VoiceTalk Module)

Description: Immediately stops a speech stream and cancels any buf-
fered speech.

Returns: Nothing

Usage: Script Only.

Function Groups: Speech and Sound

Related to: Configure | GetDevices | GetVoices | ShowLexicon |
 Speak | VoiceTalk

Format: VoiceTalkStream\Reset

Parameters:

VoiceTalkStream

Required. A speech stream returned from VoiceTalk.

Comments: This function returns the error code resulting from issuing
the command to the speech engine, or zero if no error was
encountered.
Issuing this command will immediately stop all speech for
the stream on which it was issued. Other streams will be
unaffected. Note that in the process of stopping the
speech, a new speech request is issued, so the count of
queued VoiceTalk\Speak requests will momentarily
increase by one.

ResetParm

Description: Can reset parameters that become latched.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Advanced Mod-
ule

Related to: NParm | Parameter | PType

Format: ResetParm(Object, Index)

Parameters:

Object

Required. Any object (the object value of a running
module instance).

Index

Required. Any numeric expression giving the number
of the parameter of interest, starting from 1.

Comments: This statement is for experienced users, and is not needed
for normal operation. When this function executes, it
attempts to reset Object's parameter at Index. This allows
modules to be written which reset their parameters (like
the Save statement). This function is useful for resetting
TimeOut and MatchKeys functions.

ResultFormat

(ODBC Manager Library)

Description: Subroutine to convert 2-d array as returned from query in
the form, Arr[Field][Rec], to a normalized format of Arr
[Rec][Field].
For single record reads, this function returns a single
dimension array Arr[N] where N is the number of fields.

Returns: Array

Usage: Script Only.

Function Groups: ODBC

Related to:

Format: \ODBCManager\ResultFormat(DataArray, MakeSingle)

Parameters:

DataArray

Required. An array of fields and records to transpose

MakeSingle

Required. If true (1), and if the array size is 1 this indic-
ates that the a single dimension array should be
returned.

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as

shown in "Format" above.

ResyncDoc

Description: Synchronizes the time and date for the document and
.RUN files.

Warning: This function should be used by advanced users only since
irrevocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, File I/O,
Advanced Module

Related to: CanEditDoc

Format: ResyncDoc(Module [, Unsync])

Parameters:

Module

Required. Any expression for the module or object
value.

Unsync

An optional parameter that is any logical expression. If
true (non-0), the module's .RUN file(s) are forced to be
out of sync with the time stamp on its .SRC file(s). If
false (0) the .RUN and .SRC files are synchronized. The
default is 0.

Comments: This function will set the date and time for the .RUN file to
that of the document file.

Return

Description: Sets the return value for the module in which it is
executed.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Basic Module

Related to: GetReturnValue | Launch | Slay

Format: Return(X)

Parameters:

X

Optional. Any variable, expression, constant or object
value. It can be of any type.

Comments: If a Return statement appears anywhere in the code
of a launched module (i.e. one that is executed
inside of a script or using the Launch statement),
even if that portion of the code is not executed, the
module will be considered to be a sub-routine, and
will block execution of all other modules in the
same thread while it is executing. Execution of the
Return statement in a sub-routine results in the
module being slain without having to use the Slay
statement.

If the Return statement is used in a called module
(i.e. one that appears as a statement in a state), exe-
cution of the Return statement will not stop the exe-
cution of the module.
The return value for the module is set equal to X,
and is the same type as the expected value of the
module call. The type of the return value is set every
time Return is executed, which allows modules to
return different types of values during execution if
they are called (rather than launched).
This statement may appear both inside or outside of
a script, and like other statements that may be

called from a state, if multiple calls are active sim-
ultaneously in a module, the return value will be
invalid.
Return(); is equivalent to Return(Invalid);

Example:

Main [{ State in Module Graphics }
ZText(500, 100, test , 15, 0);

]
< { Sub-module of Module Graphics }
Test
State1
[
Return("example of return function");

]
>

This sets the return value of the module Test to "example of return func-
tion" which is displayed by the ZText statement in state Main of the
Graphics module.

Reverse

Description: Returns its parameter with the byte order reversed.

Returns: Varies

Usage: Script or steady state.

Function Groups: String and Buffer

Related to: BuffOrder

Format: Reverse(Type, Value)

Parameters:

Type

Required. Any numeric expression giving the type of
the Value parameter.

Type Meaning

1 Short

2 Long

3 Not supported

4 Text

Value

Required. Any variable, expression, or constant. It can
be of any type except object.

Comments: If Value is invalid, the return value is invalid.

Note: After the bytes are reversed, the result is
cast to a W_SHORT. If you want an unsigned short
for the result, you must AND() it with 0xFFFF.

Example:

oldA = 45 { 0b00000000 00101101 };
oldB = "Hello";
newA = Reverse(1, oldA);
newB = Reverse(4, oldB);

The value of newA will be 11 520 which is 0b00101101 00000000. NewB
will have a value of "olleH".

RibbonCmd

Description: Provides two variables that the ribbon will set when the
user activates a command

Returns: Boolean

Usage: Steady State only.

Function Groups: Window

Related to: RibbonContextUI | RibbonGalleryItems | Rib-
bonPersistState | RibbonSetProperty

Format: RibbonCmd(CommandID, CommandData)

Parameters:

CommandID

Required. A variable holding the unique identifier for
the activated command.

CommandData

Required. A variable holding any command-specific
data.

Comments: The return value of this function can be monitored in order
to initiate script execution when the user activates a ribbon
command.

Examples:

IF RibbonCmd(CommandID, CommandData);
[
 ...
]

RibbonContextUI

Description: Displays a mini-toolbar or a pop-up context menu or both
at a specified window coordinate.

Returns: Nothing

Usage: Script Only.

Function Groups: Window

Related to: RibbonCmd | RibbonGalleryItems | RibbonPersistState |
RibbonSetProperty

Format: RibbonContextUI(CommandID, X, Y);

Parameters:

CommandID

Required. The unique identifier of the command.

X

Required. Horizontal coordinate within the nearest win-
dow at which to display the pop-up.

Y

Required. Vertical coordinate within the nearest win-
dow at which to display the pop-up.

Comments: UI == user interface.
A context map is an XML declaration of the user
interface controls. The XML can hold multiple con-
text maps and therefore, it is possible to select
from multiple, pop-up user interfaces to display.

RibbonGalleryItems

Description: Use to populate a gallery with a collection of items or com-
mands, from which the user may make a selection

Returns:

Usage: Script Only.

Function Groups: Window

Related to: RibbonCmd | RibbonContextUI | RibbonPersistState | Rib-
bonSetProperty

Format: RibbonGalleryItems(CommandID, GalleryItems);

Parameters:

CommandID

The unique command identifier of the gallery.

GalleryItems

A structure containing two members:
Categories - A one-dimensional, ordered array
of category labels. Each member of the Items
array belongs to a category, identifying its cat-
egory by the index into this array. The cat-
egories are displayed as headings within the

gallery. If there are no categories, this member
must be Invalid.
Items - A one-dimensional, ordered array of Rib-
bonItem structures. Each entry in the array rep-
resents an item or command in the gallery.
These are displayed in the same order (within
their category) as they appear in this array.
RibbonItem structures are described in the com-
ments section.

Com-
ments:

A RibbonItem structure has the following members:

Member Content

Category The category number of the item or command. Mandatory.
If the item does not belong to a category you must specify
Invalid here. Failure to do this can result in undefined beha-
vior, such as missing items if the gallery is added to the
quick access toolbar.

Label The text label to be displayed for the item or command.
Optional.

Description The text description to be displayed for list of most
recently used (MRU) entries only. This is displayed as the
one-line tooltip for an MRU entry. Optional.

Image The image to be displayed for the item or command. Any
VTS-supported image can be supplied as a bitmap value.
Optional.

CommandID For command galleries only, the unique command iden-
tifier of the command to represent.

CommandType For command galleries only, the type of command. This
controls how the command will be represented in the gal-
lery.

RibbonPersistState

Description: Persists the state or a ribbon to a VTScada variable.

Returns: Variable

Usage: Script Only.

Function Groups: Window

Related to: RibbonCmd | RibbonContextUI | RibbonGalleryItems | Rib-
bonSetProperty

Format: RibbonPersistState()

Parameters: none

Comments: This function is typically called in a module descructor

Examples:

RibbonState = RibbonPersistState();

RibbonSetProperty

Description: Set a property on a command.
A ribbon control will access those properties of a com-
mand that it needs to render itself and respond to user
interaction.

Returns: Nothing

Usage: Script Only.

Function Groups: Window

Related to: RibbonCmd | RibbonContextUI | RibbonGalleryItems | Rib-
bonPersistState

Format: RibbonSetProperty(CommandID, Property, Value);

Parameters:

CommandID

Required. The unique identifier of the com-
mand.
If set to zero, the property and value are applied
to all elements of the ribbon, allowing all to be

disabled or enabled with a single call.

Property

Required. An integer from the table that follows.

Value

Varies according to the property being set.

Property
Value

Property Meaning Value Type

0 Enable/Disable the command. If
the command is disabled, all con-
trol representations of the com-
mand will be rendered grayed and
the user will be unable to activate
the command.

Boolean: 0
(Disable); 1
(Enable)

1 Boolean value of the command.
For example, a command inten-
ded to be represented by a toggle
button or check-box would have
Boolean value.

Boolean

2 Numeric value of the command.
Commands represented by a
combo-box or spinner control
use numeric values.

Integer or
double

3 String value. Commands rep-
resented by controls that display
a string value use this to provide
the value.

Text

4 Minimum value. Commands rep-
resented by a spinner control use
this to regulate the minimum
value the user can select.

Integer or
double

5 Maximum value. Commands rep-
resented by a spinner control use
this to regulate the maximum

Integer or
double

value the user can select.

6 Label. The label displayed by a
control that has a textual rep-
resentation of the command, for
example the text next to a but-
ton.

Text

7 Description. The description dis-
played by a control that has a
long textual description of a com-
mand, for example, a
"MajorItems" button in a
DropDownButton control.

Text

8 Tooltip Title. The emboldened
title displayed in a tooltip.

Text

9 Tooltip Description. The textual
description displayed in a tooltip.
This is not emboldened and is
displayed below the tooltip title
(if any).

Text

10 Key tip. Text that is displayed to
assist the user when a key com-
bination is bound to the key, e.g.
"F9" or "Alt+U".

Text

11 Small Image. The small (?x?)
image displayed by a control.

Image (see
comments)

12 Large Image. The large (?x?)
image displayed by a control.

Image

13 Color. An RGB quad value for a
command that is intended to be
represented by a color picker con-
trol.

Integer

14 Color Type. An enumerated type
for use by a command that is
intended to be represented by a
color picker control. Normally

Integer as
follows:
0 == no
color

used in conjunction with the
Color property.

1 == auto-
matic color
2 == RGB
color value

15 Selected Item. Used for item gal-
leries to force a specific item to
be drawn as selected.

Integer

16 Context Available. Commands
whose representation is a con-
textual tab group have their vis-
ibility controlled by this.

Boolean

17 Font. Commands represented by
a font selection control have the
values for the fields in the font
control set by this property.

A font com-
mand struc-
ture

18 Representative String. Supply a
string for combo-box or spinner
controls to set their width. The
string will be used to measure
how wide the control will be.

Text

19 Increment. For spinner controls,
the increment or decrement
applied when the up or down
arrow buttons are clicked.

Integer or
double

20 Decimal places. For spinner con-
trols, the number of decimal
places displayed.

Integer

Com-
ments:

Note that setting a property on a command affects all con-
trols that use the changed property of the command.
Images displayed on buttons and other controls that accept
images can be defined by the XML markup or via script code.
Images supplied via markup are restricted to Windows .BMP
32-bit ARGB format for supported Windows systems up to
and including Windows 7. From Windows 8, .PNG are also sup-

ported.
Images supplied via script code can be of any image type sup-
ported by VTScada and are internally converted to the appro-
priate type for the ribbon.
Image size can be hard to define. The exact image size expec-
ted by the ribbon framework depends on the resolution the
display device is set to. There are two image sizes used by the
ribbon, denoted as Large and Small, as follows:

Display resolution
(DPI)

Small Image size
(pixels)

Large Image size
(pixels)

96 dpi 16x16 pixels 32x32 pixels

120 dpi 20x20 pixels 40x40 pixels

144 dpi 24x24 pixels 48x48 pixels

192 dpi 32x32 pixels 64x64 pixels

RmDir

Description: Destroys a directory on a disk and returns its own error
code.

Returns: Numeric

Usage: Script Only.

Function Groups: File I/O

Related to: MkDir

Format: RmDir(Name [, DelAll])

Parameters:

Name

Required. Any text expression that is the full path
name of the directory to delete. A known path Known
Path Aliases for File-Related Functions may be
provided in the form, :{KnownPathAlias}.

DelAll

An optional parameter which, when set to 1, causes all
files and subdirectories of the named directory to be
deleted. Default: 0

Comments: The return value is 0 if successful and -1 otherwise.

Note: If DelAll is not set to 1 and if the directory
contains files or subdirectories, then the directory
will not be deleted.

If Name is given as a relative path, then VTScada will
look for that directory starting in whatever directory
holds the module that is making the RmDir call.
Thus RmDir("Sample"), run from within an applic-
ation that is located in the directory
C:\VTScada\MyApp, will remove the directory
C:\VTScada\MyApp\Sample.
Note that this behavior differs from that of the
MkDir function.

Example:

err = RmDir("C:\Sample");

If possible (permissions permitting), directory Sample on the C drive will
be deleted and err will be set to 0. If unsuccessful, err will be -1.

RootTransform

Description: Returns the object value that contains the root transform
applied to the given module.

Returns: Object

Usage: Script or steady state.

Function Groups: Advanced Module, Graphics

Related to: GUITransform | UnTransform

Format: RootTransform(Object)

Parameters:

Object

Required. Any expression which returns an object
value. This is the object value for which the root trans-
form is being sought.

Comments: The return value may be the same as Object if Object con-
tains the transform.

Example:

transMod = RootTransform(Self());

RootValue

Description: Retrieves the root value from a dictionary. This function
will always attempt to return a value that is not itself a dic-
tionary. If the value stored as the root of the given dic-
tionary is also a dictionary, this function will return the
root value from that second dictionary. Should all root val-
ues be other dictionaries (which would imply that the dic-
tionary at the end of the chain must actually be an earlier
dictionary) then RootValue will traverse the chain until it
finds a root value which is an earlier dictionary (i.e. the end
of the chain before it loops back) and will return that root
value. This is the only situation where the command will
return a dictionary as the result.

Returns: Varies

Usage: Script or steady state.

Function Groups: Dictionary, Variable

Related to:

Format: RootValue(dictionary);

Parameters: Dictionary | MetaData | DictionaryCopy |
 DictionaryRemove | GetNextKey | GetKeyCount |
 HasMetaData | IsDictionary | ListKeys

Dictionary

Required. The name of the dictionary to find the root
value of.

Example:

(where the dictionary illustrated is named "X")

RVAL = RootValue(X);

RVAL == 5;

Note: You can always access the root value of a dictionary directly using
the syntax Y = X[""]. This technique will not follow links to other dic-
tionaries and will always return the root value of the requested dic-
tionary, even if that value is another dictionary.

RootWindow

Description: Returns the object value of the root (original) module dis-
played in the same window.

Returns: Object

Usage: Script or steady state.

Function Groups: Basic Module, Window

Related to: ParentWindow | Window

Format: RootWindow(Object)

Parameters:

Object

Required. Any expression that returns an object value.
This is the object value where the search starts for the
root window.

Comments: The return value may be the same as Object if Object is the
root module of its window.
For modules in non-child windows (i.e. one without bit 9
set), RootWindow and ParentWindow will return the same
value. For child windows, RootWindow will return the root
module in the child window, while ParentWindow will
return the root module in the child window's closest non-
child calling window.

Example:

rootWin = RootWindow(Self());

Rotate

Description: Returns a Rotate value, which specifies a rotation about a
point.

Returns: Rotate

Usage: Steady State only.

Function Groups: Graphics

Related to: Normalize | Point | Trajectory | Vertex

Format: Rotate(Amount, MinDegrees, MaxDegrees, Center)

Parameters:

Amount

Required. Any expression that returns a Normalize
value, specifying how much to rotate.

MinDegrees

Required. Any numeric expression giving the min-
imum amount of rotation, in degrees. This is not a
limit on the amount of rotation.

MaxDegrees

Required. Any numeric expression giving the max-
imum amount of rotation, in degrees. This is not a
limit on the amount of rotation.

Center

Required. Any expression that returns a Point. This is
the center point for the rotation.

Comments: The return value is a Rotate value which specifies how to
rotate about a point. It may be used in any function that
accepts a Rotate value, and specifies how to rotate that
object.

Example:

armRot = Rotate(Normalize(armEncoderPosition, 0, 100)
{ Amount of rotation },
45 { Minimum rotation, in degrees },
135 { Maximum rotation, in degrees },
Point(50, 75, Invalid, Invalid)
{ Center point for rotation });

This specifies a rotation about the point (50, 75). If armEncoderPosition
is 0, any object that uses this Rotate will rotate 45 degrees counter-clock-
wise about the point (50, 75). If armEncoderPosition is 100, any object
that uses this Rotate will rotate 135 degrees counter-clockwise about the
point (50, 75). If armEncoderPosition is any other value, the rotation will
be by a proportional amount, not limited to the range 45 to 135 degrees.

RTimeOut

Description: Cumulative Timer. This function returns true when the
total time that an expression is true reaches the specified
value.

Returns: Boolean

Usage: Steady State only. See: Rules for Usage.

Function Groups: Time and Date

Related to: AbsTime | Latch | TimeOut | Toggle | Save

Format: RTimeOut(Enable, Time)

Parameters:

Enable

Required. Any numeric expression giving the con-
dition that results in the timer counting. When this
parameter is true (not 0), the timer is "running."
When this parameter is false (0), the timer stops but
the total time accumulated so far is maintained as the
point which counting will start when the parameter
becomes true again.

Time

Required. Any numeric expression giving the time-out
limit in seconds. When the cumulative time that Enable
is true reaches this value, the function becomes true
(1).

Comments: This function is reset when either parameter becomes
invalid or when the state containing the function is started.
When the function is reset, counting starts at 0 and the
returned value is false (0). Note that this function is reset
automatically when it occurs in a true action trigger or
function parameter of a function which resets its para-
meters after evaluation (e.g. Latch, Toggle or Save).

Example:

ZText(10, 10 { X-Y coordinates },
Cond(RTimeOut(motorRunning, 28800),

"Check motor - 8 hrs running time accumulated",
""),

0, 0 { Black text in default font });

This statement displays a message when the variable motorRunning has
been true (any non-zero value) for 28800 seconds (8 hours).

Related Information:

See: "Latching and Resetting Functions" in the VTScada Programmer's
Guide

RUNFileName

Description: Returns the name of the .RUN file for a module including
the full drive and path.

Returns: Text

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, File I/O,
Advanced Module

Related to: ChildDocs | Dir | FileFind | ModuleFileName

Format: RUNFileName(Module)

Parameters:

Module

Required. Any expression for the module or object
value.

Example:

{ Find all modules including root; recurse in }
allMods = ChildDocs(Self(), 1 + 2 + 8);
numMods = ArraySize(allMods, 0);
{ Find the .RUN file names for all modules }
RUNList = New(numMods);
i = 0;
WhileLoop(i < numMods,

RUNList[i] = ToUpper(RUNFileName(allMods[i]));
i++;

);

This group of statements will result in the file names for all .RUN files for
the current application being stored in the array called RUNList.

RUNFileVersion

Description: Returns the minimum version of VTScada that can read the
.RUN files produced by the current version.

Returns: Text

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, File I/O,
Advanced Module

Related to: Version

Format: RUNFileVersion()

Parameters: None

Example:

ZText(10, 10, Concat("Minimum version to read .RUN files is ",
RUNFileVersion()), 0, 0);

This statement will display the .RUN file version in the upper right corner
of the window along with a comment about what the number represents.

RunPack

(RPC Manager Library)

Description: Unpacks and executes a set of RPCs from a stream con-
structed with PackRPC.

Returns: Text

Usage: Script Only. (Subroutine call only)

Function Groups: Advanced Module, Network, Stream and Socket

Related to: PackRPC

Format: \RPCManager\RunPack(Stream [, Service]);

Parameters:

Stream

Required. A packed RPC stream obtained from one or
more PackRPC method calls.

Service

The name of the service to be used to determine root

scope for the RPCs within Stream. Invalid for non-ser-
vice RPCs. If valid, the RPC subroutines specified in the
package will be searched for starting in the scope of
the service instance of the machine on which the Run-
Pack() RPC is executing.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.

S Functions
The sections that follow identify all VTScada functions beginning with "S".

Save

Note: Deprecated. Do not use in new code.

Description: This threaded function stores data in a circular historical
data file at times indicated by a condition and returns the
record number last written to disk.

Returns: Numeric

Usage: Steady State only.

Function Groups: File I/O

Threaded: Yes

Related to: Save | HistorianDeleteRecords | HistorianGetData |
 HistorianGetInfo | HistorianReadRecords |
 HistorianWriteRecords | Get | GetHistory | GetLogInfo |
 SaveHistory | TGet

Format: Save(NStatus, NByte, NShort, NLong, NFloat, NText, TSize,
Records, Buffers, File, Trigger, V1, V2, ...)

Parameters:

NStatus

Required. Any numeric expression giving the number
of status type values to store in the file. Any functions
used in this parameter must be able to be executed in
a script, since triggering of the Save re-evaluates it as
if it were in a script.
Status types must be equal to a 0 or a 1. This value
must be greater than or equal to 0.

NByte

Required. Any numeric expression giving the number
of values that are only one byte long. Any functions
used in this parameter must be able to be executed in
a script, since triggering of the Save re-evaluates it as
if it were in a script.
Byte types must be in the range 0 to 255 inclusive. This
is a subset of the short type but require 50% less file
space than short values and 75% less space than either
long or float values. This value must be greater than or
equal to 0.

NShort

Required. Any numeric expression giving the number
of short type values to store in the file. Any functions
used in this parameter must be able to be executed in
a script, since triggering of the Save re-evaluates it as
if it were in a script.
This value must be greater than or equal to 0.

NLong

Required. Any numeric expression giving the number
of long type values to store in the file. Any functions
used in this parameter must be able to be executed in
a script, since triggering of the Save re-evaluates it as
if it were in a script.

This value must be greater than or equal to 0.

NFloat

Required. Any numeric expression giving the number
of float type values to store in the file. Any functions
used in this parameter must be able to be executed in
a script, since triggering of the Save re-evaluates it as
if it were in a script.
This value must be greater than or equal to 0.

NText

Required. Any numeric expression giving the number
of text type values to store in the file. Any functions
used in this parameter must be able to be executed in
a script, since triggering of the Save re-evaluates it as
if it were in a script.
This value must be greater than or equal to 0.

TSize

Required. A short constant giving the number of char-
acters to reserve for text values. Text values that are
longer than this number will lose the characters that
fall beyond this limit. All text values stored will have
the same size.

Records

Required. Any numeric expression giving the number
of entries in the file. If the file is to be created full size
(to prevent fragmenting of the file as it grows larger),
the size should be multiplied by -1.
Since the file is circular in nature, once this number of
records have been written, new records will overwrite
old ones, beginning with the oldest record in the file.

Buffers

Required. Any numeric expression for the number of
records to keep in memory (RAM) before writing to

disk. A value of 0 will result in the data being directly
written to disk each time Trigger is true. Setting the
buffer to large numbers speeds the average data log-
ging rate substantially but requires RAM equal to the
number of records specified by Buffers.
When the RAM buffer is full the entire buffer is written
to disk. If the buffer size is changed or if the Save is
stopped (such as when VTScada stops), any data in the
buffer is immediately written to disk.
Also, if a Get is executed, any data in the buffer will be
immediately written to disk, so that the user in ensured
of getting all current data.
Normally when Save stops, a record with all invalid
fields, and the current time and date stamp, is written
to the file. This indicates that data are no longer
logged, and fields are unknown until Save resumes. If
Buffers is negative, this invalid record is not written,
and the number of buffered records is -Buffers - 1.
This is to remain compatible with prior versions of
VTScada.
Be aware that any data held in a RAM buffer will be lost
if VTScada is not correctly stopped (for example, a
power failure).

File

Required. Any text expression giving the file name for
the historical data. Any path name, including any spe-
cial, remote, and networked drive is allowed. The
default extension is ".DAT" and the default path is the
current application path (where VTScada was started).
If the file name is prefixed with a period, the path will
be to the directory the module is contained in.

Trigger

Required. Any resettable function whose transition
from false to true indicates the data items V1, V2, ...

are to be written to the file. The Save statement resets
the Trigger parameter if the Trigger is true (not 0).

V1, V2, ...

Required. A series of expressions which give the values
to be stored in the file. The parameters must be in the
order: status, byte, short, long, float, and text. The
number of each type is given by the NStatus, NByte,
NShort, NLong, NFloat and NText parameters.
There must be exactly the number of Vn parameters
specified by each of these parameters.

Com-
ment-
s:

This function returns the record number last written to disk. Since this
function is threaded and runs as a background job, this value can be
used to determine when data have actually been written by examining
the change in the return value.
This function creates the historical data file when it is entered during
configuration. If the file already exists and is of a different format than
specified by the statement, the program automatically converts the file
to the new format. This conversion will result in data loss if the number
of values of any type is reduced. For example, if NStatus is reduced
from 16 to 12, the last four status parameters stored in the file before
the change will be lost. If a value type number is increased or remains
the same, no data will be lost.
When a Save function is triggered, the next buffer is filled. When the
number of filled buffers equals the value implied by the parameter
Buffers the file is opened, written, and then closed. This allows a file to
be logged to a network server, and read by other VTScada applications
on the network. The VTScada NetBIOS I/O driver is not required for this
type of network communication. All that is required is a network redir-
ector.
If a file is referenced by two or more active Save functions, there will be
unpredictable results, with a possibly corrupted file and reduced per-
formance. Do not reference the same file from more than one Save
function at the same time. This is not the case with a SaveHistory, Get
or TGet statement. Any calls to SaveHistory will result in data being writ-

Byt-
es

Size Description

0-
1

Int Number of status values

2-
3

Int Number of bytes values

4-
5

Int Number of short values

6-
7

Int Number of long values

8-
9

Int Number of float values

1-
0-
11

Int Number of text values

1-
2-
13

Int Text size

1-
4-
17

Lon-
g

Maximum number of records in file

1-
8-
21

Lon-
g

Index of next record to write

22 Byte Bits Meaning

0 File has not wrapped around

1 File has wrapped around

2 File has not wrapped but was created full size

3-5 File format version

6 Checked flag. This bit is set when the file has
been checked for inconsistent timestamps. If
this file is opened by the Save, SaveHistory, or
the ValidateHistory function, the invalid
record is updated, and the bit is set.

7 Clean flag. This bit is cleared whenever data is
written to the file by the Save, SaveHistory, or
ValidateHistory function. When the Save func-
tion is stopped, the invalid record is updated,
and the bit is set. If the file is opened by the
Save, SaveHistory, or ValidateHistory function,
the bit is checked, and if not set, the invalid
record at the end of the file is corrected

2-
3-
24

Int Length of a record (in bytes)

25 Reserved

2-
6-
29

Lon-
g

Actual size of header

3-
0-
37

Dou-
ble

A timestamp for determining the latest time for
which valid data was written.

The values of the Vn parameters need not be valid for the Save state-
ment to operate. Any invalid values are recorded as such in the file. The
data are stored in the file in the order given by the Vn parameters. This
order is important for retrieving the data using the Get statement.
Note that the Trigger parameter is reset when it becomes true. This
means that data can be saved at regular time intervals by using
TimeOut or AbsTime as the trigger. Once TimeOut becomes true, the
timer will be restarted by the Save statement. Change can also be used
in Trigger to cause data to be stored when data values change by a
given amount. The starting point for the Change function will be reset
once the Trigger becomes true and the data are stored.
The size of the file can be calculated as follows:

Record *
Ceil(Ceil((NStatus + NByte + NShort + NLong + NFloat + NTex-
t)/8) +
Ceil(NStatus / 8) + NByte + 2 * NShort + 4 * NLong + 4 *
Nfloat +
(TSize + 2) * NText + 8)
+ 25

For example, if the Save statement was as follows :

Save(3, 1, 4, 0, 6, 1, 24, 10000, ...

The file size in bytes would be :

10000 * (Ceil((3 + 1 + 4 + 0 + 6 + 1) / 8) + Ceil(3 / 8) + 1
+
2 * 4 + 4 * 0 + 4 * 6 + (24 + 2) * 1 + 8)
+ 25
= 10000 * (Ceil(15/8) + Ceil(0.375) + 1 + 8 + 0 + 24 + 26 +
8)+ 25
= 10000 * (2 + 1 + 67) + 25
= 700,025 bytes

The size of the files generated by Save must be considered so
the available disk space is not exceeded. Note that the files
grow as data is recorded up to a maximum of the calculated
size. To prevent fragmenting of the file as it grows over time, it
may desirable to create the file full size, by making the Records
parameter negative.
It is good practice to create several log files of varying fre-
quency. For example, you may want to log data to a file every

Byt-
es

Size Description

0-
1

Int Number of status values

2-
3

Int Number of bytes values

4-
5

Int Number of short values

6-
7

Int Number of long values

8-
9

Int Number of float values

1-
0-
11

Int Number of text values

1-
2-
13

Int Text size

1-
4-
17

Lon-
g

Maximum number of records in file

1-
8-
21

Lon-
g

Index of next record to write

22 Byte Bits Meaning

0 File has not wrapped around

1 File has wrapped around

2 File has not wrapped but was created full size

3-5 File format version

6 Checked flag. This bit is set when the file has
been checked for inconsistent timestamps. If
this file is opened by the Save, SaveHistory, or
the ValidateHistory function, the invalid
record is updated, and the bit is set.

7 Clean flag. This bit is cleared whenever data is
written to the file by the Save, SaveHistory, or
ValidateHistory function. When the Save func-
tion is stopped, the invalid record is updated,
and the bit is set. If the file is opened by the
Save, SaveHistory, or ValidateHistory function,
the bit is checked, and if not set, the invalid
record at the end of the file is corrected

2-
3-
24

Int Length of a record (in bytes)

25 Reserved

2-
6-
29

Lon-
g

Actual size of header

3-
0-
37

Dou-
ble

A timestamp for determining the latest time for
which valid data was written.

Another way to decrease logging frequency is using a Trigger
based on Change, if the values logged to the file change sig-
nificantly only rarely.
File Format:The standard file format for Save files is a 38 byte
header, followed by identical format records (as specified by
the parameters). The header contains the following inform-
ation:

Byt-
es

Size Description

0-
1

Int Number of status values

2-
3

Int Number of bytes values

4-
5

Int Number of short values

6-
7

Int Number of long values

8-
9

Int Number of float values

1-
0-
11

Int Number of text values

1-
2-
13

Int Text size

1-
4-
17

Lon-
g

Maximum number of records in file

1-
8-

Lon-
g

Index of next record to write

21

22 Byte Bits Meaning

0 File has not wrapped around

1 File has wrapped around

2 File has not wrapped but was created full size

3-5 File format version

6 Checked flag. This bit is set when the file has
been checked for inconsistent timestamps. If
this file is opened by the Save, SaveHistory, or
the ValidateHistory function, the invalid
record is updated, and the bit is set.

7 Clean flag. This bit is cleared whenever data is
written to the file by the Save, SaveHistory, or
ValidateHistory function. When the Save func-
tion is stopped, the invalid record is updated,
and the bit is set. If the file is opened by the
Save, SaveHistory, or ValidateHistory function,
the bit is checked, and if not set, the invalid
record at the end of the file is corrected

2-
3-
24

Int Length of a record (in bytes)

25 Reserved

2-
6-
29

Lon-
g

Actual size of header

3-
0-
37

Dou-
ble

A timestamp for determining the latest time for
which valid data was written.

The first 8 items in the header are the values in the parameters
of the Save statement that created the file. See the Save state-
ment parameters for a more detailed description.
Bytes 18-21 are a long number that indicates where the next
record will be written in this file. Record numbers begin at 0.
To find the file offset (in bytes) where the next record will be
written, multiply this number by the length of a record (in
bytes), and add 25. Thus record 0 will be found at offset 25.
Byte 22 is a flag. If 0, the circular file has not been filled (the
size of the file continues to grow). If 1, data have been over-
written and the last record index has "wrapped-around" to pos-
ition 0 at least once.
Bytes 23 to 24 are an integer that specifies the length of a
record in bytes.
Note that the size of the file header may be increased by using
the SetLogHeader function, which will cause additional bytes to
be added to the end of the header. Information may then be
written to the header using an FWrite (or similar) function with
a starting offset of 25. If the header size is to be expanded and
written to, however, it is crucial that the Save statement not be
active at the time, and also that the data written to the expan-
ded header not exceed the size by which the header was
increased. If either of these conditions is not met, the file will
become corrupt and data may be lost.
25 Reserved
26-29 Long actual size of header in this file
30-37 Double a special timestamp value which, in the event
that the file is not closed tidily, allows the latest time for valid
data to be determined.
In addition, bits 3-5 of byte 22 have the value 1 to indicate the
file format version.
Note that the size of the file header may be increased by using

the SetLogHeader function, which will cause additional bytes to
be added to the end of the header. Information may then be
written to the header using an FWrite (or similar) function with
a starting offset of 38. If the header size is to be expanded and
written to, however, it is crucial that the Save statement not be
active at the time, and also that the data written to the expan-
ded header not exceed the size by which the header was
increased. If either of these conditions is not met, the file will
become corrupt and data may be lost.
Record Format:Each record consists of the following parts:
1. The first 8 bytes of each record are a double precision num-
ber in IEEE format, which indicates the time and date when the
record was written, as the number of seconds since midnight
on 1 January, 1970.
2. Next, 1 byte is allocated for each 8 data items in the record
(or fraction thereof). The bits in each byte indicate whether
each item is valid (1) or invalid (0).
3. Data items for the record are written sequentially. Each data
type is written in a particular Format:1 byte is allocated for
each 8 status items or fraction thereof. Each bit contains 1
status value.
Byte items are written as unsigned integers (1 byte each)
Short items are written as signed integers, low byte first (2
bytes each).
Long items are written as signed integers, low byte first (4
bytes each).
Float items are written in single precision IEEE floating point
format (4 bytes each).
Text items consist of 2 + TextSize bytes each. The first 2 bytes
indicate the number of meaningful data bytes to follow. All
bytes beyond that number contain random data. The data bytes
are not null-terminated. If, however, TextSize has the value 0,
then this indicates that variable length text storage is required.

In this case each text entry in the file has a fixed size of 10
bytes and the actual text is stored in a separate file which has
the same root filename as the .DAT file, but has a .STR exten-
sion.
It should be noted that the Save statement accepts calculated
values for its first six parameters. This allows a more efficient
generic data logger to be written. The parameters to be logged
are treated as if they were in a script so that the changes to
these values do not retrigger the Save (thereby saving time and
RAM, since this retriggering is always redundant). The Save
statement treats assignments in the first six parameters (which
is very rare), so that they will only be executed when the Save
trigger becomes true. Only expressions that are allowed in
scripts are permissible for the first six parameters.

Example:

Save(1 { Number of status values },
0, 0, 0 { Number of byte, short, long values },
numFloat { Number of floating point values },
1 { Number of text values },
32 { Size of text value },
1152 { Number of records (4 days worth) },
50 { Buffer 50 records before writing },
"G:\DATA\REACTOR" { Path and file name (default .DAT) },
AbsTime(1, 300, 0) { Save every 5 minutes },
valveOpen { Status value },
mixerTemp { First float value },
inletTemp { Second float value },
outletTemp { Third float value },
coreTemp { Fourth float value },
chemName { Text value });

This stores 1 status, NumFloat float and 1 text value to a file on G: (a
shared network drive) in directory DATA called REACTOR.DAT. Only the
first 32 characters of the text value chemName are logged. Values are
logged every 5 minutes, and written to disk every 250 minutes (50
records). The number of records has been chosen based on the fact that
we want to have exactly 4 days worth of data. This means that we need 4

* 24 * 60 / 5 = 1152 records in the file. Since it may also be important to
know how large this file is, we can calculate the size as follows:

1152 records *
[Ceil((1 status value + 4 float values + 1 text value) / 8) +
Ceil(1 status value / 8) + 4 * 4 float values +
(32 chars + 2) * 1 text value + 8

]
+ 25
= 1152 * (Ceil(6/8) + Ceil(1/8) + 16 + 34 + 8) + 25
= 1152 * (1 + 1 + 16 + 34 + 8) + 25
= 1152 * (60) + 25
= 69 145 bytes

Related Information:
See: "Latching and Resetting Functions" in the VTScada Programmer's
Guide

SaveHistory

Note: Deprecated. Do not use in new code.

Description: This threaded function saves an array of data to a .DAT file
for a certain time span.

Returns: Nothing

Usage: Script Only.

Function Groups: Array, File I/O, Log

Threaded: Yes

Related to: SaveHistory | HistorianDeleteRecords | HistorianGetData
| HistorianGetInfo | HistorianReadRecords |
 HistorianWriteRecords | Get | GetHistory | GetLogInfo |
 Save | TGet

Format: SaveHistory(Array2DElem, Num, File, [Mode], [PathPrefix],
[EndTIme])

Parameters:

Array2DElem

Required. Any array element giving the starting point
into the two dimensional array containing the data to

write to the file. The subscripts for the array may be
any numeric expression, but both must be specified.
The format of the array is the same as that returned by
GetHistory: [column][record].
Column 0 is the timestamp in seconds since January 1,
1970, while each subsequent column is the data for
that record in the same order used by the Save func-
tion that created the .DAT file.
Extra columns are ignored, but if there are fewer
columns than required to specify all fields in the .DAT
file then the function fails and does nothing.

Num

Required. Any numeric expression giving the number
of records to write to the file.

File

Required. Any text expression giving the file name for
the historical data file. If this file does not exist the
SaveHistory function will create it with default format
(see Comments). The file extension is optional and will
default to ".DAT" if omitted.

Mode

Historical data files use an invalid record to mark dis-
continuities in the recorded data. Under certain cir-
cumstances, it may be desirable to manipulate these
records. This optional parameter provides the mech-
anism to do so. The mode parameter has the following
options: (Defaults to 0)

Value Meaning

0 Add data after the previous record
according to time stamp, and don’t
write an invalid record (default);

1 No longer used

2 Add data according to time stamp. If
previous record is invalid, overwrite it,
write data, and then write an invalid
record after it.

3 Perform a tidy closedown of a file which
has been written with Mode = 2.

4 Specifies that SaveHistory should per-
form a special merge of the supplied
data into the referenced data file.

The aim of the special merge is remove invalid
records unless the existing and the incoming
data both agree that they should exist in the
file. The aim of this mode is to assist the res-
olution of data at primary and backup log serv-
ers.

PathPrefix

An optional text expression parameter that enables
and controls the retrieval of data from across a set of
files.

EndTime

Specifies the end time range for a special merge (Mode
= 4). EndTime is optional but may only be specified
when Mode = 4.

If omitted or if a value of zero is used, then EndTime
defaults to the last time stamp in the records sup-
plied in Array2DElem.

Comments: Each record of data in the array will be inserted into its cor-
rect position based on its timestamp. For this reason the
transfer to the file will be more efficient if the timestamps
are in increasing chronological order, however, any order
is allowed. Any records that have an invalid timestamp will
be skipped. Since this function is threaded and runs as a
background job, there is no way to tell when the data has
all been written to the file other than by checking its con-
tents, however, multiple Save or SaveHistory commands
will get written to the file in correct locations based on
their timestamps. If a Get or TGet statement is executed,
the SaveHistory statement will write all of its data to the file
prior to the data retrieval. This also occurs if the applic-
ation is stopped.
If the target file does not exist, SaveHistory will create it.
To do this, SaveHistory needs to determine the column
structure of the file. Whereas Save has parameters allowing
the format to be explicitly defined, there are no equivalent
parameters to SaveHistory. Instead, SaveHistory will ana-
lyze the first record that is to be written and determine the
parameter type required for each column. In order to
ensure that the correct format is determined, it is advisable
to make the first record a template record. A template
record would have an invalid timestamp followed by
column values that unambiguously identify the range of
values for each column (see the Save function for a descrip-
tion of the data types). In the case of text values, the tem-
plate string should be the same length as the maximum

required length.

If Mode has the value 2, then the understanding is that a
series of SaveHistory functions are to be performed on the
file and that each will be written at the end of the file (if the
write is not at end of file, then Mode = 0 is forced). The
invalid record that is written at the end of the file identifies
that the file is still (conceptually) open. Should the system
suffer any form of abrupt shutdown, then this status will be
preserved in the file and will be of use in learning the valid-
ity of file data. The final SaveHistory to such a file should
be written with Mode = 3. This will change the invalid
record to one which signifies that the file is no longer
open.

If Mode has the value 4, then SaveHistory compares the
data supplied in Array2dElem with the data already exist-
ing in the file, for the time range specified by the earliest
record in the data and the value of EndTime.
The comparison reviews the validity of each record (a
record is deemed invalid if all columns are invalid) and
splits both sets of data into periods of validity and invalid-
ity. The resulting file will contain all valid records from
both data sets and those invalid records where both data
sets saw an invalid.

SaveImage

Description: Takes an image handle and saves it to an image file on
disk.

Returns: Handle to image

Usage: Script Only.

Function Groups: Graphics

Related to: CaptureImage | MakeBitmap | ModifyBitmap

Format: SaveImate(BitmapHandle, Filename, [MIMEType, Width,
Height])

Parameters:

BitmapHandle

Required. The handle to the image to be saved.

Filename

Required. Any text expression for the name to be
given to the new file.

MIMEType

Optional text for the format to be used. Defaults to
"image/png" if not specified.
Options include "image/bmp", "image/jpeg", "image/-
gif", "image/tiff", and "image/png".

Width

Optional. Any numeric expression for the width of the
image in pixels. Defaults to the native size of the
image.

Height

Optional. Any numeric expression for the height of the
image in pixels. Defaults to the native size of the
image.

Comments:

Examples:
SaveImage can be used in conjunction with ModifyBitmap. For example
the following code snippet can be used on a VTScada application page (in
script):

SaveImage(ModifyBitmap(CaptureImage(Caller(Self())),
FALSE { Mirror },

 0 { Hue },
 Invalid { Saturation },
 Invalid { Lightness },
 Invalid { Transparency },
 Invalid { Contrast },
 Invalid { ColorizeHue },

 Invalid { ColorizeIntensity},
 TRUE { AntiAlias }),
 "c:\temp\page.png", "image/png", 1000, 500);

To capture an image of the page, modify it to enable anti-aliasing so
that high-quality interpolation will be used for the downsizing, and save
it as a 1000x500 PNG.

SaveModule

Description: Saves a module definition to its *.RUN file.

Warning: This statement should be used by advanced users only
since irrevocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Advanced Mod-
ule

Related to:

Format: SaveModule(Module)

Parameters:

Module

Required. Any expression for the module or object
value.

Comments: This statement saves a module definition to its *.RUN file.

Scale

Description: Returns a value that has been converted from one scale to
another.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Generic Math

Related to: Normalize | Cond | Limit

Format: Scale(Value, In1, In2, Out1, Out2)

Parameters:

Value

Required. Any numeric expression giving the value to
be scaled.

In1

Required. Any numeric expression giving the min-
imum of Value's unscaled range. This parameter cor-
responds to Out1. This is usually the "zero" for the
unscaled Value.

In2

Required. Any numeric expression giving the max-
imum of Value's unscaled range. This parameter cor-
responds to Out2. In2 must not equal In1.

Out1

Required. Any numeric expression giving the min-
imum of Value's scaled output range. This parameter
corresponds to In1. This is usually the "zero" for the
scaled Value.

Out2

Required. Any numeric expression giving the max-
imum of Value's scaled output range. This parameter
corresponds to In2.

Comments: This function may be used in combination with Cond to
perform piecewise linearization of a value or expression.
Limit may be used to keep the result within bounds.
The compiler will reduce this function to a constant if all of
its parameters evaluate to constants.

Examples:

Suppose the top edge of a bar on the screen is to go from 10 to 527 for
a corresponding process value change of -50 to +100. The scale func-
tion parameters would be :

Scale(Value, -50, 100, 10, 527);

It should be noted that the Value parameter need not remain within the
range of In1 to In2 for the result to be valid. For example, to convert
from Fahrenheit to Celsius temperature scales :

Celsius = Scale(Fahrenheit, 32, 212, 0, 100);

This means that 32 F = 0 C and 212 F = 100 C. If the temperature were
outside the range of 32 to 212, the resulting Celsius temperature would
still be correct.

Scope

Description: Performs a scope resolution and returns a reference to the
requested member within a module or other object.

Returns: Reference

Usage: Script or steady state.

Function Groups: Basic Module

Related to: Variable | ScopeLocal

Format: Scope(Object, Member[, ScopeLocal])

Parameters:

Object

Required. Any expression for the object value (mod-
ule) where Member may be found.

Member

Required. Any text expression for the member name.
This must be a simple variable or module. Array ref-
erences or further scope resolution are not allowed
inside the text expression.

ScopeLocal

Optional. A Boolean expression. Defaults to FALSE if
missing, invalid or if a non-Boolean is provided.
If set TRUE then the call will not search up the scope
tree for name matches.

Comments: This function is the same as the '\' operator, when the '\'
operator is used between two operands. (Object\Member).
Unlike the backslash operator, the Scope function allows
any text string to be used. For members whose names
have been obfuscated, Scope() offers the only means of ref-
erencing them.
This function may be used as a value, or as an L-value (on
the left hand side of an assignment). This function is used
to reference one specific occurrence of a variable in a mod-
ule, from another module.
If the final result is Invalid, this function looks for the pres-
ence of backslash (\) characters in the second parameter
and parses the result.
When searching for a match, this function ignores vari-
ables with the PROTECTED attribute. That is, if such a vari-
able is encountered the search will simply skip over it and
continue. Detecting variables with the PROTECTED attrib-
ute requires use of the 'Variable' function

Example:

Scope(\Code, "TagName");

Returns a reference to the given tag object, found within the current mod-
ule.

Using ScopeLocal. Start with the following (noting that the initial
example could be written more efficiently as "\Code\MyService\Ready").

Scope(\Code, "MyService\Ready")

The Scope operation may not find a variable called "MyService\Ready" in
Code, but could find a variable called MyService containing a service

object, which itself contains a variable called Ready. This Scope() would
return the value of that Ready variable.
If the MyService object does not contain a variable called Ready, but
\Code does contain a Ready variable, then Scope will return the value of
Code's Ready variable, which may not be what is desired. However, if the
ScopeLocal parameter is added and set to TRUE, then it will return Invalid
since it will not scope up from MyService to the Ready variable in Code."

ScopeLocal

Note: Deprecated. Do not use in new code.

Description: Exists only for backward compatibility. Use Scope(Module,
VarName, TRUE) for all new code.
Performs a scope resolution only if it occurs in the reques-
ted context. Returns a reference to the requested member
within a module or other object.

Returns: Reference

Usage: Steady State only.

Function Groups: Basic Module

Related to: Scope

Format: ScopeLocal(Object, Member)

Parameters:

Object

Required. Any expression for the object value (mod-
ule) where Member may be found.

Member

Required. Any text expression for the member name.
This must be a simple variable or module. Array ref-
erences or further scope resolution are not allowed
inside the text expression.

Comments: This function differs from the Scope function only in that it

is restricted to the requested module context. It will not
search through the scope tree if the Member name is not
found in the designated object.
If the final result is Invalid, this function looks for the pres-
ence of backslash (\) characters in the second parameter
and parses the result.

Example:

ScopeLocal(\Code, "TagName");

Returns a reference to the given tag object, found within the current mod-
ule.

SDev

Description: Returns the statistical sample standard deviation for a sub-
section of an array.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Array, Generic Math

Related to: AMax | AMin | AValid | FiltHigh | FiltLow | FitOffset |
 FitSlope | Mean | Sum | Variance

Format: SDev(ArrayElem, N)

Parameters:

ArrayElem

Required. Any array element giving the starting point
in the array. The subscript for the array may be any
numeric expression. If processing a multidimensional
array, the usual rules apply to decide which dimension
should be used.

N

Required. Any numeric expression giving the number
of array elements to use starting at the element given

by the first parameter. If N extends past the upper
bound of the lowest array dimension, this computation
will "wrap-around" and resume at element 0, until N
elements have been processed.

Comments: The function returns an invalid result if either of its para-
meters is invalid or if there are less than two valid numer-
ical array elements in the specified range. Invalid elements
are not included in the calculation.

Example:

productStdDev = SDev(weight[0], 5);

This computes the standard deviation of elements 0 to 4 of the array
weight.

Seconds

Description: Returns the number of seconds since midnight of the cur-
rent day.

Returns: Numeric

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Time and Date

Related to: AbsTime | CurrentTime | Now | Today

Format: Seconds()

Parameters: None

Comments: Care must be taken when using this function together with
the Today function to determine the current date and time.
If the time is within a fraction of a second of midnight, the
value of the date may be calculated in one day and the
time in the other day giving an apparent error of almost 24
hours. In situations where this is a problem, the AbsTime
function may be helpful; however, the best practice is to

use the function CurrentTime.

Examples:

If 1 Main;
[
timeStamp = Seconds();

]

This assigns the current time in seconds since midnight to the floating
point (or long) variable timeStamp. Another example of how this function
could be used is:

If 1 Main;
[
start = Seconds();
FRead(1, "G:\TOTALS\BARTOTAL.DAT", 120, "%40c", bar4Total);
duration = Seconds() - start { Compute time for network
server disk read };

]

This example shows how to measure the execution time of various func-
tions in a script. This provides information on how to improve the per-
formance of the application. In this case, if the time is too long, it may
be useful to install a disk drive cache such as SMARTDRV.

SectionControl

(System Library)

Description Creates a control that displays a variable number of sec-
tions. Visually, a section consists of a header and content.
The control manages the layout and geometry for the sec-
tions and runs a caller-supplied module to display the sec-
tion content (see Comments).

Returns Object

Usage Steady State only.

Function Groups Advanced Module, Graphics

Related to: DialogInitPos | Droplist | GridList | HScrollbar | Listbox
| RadioButtons | SplitList | ToolBar | VScrollbar

Format: \System\SectionControl(HeadingFont, HeadingTextColor,

HeadingBackColor)

Parameters

HeadingFont

Required. The font to use for the heading.

HeadingTextColor

Required. The color to be used for the heading text.

HeadingBackColor

Required. The color to be used as the background for
the heading text.

Comments: As indicated above, a section consists of a header and con-
tent. The control manages the layout and geometry for the
sections and runs a caller-supplied module to display the
section content.
Call a SectionControl in steady-state, wait until the public
variable Ready goes TRUE (non-zero), and then call
AddSection and DeleteSection (see the Related Sub-func-
tions section above) to add sections to and delete sections
from the control.
SectionControl assumes that it is being run in a child win-
dow and expands to consume the entire window. It auto-
matically adds a vertical scroll bar when required.

Sub-functions and
Variables:

Public Variables:
ExpandEnable

Enable/Disable the expand tool button. Default: 1

WindowEnable

Enable/Disable the new window tool button. Default: 1

PopupTitle

The pop-up window title string. Defaults to the value
of Heading.

Height

Height is a public (read-only) variable that gives
the overall height of the SectionControl in
pixels.

Ready

Ready is a public (read-only) variable that must go to a
non-zero value prior to AddSection or DeleteSection
being called (see Comments section)

Sub-Functions:

AddSection

Comments: AddSection returns the object value of a Sec-
tionControl\DisplaySection instance. This object
value is used as a parameter to DeleteSection as
well as providing some read-only values that the
caller may access. These are:
Ready When 1, the caller can safely access the pub-
lic variables listed. Default 0.
ExpandEnable Draws and enables the expand tool
button. Default 1.
WindowEnable Draws and enables the new window
tool button. Default 1.
AddButtons Subroutine module.
Takes a single parameter, being a ToolBar format
data array containing additional tool buttons to
insert at the LHS of the embedded ToolBar.

Related to:

Format: AddSection(Heading;[, ContentModule, InitiallyExpanded,
Param1, Param2, ExpandEnable, WindowEnable, Pop-
upTitle, AvailableHeightPtr])

Parameters:

Heading

Can be a text value or a module value. If a text value, it
is rendered in the header. If it is a module value, it is a
caller-supplied module to draw the header with the fol-
lowing parameters:

Parameter Description

X (in) X coordinate of LHS of drawing
area

Y (in) Y coordinate of the top of the
drawing area.

Width (in) The number of X-pixels available
in which to draw.

Height (in) The number of Y-pixels available
in which to draw.

TextColor
(in)

The default heading text color.

BackColor
(in)

The background color for the
heading text.

TextFont (in) The default heading text font.

Param1 (in) Param1 passed to AddSection.

Param2 (in) Param2 passed to AddSection.

ContentModule

A module value of the caller-supplied module to
render the content. It is called with the following para-
meters:

ContentModule Description

X (in) X coordinate of LHS of draw-
ing area

Y (in) Y coordinate of the top of
the drawing area.

Width (in) The number of X-pixels avail-
able in which to draw.

ContentHeight
(out)

The number of Y-pixels this
method needs.

VisibleContent
(in)

Boolean: TRUE if content is
visible.

Param1 (in) Param1 passed to AddSec-
tion.

Param2 (in) Param2 passed to AddSec-
tion.

Available Height
(in)

Numeric value used if the Dis-
playSection module knows
how much height can be
made available

The content drawing module must maintain the
value of ContentHeight in steady-state. It is
used by the control to manage the geometry of
other sections in the control. When the Boolean
VisibleContent is TRUE (set by the Sec-
tionControl), the module must draw the content.
When the control sets VisibleContent FALSE, the
module must stop drawing the content. By set-

ting the output value ContentHeight, the draw-
ing module tells the control that it is no longer
drawing and the section can be collapsed.

InitiallyExpanded

Can be set to TRUE if the heading is to be initially
expanded, or FALSE if the heading is to be initially col-
lapsed.

Param1

A parameter passed to the drawing module.

Param2

A parameter passed to the drawing module.

ExpandEnable

A Boolean value giving the initial setting for whether
the expand button should be enabled. Default: 1

WindowEnable

A Boolean value giving the initial setting for whether
the popup window button should be enabled. Default:
1

PopupTitle

An initial title string for the pop-up window. Defaults
to the value of Heading.

AvailableHeightPtr

A numeric value indicating the number of pixels in the
Y-axis available to be drawn in. Can be useful where
ContentModule needs to present scrollable content to
the operator.

DeleteSection

Comments: Deletes a section from the control.

Related to:

Format: DeleteSection(Object)

Parameters:

Object

The object value returned from a previous AddSection
call (see above).

Note: The following sub-function, DisplaySection, is not meant to be
used externally. It is used internally by AddSection

DisplaySection

Comments: Used internally by AddSection.

Related to:

Format: DisplaySection(X, Heading, DisplayModule, Vis-
ibleContent, Param1, Param2, EpandEnable, Win-
dowEnable, Pop-upTitle, AvailableHeightPtr)

Parameters:

X

The coordinate of LHS of section.

Heading

The heading text or module for the heading.

DisplayModule

The module value of the content drawing module.

VisibleContent

A Boolean value that can be set to TRUE when content
is visible.

Param1

A parameter passed to the drawing module.

Param2

A parameter passed to the drawing module.

EpandEnable

Boolean to enable the Expand button (default: 1)

WindowEnable

Boolean to enable the New Window button (default: 1)

PopupTitle

Text string giving the title of the pop-up window

AvailableHeightPtr

Optional numeric – in case AddSection defines the
height available for this section.

SecurityCheck

Security Manager Module

Description: Examines the rules that apply to the current user or the
named user to determine if the specified privilege has been
granted.

Returns: Boolean

Usage: Script or steady state.

Related to: GetAccountID | GetAccountInfo | GetFullName |
GetGroupName | GetUserName | IsLoggedOn | IsSus-
pended | UIErrorToText

Format: \SecurityManager\SecurityCheck(Privilege [, Suppress,
AccountName, DenyCaller, TagName])

Parameters:

Privilege

Required. A privilege number to be used in the security
check.

Suppress

Optional. A Boolean indicating whether a privilege
refusal dialog should be displayed if the SecurityCheck
fails. TRUE to suppress the dialog. Defaults to FALSE.

AccountName

Optional. The name or AccountID of an account
against which to check the privilege. Defaults to the

caller’s account.

DenyCaller

Optional. The object value of the caller to use when
launching the privilege refusal dialog. Defaults to the
caller’s user session. This is used to control the life-
time of the dialog until dismissed by user action.

TagName

Optional. The name of a tag that will be used in the
security check.

Comments: This module can be called in script or in steady-state. It
returns TRUE if the security check passes and FALSE oth-
erwise. In steady-state the return value may change if the
parameters change, if the user's logged on state changes,
or if there is a configuration change on the user’s account.
The security check is iteratively done against each rule in
the user account until either a matching rule is found or all
rules have been checked and no match found.
If the TagName parameter is Invalid or not specified, Secur-
ityCheck looks in the caller’s scope for the nearest tag and
uses the name of that tag as the TagName parameter.

Seek

Description: Changes and returns the current position within a stream.
The return value is the current stream position after the
seek is done.

Returns: Numeric

Usage: Script Only.

Function Groups: Stream and Socket

Related to: BuffStream | CloseStream | FileStream |
 GetStreamLength | SRead | StreamEnd | SWrite

Format: Seek(Stream, Position[, Mode])

Parameters:

Stream

Required. Any expression that returns the stream to do
the Seek on

Position

Required. Any numeric expression that returns either
the absolute position, or a relative amount to move the
position, depending on Mode. If the mode is relative,
this number may be negative (i.e. earlier in the
stream).

Mode

An optional numeric expression that denotes which
type of positioning to do. If equal to 0, the stream pos-
ition is changed to Position (absolute mode). If equal to
1, the Position is added to the current stream position
(relative mode). Defaults to 0.

Comments: This allows repositioning within a stream.
This function can be used to find the current stream pos-
ition by setting the last two parameters to "0,1".

Example:

If ! Valid(strm);
[
strm = BuffStream("ABCDEF");
Seek(strm, 3, 0);
SRead(strm, "%1c", streamData);

]

The variable streamData now contains the string "D".

SelectArea

Description: Selects active graphics statements within a rectangular
area in a window.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Graphics

Related to:

Format: SelectArea(Object, Left, Bottom, Right, Top, MustContain)

Parameters:

Object

Required. Any expression for the object value that iden-
tifies the window.

Left

Required. Any numeric expression for the left side
coordinate of the area.

Bottom

Required. Any numeric expression for the bottom side
coordinate of the area.

Right

Required. Any numeric expression for the right side
coordinate of the area.

Top

Required. Any numeric expression for the top side
coordinate of the area.

MustContain

Required. Any logical expression. If true, an object will
be selected only if it is completely enclosed by the
area. Otherwise, an object will be selected if any part of
that object falls within the area.

Comments: SelectArea is a function that returns the number of objects
that have been found and selected within the defined area.

SelectCodePointer

Description: Given a window object and a code pointer for an active
graphics object within that window, this function adds the
graphics object to the window's selection set.

Returns: Pointer

Usage: Script or steady state.

Function Groups: Graphics

Related to: SelectDAG

Format: SelectCodePointer(Object, CodePointer)

Parameters:

Object

Required. Any expression for the object value that iden-
tifies the window containing the graphic.

CodePointer

Required. Any code pointer value expression for the
graphic object. (see comments)

Comments: You must first use StatementInstance to obtain the code
pointer to be used in the CodePointer parameter.

SelectDAG

Description (i.e. Select Function) This function selects an active graph-
ics DAG.

Returns Code Pointer

Usage Script or steady state.

Function Groups Graphics

Related to: SelectCodePointer

Format: SelectDAG(Statement, Object, Index)

Parameters

Statement

Required. Any expression for the code value of the
statement to select.

Object

Required. Any expression for the object value that iden-
tifies the module instance where Statement is found.

Index

Required. Any numeric expression for the function
within Statement.

SelectGraphic

Description Selects an active graphics statement at a location in a win-
dow.

Returns Code Pointer or Steady State

Usage Script Only.

Function Groups Graphics

Related to:

Format: SelectGraphic(Object, X, Y, Dist, N)

Parameters

Object

Required. Any expression for the object value that iden-
tifies the window.

X

Required. Any numeric expression for the x-axis
coordinate of the selection point.

Y

Required. Any numeric expression for the y-axis
coordinate of the selection point.

Dist

Required. Any numeric expression for the maximum
distance a graphic may be from (X,Y) and still be con-
sidered for selection.

N

Required. Any numeric expression for the object to

select. 0 is the first object, 1 is the next, and so on.
This allows selection of graphics that are 'underneath'
other graphics.

SelectHandle

Description: Returns a pointer to a handle of selected graphics state-
ments at a location in a window.

Returns: Pointer

Usage: Script or steady state.

Function Groups: Graphics

Related to: DragHandle | SelectHandleNum

Format: SelectHandle(Object, X, Y, DragAll)

Parameters:

Object

Required. Any expression for the object value which
identifies the window.

X

Required. Any numeric expression for the x-axis
coordinate of the selection point.

Y

Required. Any numeric expression for the y-axis
coordinate of the selection point.

DragAll

Required. Any logical expression. If true, dragging a
handle will drag all selected handles at (X,Y). Other-
wise, only the first selected handle (in the topmost
layer) will drag.

Example:

If LocSwitch() == 4 GetHandle;
[
handle = SelectHandle(CurrentWindow(), XLoc(), YLoc(), 1);

handle = PickValid(handle, 0);
]

This script will be executed when the left mouse button is pressed, and
will attempt to grab a valid handle that lies directly under the mouse.

SelectHandleNum

Description: Selects the given handle of selected graphics statements in
a window.

Returns: Point

Usage: Script or steady state.

Function Groups: Graphics

Related to: DragHandle | SelectHandle

Format: SelectHandleNum(Object, HandleNum, X, Y)

Parameters:

Object

Required. Any expression for the object value which
identifies the window.

HandleNum

Required. Any numeric expression for the handle num-
ber which you wish to choose. The handles are
numbered as follows.
0 1 2
6 8 7
3 4 5

X

Required. Any variable in which the X screen coordin-
ate for that handle will be returned.

Y

Required. Any variable in which the Y screen coordin-
ate for that handle will be returned.

Comments: This function selects the handle requested in the window
requested and returns the user coordinates for that selec-
ted handle. The returned coordinates can then be used in
the DragHandle function.
Will return invalid for the X & Y values if an attempt is made
to select the middle side handles (1, 4, 6, or 7) when those
handles are not visible due to the object selection box
being too small to display them.

SelectPath

Description: Selects a path given its code pointer value.

Returns: Object

Usage: Script or steady state.

Function Groups: Graphics

Related to:

Format: SelectPath(Object, CodePointer)

Parameters:

Object

Required. Any expression for the object value that iden-
tifies the window.

CodePointer

Required. Any expression for the code pointer value of
the path to select.

Self

Description: Returns the object value of the current module.

Returns: Object Value

Function Groups: Basic Module

Usage: Script or steady state.

Related to: NParm | Parameter | PType | ResetParm | Return |
 SystemSelf

Format: Self()

Parameters: None

Comments: This is the only way to get a module's object value, and is
commonly used in functions such as NParm, Parameter,
ResetParm, and Return.

Example:

modPtr = FindVariable("MyChildMod", Self(), 0, 1);

This function searches for the module called MyChildMod starting at the
current module and proceeding through its ancestral tree.

Send

(RPC Manager Library)

Description: This subroutine sends a message by invoking a remote pro-
cedure call (RPC).

Returns: Current session id of remote procedure, else RPC_NO_SID

Usage: Script Only.

Function Groups: Network

Related to: ConnectToMachine | DisconnectFromMachine |
 GetServer | GetServersListed | GetStatus | IsClient |
 IsPotentialServer | IsPrimaryServer | Register (RPC Man-
ager) | SetRemoteValue

Format: \RPCManager\Send(Service, RemoteGUID, ModeCutOff,
SendServer, MachineName, SendClients, ExecLocally,
Recursive, ModuleName, ModuleContext, UpdateObject,
InputSessionID [, Parmeters…])

Parameters:

ServiceName

Required. The name of the service to transmit to. For
directed RPCs, set this value to either Invalid or a zero-
length string.

RemoteGUID

Required. The GUID of the application to receive the
RPC. If Invalid, RemoteGUID is searched for in the
caller's scope.

ModeCutOff

Required. The service synchronization mode above
which this message should not be sent. Normal RPCs
should set this to RPC_ACCEPT_ALL mode.

SendServer

Required. If set to "1", this flag will transmit this RPC to
the service instance that is currently the server for the
service. Ignored for directed RPC requests.

MachineName

Required. The IP or name of the workstation to be used
for a directed RPC. Invalid for service RPCs.

SendClients

Required. If set to "1", this flag will transmit this RPC to
all service instances that are currently clients of the ser-
vice server. Ignored for directed RPC requests.

ExecLocally

Required. If set to "1", this flag forces the RPC to be
executed locally. Used with directed RPCs.

Recursive

Required. If set to "1", and SendClients is also set to "1",
this flag will transmit this RPC to all service instances
that are clients of this workstation and all service
instances that are clients of them.
If set to a "1" and SendServer is also a "1", will transmit
to servers of this workstation and servers of those

workstations. This is of use when "clients of clients" are
configured.

In most cases, it is wise to set this flag when making
service broadcast updates.

ModuleName

Required. The textual name of the RPC subroutine to
be executed. Must be valid.

ModuleContext

Required. The context in which the "ModuleName" will
be executed. The "base" context for a VTScada layer-
based application is "\Code".
For a non-VTScada (pure script) application, the base
context is the root of the application specified by the
RemoteGUID parameter. Must be valid.

UpdateObject

Required. If valid, is an object that will act as a holding
point for the RPC until it is actually transmitted to the
remote workstation. A subsequent RPC with the same
UpdateObject value will discard the previous RPC if it
has not yet been transmitted, and replace it with the
new one. This is of most use to services whose updates
completely negate the effect of previous updates, and
serves to minimize the transmission of redundant
RPCs.

InputSessionID

Required. If Invalid, the RPC will be queued for trans-
mission. If valid, will be interpreted as a SID which
must match the current SID for the remote application.
Otherwise, the RPC will not be queued for trans-
mission.
Only of use in directed RPCs.

Parameters

A set of up to 32 parameters to the RPC subroutine.
Can be any mixture of the legal types. Supplying a
parameter of an illegal type will cause it to be replaced
with Invalid when the RPC subroutine is invoked.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
The method returns the current SID of the remote applic-
ation if the message was queued for transmission. Other-
wise, it will return RPC_NO_SID.

Example:

If 1 Main;
[
sessID = \RPCManager\Send("MyService" { service }, \RemoteGUID,

\RPC_ACCEPT_FILTER { mode cut-off },
1 { server }, Invalid { machine },
0 { clients }, 0 { locally },
0 { recursive }, "Start" { module },
"\" { service scope },
Invalid { queue msgs },
Invalid { no initial session ID },
{ Parameters: } rev, myName);

sessID = \RPCManager\Send("MyService" { service },
\RemoteGUID,
\RPC_ACCEPT_FILTER { mode cut-off },
1 { server }, Invalid { machine },
0 { clients }, 0 { locally },
0 { recursive }, "Finish" { module },
"\" { service scope },
Invalid { queue msgs },

sessID { original server's sess ID },
{ Parameters: } index);

]

This will cause the modules called Start and Finish, which are found in
the scope of the service called MyService, to be executed on the server.
Note that by handing in the session ID from the first call to the second
call it is guaranteed that module Finish will either be queued for the
workstation that was the server at the time when the first message was

queued or will be discarded. It will not be sent to another workstation
that may take over servership for the MyService service.

Related Information:
Refer also to "RPC Manager Service" for a listing of Service Control Meth-
ods, RPC Methods, and Deprecated RPC Methods.

SendMail

Description: Sends a string to an email server using the Simple Mail
Transport Protocol (SMTP)

Returns: Nothing

Usage: Script Only.

Function Groups: Email

Related to: ValidateEmailAddrs

Format: \SendMail(Server, To, From, Subject, Message, Error [,At-
tachments, AttachmentStreams, OptionalHeaders,
ErrorText, SenderMailbox, Username, Password, UseTLS,
Bcc, Charset, Port])

Parameters:

Server

Required. Any text or buffer expression of the mail
server name or IP address

To

Required. Any text or buffer expression of the address
of destination

From

Required. Any text or buffer expression of the address
of the person from whom the mail is from

Subject

Required. Any text or buffer expression of the subject
of the message

Message

Required. Any text or buffer expression of the mes-
sage – no attachments

Error

Required. A pointer to an error variable, set to 0 if OK.
The Error parameter should initially be set Invalid by
the caller. When this method is done, it will set Error to
one of the following values:

Error Meaning

0 Mail has been successfully sent.

1 Unable to open a connection to the
server.

2 Server did not send a good SMTP wel-
come message.

3 Server rejected SMTP HELO message.

4 Server rejected SMTP MAIL message.

5 Server rejected SMTP RCPT message.

6 Server rejected SMTP DATA message.

7 Server rejected message body.

8 Badly formatted TO: address.

9 Server does not support AUTH.

10 Server does not support implemented
AUTH. mechanisms.

11 Failure to login to SMTP server.

12 TLS wanted for SMTP, but not available

13 TLS unavailable or negotiation with
server failed

14 Badly formatted bcc address

Attachments

An optional parameter that is an array of file names to
be attached to the email message.

AttachmentStreams

An optional parallel array of attachment streams.

OptionalHeaders

A string of optional MIME headers, separated by CRLF.

ErrorText

An optional pointer to the variable that holds the error
text.

SenderMailbox

An optional parameter which is the SMTP reverse path.
SenderMailbox overrides the From parameter. This
parameter may be used as an alternative to the From
parameter when specifying the "MAIL FROM" address
in the SMTP.
The From parameter would still be used when spe-
cifying the "From:" address in the email header. Sender-
Mailbox should be used only when an email is
intended to look like it came from a particular address,
but has actually originated from another address.

Username

Allows a user name to be provided to email servers
that require authentication.

Password

Allows a password to be provided to email servers that
require authentication.

UseTLS

Boolean to indicate that transport layer security should
be used.

Bcc

Optional list of recipients, who should receive a bcc

copy of the message.

Charset

Optional. Text string to be used for MIME character
set.

Port

Optional numeric. Use to specify which port the SMTP
server should use. If not provided, the value of the
SMTPPort application setting is used, defaulting to 25.

Comments: This function opens a TCP/IP socked on port 25 (or
other if specified) of the specified mail server. The
Message is then sent using the SMTP protocol.
If both Username and Password are valid, then
SendMail will attempt to login to the mail server
before sending the email message. If the server
does not support authentication, then SendMail will
abort with an error message
If both Username and Password are valid, but the
server does not support PLAIN authentication, then
SendMail will abort with an error.
While PLAIN *must* be available, some server con-
figurations require that a TLS connection (aka SSL)
to be negotiated before allowing PLAIN. VTScada
does not support authentication over TLS. It is
assumed that communication between the email
Server and the VTScada client will be over a secure
network such as an intranet.
If either Username or Password is missing or
invalid, then the message will be sent without a
login attempt.
The To: address will accept a string that conforms
to the address-list ABNF from RFC 5322.

Example:

\SendMail("192.168.0.201",
"sales@trihedral.com",
"vts@trihedral.com",
"Great Product!",
"VTScada is Great\n\rMust buy lots!",
&ErrorCode);

SerBreak

Description: Sends a break character to a serial port.

Returns: Nothing

Usage: Script Only.

Function Groups: Serial Port

Related to: COMPort | SerCheck | SerialStream

Format: SerBreak(Port, Status)

Parameters:

Port

Required. Any numeric expression for the serial port
number (opened with a ComPort function) or serial
stream value (returned from a SerialStream function).

Status

Required. Any logical expression. If true (non-0), a
break will be sent to the serial port defined in Port, if
false (0), the break will be cleared from the serial port.

Example:

If MatchKeys(1, MakeBuff(1, 27) { <ESC> key pressed }) BreakSent;
[
SerBreak(4, 1);

]

The above code causes a break to be sent to serial port 4 if the user
presses the <ESC> key.

SerCheck

Description: Check Serial Port. This function returns the immediate or
cumulative serial port status.

Returns: Numeric

Usage: Script Only.

Function Groups: Serial Port

Related to: COMPort | SerBreak | SerialStream

Format: SerCheck(Port, Reset)

Parameters:

Port

Required. Any numeric expression for the serial port
number (opened with a ComPort function) or serial
stream value (returned from a SerialStream function).

Reset

Required. Any logical expression. If true (non-0), the
serial port status register will be cleared.

Com-
ments:

The return value consists of 9 bits that indicate the status of the fol-
lowing

Bit Meaning

0 Clear To Send (CTS)

1 Data Set Ready (DSR)

2 Ring Indicator (RI)

3 Carrier Detect (CD)

4 Overrun error

5 Parity error

6 Framing error

7 Break signal detected

8 Receive buffer overflow (always cumulative)

Example:

If 1 Send;
[
parityErr = Cond(And(SerCheck(2, 0), 0b00100000), 1, 0);
IfThen(parityErr, ForceState("Retry"));

]

In this script, port 2 is checked for a parity error. If there is one, a state
transfer to state Retry will occur, otherwise the destination state in the
script's trigger (state Send) will be active next.

SerialNum

Description: Returns the serial number of the copy of VTScada running.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Software and Hardware

Related to: CommandLine | Version

Format: SerialNum()

Parameters: None

Comments: This function can be used to provide copy protection for
user-developed modules by checking for a specific copy
of VTScada before performing the desired task.

Example:

ZText(20, 20, Cond(SerialNum() != 2975, "Unauthorized serial
number!", ""), 15, 0);

This displays a message if the serial number of VTScada is not 2975.

SerialStream

Description: Returns a serial stream that can be used in any of the serial
port functions or with any of the stream functions. Please
note that the ComPort function (which functions somewhat
differently than the SerialPort function) may also be util-

ized.

Returns: Stream

Usage: Script Only.

Function Groups: Serial Port, Stream and Socket

Related to: COMPort | SerCheck | SerIn | StrLen | SerOut | SerRcv |
 SerSend | SerString | SerStrEsc | SerWait

Format: SerialStream(Port, ReceiveLen, TransmitLen, Baud,
DataBits, StopBits, Parity, RTS, XOnXOff, Control)

Parameters:

Port

Required. Any numeric expression giving the serial
port number to be used. For COM1: Port = 1. For
COM2: Port = 2. The valid range for Port is 1 to 4096.

ReceiveLen

Required. Any numeric expression giving the size of
the receiver buffer in bytes. ReceiveLen must be in the
range 2 to 32766.
If more bytes are received than can fit in the receive
buffer before your application removes them using Ser-
Rcv or a similar VTScada function, the additional data
will be lost.

TransmitLen

Required. Any numeric expression giving the size of
the transmitter buffer in bytes. TransmitLen must be in
the range 2 to 32766. The buffer must be large
enough to hold the maximum number of bytes
pending transmission at any instance.

Baud

Required. Any numeric expression giving the baud
rate. Baud must be in the range 10 to 57600, and must
divide evenly into 115200 with no more than 2.5%

error.

DataBits

Required. Any numeric expression giving the number
of data bits per character. DataBits must be 5, 6, 7, or
8.

StopBits

Required. Any numeric expression giving the number
of stop bits per character. StopBits must be 1 or 2.

Parity

Required. Any numeric expression giving the parity
checking to use:

Parity Checking

0 No parity

1 Odd parity

2 Even parity

3 0 Stick (space parity)

4 1 Stick (mark parity)

RTS

Required. Any numeric expression that gives the RTS
buffer control method. RTS is on while transmitting.
When a transmission is complete, RTS is off.
This is usually used to control the transmitters on RS-
422/485 ports. This parameter has no effect if the
automatic RTS control is selected in the Control para-

RTS Buffer Control Method

0 Force RTS off

1 Force RTS on

2 Half-duplex operation

3 Controlled by SerRTS function

Acceptable values of the RTS parameter are as follows:

RTS Buffer Control Method

0 Force RTS off

1 Force RTS on

2 Half-duplex operation

3 Controlled by SerRTS function

If this parameter is 2, the SerRTS function can
set its value. However, regardless of SerRTS, the
RTS control line will be asserted when data is
sent.
If the SerRTS is called to change the RTS line
while data is being transmitted, the RTS line will
not change when the last byte is sent. If SerRTS
is not executed while the data is transmitted,
the RTS line will be cleared after the last byte is
transmitted.

XOnXOff

Required. Any logical expression. If true (non-0) soft-
ware flow control is to be used. If false (0) it is not.

Control

Required. Any numeric expression that specifies the
handling procedure for the clear to send (CTS), carrier

Control Bit No. Handling Procedure

1 0 DTR on (otherwise DTR is off)

2 1 Enable CTS control

4 2 Enable CD control

8 3 Enable DSR control

16 4 Enable RTS/CTS control

32 5 Enable DTR/DSR control

If bit 1 (CTS control) is set, data will only be
transmitted if the CTS signal is on. If CTS con-
trol is disabled, the CTS line is ignored.
If bit 2 (CD control) is set, data will only be trans-
mitted when the CD signal is on. If CD control is
disabled, the CD line is ignored.
If bit 3 (DSR control) is set, data will only be
transmitted when the DSR signal is on. If DSR
control is disabled, the DSR line is ignored.
If bit 4 (RTS/CTS control) is set, the CTS control
behaves as described above, and the RTS line
will be held high until the receive buffer reaches
75% full. It will then go low, indicating to the
other device to stop transmitting data. The RTS
line will go high again when the receive data buf-
fer drops below 25% full. This is known as hard-
ware flow control. RTS/CTS control enabled
overrides the RTS parameter.
If bit 5 (DTR/DSR control) is set, the DSR control
behaves as described above, and the DTR line
will be held high until the receive buffer reaches
75% full. It will then go low, indicating to the
other device to stop transmitting data. The DTR
line will go high again when the receive data buf-
fer drops below 25% full. This is known as hard-
ware flow control. DTR/DSR control enabled
overrides bit 0, DTR on option.

Comments: The parameters for this function are a reduced set from
the Comport statement.
Make sure that VTScada's mouse (if it is serial) is on
a different port, because the mouse and Seri-
alStream can interfere. Also make sure that no

other hardware or software is interfering with the
serial port hardware interrupts (IRQ4 for COM1:,
IRQ3 for COM2:). Network cards often use IRQ4,
which will cause a problem with a mouse or Seri-
alStream on COM1:.
The stream will automatically close when there are
no variables referencing the stream. However, if
there are bytes still in the transmit buffer, they will
not be sent before the stream is closed.

Example:

streamCom2 = SerialStream(2 { COM2: },
1024 { Buffer 1024 bytes of received data },
1024 { Buffer 1024 bytes of transmitted data },
9600 { Baud rate },
8 { Data bits per byte },
1 { Stop bit per byte },
0 { No parity bit },
1 { Force RTS on },
0 { No Software flow control (XonXOff) },
3 { Control: DTR On, CTS control enabled });

This opens COM2: for use with serial port functions. These functions
should use streamCom2 as their Port parameter.

SerIn

Description: Get Serial Port Byte. This function returns the next byte in
the receive buffer.

Returns: Byte

Usage: Script Only.

Function Groups: Serial Port

Related to: COMPort | SerCheck | StrLen | SerOut | SerRcv | SerRTS
| SerSend | SerStrEsc | SerString | SerWait

Format: SerIn(Port, Peek)

Parameters:

Port

Required. Any numeric expression for the serial port
number (opened with a ComPort function) or any
stream value.

Peek

Required. Any status expression to control whether the
byte being read should also be removed from the
receive buffer.
If Peek is true, the byte is not removed from the
receive buffer.

Comments: If no byte is available, the return value is invalid.

Example:

If 1 Continue;
[
chkSum = SerIn(2, 0);
IfThen(! Valid(chkSum), ForceState("Wait"));

]

This reads one byte from the receive buffer for serial port 2. If none is
available, chkSum will be invalid. Notice that the next state to become
active is dependent on whether or not a byte has been successfully read.

SerLen

Description: Serial Port Buffer Length. This function returns the number
of bytes currently in the receive or transmit buffers.

Returns: Numeric

Usage: Script Only.

Function Groups: Serial Port, String and Buffer

Related to: COMPort | SerCheck | SerIn | SerOut | SerRcv | SerRTS |
 SerSend | SerStrEsc | SerString | SerWait

Format: StrLen(Port, Option)

Parameters:

Port

Required. Any numeric expression for the serial port
number (opened with a ComPort function) or any
stream value.

Option

Required. Any status expression. If Option is true, the
number of bytes in the transmit buffer is returned. If
Option is false, the number of bytes in the receive buf-
fer is returned.

Comments: This function may only appear in a script.

Examples:

If ! Valid(rcvBufLen);
[
 rcvBufLen = SerLen(2, 0);
]

This finds the number of bytes presently in the receive buffer on serial
port 2. This will always be a valid number equal to 0 or greater.

SerOut

Description: Send Serial Port Byte. This statement sends a byte to the
transmit buffer.

Returns: Nothing

Usage: Script Only.

Function Groups: Serial Port, String and Buffer

Related to: COMPort | SerCheck | SerIn | StrLen | SerRcv | SerRTS |
 SerSend | SerStrEsc | SerString | SerWait

Format: SerOut(Port, Value)

Parameters:

Port

Required. Any numeric expression for the serial port
number (opened with a ComPort function) or any

stream value.

Value

Required. Any numeric expression which gives the
byte value to send. Value must be in the range 0 to
255.

Comments: The byte will not be sent if the transmit buffer is full.

Example:

If MatchKeys(2, "t");
[
SerOut(2, Cond(chkSum == calcChksum, 6, 21);

]

This waits until the operator presses the "t" key, then it compares
chkSum to calcChksum. If equal, a 6 byte (ASCII ACK) is sent. If not equal,
a 21 byte (ASCII NAK) is sent. The serial port used is 2.

SerRcv

Description: Serial Port Receive. This function returns a buffer con-
taining a string read from the receive buffer.

Returns: Buffer

Usage: Script Only.

Function Groups: Serial Port

Related to: COMPort | SerCheck | SerIn | StrLen | SerOut | SerRTS |
 SerSend | SerStrEsc | SerString | SerWait

Format: SerRcv(Port, Count)

Parameters:

Port

Required. Any numeric expression for the serial port
number (opened with a ComPort function) or any
stream value.

Count

Required. Any numeric expression, which gives the
number of bytes to read. Value must be in the range 0
to 65500.

Comments: The return value is a buffer containing Count bytes, unless
fewer bytes were available in the receive buffer. This func-
tion may be used to flush the serial port receive buffer.

Example:

If SerWait(2, 12) { Wait for 12 bytes buffered for port 2};
[
data = SerRcv(2, 12);

]

This waits until 12 bytes are in the receive buffer for serial port 2, and
then reads them into the variable data. Byte 0 of data will be the oldest
byte in the receive buffer (received first by VTS).

SerRTS

Description: Sets or clears the RTS line on a serial communication port.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Serial Port

Related to: COMPort | SerCheck | SerialStream | SerIn | StrLen |
 SerOut | SerRcv | SerSend | SerStrEsc | SerString |
 SerWait

Format: SerRTS(Port, Level)

Parameters:

Port

Required. Any numeric expression for the serial port
number (opened with a ComPort function) or serial
stream value (returned from a SerialStream function).

Level

Required. TRUE if the RTS line is to be turned on or

false if the RTS line is to be turned off.

Comments: The corresponding ComPort statement must have the RTS
parameter set to 2 or 3.

Example:

RTS = 0;
...
ComPort(2 { COM2: },

1024 { Buffer 1024 bytes of received data },
1024 { Buffer 1024 bytes of transmitted data },
9600 { Baud rate },
8, 1 { Data bits/byte, stop bits/byte },
0 { No parity bit },
3 { RTS may be controlled by SerRTS function },
0, 0, 0 { Obsolete parameters },
3 { Control: DTR On, CTS control enabled },
0, 0, 0, 0, 0, 0, 0, 0, 0 { Obsolete parameters });

If MatchKeys(2, "R");
[
RTS = 1 - RTS { Toggles RTS between 1 and 0 };
SerRTS(2, RTS);

]

Comport 2 is opened to allow the setting of the RTS line. The second
statement then toggles the RTS line of serial port 2 on and off every time
the letter R is pressed on the keyboard.

SerSend

Description: Serial Port Send. This function writes a string to the trans-
mit buffer and returns the number of bytes written.

Returns: Numeric

Usage: Script Only.

Function Groups: Serial Port

Related to: COMPort | SerCheck | SerIn | StrLen | SerOut | SerRcv |
 SerRTS | SerStrEsc | SerString | SerWait

Format: SerSend(Port, Buffer, MaxBytes, Escape)

Parameters:

Port

Required. Any numeric expression for the serial port
number (opened with a ComPort function) or any
stream value.

Buffer

Required. Any text expression to send.

MaxBytes

Required. Any numeric expression which gives the
maximum number of bytes to send.

Escape

Required. Any numeric expression which gives the
byte value of an escape code. Whenever an escape
code is encountered, two escape codes will be trans-
mitted.
To be valid, Escape must be in the range of 0 to 255. If
the Escape parameter is greater than 0 or less than
256, it is transmitted with escape codes.
If Escape is a value greater than 255, it will perform in
the same manner that it would if Escape were a value
of 0.
If the value of Escape is less than 0, it doesn't take into
account escape codes and the buffer is transmitted in
its entirety, stopping at MaxBytes.

Comments: The return value is the actual number of buffer bytes suc-
cessfully placed in the transmit buffer (not including extra
escape codes). MaxBytes should be transmitted, unless the
end of the buffer is encountered, or a transmit buffer over-
flow occurs.

Example:

If MatchKeys(2, "S");
[
SerSend(2, "Hello World ", 12, 0);

]

The code above sends the message "Hello World" through serial port 2.

if (escParm < 0) {
stream->write(xmitbuff, i);
sent = i;

}
else {
sent = 0;
while (sent < i) {
count = 0;
while (sent + count < i &&
(W_SHORT) ((W_UCHAR) xmitbuff[sent + count++]) != esc);

stream->write(&(xmitbuff[sent]), count);
sent += count;
if (xmitbuff[sent - 1] == esc)
/*** Must be an ESC character - low byte must be first ***/
stream->put(esc);

}
}

In the above example, i is either the Buffer Length or MaxBytes,
whichever is smaller.

SerStrEsc

Description: Serial Port Receive With Escape. This function reads the
receive buffer until a specified character (the 'escape' char-
acter) is encountered, incrementing an offset counter for
each character read that is not the Escape character. It is
assumed that, where the message contains the Escape
character as part of the message, that character is
'escaped' by being doubled.

Returns: Numeric

Usage: Script Only.

Function Groups: Serial Port

Related to: COMPort | MakeBuff | SerCheck | SerIn | StrLen | SerOut
| SerRcv | SerRTS | SerSend | SerString | SerWait

Format: SerStrEsc(Buffer, Offset, Port, Escape)

Parameters:

Buffer

Required. Any text variable to write the received data.
This text buffer must already exist. It could be created

by another function such as MakeBuff, or by assign-
ment of a text constant.

Offset

Required. Any numeric expression which gives the off-
set from zero where SerStrEsc will start writing data to
Buffer. If Offset is negative, Offset is returned and noth-
ing is done.

Port

Required. Either a numeric expression for the serial
port number (opened with a ComPort function) or any
stream value.

Escape

Required. Any numeric expression which gives the ter-
minating character code. This must be in the range 0
to 255 to be valid. A value of -1 means that no such
code exists.

Comments: Data is read until the receive buffer is empty, Buffer is full,
or an Escape value is encountered. If two successive
Escape values are received, one is written to Buffer and
reading continues normally. Otherwise, reading is ter-
minated if the character following the Escape is not
another Escape character. This is useful for reading the
serial port receive buffer where the end of a message is
signaled by a particular byte sequence. The byte following
the final Escape is placed in the buffer.
The value returned by the function increases with each
character read. When a single instance of the Escape value
is encountered, the return value is the negative of the final
offset before reading in the Escape character (the Escape
character is discarded). The return value can be used in
successive SerStrEsc calls as the Offset parameter to fill
Buffer until a Escape character is encountered.

Example:

response = MakeBuff(1, 32) { Fill the buffer with spaces };
...
{ Read port until DLE encountered }

If (! Valid(pos) || pos >= 0) && SerWait(2, 1) { Variable becomes neg-
ative when <DLE> encountered };
[
pos = SerStrEsc(response { Buffer },

PickValid(pos, 0) { Start at pos or 0 },
2 { Port number },
0X10 { Data end code (<DLE> or

decimal 16) });
]
{ DLE found, all done }

IF Pos < 0 ProcessResponse;
[

{ calculate the size of the response message }
RespSize = pos * -1;

]

ZText(10, 10, response, 0, 0);

This reads all characters from serial port 2 until a single byte 0x10 is
encountered. The byte following the escape code will be the final char-
acter in response. When the escape is received, pos will become a
pointer to where the last byte was written into the buffer, and the ZText
statement will display the received message. Suppose the following
(decimal) bytes were received by VTScada on serial port 2:

1, 2, 3, 16, 16, 4, 5, 16, 3, 6, 9, 8

The response would contain the following:

1, 2, 3, 16, 4, 5, 3

and the following bytes would be left in the receive buffer:

6, 9, 8

SerString

Description: Serial Port String Receive. This function reads the receive
buffer until a string is encountered and returns the final off-
set in the buffer.

Returns: Numeric

Usage: Script Only.

Function Groups: Serial Port, String and Buffer

Related to: COMPort | MakeBuff | SerCheck | SerIn | StrLen | SerOut
| SerRcv | SerRTS | SerSend | SerStrEsc | SerWait

Format: SerString(Buffer, Offset, Port, String)

Parameters:

Buffer

Required. Any text buffer to write the received data to.
It must already exist - either by creating it with a func-
tion such as MakeBuff, or assignment of a text con-
stant.

Offset

Required. Any numeric expression which gives the off-
set from 0 where SerString will start writing data to
Buffer.

Port

Required. Any numeric expression for the serial port
number (opened with a ComPort function) or any
stream value.

String

Required. Any text expression which gives the ter-
minating string.

Comments: Data is read until the receive buffer is empty, Buffer is full,
or String is encountered. This is useful for reading the
serial port receive buffer where the end of a message is
signaled by a particular byte sequence. The optional return
value is the final offset after reading into Buffer, unless
String was encountered, or Offset is negative.
If String was encountered, the return value is the negative
of the final offset after reading in the String sequence. If
Offset is negative, Offset is returned and nothing is done.
The return value can be used in successive SerString calls
as the Offset parameter to fill Buffer until String is
encountered.

Example:

If (! Valid(pos) || pos > 0) && SerWait(2, 1)
{ Pos is positive until "END" };
[
pos = SerString(response { Buffer },
Cond(Valid(pos), pos, 0) { Start at the
beginning, do successive reads },
2, "END" { Port no. & terminating string });

]

This reads from serial port 2 until the string "END" is encountered. As
the message is read from the serial port, pos will be StrLen(response)
and "END" will be the final character sequence in response - when it is
received, pos will become -StrLen(response).

ServerList

Description: Returns a pointer to an array of all available servers visible
from this workstation.

Returns: Pointer

Usage: Script Only.

Function Groups: Network

Related to: TServerList | WKStaInfo

Format: ServerList(Obsolete, Domain, Obsolete)

Parameters:

Obsolete

Parameter is no longer used, but is maintained for
backward compatibility with previous versions of
VTScada. Set to 0.

Domain

Required. Any text expression for the domain. If this is
invalid, the current domain will be used.

Obsolete

Parameter is no longer used, but is maintained for
backward compatibility with previous versions of

VTScada. Set to 0.

Comments: This function will return the resultant array of servers, or if
network problem is encountered or Domain is not found
on the network, an error code will be returned.

Example:

If ! Valid(serverArray);
[
serverArray = ServerList(0, WkStaInfo(2), 0);

]

The second parameter in the ServerList statement is included as an
added example of how many functions work together - in actual fact it is
redundant, since it simply designates Domain as being the current
domain, which could also have been done by simply entering an invalid.

ServerSocket

Description: Returns a server WinSock socket stream given a handle
returned by a SocketServerStart function or an integer
error code.

Returns: Stream

Usage: Script Only.

Function Groups: Network, Stream and Socket

Related to: ClientSocket | CloseStream | SocketAttribs |
 SocketServerEnd | SocketServerStart | SocketWait |
 SRead | SWrite | TCPIPReset

Format: ServerSocket(Handle)

Parameters:

Handle

Required. Any numeric expression for the handle
returned by the SocketServerStart function.

Comments: This function is used as part of a WinSocket-compliant

server application. First, start a socket server using Sock-
etServerStart. Then, use the SocketWait function as the trig-
ger for an action script. Use this function in the script to
connect a socket to the client application that triggered the
SocketWait function. If the socket connection is lost (client
shutdown) the stream is closed and set to a value of 0 (no
error code returned).
If you experience difficulty with TCP/IP, a useful
troubleshooting tool is the Windows™ diagnostic
"NetStat.exe", used to display information about the net-
work. Also of use is the Windows™ "Ping.exe" diagnostic
which can be used to test the hardware connection. These
files are normally found in the Windows™ directory. Con-
sult the Windows™ documentation on their usage.

Example:

Init [
If 1 Wait;
[
sHandle = SocketServerStart(0 { TCP/IP },
20000{ Port number offered },
1024 { Transmit buff length },
1024 { Receiver buff length },
1 { No transmit delay });

]
]
Wait [
If SocketWait(sHandle) Main { Wait for client to connect };
[
server = ServerSocket(sHandle);

]
]
Main [
If GetStreamLength(server) > 0 || MatchKeys(2, "r");
[
SRead(server, Concat("%", Concat(GetStreamLength(server),
"c")), Data);
SWrite(server, "%s", Data);

]
{ Always close socket when complete !!! }
If WindowClose(Self());
[
CloseStream(server);
SocketServerEnd(sHandle);
Slay(Self(), 1);

]
{ Display data from client and server status }

ZText(0, 50, Data, 0, 0);
ZText(0, 100, Cond(ValueType(server) == 8 ,
"Connected",
"Not Connected"),
10, 0);

]

SerWait

Description: Serial Port Wait. This function returns true when the
receive buffer is a specified length.

Returns: Boolean

Usage: Steady State only. See: Rules for Usage.

Related to: COMPort | SerCheck | SerIn | StrLen | SerOut | SerRcv |
 SerRTS | SerSend | SerStrEsc | SerString

Format: SerWait(Port, Count)

Function Groups: Serial Port

Parameters:

Port

Required. Any numeric expression for the serial port
number (opened with a ComPort function) or any
stream value.

Count

Required. Any numeric expression, which gives the
number of bytes to wait for. Value must be in the
range 0 to 65500.

Comments: The return value is true when at least Count or more bytes
have been received from Port. This is treated as a high pri-
ority function, and anything using the return value of Ser-
Wait will be executed as soon as Count or more bytes are
received from Port.

Example:

If SerWait(3, 16);
[

recBuff = SerRcv(3, 16);
]

This action trigger will be true when 16 or more bytes are in the receive
buffer from port 3, at which point the script will execute and the bytes in
the receive buffer will be read into the buffer called recBuff.

SetAllBlocks

(RPCManager Library)

Description: This subroutine executes on the client. It accepts all of the
blocks and data for a service.

Returns: Nothing

Usage: Script Only.

Function Groups: Network

Related to: COMPort

Format: SetAllBlocks(NDrivers, Buffer, Vals, TimeStamp, Attrib)

Parameters:

NDrivers

Required. Any number of drivers in the Buffer.

Buffer

Required. A stream containing all of the data.

Vals

Required. A packed array of driver values.

TimeStamp

Required. A packed array of driver values.

Attrib

Required. A packed array of driver values.

Comments: SetAllBlocks executes on the client. It is called from
GetServerChanges on the server via RPC. SetAllBlocks
accepts all of the blocks and data for a service.

SetBit

Description: Sets or clears a specific bit in a value and returns the res-
ult.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Bitwise Operation

Related to: Bit

Format: SetBit(Value, BitNumber, Option)

Parameters:

Value

Required. Any numeric expression that gives the num-
ber to modify the bit in.

BitNumber

Required. Any numeric expression giving the bit num-
ber to set or clear. Bit 0 is the least significant bit. Legal
values are from 0 to 31 inclusive.

Option

Required. Any status expression indicating whether the
bit is to be set or cleared in the Value. A true indicates
that the bit is to be set (i.e. set to 1), and a false indic-
ates that it is to be cleared (i.e. set to 0).

Comments: This function is useful for saving a series of status values in
a single short or long variable. If any argument is invalid,
the return value is invalid.

Examples:

a = SetBit(0, 1, 1);

In this simple example, the values for a will be 2 { 0b00000010 }. This is
not a particularly useful example of SetBit, though. Most likely you will
want to use it in a statement like the following:

b = SetBit(b, 2, 1);

In this case, bit number 2 will be set to 1. It is important to note, how-
ever, that if b is invalid, this statement will have no effect (i.e. it will not
make b valid). A safer way to accomplish the setting of bit 2, then, might
be to write

b = SetBit(PickValid(b, 0), 2, 1);

so that the b being invalid case is covered.

SetByte

Description: Writes a single byte to a buffer.

Returns: Nothing

Usage: Script Only.

Function Groups: String and Buffer

Related to: GetByte | MakeBuff

Format: SetByte(Buffer, Offset, Value)

Parameters:

Buffer

Required. Any buffer expression giving the buffer to
set. This buffer must already exist. It could be created
by a function such as MakeBuff, or by assignment of a
text constant.

Offset

Required. Any numeric expression giving the offset
from the start of the buffer in bytes, starting from 0.

Value

Required. Any numeric expression giving the byte
value to write at Offset bytes from the beginning of
Buffer.

Comments: This statement may only appear in a script.

Example:

msg = "ABCDEF";
If MatchKeys(2, "g");
[
SetByte(msg, 1, 65);

]

The value of msg will be "AACDEF" when the user presses "g" on the key-
board.

SetClock

Description: Sets the VTScada system clock and calendar.

Returns: Nothing

Usage: Script Only.

Function Groups: Time and Date

Related to: Seconds | Today

Format: SetClock(Date, Time)

Parameters:

Date

Required. Any numeric expression giving the new
date, in days since 1 January 1970.

Time

Required. Any numeric expression giving the new
time, in seconds since midnight.

Comments: This statement allows the synchronization of the VTScada
system clock/calendar with another clock/calendar. All
pending timers, and all built-in statements and functions
that depend on the system clock/calendar are adjusted to
match. Caution is necessary, because VTScada will not
adjust times and dates stored in variables or files (VTScada
doesn't know if a variable contains a number or time or
date). I/O drivers which time and date stamp results will
not adjust themselves retroactively. However, as each new

action occurs, the new time and date will be used. This is
because I/O drivers are not built-in functions, they are
modules.

Example:

If ZEditField(10, 40, 110, 10, minPastHr, 2, 1, 1);
[
currTime = Seconds();
minPastHr = Cast(minPastHr, 0){ Type status (0 - 255) };
minPastHr %= 60 { Valid range is from 0 - 60 };
convTime = currTime { Seconds since midnight }
- currTime % 24 { Seconds past the hour }
+ (minPastHr * 60){ New seconds past the hour };
SetClock(Today(), convTime) { Set the system clock };

]

This takes a value that has been entered into an input field and sets the
system clock by it. The date and hour remain unchanged, only the
minutes are set.

SetCodeText

Description: Will modify a source code file to replace the text for a
given CodeValue with the new text.

Returns: Invalid on success, numeric error code otherwise.

Usage: Script Only.

Function Groups: Advanced Module, File I/O

Related to:

Format: SetCodeText(CodeValue, NewText)

Parameters:

CodeValue

Required. Any code value giving the statement whose
text is to be replaced..

NewText

Required. Any text or a buffer

Comments: The given source file must be present and have read/write

privileges. This function does not immediately update the
statement’s currently loaded module until that module is
recompiled (usually upon a shutdown/restart cycle.

SetCursor

Description: Sets the mouse cursor type for the window.

Returns: Nothing

Usage: Script Only.

Function Groups: Graphics, Locator, Window

Related to:

Format: SetCursor(Type)

Parameters:

Type

Required. Usually a numeric expression giving the
cursor type to display according to the following table,
but may also be a text argument giving the full path of
the image file to be loaded as the cursor. Most of the
common image files formats can be used. If giving the
image file, the size of the cursor will be the system

Type Cursor Type

-1 Set the cursor to the parent window's
cursor

0 Normal Select (Standard arrow)

1 Busy (Waiting hourglass)

2 Text Select (Text I-beam)

3 Precision Select (Crosshairs)

4 Unavailable (Slashed circle)

5 Move (Four-pointed arrow pointing
north, south, east, and west)

6 Diagonal Resize 2 (Double-pointed
arrow pointing northeast and southwest)

7 Vertical Resize (Double-pointed arrow
pointing north and south)

8 Diagonal Resize 1 (Double-pointed
arrow pointing northwest and southeast)

9 Horizontal Resize (Double-pointed
arrow pointing west and east)

10 Alternate Select (Vertical arrow)

11 Working in Background (Standard arrow
and small hourglass)

12 Help Select (Standard arrow and small
hourglass)

Comments: This statement will affect the cursor in the current window
in which it is executed. The appearance of the cursor will
depend on the current Windows™ cursor settings. The
changed cursor will only be displayed within the client area
of the window. Changing the cursor for a window will
change the cursor for its child windows unless the child
windows use SetCursor to change their cursor.

Example:

If editFlag EditText;
[
SetCursor(2);

]

This is a script that might be executed prior to opening an editor win-
dow, for which a Text Select style cursor is desired.

SetDDEServer

Description: Sets the DDE topic name for a window.

Returns: Nothing

Usage: Script Only.

Function Groups: DDE

Related to: DDE | DDEPoke | DDEShareAdd | DDEShareDel

Format: SetDDEServer(Object, Title)

Parameters:

Object

Required. Any object expression that identifies the win-
dow.

Title

Required. Any text expression for the new topic name.

Comments: To ensure that proper DDE communication takes place,
each window should have its own unique topic name. The

default topic name is the title of the window.

SetDefault

Description: Sets the default value for a variable.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Variable

Related to: GetDefaultValue

Format: SetDefault(Variable, Default)

Parameters:

Variable

Required. Any expression for the variable value.

Default

Required. Any expression for the new default value.

SetDivert

(RPC Manager Library)

Description: Informs RPC Manager that the synchronization state of a
service has been sampled during synchronization, and ser-
vice RPCs for the specified client should be buffered until
synchronization completes. Subroutine call only.

Returns: Nothing

Usage: Script Only.

Function Groups: Network

Related to: GetClientDiverts

Format: \RPCManager\SetDivert(Service, IP [, OptGUID]);

Parameters:

Service

Required. The name by which the service is known.

IP

Required. An IP by which the synchronizing client is
known.

OptGUID

An optional GUID of the application in which the ser-
vice instance is located. The default is the application
to which the caller belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
This subroutine is only called by the service instance that is
server during synchronization.

SetEditMode

Description: Sets the graphics edit mode for a window.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Editor, Window

Related to: AddEditorText | CurrentLine | Editor | ForceEvent |
 GoToOffset | MakeEditor

Format: SetEditMode(Object, Mode)

Parameters:

Object

Required. Any object expression that identifies the win-
dow.

Mode

Required. Any numeric expression for the new edit
mode:

Mode Edit Mode

0 Disable mouse actions

1 Enable mouse actions

2 Toggle mouse on/off

SetEnable

Note: Deprecated. Do not use in new code.

(Alarm Manager module)

Description: Tell the Alarm Manager to enable or disable an alarm. This
function handles the attribution of changes to a user based
on the tag's metadata. Use instead of the older Enable func-
tion when writing new code.

Returns: Invalid (see parameter, FeedBack)

Usage: Script Only.

Function Groups: Alarm

Related to: Register (Alarm Manager) | Enable

Format: \AlarmManager\SetEnable(TagName, AlarmObj, Disable,
InhibitParm, FeedBack);

Parameters:

TagName

Required. The name of the tag that owns the alarm.

AlarmObj

Required. An instance of the alarm module.

Disable

Boolean. Set TRUE to disable the alarm, FALSE to
enable.

FeedBack

Numeric. Indicates the result of the action. Set to 1 if
the alarm was enabled or disable, and 0 if no operation
was performed.

Comments: The SetEnable subroutine always returns Invalid.

SetFileAttribs

Description: Sets the attributes of the specified file.

Returns: Nothing

Usage: Script Only.

Function Groups: File I/O

Related to: GetFileAttribs

Format: SetFileAttribs(FileName, Attributes, Mode)

Parameters:

FileName

Required. Any text expression giving the name of the
file. A known path alias for File-Related Functions may
be provided in the form, :{KnownPathAlias}.

Attributes

Required. Any numeric expression which designates
the attributes to be set. This parameter is formed by
adding together numbers from the following table:

Value Bit No Attribute

0 - Normal

1 0 Read only

2 1 Hidden

4 2 System

8 3 Archive

Optionally if mode is 1, may be a timestamp.

Mode

Controls the action of this function. If invalid or set to
0, the file attributes will be set as noted above. If set to
1, then this function will set the file’s date.

Comments: Four file attributes may be set by this statement. All attrib-
utes will be changed at once.

Example:

If Watch(0, newFile);
[
SetFileAttribs(Concat(MyPath, newFile), 9);

]

The above statement will cause file newFile to have its ReadOnly and
Archive bit set every time its name changes.

SetHandle

Description Sets the position of graphics handles in a window.

Returns Nothing

Usage Script or steady state.

Function Groups Graphics

Related to:

Format: SetHandle(Object)

Parameters

Object

Required. Any object expression which identifies the
window.

SetHelp

Description: Sets the help file name and (optionally) the context iden-
tifier for the window containing the specified object.

Returns: Nothing

Usage: Steady State only.

Function Groups: Help

Related to: Help

Format: SetHelp(Object, HelpFileName [, HelpContext])

Parameters:

Object

Required. The object value of a module instance that is
running inside the window whose help context is to be
affected.

HelpFileName

Required. The file name of the help file to use if
the user presses F1 while the specified window
is the active window. If Invalid, the parent win-
dow of the specified window will be checked for
a help file reference. This continues recursively
until the top of the window tree is reached.
If no help file name is found, the default
VTScada help file is used. The default help ref-
erence can be set by adding the variable
"WEBHelp" to the [System] section of the
Setup.INI file, or by using the EnableHelp state-
ment.
The help file name may be any .CHM or .HLP
format help file, typically added to the VTScada
installation folder. If you have created a NetHelp
(DocToHelp format) or MadCapWebHelp (Flare
format) help system, use the strings,
"MyHelpFolder\NetHelp" or "MyHelpFolder-
\MadCapWebHelp" respectively, where
MyHelpFolder points to the folder containing
your custom help system.

To use the default VTScada Help system, enter
simply: \DevHelpFile without quotation marks.

HelpContext

Optional help context. If absent or invalid, but
the HelpFileName is valid, then the default
home page of the help file or system is dis-
played when the user presses F1.
If valid and numeric, the help file is searched for
a topic with a matching alias number and help is
displayed for that topic. If there is no topic with
a matching alias ID value, then NetHelp and
MadCapWebHelp formats will open to the
default home page. CHM formats will not open.
If valid and textual, and if the help file is either
.CHM or .HLP format, then the help file is
searched for an exact match on the text string
in the topic index of the help file. If there is
more than one text match, the index is posi-
tioned at the first partial string match. NetHelp
and MadCapWebHelp formats will ignore a tex-
tual value for HelpContext and open to the
default home page.
If the HelpFileName parameter is invalid, this
parameter is ignored.

Comments: The setting of help file name and context for a win-
dow performed by this statement overrides those
specified by Window statement parameters. When
this statement stops, the settings for an affected
window revert to the state [if any] set up by the Win-
dow statement parameters. If more than one of
these statements references the same window, the
last one to start wins the race.

The object is usually, Self(); if this statement used in
the context of a page module.

SetINIProperty

(System Library)

Description: Given an INIFiles structure, this function sets the property
with the specified name and section to the specified value.
Does not affect the running system until WriteProp-
ertiesFile is called.

Returns: Reference to the INIProperty structures for the specified
section.

Usage: Script Only.

Function Groups: Configuration Management, Variable

Related to: ReadPropertiesFile | WritePropertiesFile | GetINIProperty

Format: \System\SetIniProperty(pProperties, Section, Name, Value,
Comment, pFail)

Parameters:

pProperties

Required. A pointer to an INIFile structure.

Section

Required. The name of the section in which the prop-
erty belongs.

Name

Required. The name of the property being modified.

Value

Required. The value to set for the given property.

Comment

An optional text expression for the comment to write.
If invalid, the existing comment (if any) for the prop-
erty will be used.

pFail

A pointer to a Boolean value. Will be set TRUE if the
operation fails.

Comments: This function does not change the property in con-
figuration - it only changes the value in the INIFiles struc-
ture, which is obtained using a call to ReadPropertiesFile.
The standard usage is to obtain the structure using
ReadPropertiesFile, modify a value using SetINIProperty,
then write the structure back to disk using WriteProp-
ertiesFile.
The INIFile structure returned is as follows:

INIFiles Struct [
FileName { full path and file name to the

settings file };
OEM { TRUE if an OEM layer file

};
Workstation { Name of the workstation or

invalid if global };
Layer { Instance of application layer

owning the file };
Dynamic { TRUE if a dynamic property

};
Sections { Dictionary of sections each ele-

ment of which
is an array of Property struc-

tures };
Changed { User sets to true if the file

has been changed,
initialized to false

};
]

The INIProperty structure is…

INIProperty Struct [
Name { Variable name in the .star-

tup/.dynamic file };
Value { Simple value

};
Comment { Text comment if present in the

file };
Hidden { TRUE if not visible in Edit

Properties GUI };
];

SetInstanceName

Description: Set the name of an instance of a module.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Basic Module

Related to:

Format: SetInstanceName(Instance, Name)

Parameters:

Instance

Required. The object value for which the name is to be
assigned.

Name

Required. The text string name of the instance.

Comments: Retained variables allow each separate instance of a mod-
ule to retain its value on disk between VTScada executions
or between instantiations of the module. Each instance
must be assigned a name, and this SetInstanceName() func-
tion provides this facility.

SetInstanceRefBox

Description: Programmatically, set the module reference box of a
single module instance.

Warning: This statement should be used by advanced users only
since irrevocable alteration of your application may occur.

Returns: Invalid.

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Graphics,
Advanced Module

Related to: SetModuleRefBox

Format: SetInstanceRefBox(Module, Left, Bottom, Right, Top)

Parameters:

Module

Required. Any expression for the object value of the
instance of the module.

Left

Required. Any numeric expression for the left side of
the reference box for Module's graphics.

Bottom

Required. Any numeric expression for the bottom side
of the reference box for Module's graphics.

Right

Required. Any numeric expression for the right side of
the reference box for Module's graphics.

Top

Required. Any numeric expression for the top side of
the reference box for Module's graphics.

Comments: This function adds a way to set the module ref-
erence box of a single module instance pro-
grammatically. If a module has SetInstanceRefBox
called for an instance of it, then SetModuleRefBox
will not affect that instance.
Comparing the two functions, SetModuleRefBox
provides a way to programmatically set the default
size of a module whereas SetInstanceRefBox
provides a way to set the size of a specific instance
of a module.
In any of the parameters are omitted, or if one or
more is invalid, the instance-specific reference box
will be cleared.

Examples:
The following is a widget that will draw the image, which is specified by
its full path name in the text parameter, at its native size:

{================== Image Widget ======================}
(
 ImageChoice <:"Select Image":> Text;
)
[
 Title = "ImageWidget";
 Shared UserMethods (LIBRARIES);
 bWidth = 1 { default size is 1x1} ;
 bHeight = 1 ;
 bObj { bitmap object ref } ;
]
Init [
 If Watch(1) WidgetMain;
[

 bObj = MakeBitmap(ImageChoice),
 bObj = MakeBitmap("\Bitmaps\Icons\Question icon.bmp"));}
 bObj = MakeBitmap(ImageChoice);
 bWidth = PickValid(BitmapInfo(bObj, 0), 1);
 bHeight = PickValid(BitmapInfo(bObj, 1), 1);
 SetInstanceRefBox(Self, 0, bHeight, bWidth, 0);
]
]
WidgetMain [

 GUIBitmap(0, 1, 1, 0 { Bounding box of image },
 1 - 0, bHeight, bWidth, 1 - 0, 1 { Scaling },
 0, 0 { No trajectory or rotation },
 1 { Bitmap is visible },
 0 { Reserved },
 4 { Left mouse button activates },
 0 { Focus ID number },
 0 { Focus trigger },
 bObj { Bitmap to show });
]

SetKeyParam

Description: The SetKeyParam function customizes various aspects of a
session key's operations. The values set by this function
are not persisted to memory and can only be used with in a
single session. It is the VTScada analog of the CryptoAPI
SetKeyParam call.

Returns: Nothing

Usage: Script Only.

Function Groups: Cryptography

Related to: DeriveKey | Decrypt | Encrypt | ExportKey |
 GenerateKey | GetCryptoProvider | GetKeyParam |

 ImportKey

Format: SetKeyParam(Key, Param [, Value, Flags, Error])

Parameters:

Key

Required. The handle to the key for which values are to
be set.

Param

Required. A parameter specifying the value to be set.
Values are defined in WinCrypt.h

Value

An optional parameter containing the value to which
the keys parameter is to be set. If omitted or invalid
then the value 0 is used.

Flags

An optional parameter specifying the flags to be
passed to CryptSetKeyParam. If omitted or invalid then
the value 0 is used.

Error

Required. An optional variable in which the error code
for the function is returned. It has the following mean-
ing:

Error Meaning

0 Key parameter successfully set.

1 Key or Param or Value parameters
invalid.

X Any other value is an error from
CryptSetKeyParam.

Comments: The allowable values for Param vary with the key type.

Example:

[
Constant KP_G = 12 { DSS/Diffie-Hellman G value };

]
Init [
If 1 Main;
[
{ Set the key parameter }
SetKeyParam(Key2, KP_G, KeyG);

]
]

SetLibrary

Description: Sets the library for an application.

Warning: This statement should be used by advanced users only
since irrevocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications

Related to:

Format: SetLibrary(Module, LibraryName)

Parameters:

Module

Required. Any expression that identifies the module or
object for which the library is to be set.

LibraryName

Required. Any module expression that identifies the lib-
rary.

Comments: This statement may only appear in a script.

SetModuleRefBox

Description: Sets the default reference box for a module.

Warning: This statement should be used by advanced users only
since irrevocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Graphics,
Advanced Module

Related to: GetModuleRefBox | GetXformRefBox | SetInstanceRefBox

Format: SetModuleRefBox(Module, Left, Bottom, Right, Top)

Parameters:

Module

Required. Any expression for the object value of the
module.

Left

Required. Any numeric expression for the left side of
the reference box for Module's graphics.

Bottom

Required. Any numeric expression for the bottom side
of the reference box for Module's graphics.

Right

Required. Any numeric expression for the right side of
the reference box for Module's graphics.

Top

Required. Any numeric expression for the top side of
the reference box for Module's graphics.

Comments: A module's reference box defines an area that will exactly
enclose all active graphics (graphics currently displayed) in
the module before any rotations and trajectories have been
applied. A module reference box, or MRB as it is some-
times called, is not a clipping region and objects can and
often will extend outside of their MRB as a result of applied
rotations or trajectories.
When a module is transformed, the transform is based on

the size of the module as determined by its reference box.
If the module switches states, the active graphics will
change, thereby changing the MRB for that module. The
result is that the transform will change such that graphic
objects will grow or shrink, so that the module's reference
box will always exactly fill the reference box of the trans-
form. In the case of graphics that have had a rotation or tra-
jectory applied to them, the graphics will be transformed
correctly, but the MRB may no longer contain the objects
in their modified positions.

This statement allows the user to set the reference box of a
module to a constant size, so that as graphics become act-
ive and inactive, the transform will not cause the graphic
objects to grow and shrink - since the transform is based
on the module's reference box, and this is now fixed, the
transform will be similarly fixed.

This call should be followed by a call to SaveModule, oth-
erwise the module reference box change will only be writ-
ten when the application containing this statement is
stopped (in the case of base VTScada code this means
when VTScada is shut down).
Great care should be exercised when using this statement,
since the module reference box for the module itself is
altered, not just the instance in which the statement is
called. All instances of this module will have their ref-
erence box permanently changed.

Example:

Init [
If 1 Main;
[
SetModuleRefBox(Self(), 0, 599, 799, 0);

]
]

This sets the current module's reference box to a fixed size equal to the
default window size.

SetModuleText

Description: Sets the module's .SRC file information.

Warning: This statement should be used by advanced users only
since irrevocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Advanced Module

Related to: AdjustCode | GetModuleText | GetOneParmText |
 GetParmText | GetStateText | GetTransitText |
 GetVariableText | SetOneParmText | SetParmText |
 SetStateText | SetTransitText | SetVariableText |
 TextOffset | TextSize

Format: SetModuleText(Module, Mode, Value)

Parameters:

Module

Required. Any expression for the module or object
value.

Mode

Required. Any numeric expression for the value to set

Mode Value to set

0 .SRC file name
Mode 0 cannot be used to make a mod-
ule have a .SRC file name in a different
directory than where the module
presently resides.

1 Character offset to beginning of module
definition

2 Size of module definition in characters

3 Character offset to first parameter
declaration

4 Character offset to first variable declar-
ation

5 Character offset to first state

6 Character offset to first child module
definition

7 Character offset to beginning of vari-
able declaration block

8 Size of variable declaration block in
characters

9 Character offset to beginning of para-
meter declaration block

10 Size of parameter declaration block in
characters

11 Full path and file name of .SRC file

Value

Required. Any expression for the value the module
information specified by Mode will be set to.

SetOneParmText

Description: Sets the text for one parameter of a function.

Warning: This statement should be used by advanced users only
since irrevocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Advanced Module

Related to: AdjustCode | GetModuleText | GetOneParmText |
 GetParmText | GetStateText | GetTransitText |
 GetVariableText | SetModuleText | SetParmText |
 SetStateText | SetTransitText | SetVariableText |
 TextOffset | TextSize

Format: SetOneParmText(Code, Index, Text)

Parameters:

Code

Required. Any expression for the code value of the
statement.

Index

Required. Any numeric expression for the parameter
number to change, beginning with 0.

Text

Required. Any text expression. The text in the .SRC file
for the parameter indicated by Code and Index will be
replaced by Text.

SetOPCData

Description: Sets an item value in the VTScada OPC Server.

Warning: For use by advanced programmers only

Returns: Boolean

Usage: Script Only.

Function Groups: Network

Related to: OPCServer

Format: SetOPCData(BranchHandle, ItemName, Value, Quality,
Timestamp)

Parameters:

BranchHandle

Required. A handle returned from an OPCServer call.

ItemName

Required. The internal name for the OPC item being
set. It does not necessarily correspond to the OPC item
ID. It does correspond to what the OPCGetIn-
ternalName callback module returns for a given OPC
item ID.

Value

Required. The new value of the item (numeric or text).

Quality

Required. The quality of the value. Should be one of
the following:

Quality Meaning

0x00 Bad

0x04 Bad - Configuration Error (The item
has been deleted)

0x40 Uncertain - Questionable quality

0xD8 Good but local override

0xC0 Good

0xC3 Good but constant value

Timestamp

Required. The UTC timestamp corresponding to the

value. Will default to the current time if Invalid.

Comments: Returns TRUE if the item being updated is currently
included in an OPC client group, or FALSE if not.

Example:

SetOPCData(Handle { Returned from an OPCServer call },
"myitem1",
23.1,
0xC0,
CurrentTime() + TimeZone(0));

This example updates the value of an OPC item with the internal name
"myitem1" to be 23.1, with good quality and the current time as the
timestamp.

SetOverride

Description: Allows the overriding of OpCodes with a specified script
module within a static module tree.

Warning: This statement should be used by advanced users only.
Effective use of this function requires a thorough under-
standing of VTScada programming.

Returns: Nothing

Usage: Script Only.

Function Groups: Advanced Module

Related to: GetOverrides

Format: SetOverride(TargetModule, OpCode, [Override, Recursive])

Parameters:

TargetModule

Required. Any expression that can be resolved to the
module value that will be modified.

OpCode

Required. Any numeric value that represents the built-
in function to replace.

Override

The module value that will be called in place of
OpCode. If invalid or missing, any existing overrides of
OpCode in TargetModule will be removed.

Recursive

Required. If true, the OpCode will be replaced with
calls to the override function in all of the child modules
of the target module. Otherwise, only the target mod-
ule will be altered. Defaults to true.

Comments: Adds the ability to override a built-in function inside a mod-
ule with a call to a different module. The purpose of this
feature is to help with testing of modules that use time,
streams, etc. so that these functions can be overridden
with more controllable inputs.

SetParameter

Description: Sets a parameter in a statement.

Warning: This statement should be used by advanced users only
since irrevocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Advanced Module

Related to:

Format: SetParameter(Statement, ParmNum, ParmType, Value)

Parameters:

Statement

Required. Any expression for the statement value. May
be a code value or a function value.

ParmNum

Required. Any numeric expression for the parameter

number to change, beginning with 0.

ParmType

Required. Any numeric expression for the VTScada
Value Types - Numeric Reference of the new para-
meter.

Value

Required. Any expression for the new parameter’s
value.

Comments: This statement is used to modify the code for a function.

SetParmText

Description: Sets the text for the parameters of a function.

Warning: This statement should be used by advanced users only
since irrevocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Advanced Module

Related to: AdjustCode | GetModuleText | GetOneParmText |
 GetParmText | GetStateText | GetTransitText |
 GetVariableText | SetModuleText | SetOneParmText |
 SetStateText | SetTransitText | SetVariableText |
 TextOffset | TextSize

Format: SetParmText(Code, Text)

Parameters:

Code

Required. Any expression for the code value of the
statement.

Text

Required. Any text expression. The text in the .SRC file
for the parameters of Code will be replaced by Text.

Comments: None

SetParserParm

Description: Sets the value for the last parameter on the parser stack
and returns its own error code.

Warning: This statement should be used by advanced users only
since irrevocable alteration of your application may occur.

Returns: Numeric error code

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications

Related to: Compile

Format: SetParserParm(ParserStack, OpCode, Value, Offset)

Parameters:

ParserStack

Required. Any expression for the parser stack value
returned by the compiler.

OpCode

Required. Any numeric expression for the type of para-
meter to set as given by the following table

Opcode Parameter Type

0 Integer

1 Double

2 Text

3 Variable

Value

Required. Any expression. It will be evaluated as the
type specified by Opcode.

Offset

Required. Any numeric expression for the number of
characters read from the stream at this point (i.e. the
value returned in the last parameter of the Compile
function).

Comments: The return value is the error code for this function or 0 if
no error.

SetRefRect

Description: Sets the first four constant parameters of a layered graphic
statement.

Warning: This statement should be used by advanced users only
since irrevocable alteration of your application may occur.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Graphics

Related to:

Format: SetRefRect(CodePointer, Left, Bottom, Right, Top)

Parameters:

CodePointer

Required. Any expression for the code pointer value
which identifies the graphics statement.

Left

Required. Any numeric expression for the left side
coordinate.

Bottom

Required. Any numeric expression for the bottom side
coordinate.

Right

Required. Any numeric expression for the right side
coordinate.

Top

Required. Any numeric expression for the top side
coordinate.

Comments: This statement affects the .SRC file as well.

SetRemoteValue

(RPC Manager Library)

Description: This subroutine sets the specified variable within an applic-
ation instance on a workstation to the specified value.
Subroutine call only.

Returns: Nothing

Usage: Script Only.

Function Groups: Network

Related to: ConnectToMachine | DisconnectFromMachine |
 GetServer | GetServersListed | GetStatus | IsClient |
 IsPotentialServer | IsPrimaryServer | Register (RPC Man-
ager) | Send

Format: \RPCManager\SetRemoteValue(VariableScope, Variable,
Value, Name [, OptGUID])

Parameters:

VariableScope

Required. The scope in which to find the variable.

Variable

Required. The name of the variable.

Value

Required. The value to set for the variable. Subject to
the restriction of the type of values that can be set via
RPC.

Name

Required. Any of the names or IPs by which the work-

station is known to the RPC Manager.

OptGUID

Any optional parameter that provides the GUID of the
application in which the variable is to be set. The
default is the application to which the caller belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
If the 16-byte binary format of the GUID is not known, the
GetGUID function may be used to obtain it.

Example:

If 1 Main;
[
\RPCManager\SetRemoteValue("\" { root of app context },
"DispMgrFullScreen" { var name },
1 { value }, "TestMachine");

]

This will cause the variable (flag) DispMgrFullScreen, which is found in
the root scope of the application, to be set to 1 on the machine called
TestMachine.

Related Information:
Refer also to "RPC Manager Service" for a listing of Service Control Meth-
ods, RPC Methods, and Deprecated RPC Methods.

SetReturnValue

Description: Sets the return value of a specified object if the object is
not currently running a Return() statement in steady state.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Basic Module

Related to: HasReturnStatement

Format: SetReturnValue(Object, Value)

Parameters:

Object

Required. A reference to the object whose return value
is to be changed.

Value

Required. The new return value.

Comments: Returns 1 if successful, 0 on failure, or Invalid if the first
parameter cannot be resolved to an object.

SetShelved

(Alarm Manager module)

Description: AlarmManager plug-in, that handles the shelving and
unshelving of alarms.

Returns: Nothing

Usage: Script Only.

Function Groups: Alarm Manager

Related to: IsShelved

Format: \AlarmManager\SetShelved(AlarmName, Shelve[,
ExpiryTime, Timestamp, AccountID, Device, MachineID]);

Parameters:

AlarmName

Required text. The name of the alarm to be shelved.

Shelve

Required. Boolean that indicates whether to shelve
(TRUE) or unshelve (FALSE) the alarm.

ExpiryTime

Optional. The UTC timestamp for when the alarm
should automatically unshelve.

Timestamp

Optional. The UTC timestamp of this event. Defaults to
now.

AccountID

Optional. ID of the user who initiated this event.
Defaults to the user currently logged on at the work-
station.

Device

Optional. The name of the client device calling this
function.

MachineID

Optional. The machine ID of the workstation calling
this function.

Comments:

Examples:

Code\AlarmManager\SetShelved(AlarmName, TRUE, CurrentTime(1) + 300);

SetStateText

Description Sets the information about the text of a state in a .SRC file.

Warning This statement should be used by advanced users only
since irrevocable alteration of your application may occur.

Returns Nothing

Usage Script or steady state.

Function Groups Compilation and On-Line Modifications, States

Related to: AdjustCode | GetModuleText | GetOneParmText |
 GetParmText | GetStateText | GetTransitText |

 GetVariableText | SetModuleText | SetOneParmText |
 SetParmText | SetTransitText | SetVariableText |
 TextOffset | TextSize

Format: SetStateText(State, Mode, Value)

Parameters

State

Required. Any expression for the code value of the
state.

Mode

Required. Any numeric expression for the parameter
to set in the state

Mode Parameter to set

0 Character offset to beginning of state

1 Size of state text in characters

2 Character offset to first statement text

Value

Required. Any numeric expression giving the
new value (as determined by Mode) for the state.

Comments:
None

SetSyncComplete

(RPC Manager Library)

Description: Informs RPC Manager that service synchronization is com-
plete as far as the local service instance is concerned.
Subroutine call only.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Network

Related to:

Format: \RPCManager\SetSyncComplete(Service [, OptGUID,
Value]);

Parameters:

Service

Required. A name by which the service is known.

OptGUID

An optional parameter indicating the GUID of the
application in which the service instance is located.
The default is the application to which the caller
belongs.

Value

An optional Boolean that will indicate the completion
state (1 default).

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.

Related Information:
See: "Client Changes" in the VTScada Programmer's Guide.

SetTransfer

Description: Sets the destination for an action.

Warning: This statement should be used by advanced users only
since irrevocable alteration of your application may occur.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, States

Related to:

Format: SetTransfer(Action, Destination)

Parameters:

Action

Required. Any expression for the code value of the
action.

Destination

Required. Any expression for the code value of the des-
tination state.

Comments: none

SetTransitText

Description: Sets the information about the document file definition of
an action (predicate).

Warning: This statement should be used by advanced users only
since irrevocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications

Related to: AdjustCode | GetModuleText | GetOneParmText |
 GetParmText | GetStateText | GetTransitText |
 GetVariableText | SetModuleText | SetOneParmText |
 SetParmText | SetStateText | SetVariableText | TextOffset
| TextSize

Format: SetTransitText(Action, Mode, Value)

Parameters:

Action

Required. Any expression for the code value of the
action. This corresponds to value type VTScada Value
Types - Numeric Reference.

Mode

Required. Any numeric expression for the parameter
to set in the action:

Mode Parameter

0 Script size in characters

1 Character offset of first script state-
ment

2 Trigger size in characters

3 Character offset to trigger

4 Destination size in characters

5 Character offset to destination

Value

Required. Any numeric expression giving the new
value for the parameter.

Comments: This statement may only appear in a script.

SetVariableClass

Description: Sets the class number of a variable and returns its previous
class number.

Returns: Numeric

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Variable

Related to: VariableClass

Format: SetVariableClass(Variable, Class)

Parameters:

Variable

Required. Any expression for the Variable to set.

Class

Required. Any numeric expression for the class. It
must be in the range of 0 to 65535.

Comments: The class number for a variable defaults to 0.

Example:

If ! classSetFlag;
[
SetVariableClass(FindVariable("newVar", Self(), 0, 1), 20);
classSetFlag = 1;

]

This sets the class of variable newVar to 20.

SetVariableText

Description: Sets information about the document file definition of a
module.

Warning: This statement should be used by advanced users only
since irrevocable alteration of your application may occur.

Returns: Nothing

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, Variable

Related to: AdjustCode | GetModuleText | GetOneParmText |
 GetParmText | GetStateText | GetTransitText |
 GetVariableText | GetTransitText | GetVariableText |
 SetModuleText | SetOneParmText | SetParmText |
 SetStateText | SetTransitText | TextOffset | TextSize

Format: SetVariableText(Variable, Mode, Value)

Parameters:

Variable

Required. Any expression for the Variable value.

Mode

Required. Any numeric expression for the variable to
set:

Mode Expression Variable

0 Character offset to variable declar-
ation

1 Variable declaration size in characters

Value

Required. Any numeric expression giving the new
value for the variable.

SetVariableType

Description Sets the data type for the variable, so that only values of
that data type can be stored in the variable.

Warning This statement should be used by advanced users only.

Returns Nothing

Usage Script Only.

Function Groups Compilation and On-Line Modifications, Variable

Related to: GetVariableType | CrossReference

Format: SetVariableType(Variable, Value)

Parameters

Variable

Required. A Variable handle, such as would be
returned from the FindVariable or AddVariable func-
tions.

Value

Required. The type that values put into this variable
should be cast to.

Comments Casts the variable’s value to the given type. If the cast can-
not be performed, the variable’s type will be set to Invalid.

The implementation of this function is very similar to
SetVarMetadata.

SetVarMetadata

Description: Every variable object contains an embedded value. This
function is used to set those values.

Warning: This statement should be used by advanced users only.

Returns: Nothing

Usage: Script Only.

Function Groups: Dictionary

Related to: GetVarMetadata | FindVariable | AddVariable

Format: SetVarMetadata(Variable, Value)

Parameters:

Variable

Required. A Variable handle, such as would be
returned from the FindVariable or AddVariable func-
tions.

Value

Required. Any value to store within the variable’s
metadata.

Comments: Commonly used in conjunction with SetVarMetadata,
FindVariable or AddVariable. Note that type data for each
variable is stored within the variable using metadata.

Example:

<
TestMod
[
X;
Y;
Var;

]
Main [
If ! Valid(X);

[
X = "This is the value of X"
Var = FindVariable("X", Self(), 0, 0);
SetVarMetadata(Var, "This is the metadata in variable X");
Y = GetVarMetadata(Var);

]
ZText(50, 100, Concat("X: ", X), 14, 0);
ZText(50, 120, Concat("Y: ", Y), 14, 0);

]
>

SetVicParms

Description: Sets parameters for the VTScada Internet Client.

Returns: Nothing

Usage: Script Only.

Function Groups: VTScada Internet Client

Related to:

Format: SetVicParms(ReadTimeout, SessionTimeout, Mode[,
AllowedOrigins])

Parameters:

ReadTimeout

Required. This is the length of time in seconds that the
client will wait for the server to respond. Has a min-
imum of 5 seconds and a default of 15.

SessionTimeout

Required. This is the length of time in seconds that the
server will wait for the client to respond. Has a min-
imum of 10 and a default of 60.

Mode

Required. VIC connection mode values are as follows
(Defaults to 0)

Mode Meaning

0 legacy

1 priority

2 sticky

AllowedOrigins

Optional. An array of the names of possible hosts that
Anywhere clients will connect from. The VIC server will
not communicate with Anywhere clients running from
hosts not in that array.

Comments: This module returns 1 if the parameters were set or
Invalid if not.
Note that the changes made by this statement do
not affect current VTScada Internet Connections.
Only new connections will use the changed para-
meters. This statement is used internally by the
VTScada System layer. Any changes made by this
statement will be overwritten by the VTScada System
layer on startup of the VTScada System layer and
upon change of any setting in the Internet Client dia-
log.

Setting either the ReadTimeout or the Ses-
sionTimeout to values outside the recommended
guidelines can have unpredictable effects on the
ability of clients to maintain a reliable com-
munication session with the server.
For the Anywhere Client, all entries in the server list
are automatically added to the array of AllowedOri-
gins. Additional hosts may be added by specifying

HostName = 1 in the [Clients-Addi-
tionalAllowedOrigins] section of Setup.INI.

SetWSDL

(System Library)

Description: Connects a Realm with a WSDL file and a set of VTScada
modules in order to enable a web service interface.

Returns Numeric (0 for success, 1 for failure)

Usage: Script Only.

Function Groups: XML

Related to: RemWSDL | XMLProcessor | XMLAddSchema | XMLParse
| XMLWrite

Format: \System\Webservice\SetWSDL(WSDLFilePath, Realm, CallS-
cope, Service[, pResponse, XSDFileName, WSDr-
vrVarName])

Parameters:

WSDL File Path

Required. This is a file path that indicates where the
WSDL file to be used for this service is located. The file
path must be encoded in URL format. Only one WSDL
file can be declared and it must be passed in the first
parameter.

Realm

Required. The name of the VTScada Realm which will
be used to expose the web service. Only one Realm
can be specified and it must be passed as the second
parameter.

Call Scope

Required. An instance (object) of the module in which
all of the modules to be called are nested. This
provides the scope for the remote module calls by the

WebService engine. Only one call scope object can be
specified and it must be passed as the third parameter.

Service

Required. The name of the web service to be presented
as portrayed in the WSDL's Service tag. This is a string
that must match the "name" attribute of the rep-
resentative Service tag and tells the SetWSDL function
where to start searching for data.

pResponse

Optional. A pointer to a variable that will be loaded
with the error description should SetWSDL fail. This
description takes the form of a single human readable
string. The variable will be set to invalid if no error
occurs.

XSDFileName

Optional text. File name for the output XSD file. If not
specified, a temporary file is used.

WSDrvrVarName

Optional text. Name of variable to be added into the
call scope. Useful if setting multiple WSDL/Realms into
same scope.

Comments: Linkage is first applied between the WSDL file and
the VTScada modules by generating an XML schema
using the WSDL and the parameters provided to this
function. The Realm's address is then registered
with the VTScada HTTP server to connect the whole
thing to the network.
Inclusion of the parameter, pResponse is recom-
mended, for the sake of obtaining error messages
when debugging.

Example:

Init [
 If Watch(1);
[

 ServiceActive = \System\WebService\SetWSDL(
 "file://C:/vts/StationExample/TagQueryServices.wsdl",
 "QueryServicesRealm",
 Self,
 "TagQueryServices",

&ErrMsg);
]
]

SetXLoc

Description: Sets the X screen location of the locator (mouse).

Returns: Nothing

Usage: Script or steady state.

Function Groups: Graphics, Locator

Related to: SetYLoc | XLoc | YLoc

Format: SetXLoc(X)

Parameters:

X

Required. Any numeric expression giving the new X
coordinate of the locator (mouse) on the screen.

Comments: This statement has no effect if the locator is not installed.

Example:

If XLoc() < 400;
[
SetXLoc(400);

]

This action keeps the cursor in the right 400 pixels of the screen.

SetYLoc

Description: Sets the Y screen location of the locator (mouse).

Returns: Nothing

Usage: Script or steady state.

Function Groups: Graphics, Locator

Related to: SetXLoc | XLoc | YLoc

Format: SetYLoc(Y)

Parameters:

Y

Required. Any numeric expression giving the new Y
coordinate of the locator (mouse) on the screen.

Comments: This statement has no effect if the locator is not installed.

Example:

If YLoc() > 300;
[
SetYLoc(300);

]

This action keeps the cursor in the top 300 pixels of the screen.

ShiftStream

Description: Inserts or deletes characters from a stream and returns its
own error code.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Stream and Socket

Related to: Seek | StreamEnd

Format: ShiftStream(Stream, Pos, Offset)

Parameters:

Stream

Required. Any expression giving the stream to shift.

Pos

Required. Any numeric expression giving the stream
position to seek to before beginning the shift.

Offset

Required. Any numeric expression giving the number
of characters to insert. If this is negative, characters
will be deleted.

Comments: The returned value is true if successful, false if not.

ShowLexicon

(VoiceTalk Module)

Description: Displays a SAPI text-to-speech engine lexicon dialog to per-
mit modification of pronunciation. This function will return
immediately, and the lexicon window will be managed in
its own thread, preventing the calling thread from being
blocked.

Returns: Nothing

Usage: Script Only.

Function Groups: Speech and Sound

Related to: Configure | GetDevices | GetVoices | Reset | Speak |
 VoiceTalk

Format: VoiceTalkStream\ShowLexicon([Title])

Parameters:

VoiceTalkStream

Required. A speech stream returned from VoiceTalk.

Title

An optional parameter that is any text expression to be
displayed in the title bar of the dialog box.

Comments: This function spawns a new thread to show the lexicon, so
it will not block other statements from executing.
The pronunciations are stored in a file known as a "Lex-

icon". This file is stored in the VTScada directory. It is there-
fore available to all users and all VTScada applications.
Changes made will affect all instances of VTScada applic-
ations that use speech.
Each time this window is opened, the lexicon is refreshed
from disk. When the dialog is closed, the lexicon is written
back to disk.
On any single installation of VTScada, only one lexicon dia-
log will be displayed at any time, regardless of how many
applications support speech.
Any word may be entered into the lexicon with a custom
pronunciation. A word is any set of letters with no
whitespace (i.e. no spaces or tabs) within it. Words are
case-sensitive. For example, if the word "VTS" is entered
with the phonetic spelling "V T S", the way the word "vts"
will sound will not be affected.

Example:

sHandle = \VoiceTalk();
If Valid(sHandle) && ZButton(10, 40, 110, 10, "Pronounce", 1);
[
sHandle\ShowLexicon("Modify Pronunciation");

]

When the button is pressed, the lexicon dialog for the text-to-speech
engine open on the SAPI text-to-speech stream will be displayed.

ShowPage

Description: When called with a Page Name, will cause that page to be
displayed in the caller's display session context.

Returns: Object reference

Usage: Script Only.

Function Groups: Graphics

Related to:

Format: \Code\DisplayManager\ShowPage(PageName[, ForceWin,

Parm0, ... Parm99]);

Parameters:

PageName

Required. Any text expression for the page to show.

ForceWin

Optional. Any Boolean value, which if valid and true,
requests a new window for the page.

Parm0 through Parm99

Optional. Any parameters to be passed to the page as
it is opened.

Comments: The page's window flags will have priority over the
value of ForceWin. A page configured to never open
in a pop-up won't, even though you set ForceWin to
TRUE.
Returns the window object that calls the page.

Examples:

If IconPressed[#AlarmIcon];
[
{ Alarm icon -- switch to alarm page if clicked }
\DisplayManager\ShowPage("AlarmPage");

]

SilenceSound

(Alarm Manager module)

Description This subroutine will silence the current sounding alarm.

Returns Numeric

Usage Script Only.

Function Groups Alarm

Related to:

Format: \AlarmManager\SilenceSound();

Parameters None

Comments The SilenceSound subroutine always returns "1".
The application property, AlmSilenceAllow, must be set to
a numeric value for the mute setting to be communicated
to all computers on the network. Any workstation will set
the silence flag that has an AlmSilenceAllow value greater
than or equal to the value set on the workstation executing
the code.

SimpleOpChange

Description: Immediately deploys a single parameter change on a
single tag without disturbing any other tag

Returns: Object

Usage: Script Only.

Function Groups: Configuration

Related to: OpChange

Format: SimpleOpChange(TagName, NewValue, ParameterName)

Parameters:

TagName

Required. The full name of the tag, in which the para-
meter will be changed.

NewValue

Required. The new value for the parameter.

ParameterName

Required. The name of the parameter that is to be
changed.

Comments: While a direct call to OpChange is more efficient (it allows,
for example, more than one parameter to be changed in
the same operation), this function has a parameter set
more like the older calls. The object value being returned

will go invalid when the asynchronous operational change
is complete.
This function is declared in the VTS Library layer.

SimulateMouse

Description: Sets the pointer location and then sends a button press
with modifiers such as Ctrl, Shift or Alt.

Returns:

Usage: Script Only.

Function Groups: Graphics,

Related to: SetXLoc| SetYLoc

Format: SimulateMouse(Root, mouseX, mouseY, MouseButtons,
ModifierKeys)

Parameters:

Root

Required. The window object within which the mouse
should point.

mouseX

Required. Any numeric expression for the horizontal
location of the mouse pointer

mouseY

Required. Any numeric expression for the vertical loc-
ation of the mouse pointer.

MouseButtons

Required. Any numeric expression for the
mouse button(s) to be simulated.

Bit Value Mouse Button

-- 0 no buttons

2^0 1 left down

2^1 2 right down

2^2 4 middle down

2^6 64 release any buttons, as specified above,
in the same call to SimulateMouse()

2^7 128 delete key

ModifierKeys

Required. Any numeric expression for the key-
board modifier to be applied to the mouse click.
See comments.

Bit Value Modifier Key

-- 0 no key

2^0 1 shift

2^1 2 control

2^2 4 Alt

2^3 8 Left

2^4 16 Right

2^5 32 Up

2^6 64 Down

Comments: Similar to SetXLoc and SetYLoc, but all in one, plus
mouse buttons and modifier keys. Used primarily
for testing.
Only a single modifier can be specified in any call.
The key is not released automatically, but rather is
release when called again with bit 15 (0x8000) set.
For example, SimulateMouse(x, x, 1) sets shift and
SimulateMouse(x, x, 0x8001) releases shift.

Examples:

...
mouseX = 100;
mouseY = 150;
DblClick(mouseX, mouseY);

...
<
{======================== DblClick ============================}
{ Simulates a double click of the left mouse button }
{==}
DblClick
(
mouseX { Left Mouse Coord };
mouseY { Top Mouse Coord };
)
[
 Done = FALSE;
 Phase = 0;
 Constant #Btn = 0x01; { Left click }
 Constant #Btn_Up = 0x40; { release button }
 Constant #Key = 0x00; { No keyboard modifier }
]
First [
 If Timeout(!Done, 0.1);
[

 Case(Phase,
{ Case 0 } Execute(
{ Does first mouse click }

 SimulateMouse(Root, mouseX, mouseY, #Btn, #No_Keys);
 SimulateMouse(Root, mouseX, mouseY, #Btn + #Btn_Up, #No_
Keys);
),

{ Case 1 } Execute(
{ does second mouse click }

 SimulateMouse(Root, mouseX, mouseY, #Btn, #No_Keys);
 SimulateMouse(Root, mouseX, mouseY, #Btn + #Btn_Up, #No_
Keys);
),

{ Case 2 }
 Result = TRUE;
);
 Phase++;
]
]
>

Sin

Description: Returns the trigonometric sine of an angle in radians.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Trigonometric Math

Related to: ACos | ASin | ATan | Cos | Tan

Format: Sin(Angle)

Parameters:

Angle

Required. Any numeric expression giving the angle in
radians.

Comments: The returned value is a number in the range of -1.00 to
+1.00. To convert an angle from degrees to radians mul-
tiply by \pi / 180 or (approximately) 0.0174533.

Example:

x = Sin(270 * \pi / 180);

The value of x will be - 1.

SizeWindow

Description: Changes the visible size of a window on the screen.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Window

Related to: MoveWindow | WindowOptions

Format: SizeWindow(Win, Width, Height[, VirtualWidth, Vir-
tualHeight])

Parameters:

Win

Required. Any expression which gives an object value
contained in the window to size.

Width

Required. Any numeric expression that gives the new
width of the window.

Height

Required. Any numeric expression that gives the new
height of the window.

VirtualWidth

Any numeric expression that gives the width inside the
new window in user coordinates (which may be pixels).
If VirtualWidth is larger than the client area specified, a
horizontal scroll bar appears.

VirtualHeight

Any numeric expression that gives the height inside
the new window in user coordinates (which may be
pixels). If VirtualHeight is larger than the client area
specified, a vertical scroll bar appears.

Comments: This statement will change the size of the window to the
size given. Any objects drawn in the window are not scaled
- this resizing simply changes the area displayed. Vertical
and horizontal scroll bars will be added to the window's
borders so that the entire area can be viewed.
If either VirtualWidth or VirtualHeight are specified, then
both must be provided. Attempting to set one without the
other will cause the one you set to be ignored. If these para-
meters are omitted, the virtual size of the window will be
changed to whatever value is in the Width and Height para-
meters.

Example:

If ZButton(25, 50, 145, 100, "Resize", 1);
[
SizeWindow(Self(), 300, 500);

]

This will display a button in the upper left corner of the window that
when pressed, resizes the window to be 300 pixels wide by 500 pixels
high.

Slay

Description: Stops a launched module, and possibly any parent mod-
ules.

Returns: Nothing

Usage: Script Only.

Function Groups: Basic Module

Related to: Stop | WindowClose

Format: Slay([Object, KillParents])

Parameters:

Object

An optional parameter which is any object expression
for the launched module. The default value of Object is
Self().

KillParents

An optional logical expression for the action to take. If
true, Slay will attempt to stop parents as well. If any par-
ent libraries are not launched, the Slay statement won't
search for further modules instances. The default
value for KillParents is 0.

Comments: When this statement is encountered in a script, the module
is immediately stopped. Slay and Return are the only state-
ments that will cause a script to terminate mid-way
through its execution. Others like ForceState will not.
Slay() is the same as Slay(Self(), 0).

Example:

If ZButton(20, 50, 120, 70, "Motor On/Off", 1);
[
IfElse(!motorOn, Execute(

motorOn = 1,
motorPtr = RunMotor() { Module launched implicitly }),

{ else } Execute(
motorOn = 0,
Slay(motorPtr, 0)));

]

When the button is selected, the statement in the script will check if the
motor is running or not, and if it isn't, will launch the module that starts

it. Notice that the module is launched implicitly because it is called from
inside of a script. If that module is already running it will stopped by the
Slay .

SocketAttribs

Description: Returns information about a TCP/IP socket's attributes.

Returns: Text or Buffer (see comments)

Usage: Script Only.

Function Groups: Stream and Socket

Related to: ClientSocket | CloseStream | ServerSocket |
 SocketAttribs | SocketServerEnd | SocketServerStart |
 SocketWait | SRead | StreamEnd | SWrite | TCPIPReset

Format: SocketAttribs(Stream, Option)

Parameters:

Stream

Required. Any stream expression for the socket. If this
isn't a socket stream, invalid is returned.

Option

Required. Any numeric expression for the desired
attribute:

Option Attribute

0 Remote (text) workstation name

1 Remote port number

2 Remote workstation IP

3 Local machine name

4 Local machine IP

5 Number of bytes in the output buffer

6 Remote (text) workstation name (buf-
fered)

7 Remote workstation IP (buffered)

8 Local machine name (buffered)

9 Local machine IP (buffered)

10 Remote machine Name (for incoming
UDP datagrams)

11 Remote Port (for incoming UDP data-
grams)

12 Remote IP (for incoming UDP data-
grams)

13 Activate optional filters specified in Cli-
entSocket()

14 UDP local port number

15 Socket type (0 TCP, 1 UDP)

Comments: The return value for options 0 and 6 is the machine
name stored as a text value. If the name cannot be
found it will return the internet address of the
socket as a text string.

Options 6 through 9 differ from options 0 and 2
through 4 only in the fact that they are buffered.
This means that an initial inquiry will be made to
the operating system and stored in a buffer, and
after that, all inquiries will be handed the value
stored in the buffer. This makes options 6 through
9 significantly faster than the other options, how-
ever, any online changes to the workstation's attrib-
utes will be not be discovered by options 6 to 9,
only 0 and 2 to 4 would return the new values.
If using option 13 to activate optional filters, note
that (as of VTScada version 11) TLS/SSL is the only
one supported.

SocketPingSetup

Description: Starts the transmission of automatic keep-alive "ping" mes-
sages through a socket stream.

Returns: Nothing

Usage: Script Only.

Function Groups: Stream and Socket

Related to: BuffStream | ServerSocket | ClientSocket

Format: SocketPingSetup(SocketStream, PingStream, TimeInterval)

Parameters:

SocketStream

Required. Any valid socket stream, typically obtained
from a ClientSocket or ServerSocket.

PingStream

Required. A stream which contains the "ping" packet to
be transmitted.

TimeInterval

Required. The interval, in seconds, between trans-
missions.

Comments: SocketPingSetup is used to enable the regular transmission
of a small packet (a "ping") down a socket stream. The ping
is only transmitted if there has been no other transmission
for the specified time interval. Pinging continues auto-
matically until the socket stream is closed. This function is
useful for keeping a connection open which may be closed
by the computer operating system due to inactivity.

Examples:

Init [
If 1 Wait;
[
Socket = ClientSocket(0, TargetMachine, Port, TransmitLen,

ReceiveLen, 0);
]

]
Wait [
If PickValid(ValueType(Socket == 8 {stream}, 0) Open;
[
SocketPingSetup(Socket, BuffStream("ping"), 10);

]
If PickValid(ValueType(Socket != 8{stream}), 0) Retry;

]
Open [
.
.
.

]

This will open a socket stream and, once the stream is open, enable the
automatic transmission of the text message "ping" after every 10
seconds of no other transmission being sent.

SocketServerEnd

Description: Ends a TCP/IP socket server.

Returns: Nothing

Usage: Script Only.

Function Groups: Stream and Socket

Related to: ClientSocket | CloseStream | ServerSocket |
 SocketAttribs | SocketServerStart | SocketWait | SRead |
 SWrite | TCPIPReset

Format: SocketServerEnd(Handle)

Parameters:

Handle

Required. Any numeric expression for the socket
server handle as returned from a SocketServerStart.

SocketServerStart

Description: Starts a TCP/IP or UDP socket server and returns a handle
to it.

Returns: Handle

Usage: Script Only.

Function Groups: Stream and Socket

Related to: ClientSocket | CloseStream | ServerSocket |
 SocketAttribs | SocketServerEnd | SocketWait | SRead |
 SWrite | TCPIPReset

Format: SocketServerStart(Family, Port, TransmitLen, ReceiveLen,
NoDelay[, ProtocolFilter])

Parameters:

Family

Required. Any numeric expression for the protocol
family

Family Description

0 TCP/IP

1 UDP

Port

Required. Any numeric expression for the port number

to offer.

TransmitLen

Required. Any numeric expression for the number of
bytes to buffer when transmitting. The value must be a
signed long integer, where only positive values are use-
ful.
If the application is running on a operating system of
Windows 7 / Server 2008 R2, or later, and the value is
set to zero, then Windows will manage the appropriate
buffer size for the link speed and latency.
If you set the buffer size, the value should match or be
larger than the largest message that is expected.
A high bandwidth / high latency link will require a lar-
ger size in order to achieve optimum efficiency, but
the exact size can be determined only by empirical test-
ing..

ReceiveLen

Required. Any numeric expression for the number of
bytes that VTScada will buffer internally before it stops
reading from WinSock. Additional buffering is handled
by WinSock.
The value must be a signed long integer, where only
positive values are useful.
If the application is running on a operating system of
Windows 7 / Server 2008 R2, or later, and the value is
set to zero, then Windows will manage the appropriate
buffer size for the link speed and latency.
If you set the buffer size, the value should match or be
larger than the largest message that is expected.
A high bandwidth / high latency link will require a lar-
ger size in order to achieve optimum efficiency, but
the exact size can be determined only by empirical test-
ing.

NoDelay

Required. Any logical expression. If true, anything writ-
ten to a socket started by this server will be flushed
immediately. If false, packets are coalesced into larger
packets to reduce network loading. This parameter
should normally be false.

ProtocolFilter

An optional array of 2-element text arrays. Each 2-ele-
ment array specifies a protocol which may connect to
the socket. Their order in the ProtocolFilter array
determines priority.
The first element in each array is the name of the pro-
tocol. The second contains the initialization string for
that protocol, if required. Empty string otherwise.
The available protocols are: "SSL", "VIC", "NULL" and
"PROXY".

Comments: If the parameters are all valid and the socket function fails
a negative error code is returned.
If the handle to the socket is orphaned, the equivalent to a
SocketServerEnd is performed
RecieveLen and NoDelay apply to streams created by
inbound connections (TCP) or datagrams (UDP), not to the
listener.
The handle returned can be used by the SocketWait or
SocketServerEnd functions.

SocketWait

Description: Wait for Socket Connect. This function returns true when a
client connects to a socket offered by a socket server.

Returns: Boolean

Usage: Script or steady state.

Function Groups: Stream and Socket

Related to: ClientSocket | CloseStream | ServerSocket |
 SocketAttribs | SocketServerEnd | SocketServerStart |

 SRead | SWrite | TCPIPReset

Format: SocketWait(Handle)

Parameters:

Handle

Required. Any numeric expression for the socket
server handle as returned from a SocketServerStart.

Comments: For a TCP connection, SocketWait triggers each time a new
inbound connection is made. For UDP, SocketWait triggers
each time a new datagram arrives, for which there is no
existing stream to store it in. A UDP datagram is stored in
an existing stream if it is from the same IP and if it is
received on the same port as the other datagrams in that
stream. The UDP stream can be empty (having been
drained) but still be regarded as ‘belonging’ to the IP that
instantiated the stream.

Sort

Description: Allows the sorting of an array subsection according to the
order of another array.

Returns: Nothing

Usage: Script Only.

Function Groups: Array

Related to: PlotXY | TextSearch | SortArray

Format: Sort(KeyArrayElem, SortArrayElem, N, Descending [,
TypeText, CaseInsensitive])

Parameters:

KeyArrayElem

Required. An element of the array to be used as the ref-
erence for the sort. This array is copied into temporary
memory space. The copy is then arranged in order

along with the SortArray, but the original copy of the
key array is left unchanged after the sort unless it is
the same array as SortArray.
If the key array contains text strings, the TypeText
parameter should be set to true (non-0) to enable
alphabetical ordering, otherwise each element will be
converted to a number before use as a sort key.

SortArrayElem

Required. Any array element giving the starting point
in the array for the reordering. The subscript for the
array may be any numeric expression. If processing a
multidimensional array, the usual rules apply to decide
which dimension should be used.
The new order for SortArray will be according to the
order of the ordered copy of KeyArray. The values in
this array may be of any type.

N

Required. Any numeric expression giving the number
of array elements to use in the sort. If this number is
greater than either of the two array sizes, the number
of elements used in the sort will be the lesser of the
two array sizes. The maximum value for N is the size
of the arrays.

Descending

Required. Any numeric expression that indicates the
ordering sequence to use in the sort. If it is true (non-
0), the sort will be in descending (decreasing) order. If
it is false (0), the sort will be in ascending (increasing)
order.

TypeText

Optional. A numeric expression that controls
the type of sort according to the following table.
Defaults to zero - numeric sorting.

TypeText Sort Performed

0 Numeric sort

1 Alphabetic sort

2 Tag hierarchy sort (Sorts tag names based on
hierarchy rather than using a pure alphabetic
sort.)

CaseInsensitive

An optional parameter that accepts any logical expres-
sion. If CaseInsensitive resolves to true (1), the key
array is treated as holding case-insensitive strings,
thus allowing the caller to sort alphabetically instead of
lexically. The default behavior is to sort case-sensitive
(lexical sort). This parameter is ignored if TypeText is
false (0).

Comments: Sort allows the re-ordering of a group of related arrays
according to the order of a key array. If KeyArray and
SortArray are the same array, the array is arranged in
order.

This statement performs a "partition sort", using an ele-
ment of the array as the dividing point, such that all other
elements are divided into those greater than and less than
the dividing element. Each partition is then recursively sor-
ted. As of VTS version 7.5, the first and middle elements of
the array are swapped, making the middle element the par-
titioning element. This has increased performance gains
for arrays whose sizes reach 100,000 or more elements.

This statement is useful when used with PlotXY. For
example, if there are two arrays, one having X-value and
the other Y-values, of 100 data values that need to be
viewed plotted against each other, the Sort statement
could re-order the arrays so that the X values increased

from left to right and the Y values stayed with their cor-
responding X values (see example).
The order of the statements is significant. If the sort of the
X array were done first, the sort of the Y array would have
no effect since the X array would already be in order. In
general, the key array should be sorted last.

The statement uses a minimum of eight bytes of tem-
porary memory for each numeric array element in the
sort, or more if the element has been declared to be text.
This means that at least 8 * N bytes of memory is required,
which may be of concern if N is large and the amount of
free memory is minimal.
Invalid array entries in the key array are grouped to the
end of the array.

Be aware that sorting is a relatively time-consuming oper-
ation. It should not be active during time-critical control,
etc.

Example:

If MatchKeys(2, "sort");
[
Sort(X[0], Y[0], 100, 0) { Sort the Y values first };
Sort(X[0], X[0], 100, 0) { Sort the X values };

]

The two arrays mentioned in the previous section are sorted in pre-
paration for plotting by the script, which is executed when the user types
in "sort" from the keyboard.

SortArray

Description: Sorts an array of arrays based upon the key information
provided by the second parameter. The array is sorted in-
place.

Returns: Nothing

Usage: Script Only.

Function Groups: Array

Related to: Sort

Format: SortArray(array, [control, start, end]);

Parameters:

Array

Required. The array to be sorted.
The array must contain values, each of which
must be either an array of simple values (num-
bers or text), or a record in the form of an array
itself.

Control

Optional. Sets the column to be sorted and the
type of sort to be performed. See the Examples
section of this topic.

\System\SortKeys Struct [
Column;
Type;
Descending;
];

Defaults to, Column: 0, Type: Numeric, Des-
cending: FALSE
Note that SortKeys is defined in the system lib-
rary, therefore must be preceded by \System\.

Start

Optional. The array index where sorting is to begin. If
not specified, array is sorted from the first element.

End

Optional. The last array element to sort. If not spe-
cified, array is sorted to the last element. No sorting
will be done if End comes before Start.

Comments: This function rapidly sorts vectors of records based
upon one or more keys that can be distributed
across the records.
The Array parameter cannot be a multi-dimensional
array. No sort will happen if you attempt to process
a multi-dimensional array.

The elements of SortKeys are as follows:
{0} Column. The field index where the key is located
within each record.
{1} Type:

0 => Numeric,
1 => Case insensitive text
2 => Case sensitive text or raw binary.

{2} Descending: TRUE to sort from greatest to least.
FALSE to sort from least to greatest.
The value in a field is cast to the selected Type for
the purposes of the sort, but is unchanged in the
resulting array.
The SortKeys parameter may be an array of SortKey
structures. In this case, the array is sorted by mul-
tiple keys simultaneously, with the first SortKeys ele-
ment representing the highest-priority key and so
on. This is shown in the third example.
Invalid Data[i][Column] values would be sorted to
the end (i.e. higher index values) regardless of the
value of Descending.

Examples:
Sort on column 0 of each element of the Data array in numeric ascending
order.

SortArray(Data);

Sort on column 0 case-insensitive, binary comparison, in ascending
order:

SortArray(Data, \System\SortKeys(0, 2, FALSE));

Sort on column 0 numerically in descending order as primary key and sec-
ondarily sort numerically on column 1 in ascending order

SortInfo = New(2);
SortInfo[0] = \System\SortKeys(0, 0, TRUE);
SortInfo[1] = 1;
SortArray(Data, SortInfo);

Sound

Description: Plays a multimedia sound file as installed in the operating
system.

Returns: Nothing

Usage: Script Only.

Function Groups: Speech and Sound

Related to: Beep | ModemDev | Play

Format: Sound(File, Option [, DevID])

Parameters:

File

Required. Any text expression giving the file name to
play. If the extension is omitted, the default extension
".WAV" is added. If an empty string is provided here,
then any currently playing sound is stopped.

Option

Required. Any numeric expression, which indicates
how to play the file. Option is found by adding
together numbers from the following table.

Option
Bit
No.

How to play file

1 0 Play asynchronously (don't wait)

2 1 Don't use default sound if file
missing

4 2 Reserved for future use

8 3 Loop the sound until next Sound
function executed

16 4 Don't stop any currently playing
sound

If Option is 0, VTScada will halt all execution
until the sound is finished (this isn't recom-
mended). Add 1 to avoid this.

DevID

An optional parameter. This parameter is required
when it is desired to play a sound through other than
the system default audio device. The function
ModemDev can return the identifier of the wave device
for a voice modem. If it is required to stop a sound
playing through a specific DevID, then the value
returned by the Sound function when the sound was
started must be given here.

Comments: This statement may only appear in a script.
When a sound is started using the DevID parameter, only
option value 8 is significant.
If a sound is started using the DevID parameter, then the
return value from the function is required in order to stop
that sound.

Examples:

Sound("TRAIN", 1);

This statement plays the sound file TRAIN.WAV on the system default
audio device.

Sound("", 1);

This statement stops any sound currently playing on the system default
audio device.

SoundHandle = Sound("Irritating Music", 8, ModemDev(MStream));

This statement plays the sound file IRRITATING MUSIC.WAV through the
audio channel of the modem whose open stream is MStream. The sound
will play until stopped.

Sound("", 0, SoundHandle);

This example stops the Irritating Music sound started by the previous
example

Spawn

Description: Runs another Windows™ program.

Returns: Nothing

Usage: Script Only.

Function Groups: Software and Hardware

Related to: DLL

Format: Spawn(Command)

Parameters:

Command

Required. The text string that will launch a pro-
gram. If the name of a file is provided, the pro-
gram associated with the given file extension
will be launched. Similarly, if a URL is provided,
a web browser will be launched.

Command should also contain any parameters
necessary for the execution of the program.
These parameters must be delimited from the
command and other parameters by one or more
space characters. If the command contains
spaces, the command must be surrounded in
double quote characters. (see examples).
If you wish to include environment variables in
your command, you must spawn the command
processor, CMD to run that command.

Comments: Using the Spawn statement does not stop the exe-
cution of VTScada.

Note: Within an Anywhere Client session, this func-
tion does nothing.

Example:

Spawn("C:\Test Code\RunMe.BAT 1 2");

will be interpreted as the command C:\Test with the parameters
Code\RunMe.BAT, 1 and 2.

Spawn("""C:\Test Code\RunMe.BAT"" 1 2");

will be interpreted as the command "C:\Test Code\RunMe.BAT" with the
parameters 1 and 2.

Spawn("cmd /c ""dir 2>&1 >%TEMP%\Dirlist.txt"" ");

will redirect the directory contents of the current folder to a file named
Dirlist.txt in the Windows temp folder, with errors (2) redirected to
stdout (&1).

Speak

(VoiceTalk Module)

Description: Executes on the speech thread to speak the supplied text
through a specified SAPI text-to-speech stream.

Returns: Nothing

Usage: Script Only.

Function Groups: Speech and Sound

Related to: Configure | GetDevices | GetVoices | Reset |
 ShowLexicon | VoiceTalk

Format: VoiceTalkStream\Speak(Text [, Flags])

Parameters:

VoiceTalkStream

Required. A speech stream returned from VoiceTalk
that you wish to speak the given phrase.

Text

Required. Any text expression that will be spoken on a
specified stream.

Flags

An optional parameter to specify speaking flags to the
stream. All text will be spoken asynchronously (i.e. the
function will not wait for the speech to complete speak-
ing). Flags can be used to specify other parsing of the
text. The values for Flags can be any combination of
the following:

Flags Meaning

0 Use default settings (speak asyn-
chronously)

1 Speak asynchronously.

2 Purge speaking queue before speaking
text. This cancels all pending and cur-
rent speech, and then immediately
begins speaking the new text.

4 Regard the Text parameter as a file-
name, and speak the contents of that
file.

8 Parse text for XML markup.

16 Do not parse text for XML markup.

32 Any XML state changes in the text will
persist across any future
VoiceTalk\Speak calls.

64 Punctuation characters should be
spoken (i.e. "Hello, there." would be
spoken as "Hello comma there period").

(As indicated above, an Invalid value, or a value
of "0" or "1" for the Flags parameter will have
the same result.)

Comments: This function returns the error code resulting from issuing

the command to the speech engine, or zero if no error was
encountered.
This function will execute and immediately return, sending
the text to the speech engine to be spoken asyn-
chronously. Asynchronous speech will not block the call-
ing thread. You can determine when a section of text has
completed speaking by inserting bookmarks into the text
that can then be watched for in the VoiceTalk Book-
markNum parameter.
Multiple VoiceTalk\Speak statements can be issued on
SAPI text-to-speech streams without blocking. The text
will be queued up and will be spoken in the order it is sub-
mitted. The text speech queue will be terminated imme-
diately if the SAPI text-to-speech stream is closed.
If speaking simultaneously on several streams, all to the
same output device, the thread that is currently speaking
will continue to do so until all its queued text has been
spoken, even if the other thread issues VoiceTalk\Speak
calls during this time.
The text string spoken can optionally contain embedded
"control tags" that affect the way that the text is spoken.
These control tags are in the form of embedded XML. For
example, <EMPH> and </EMPH> emphasizes the words
between the tags, and <BOOKMARK MARK="32"/> sets
the SAPI text-to-speech stream current bookmark number
to 32. In order for embedded XML to be parsed, either the
text stream must be enabled to process XML (by passing a
value for Flags that includes the value 8), or the text string
itself must begin with an angle bracket (<).
For a complete list of embedded control tags, please refer
to the Microsoft SAPI 5.1 speech documentation.

Example:

sHandle = \VoiceTalk();
If Valid(sHandle) && ZButton(10, 40, 110, 10, "Talk", 1);
[

sHandle\Speak("<P>Mary had a <EMPH>little</EMPH> lamb</P>");
]

This will speak the supplied text with emphasis on the word "little".

sHandle = \VoiceTalk();
If Valid(sHandle) && Value < 0 Warning;
[
sHandle\Speak("The value has fallen below zero", 1+2 {synchronous &

purge});
]

This will immediately stop any current speech, begin speaking the warn-
ing to the user, and continue on right away to the state Warning.

SpeakToFile

(VoiceTalk Module)

Description: Executes on the speech thread to speak the supplied text
to a .wav format audio file.

Returns: Nothing

Usage: Script Only.

Function Groups: Speech and Sound, File I/O

Related to: Configure | GetDevices | GetVoices | Reset |
 ShowLexicon | Speak | VoiceTalk

Format: VoiceTalkStream\SpeakToFile(Phrase, Flags, Filename,
Quality[, Result])

Parameters:

VoiceTalkStream

Required. A speech stream returned from VoiceTalk
that you wish to speak the given phrase.

Phrase

Required. Any text expression that will be spoken on a
specified stream.

Flags

Required. A parameter to specify speaking flags to the
stream. All text will be spoken asynchronously (i.e. the
function will not wait for the speech to complete speak-
ing). Flags can be used to specify other parsing of the
text. The values for Flags can be any combination of
the following

Flags Meaning

0 Use default settings (speak asyn-
chronously)

1 Speak asynchronously.

2 Purge speaking queue before speaking
text. This cancels all pending and cur-
rent speech, and then immediately
begins speaking the new text.

4 Regard the Text parameter as a file-
name, and speak the contents of that
file.

8 Parse text for XML markup.

16 Do not parse text for XML markup.

32 Any XML state changes in the text will
persist across any future
VoiceTalk\Speak calls.

64 Punctuation characters should be
spoken (i.e. "Hello, there." would be
spoken as "Hello comma there period").

As indicated above, an Invalid value, or a value
of "0" or "1" for the Flags parameter will have
the same result.

Filename

Required. The name of the .wav file to speak into (e.g.

"c:\folder\file.wav")

Quality

Qual-
ity

Format
Qual-
ity

Format

-1 SAFTdefault

4 SAFT8kHz8BitM-
ono

5 SAFT8kHz8BitSte-
reo

6 SAFT8kHz16Bit-
Mono

7 SAFT8kHz16BitSt-
ereo

8 SAFT11kHz8Bit-
Mono

9 SAFT11kHz8BitSt-
ereo

10 SAFT11kHz16Bit-
Mono

11 SAFT11kHz16Bit-
Stereo

12 SAFT12kHz8Bit-
Mono

13 SAFT12kHz8BitSt-
ereo

14 SAFT12kHz16Bit-
Mono

15 SAFT12kHz16Bit-
Stereo

16 SAFT16kHz8Bit-
Mono

17 SAFT16kHz8BitSt-
ereo

18 SAFT16kHz16Bit-
Mono

19 SAFT16kHz16Bit-
Stereo

20 SAFT22kHz8Bit-
Mono

21 SAFT22kHz8BitSt-
ereo

22 SAFT22kHz16Bit-
Mono

23 SAFT22kHz16Bit-
Stereo

24 SAFT24kHz8Bit-
Mono

25 SAFT24kHz8BitSt-
ereo

26 SAFT24kHz16Bit-
Mono

27 SAFT24kHz16Bit-
Stereo

28 SAFT32kHz8Bit-
Mono

29 SAFT32kHz8BitSt-
ereo

30 SAFT32kHz16Bit-
Mono

31 SAFT32kHz16Bit-
Stereo

32 SAFT44kHz8Bit-
Mono

33 SAFT44kHz8BitSt-
ereo

34 SAFT44kHz16Bit-
Mono

35 SAFT44kHz16Bit-
Stereo

36 SAFT48kHz8Bit-
Mono

37 SAFT48kHz8BitSt-
ereo

38 SAFT48kHz16Bit-
Mono

39 SAFT48kHz16Bit-
Stereo

Result

Required. A pointer to a flag to set when done. This
should be 0 for OK or 1 for an error.

Comments: The text may include embedded XML tags as described in
the documentation for the SAPI speech engine being used.
Multiple calls to this function will be queued.
Calls to this module wil l fail if the VoiceTalk instance was
not configured for VTSFileOutput.

Spinbox

(System Library)

Description: Draws a spinbox with optional label.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: Bevel | Boolean | CheckBox | CheckFileExist |
 CheckPathExist | ColorSelect | CopyDir | Debugger |
 DialogInitPos | Droplist | Edit | Folder | GridList |
 HScrollbar | Listbox | RadioButtons | ReadINI |
 ReadSectINI | SplitList | ToolBar | VScrollbar | WriteINI |
 WriteSectINI |

Format: \System\Spinbox(X1, Y1, X2, Y2, Variable, Label,
BoxOnLeft, Alignment, NumChars, LowLimit, HighLimit [,
CanEdit, FocusID, TextOption, TextValue, Trigger, BGCo-
lor, FGColor, WidthOut])

Parameters:

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the spinbox
and its label.

Y1

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the spinbox.

X2

Required. Any numeric expression giving the X
coordinate on the screen of the side of the spinbox
and its label opposite to X1.

Y2

Required. Any numeric expression giving the Y
coordinate on the screen of the top or bottom of the
spinbox, whichever is the opposite to Y1.

Variable

Required. The variable whose value is set by the spin-
box.

Label

Required. Any text expression to be used as a label
with the spinbox.

BoxOnLeft

Required. Any logical expression. If true (non-0) the
spinbox will appear to the left of the label, if false (0) it
will be to the right. If this value is invalid, a default
value of true will be used.

Alignment

Required. Any numeric expression that sets the align-
ment of the spinbox and its label according to one of
the following options: The default value is 0.

Alignment Horizontal Vertical

0 Left Top

1 Right Top

2 Full Top

3 Left Centered

4 Right Centered

5 Full Centered

6 Left Bottom

7 Right Bottom

8 Full Bottom

NumChars

Required. Any numeric expression that gives the num-
ber of digits wide to make the spinbox. A value of 0 or
invalid results in the spinbox being automatically sized
to fit the widest number (or text string if TextOption
and TextValue are set).

LowLimit

Required. Any numeric expression giving the lowest
permissible value. If the spinbox is editable and a value
less than LowLimit is entered, it will revert to the
LowLimit value.

HighLimit

Required. Any numeric expression giving the highest
permissible value. If the spinbox is editable and a value
greater than HighLimit is entered, it will revert to the
HighLimit value.

CanEdit

An optional parameter that is any logical expression. If
true (non-0), the number in the field may be edited dir-
ectly, if false (0), it may not. The default value is
false.Note that the value of this parameter directly
affects the TextOption and TextValue parameters'
effectiveness. If CanEdit is true, both are ignored.

FocusID

An optional parameter that is any numeric expression
for the focus number of this graphic. If this value is 0,
the spinbox will display its current setting, but the
value will not be able to be set and the spinbox field
will appear grayed out.If this parameter is omitted, key-
board input (such as the arrow keys) will be ignored.
The default value is 1.

TextOption

An optional parameter that is any text expression used
to replace a certain value (expressed by TextValue) in
the spinbox field. This parameter will be ignored if
CanEdit is true.

TextValue

An optional parameter that is any numeric expression
for the value in the spinbox that is to be replaced by
the text string in TextOption. This parameter will be
ignored if CanEdit is true.

Trigger

An optional parameter that is a numeric expression.
The value in Trigger will become 0 if the user changes
the internal buffer (i.e. when the value of the
WinEditCtrl as logged in the variable Change transits
from invalid to zero).
If the user presses any of Enter, the spin box arrows or
the arrow buttons on the keyboard, Trigger becomes
1. If the spinbox loses focus, the value of Trigger
becomes 2.

BGColor

Optional. Any numeric expression for the background
color of the control. No default value.

FGColor

Optional. Any numeric expression for the foreground
color of the control. No default value.

WidthOut

Output. The overall width required for the control.
Includes space required for the displayed characters,
borders and spin button.

Comments: This module is a member of the System Library, and must
therefore be prefaced by \System\, as shown in the
"Format" section. If you are developing a script application,
use "System\..." rather than "\System\..." in the function
call.
The size of the spinbox is constant, with X1, Y1and X2, Y2
defining the position of the check box and its label.
For any optional parameter that is to be set, all optional
parameters preceding the desired one must be present,
although they may be invalid.
The trigger parameter provides an indication that some-
thing has changed and therefore the user should be promp-
ted to save changes before exiting.

Example:

System\Spinbox(200, 70, 360, 30 { Location of spinbox },
Retries { Variable to change },
"Number of retries"{ Label },
Invalid { Defaults to box on left },
6 { Left, bottom align },
4 { Field width in chars },
0, 100 { Low, high limits },
0 { Not editable },
3 { Focus ID },
"None" { Text replacement },
0 { Use text in index 0 });

SplitList

(System Library)

Description: Draws a split list (listbox with two columns) with a scrollbar
if required and indicates the selected item.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: Bevel | CheckBox | Droplist | GridList | HScrollbar |
 Listbox | RadioButtons | Spinbox | ToolBar | VScrollbar

Format: \System\SplitList(X1, Y1, X2, Y2, Title1, Title2, Data1,
Data2, Index, Picked[, Flat, DoubleClick, MaxLen, Offset,
FocusID, AlignTitle, Multi, PickList, SplitPos,
ShrinkData1CBContext, ShrinkData1Callback, BGColor,
FGColor])

Parameters:

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the listbox.

Y1

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the listbox.

X2

Required. Any numeric expression giving the X
coordinate on the screen of the side of the listbox
opposite to X1.

Y2

Required. Any numeric expression giving the Y
coordinate on the screen of the top or bottom of the
listbox, whichever is the opposite to Y1.

Title1

Required. Any text expression giving the title to be dis-
played above the first column of the split list.

Title2

Required. Any text expression giving the title to be dis-
played above the second column of the split list.

Data1

Required. An array of data to be displayed in the first
column of the split list. This array must be the same
size as Data2.

Data2

Required. An array of data to be displayed in the
second column of the split list. This array must be the
same size as Data1.

Index

Required. Any variable whose value will be set to the
index of the highlight.

Picked

Required. A variable whose value will be set true (1)
when an item is chosen in the split list. The setting of
Index by an external source will not trigger Picked.

Flat

Any logical expression. If true (non-0) the border of
the split list will be a single black line, if false (0) it have
the look of two indented windows. Defaults to 0.

DoubleClick

An optional parameter that is a variable whose value
will be set to true (1) when an item has been double-
clicked upon.

MaxLen

An optional parameter that is any numeric expression
giving the maximum length of the data lists. If omit-

ted, the maximum list length is given by the size of the
arrays Data1 and Data2.

Offset

An optional parameter that is any numeric expression
giving the starting offset in the list. The element indic-
ated by this index will be the one initially shown at the
top of the list (unless too few elements follow this one
to fill the display area).

FocusID

An optional parameter that is any numeric expression
for the focus number of this graphic. If this value is 0,
the split list will not accept keyboard input, although
mouse input will still be recognized. The default value
is 1.

AlignTitle

An optional parameter that is any logical expression. If
true (non-0) the title is drawn within the split list's
boundaries, if false(0) the list fills its bounding area
and the title is added at the top (i.e. it extends past the
top boundary). The default is true.

Multi

An optional parameter that is any logical expression. If
true (non-0), multiple items may be selected in the list.
The default is false.

PickList

An optional parameter that is a variable whose value is
set to the list of items selected if Multi is true (1). If
invalid, no items are selected. This variable may ini-
tially be set to a dynamically allocated array (one cre-
ated with the New function) containing items to be
highlighted/selected upon the startup of the split list.

SplitPos

An optional parameter that is a variable that will con-

tain the pixel position of the split bar. If initially valid,
the split bar will be in the middle of the SplitList. The
default will center the split bar.

ShrinkData1CBContext

Context for callback to shorten Data1 text

ShrinkData1Callback

Callback(Text, AvailWidth, Font)

BGColor

Optional. Any numeric expression for the background
color of the control. No default value.

FGColor

Optional. Any numeric expression for the foreground
color of the control. No default value.

Comments: This module is a member of the System Library, and must
therefore be prefaced by \System\, as shown in the
"Format" section. If you are developing a script application,
use "System\..." rather than "\System\..." in the function
call.
If Multi is true, multiple items in the list may be selected by
using the <Shift> or <Ctrl> keys along with mouse input.
If <Ctrl> is held while an item is clicked on by the mouse,
it will become selected (or de-selected if it is already selec-
ted) and will be added to the list of chosen items. If
<Shift> is held while an item is clicked on by the mouse,
all items from the last selected item to the currently selec-
ted item will be selected. All other items outside of this list
will be de-selected. If both <Ctrl> and <Shift> are held
while an item is clicked on by the mouse, all items from
the last selected item to the currently selected item will be
set to the state of the last selected item.
For any optional parameter that is to be set, all optional
parameters preceding the desired one must be present,
although they may be invalid.

Examples:

System\SplitList(20, 325, 340, 50 { Outline of splitlist },
NameLabel { Column 1 title },
TypeLabel { Column 2 title },
NameTable { Column 1 data },
TypeTable { Column 2 data },
Index { Highlighted element },
0 { Picked not required },
0 { 3D look },
DClick { Set for double click },
Invalid { Use default max length },
0 { Start at top of list },
3 { Focus ID },
0 { Title extends past top });

SplitListSelector

(System Library)

Description: Draws a split view comprising two GridLists separated by
control buttons. Items listed on the left may be selected to
be transferred to the right. Items on the right may be
returned to the left so long as they were originally listed on
the left. Scrollbars will be drawn if required.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: SplitTagSelector | GridList

Format: \System\SplitListSelector(InitKeyArray, DestKeyArray[,
LeftLabel, RightLabel, NumCols, Titles, ColWidthPercents,
DestMax, EnableParm])

Parameters:

InitKeyArray

Required. An array of items passed in to form the ini-
tial list on the left.

DestKeyArray

Required. An array of destination items. Any items ini-
tially in the array will be displayed in the list on the

right.

LeftLabel

Optional label for the left list.

RightLabel

Optional label for the right list.

NumCols

Number of columns for each list. Defaults to 1 if not
specified.

Titles

Optional array of titles for both lists. The number of
titles must match the number of columns. If this para-
meter is not specified, then no titles will be displayed
for the columns.

ColWidthPercents

Optional array of column width percentages for both
lists. Defaults to equal widths if not specified. The size
of the array must match the number of columns. The
array elements will hold normalized values. For
example:
ColWidths = New(3)
ColWidths[0] = .3 {30%}
ColWidths[1] = .2 {20%}
ColWidths[2] = .5 {50%}

DestMax

Maximum number of destination items. The default is
invalid which is taken to mean unlimited.

EnableParm

Flag to enable controls. Defaults to 1 if not specified

Comments: A tool intended to provide a user interface for selecting
items from a list on the left and transferring them to the
right. The InitKeyArray may be an array of arrays. i.e. each

element of the main array may be a sub-array which will
make up the columns. If an array of arrays is specified, the
DestKeyArray must also be of the same format.
The first column (the first element of every sub-array mak-
ing up a row) will be regarded as the unique key for com-
parison purposes. The items on the left will be updated if
the InitKeyArray changes in size.
When items are moved from the right to the left, they are
inserted into the left only if they exist in the InitKeyArray. If
not, they are simply removed from the right list.
The SplitListSelector should be called from within a
GUITransform as shown in the following example.

Examples:

GUITransform(30, 270, 470, 90,
1, 1, 1, 1, 1 { Scaling },
0, 0 { Movement },
1, 0 { Visibility, scaling },
0, 0, 0 { Selectability },
\System\SplitListSelector(InitResourceList,

SelectedResources,
\AvailableResourcesLabel,
\SelectedResourcesLabel));

SplitPath

Description: Breaks up a file path name into its components.

Returns: Nothing (path components are returned in the parameters)

Usage: Script or steady state.

Function Groups: File I/O

Related to: Dir | FileFind

Format: SplitPath(FullName, Drive, Path, File, Extension)

Parameters:

FullName

Required. Any text expression giving the full path
name.

Drive

Required. Any variable, which is set to the drive letter
in FullName, plus a colon. If FullName doesn't contain
a drive specification, Drive is a null string. If this
information is not required, a constant may be used
for this parameter.

Path

Required. Any variable, which is set to the directory
path in FullName, ending in a backslash. If FullName
doesn't contain a path specification, Path is a null
string. If this information is not required, a constant
may be used for this parameter.

File

Required. Any variable, which is set to the file name in
FullName. If FullName doesn't specify a file name, File
is a null string. If this information is not required, a con-
stant may be used for this parameter.

Extension

Required. Any variable, which is set to the file exten-
sion in FullName, including a period). If FullName
doesn't specify a file extension, Extension is a null
string. If this information is not required, a constant
may be used for this parameter.

Examples:

SplitPath("C:\MyApps\App1\Info.TXT", drv, pth, fName, ext);

The values of drv, pth, fName and ext will be "C:", "\MyApps\App1\",
"Info" and ".TXT" respectively.

SplitPath("D:\Apps\Profiler\GDI.WIF", drv, pth, 0, 0);
appPath = Concat(drv, pth);

Note the use of "0" for parameters that are not required.

SplitTagSelector

Description: Draws a split view comprising two GridLists separated by
control buttons. Tag names listed on the left may be selec-
ted to be transferred to the right. Each GridList will have
two columns: the name and the description of each tag in
the list. Scrollbars will be drawn if required.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: SplitListSelector | GridList

Format: \SplitTagSelector(InitTagArray, DestTagArray[, LeftLabel,
RightLabel, DestMax, EnableParm])

Parameters:

InitTagArray

Required. An array of tag names passed in to form the
initial list on the left.

DestTagArray

Required. Array of destination tag names. Can be an
array of tags passed in to form the initial list on the
right.

LeftLabel

Optional label for the left list.

RightLabel

Optional label for the right list.

DestMax

Maximum number of destination tag names. The
default is invalid which is taken to mean unlimited.

EnableParm

Flag to enable the controls.

Comments: A tool intended to provide a user interface for selecting
tags from a list on the left and transferring them to the
right.
Both GridLists have two columns, the name and the
description of the tags. The InitTagArray is an array of Tag
names.
The DestTagArray is an array of selected Tag names. The
Tag names are used as keys for comparison purposes. The
tags on the left will be updated if the InitTagArray changes.
When tags are moved from the right to the left, they are
inserted in the left only if they exist in the InitTagArray. If
not, they are simply removed from the DestTagArray.
The SplitTagSelector should be called from within a
GUITransform as shown in the following example.

Examples:

GUITransform(30, 270, 470, 90,
1, 1, 1, 1, 1 { Scaling },
0, 0 { Movement },
1, 0 { Visibility, scaling },
0, 0, 0 { Selectability },
\SplitTagSelector(InitResourceList,

SelectedResources,
\AvailableResourcesLabel,
\SelectedResourcesLabel));

SQLQuery

(VTSSQLInterface library)

Description: A launched module that executes an SQL query on data in
a VTS application.

Returns: Nothing
(The parameters will be populated with pointers to the
returned information)

Usage: Script Only.

Function Groups: Database and Data Source, ODBC

Related to: RegisterCustomTable

Format: \VTSSQLInterface\SQLQuery(QueryString, Results,
FieldNames, FieldTypes, ReturnCode, ErrorMsg)

Parameters:

QueryString

Required. Any text expression containing a valid SQL
select statement. Not all selection clauses are sup-
ported.

Results

Required. A pointer to a variable which will hold the res-
ults array.

FieldNames

Required. A pointer to a variable that will hold the field
names array.

FieldTypes

Required. A pointer to a variable that will hold
the field types. The types will be returned as SQL
data types according to the following table:

Field Type SQL Data Type

1 SQL_CHAR

4 SQL_INTEGER

5 SQL_SMALLINT

8 SQL_DOUBLE

9 SQL_DATETIME

12 SQL_VARCHAR

ReturnCode

Required. A pointer to a variable that will hold
the return code. The code will be one of the fol-
lowing:

Return Code Meaning

0 #SUCCESS

1 #SYNTAX_ERROR

2 #TABLE_NOT_FOUND

3 #COLUMN_NOT_FOUND

4 #ILLEGAL_JOIN

ErrorMsg

Required. A pointer to a variable that will hold a textual
error message. Valid only if ReturnCode is not zero.

Comments: Only selection queries are supported. SQL state-
ments for data manipulation will do nothing. If tag
filtering or realm-area filter is in effect, this func-
tion will retrieve data only from tags the currently
logged-on user is permitted to access.
When retrieving historical data, SQLQuery is essen-
tially a wrapper for GetTagHistory. It takes an incom-
ing SQL query, and makes one or more calls to
GetTagHistory to retrieve the results. SQLQuery may
also be used to retrieve current tag values and other
custom tables (such as alarm data).
Legacy tables made it look like tag values were
stored in separate tables and used the time stamp
of the current server. These legacy tables still exist
but are hidden by default, using the property:
SQLQueryHideLegacyTables. Newer code should
query all tag values from the table, "History", or
from a "_TPP"derivative such as "History_1d". See the
links for further information.
Supported SQL syntax is as follows:
SELECT [DISTINCT | ALL] columnspecifier-1,
columnspecifier-2, ...
FROM tablename-1, tablename-2, ...
[WHERE where-expression]

[ORDER BY columnspecifier-1 [ASC | DESC],
columnspecifier-2, ...]
[LIMIT [offset,] row_count]

l Columnspecifier is either [table-name.]'*' to indicate
all columns in a table or a specific column-name in
the form: [table-name.]column-name

l Tablename is either the table name or 'table-name
[[AS] alias-name']

l Quotes may be used around table or column names,
and must be used if the names contain special char-
acters. When an alias-name is specified it may be
used in place of the table-name in the column spe-
cifier.

l When more than one table is specified, the tables are
automatically joined based on their Timestamp
columns and MUST have matching "TPP"s. A join
expression may be used in place of a table list, but it
is only parsed to extract the tables specified; the
actual join expression is ignored.

l Where-expression is an expression to be used to fil-
ter the result data.

l It may contain references to columns, use com-
parison operators, use functions ABS, LENGTH,
UPPER, LOWER, CONCAT, CASE, SQRT, INTEGER, and
use keywords AND, NOT, and OR.

l Use the LIMIT clause to specify a limit to the number
of rows that will be returned, and optionally an offset
(0-based) which allows pagination. LIMIT is applied
after WHERE filtering and after sorting.

l If there is no explicit LIMIT clause in the query there is
an implicit "LIMIT SQLQueryMaxResultRows" (Set-
tings.Dynamic setting) added.

Each logged tag corresponds to one table in the VTS
database schema.

Every logged variable within the tag is one column.
In addition, a "TPP specifier" may be appended to a
tag name to utilize GetTagHistory's ability to
retrieve data over time periods. The TPP specifier is
an underscore followed by a number and an abbre-
viation for various time periods. The recognized
time period abbreviations are (case-insensitive):

l MS - milliseconds

l S - seconds (this is the default; the S may be left out)

l M - minutes

l H - hours

l D - days

l W - weeks

l Y - years
For example, the table 'ai1_2D' can be used to
retrieve data from tag ai1 with a TPP of 2 days.
A TPP may only be specified for a tag that has at
least one numeric logged variable. When a TPP is
specified, the available columns are:

l Timestamp

l VarName:Average

l VarName:Minimum

l Varname:Maximum

l VarName:Delta

l VarName:ValueAtStart

l VarName:TimeOfMin

l VarName:TimeOfMax

l VarName:ZToNZCount

l VarName:NonZeroTime

l VarName:Total

l VarName:Interpolate
... where VarName may be replaced by any numeric

logged variable from the tag.
The current values of a tag may be retrieved using a
table name with the format "TagName_Current".
This table will have one row whose columns are
Timestamp (the current time) and the current values
of each logged value in the tag.

Related Information:

... See: "VTScada SQLInterface Module" in the VTScada Programmer's
Guide
The following can be found in the VTScada Developer's Guide:

...Data Available to the ODBC Interface

...SQL Queries: Reference & Examples

Sqrt

Description: Returns the square root of a number.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Generic Math

Related to: Exp | Ln | Log | Pow

Format: Sqrt(X)

Parameters:

X

Required. Any numeric expression giving the number
to take the square root of.

Comments: If X is less than zero, the result is invalid.

Example:

rootNum = Sqrt(25);

The variable rootNum will be set to 5.

SRead

Description: Reads values from a formatted stream and returns the num-
ber of values not read.

Returns: Numeric

Usage: Script Only.

Function Groups: Stream and Socket

Related to: BuffRead | CloseStream | FileSize | FileStream | FRead |
 GetStreamLength | StreamEnd | SWrite

Format: SRead(Stream, Format, V1, V2, V3, ...)

Parameters:

Stream

Required. Any expression that returns the stream to
read.

Format

Required. Any text expression giving the format
of how the values (Vn parameters) are to be
read.
This format is similar, but not identical, to the C
language format string for the scanf function,
whereby each of the % format specifications
assigns a value to one of the Vn parameters in
the statement in the order in which each
appears in the list.
Note that like a standard text string, these
format specifiers must also be enclosed by
double quotes. If a format specification appears
for which there are no remaining V parameters,
the format specification value is read and dis-
carded.

For the % format specifications, the following
form applies (where the [] indicates optional ele-
ments):
%[*][width]type

Where…
% is mandatory;
The optional asterisk * causes the read to occur
as per the format specification, but suppresses
any assignment to the Vn parameters; and
width is mandatory, specifying the maximum
number of characters to read.
The specifications for type are listed in the fol-
lowing table:

Note: Note: Format strings are case insens-
itive. Additionally, specifying a character for a
type that is not in this list results in all the
characters following the % up to that point to
be read exactly as they appear in the Format
string and discarded.

Type Meaning

Nb Binary format, where n is a number
indicating the type of value (see below)

c Single ASCII character (byte)

d Signed decimal integer

e Signed exponential

f Signed floating point

g e or f formats

i Signed decimal integer

l Line of characters terminated by a car-
riage return, line feed, or both

n Present offset in the buffer

o Unsigned octal

s Text string

u Unsigned decimal integer

x Unsigned hex integer using "abcdef"

znnn Escape character where nnn is the 3-
digit ASCII code

nb, Binary type For the format specification of
%nb, where n specifies the type of number, n
must be a single digit from one of the following
choices. All are low-byte-first.

n value Type

0 Byte

1 Short integer (2 bytes, low byte first)

2 Long integer (4 bytes, low bytes first)

3 IEEE single precision float (4 bytes)

4 <obsolete>

5 IEEE double precision float (8 bytes)

6 <obsolete>

7 Binary unsigned short (2 bytes, low
byte first)

8 Unsigned 32-bit integer

c, ASCII character type: Unlike BuffWrite this
type deals with characters in a string; each char-

acter being equal to one byte. Unlike the %s
option, which reads only up to the first white-
space character, the %c option reads the number
of characters/bytes specified by its width and is
not terminated by any particular character. If no
width is specified, a single character is read.

d, Signed decimal integer

e, Signed exponential

f, Signed floating point

g, e or f formats

i, Signed decimal integer type: This option nor-
mally reads a decimal integer; however, if a lead-
ing "0b" is encountered, the number will be
interpreted as binary. If a leading "0" (zero only)
is encountered, the number will be interpreted
as octal. If a leading "0x" is encountered, the
number will be interpreted as hexadecimal.

l, Line of characters: This option reads a line of
characters terminated by a carriage return, a
line feed, or both (in either order). The carriage
return and line feed will be discarded, and the
next character read will be the first character on
the next line. The maximum number of char-
acters read is 4096 (or less if the width option is
used).

n, Buffer offset: This option does not read a

value, but returns the present offset in Buffer
and can be useful in subsequent reads.

o, Unsigned Octal

s, Text string type: Text in the string is read up
until a white-space character is encountered, or
the specified width has been read, whichever is
smaller. Square brackets enclosing a character,
group of characters, or a caret and a group of
characters used in the format string reads
strings not delimited by spaces. This is a sub-
stitute for the %s format specification. The input
is read up to the first character that does not
appear inside the square brackets (note that this
is case-sensitive). A dash may be used to specify
a range of characters. For example, the fol-
lowing format specifier:
% [A-Fa-f]
will read a string up to the first which is not an
A, B, C, D, E, or F both upper and lower case.

The caret symbol ^. If the first character inside
the square brackets is a caret (^), the read pro-
gresses up to, but not including, the first char-
acter that appears inside the square brackets:
%[^X-Z]
This would read a string up to, but not includ-
ing, the first X, Y or Z (upper-case only); if the
string were terminated by an X, the next char-
acter read would be that X. Inside the square
brackets, the backslash is used as an escape
character - any character following a backslash

(such as a caret, dash, or backslash) is taken as
that character without special meaning. For
example:
%[^X-Z\^]
would behave as described previously, except
that the string would now be read up to but not
including the first X, Y, Z, or ^.
Since format specifications for the Vn para-
meters are indicated by a percentage sign, to
read (and discard) an actual percentage sign as
part of the text string, precede it with a back-
slash character (i.e. \%). Also, since the back-
slash character is used in this manner, as well as
with special control characters such as line feed,
carriage return and form feed, to read and dis-
card a backslash, use two backslash characters
(i.e. \\).

x, Hexadecimal characters: the %x option reads
the number of characters/bytes specified by its
width and is not terminated by any particular
character. If no width is specified, it will con-
tinue reading all bytes that can be recognized as
hexadecimal characters. For example, given the
string "…= 3D", %[^=]=%2x would read the
hedadecimal value, 3D (decimal value, 61).

znnn, Escape characters: This specifies an
escape character that will be thrown away when
read, where nnn is a 3-digit number giving the
ASCII character code of the escape character.
This option is generally used as the sole format
specifier that reads an entire string, spaces

included, discarding every single occurrence of
an escape character, or the first occurrence of
every pair of escape characters. For example, if
the string to be read looked like:

abXc dXXfghiXXXjXXXXkl mX Xn o

and the format specifier indicated that the ASCII
code for 'X' (88) was to be the escape code:

%25z088

then the variable that this was read into would
contain:

abc dXfghiXjXXkl m n o

Notice that for each occurrence of X, the char-
acter immediately following it is saved, even if it
is itself an escape character. Then the next
occurrence of the escape character is discarded,
with the character following it being saved,
regardless of what it is, and so on. The width
field specifies the maximum number of bytes to
place in the output string; if this number is smal-
ler than the input string (less the offending
escape characters), the string will be truncated.
If no width is specified, a single character will be
read.

Control characters: In order to encode certain
control characters as part of the Format para-
meter, one of two methods may be used. The

first is to use a backslash character followed by
one of the single character codes listed below to
produce the desired result. Please note that the
letters must be lower case.

 Code Meaning

 \b Backspace

 \f Form Feed

 \n Line Feed

 \r Carriage Return

 \t Horizontal Tab

 \v Vertical Tab

 In addition to the predefined codes, an altern-
ate form may be used:

\nnn: where nnn is a three digit integer in the
range of 0 to 255 specifying a certain ASCII char-
acter. If the number contains less than three
digits, the leading spaces must be padded with
zeroes; this is not the case with the previously
listed single character control characters. For
example, to include the one byte ASCII character
G in the output, you could place its decimal equi-
valent of 71 in the Format string as \071.

V1, V2, V3
Optional. Parameters specifying the variables to
be read in the form described by the Format
parameter.
Expressions are not allowed.
Each of the Vn parameters is read in the order in
which each appears in the parameter list. V1 has

the format given by the first % sequence in the
Format parameter, V2 has the second, and so
forth.

V1, V2, V3, ...

These parameters are the variables to be read in the
form described by the Format parameter. Expressions
are not allowed. Each of the Vn parameters is read in
the order in which each appears in the parameter list.
V1 has the format given by the first % sequence in the
Format parameter, V2 has the second, and so on..

Comments: This function is useful for reading formatted streams. Data
exchange between many formats is possible if the formats
are known. The return value is optional and is the number
of Vn parameters NOT read. This can be used as an error
flag. This function will only read values up to a length of
4096 bytes long at which point it will truncate the value.

Examples:

If ! Valid(err);
[
err = SRead(recipeStream, "%f%f%f",compoundA, compoundB,
resin);

]

This reads three ASCII format floating-point numbers, from the current
position in the stream in the variable recipeStream. The three numbers
are placed in compoundA, compoundB and resin, respectively. If the read
were successful, err is 0. Otherwise err is the number of items which
were not read.

streamData = "Hello!World!How!Are!You!";
If ! Valid(notRead);
[
notRead = SRead(streamData, "%[^!]!%[^!]!%[^!]!%[^!]!%[^!]!",
word1, word2, word3, word4, word5);

]

This is an example of multiple fields delimited by the same character, in
this case an exclamation point, that can be read by using the %[^

aCharacter] format. Notice the exclamation point following each format
character - this causes the string read into each of the variables to be
without its trailing exclamation point.

Start

Description: Starts an application

Returns: Nothing

Usage: Steady State only.

Function Groups: Configuration Management

Related to: GetAppInstance | AppIsRunning | AppIsStarted | AppIsStart-
ing |

Format: Layer\Start()

Parameters: none.

Comments: To use, gather the "Layer Root" of an object from
the \System\GetAppInstance function.
Has no effect if the application is already running.

Examples:
The following snippet from a script application will start the Completed
Tutorial application (The GUID of the Completed Tutorial may vary).

[
 WaitObj;
 CompLayer;
 TutGUID = "db53f244-90ef-4628-bdf6-2d53794a2079";
]
Main [
 If !Valid(WaitObj) && !Valid(CompLayer) WaitLayerLoad;
[
{ GetAppInstance doesn't return the Layer until it has loaded. }

 WaitObj = Layer\GetAppInstance(TutGUID, &CompLayer);
]
]
WaitLayerLoad [
CompLayer\Start();

]

StartTag

Note: Deprecated. Do not use in new code.

Use ModifyTags for all new code.

Description: Used to create tags by starting new instances of the tag
type specified in the parameter list. When creating an
application that requires child tags, it is recommended that
this function be used in place of the older ChildLaunch
function.
StartTag can also be used to stop or to modify an existing
tag.

Returns: Numeric (0)

Usage: Script Only.

Function Groups: Advanced Module

Related to: ModifyTags | OpChange | SimpleOpChange

Format: StartTag(Parent, Flags, TagType, ParameterList)

Parameters:

Parent

An object that gives the parent for this new child tag.
Defaults to VTSDB if invalid. See note in Comments sec-
tion.

Flags

Bitwise expression indicating operational options.

Bit # Operation

0 Add or change if TRUE.
Delete if FALSE.

1 Persist change if TRUE.
The tag will be output to the tag file.

If Bit 0 is FALSE, it is not strictly relevant
whether Bit 1 is TRUE or FALSE. The tag will be

deleted both in memory and on disk. Regardless
of this, it is good form to set bit 1 to TRUE when
deleting a tag.
When using StartTag to generate child tags, do
not set bit 1 to TRUE.
Flags should be set such that when the tag is
stopped, StartTag is called with the a value of
zero in the second parameter. This can be done
using the expression, Valid(Root\Name). See:
Parent Tags for examples.

TagType

Required. The name of the tag type to be used for the
tag. If modifying or deleting an existing child tag, you
may set this parameter to invalid.

ParameterList

Required. All the parameters required by the child tag
should be provided here. The child tag's parameter
names and matching values may be supplied in any
one of the follow forms:
- As a comma-separated list of up to 256
name-value pairs.
- As a two dimensional array of name-value
pairs
- As two arrays, the first containing the para-
meter names and the second parallel array, con-
taining the matching values.
- As a dictionary.
- As a one-dimensional array of values. The
order must match the order of parameters in
the tag type, with no gaps or spaces. Note that
there is no guarantee that the parameter order
will remain the same in future versions - use of
a dictionary is preferred.

While there is no requirement that the child
parameters must be given in the order that they
are defined in the child tag, better performance
will be obtained by matching that order. It is
necessary to know the names of the parameters.

Comments: When used to create a child tag, the name of that new child
tag will always be unique since it will be a combination of
the parent tag's name and the new child name in the
format "ParentName\ChildName".
If the first parameter (Parent) is not VTSDB, then it should
be a tag object (the parent tag), and the StartTag call
should only be made from that parent tag's Refresh mod-
ule.
When this function is used to create an ordinary tag, as
opposed to a child tag, it is the responsibility of the pro-
grammer to ensure that a unique name is used for each
new tag.

l If the tag does not exist and bit 0 of Flags is TRUE,
then the tag is launched.

l If the tag exists and bit 0 of Flags is TRUE, then the
tag's parameters are changed if necessary. Note that,
if a new TagType is provided, then the existing tag
will be deleted and a tag of the new type created.

l If the tag exists and bit 0 of Flags is FALSE or the tag's
parent's Name is Invalid indicating that the tag is
being stopped, then the tag is removed.

Because of configuration management and the ver-
sion control system, it is possible for a child tag
have both temporary parameters (those created by
code in the parent and existing only in memory) and
a sub-set of permanent parameters in the tag files.
These latter values are used to record user-over-
rides of the parameter values. If the application

restarts, the child tag will be re-loaded from code
and the overrides made in an earlier session will be
read from the tag files. Permanent parameter values
will always take precedence over temporary values.
There are several ways that the tag's parameters can
be passed to this module:

l Only one additional parameter which is an array of
parameter values, a tag, or a tag mirror structure(*).
In the case of a parameter value array the values
must match to tags parameters in order, but may be
fewer in number, allowing just the name to be
passed, for example.

l Only one additional parameter which is a dictionary
of parameter values keyed by parameter name.

l A pair of arrays is passed, with the first array being
the array of parameter names and the second, par-
allel array, being the values for those named para-
meters. The "Name" parameter must be present, and
the order of the pairs is not significant, other than
matching the formal parameter ordering gives some
efficiency gains.

l A list of parameter name and value pairs of para-
meters. This is typically used by ChildLaunch calls.
Again "name" must be present and the ordering is
only a small consideration for efficiency.

(*) A tag mirror is a structure that has one element
for each of a tag’s parameters, accessible by that
parameter name (e.g. MyTag\IODevice). These
should only be used by advanced VTScada pro-
grammers.

In all examples, ParentRoot is assumed to be a pre-existing tag object
with name "Something".

Examples:
Example 1 – Creating a child tag by supplying a series of name, value
pairs.

Code\StartTag(ParentRoot, 0b11, "AnalogStatus",
"Name", "CylinderVolume"
"Area", Area,
"Description", Concat(Name, ": Cylinder Volume"),
"DeviceTag", PollDriverName,
"Address", "F8:0",
"ScanRate", Invalid,
"UnscaledMin", 0,
"UnscaledMax", 100,
"ScaledMin", 0,
"ScaledMax", 100,
"Units", "gal",
"AlarmLo", Invalid,
"AlarmHi", Invalid,
"PriorityLo", Invalid,
"PriorityHi", Invalid,
"InhibitLo", 1,
"InhibitHi", 1,
"AlarmSound", Invalid,
"ManualValue", Invalid,
"Threshold", 1,
"Questionable", 0,
"Quality", Invalid,
"DisplayOrder", 1,
"HelpKey", Invalid);

This creates a child analog status tag named SOMETHING\Cylin-
derVolume.
Example 2 – Creating a persistent tag by supplying a series of name,
value pairs.

Code\StartTag(Code\VTSDB, 0b11, "AnalogStatus",
"Name", "CylinderVolume"
"Area", Area,
"Description", "My Cylinder Volume"),
"DeviceTag", PollDriverName,
"Address", "F8:0",
"ScanRate", Invalid,
"UnscaledMin", 0,
"UnscaledMax", 100,
"ScaledMin", 0,
"ScaledMax", 100,
"Units", "gal",
"AlarmLo", Invalid,
"AlarmHi", Invalid,
"PriorityLo", Invalid,
"PriorityHi", Invalid,
"InhibitLo", 1,
"InhibitHi", 1,
"AlarmSound", Invalid,

"ManualValue", Invalid,
"Threshold", 1,
"Questionable", 0,
"Quality", Invalid,
"DisplayOrder", 1,
"HelpKey", Invalid);

This creates a persistent analog status tag named CylinderVolume.
Example 3 – creating a child tag using a dictionary of parameters.

ParmsDict = Dictionary();
ParmsDict["Name"] = "P1";
ParmsDict["Area"] = "West";
ParmsDict["Description"] = "P1 West";
ParmsDict["IODevice"] = "Mod1";
ParmsDict["Address"] = 100;
Code\StartTag(ParentRoot, 0b11, "Parent", ParmsDict);

Example 4 - creating a child tag using an array of parameters:

ParmsArray = New(7);
ParmsArray[0] = "P2";
ParmsArray[1] = "East";
ParmsArray[2] = "P2 East";
ParmsArray[3] = "Mod1";
ParmsArray[4] = 200;
ParmsArray[5] = 2;
Code\StartTag(ParentRoot, 0b11, "Parent", ParmsArray);

Example 5 – Creating a child tag using parameters in an array of names
and an array of values

ParmNames = New(5);
ParmNames[0] = "Area";
ParmNames[1] = "Name";
ParmNames[2] = "Description";
ParmNames[3] = "Address";
ParmNames[4] = "IODevice";
ParmValues = New(5);
ParmValues[0] = "North";
ParmValues[1] = "P4";
ParmValues[2] = "P4 North";
ParmValues[3] = 400;
ParmValues[4] = "Mod1";
Code\StartTag(ParentRoot, 0b11, "Parent", ParmNames, ParmValues);

Example 6 - Creating a child tag using parameter Name/Value pairs
(parms out of order)

Code\StartTag(Code\VTSDB, 0b11, "Parent",
"IODevice", "Mod3",

 "Area", "Central",
"Name", "P5",
"Description", "P5 Central",

"Address", 500,
"NotAParm", 0);

StateList

Description: Returns a list of states for a module.

Warning: This function should be used by advanced users only.

Returns: Array

Usage: Script Only.

Function Groups: Compilation and On-Line Modifications, State

Related to:

Format: StateList(Module, Option)

Parameters:

Module

Required. Any expression for the module or object.

Option

Required. Any numeric expression which indicates the
data to list

Option List Data

0 Name

1 Code value

StatementInstance

Description Takes a given code value and object and returns a code
pointer value for that instance.

Warning This function should be used by advanced users only.

Returns Code Pointer

Usage Script Only.

Function Groups Compilation and On-Line Modifications, State

Related to:

Format: StatementInstance(Object, Statement)

Parameters

Object

Required. Any object expression.

Statement

Required. Any code value expression for the state-
ment.

StateName

Description Returns the text name of the given state.

Warning This function should be used by advanced users only.

Returns Text

Usage Script Only.

Function Groups Compilation and On-Line Modifications, States

Related to:

Format: StateName(State)

Parameters

State

Required. Any code value expression for the state.

StaticSize

Description: If the variable provided in the parameter is static, this will
return the size of that variable.

Returns: Numeric

Usage: Script Only.

Function Groups: Variable Functions

Related to:

Format: StaticSize(Var)

Parameters:

Var

Required. Any variable to test.

Comments: If the variable is not static, this function will return Invalid.

Examples:

varSize = StaticSize(myVar);

StatsWin

(ODBC Manager Library)

Description Called to display a window showing current ODBC driver
statistics for both the main driver and any user-selected IO
device addresses

Returns Nothing

Usage Steady State only.

Related to:

Format: \ODBCManager\StatsWin(Enable, X, Y, Con-
nectionName)

Parameters

Enable

Required. Set to true to display the statistics window

X

Required. The screen X position of the window

Y

Required. The screen Y position of the window

ConnectionName

Required. The name of the database connection to be

shown.

Com-
ments

Data Source DSN

db State dbState

Last Execution Time ExecTime

Last Execution Date ExecDate

Connection Time Condt

Execution Time Cmddt

Sem Q Time Qdt

Average Execution Time ACmddt

Average Sem Q Time AQdt

Execution Count ExecCount

Error Count ErrCount

Recovery Count RecoveryCount

db Open Count OpenCount

db Close Count CloseCount

Semaphore Count SemCount

Error Code Error

Error Error

Error Time ErrorTime

Error Date ErrorDate

Error Query ErrorQuery

ODBC Error Code ODBCErrorCode

ODBC Error Current ODBCErrorMsg

ODBC SQL State ODBCSqlState

Last Error Code LastError

Last Error LastError

Last Error Query LastErrorQuery

Last ODBC Error Code LastODBCErrorCode

Last ODBC Error Current LastODBCErrorMsg

Last ODBC SQL State LastODBCSqlState

Step

Description: Transforms a continuous value into discrete steps.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Rounding Math

Related to: Ceil | Int | Scale

Format: Step(X, Size, Increment)

Parameters:

X

Required. Any numeric expression giving the value to
reduce to discrete steps.

Size

Required. Any numeric expression giving the size of
the steps in the X input parameter.

Increment

Required. Any numeric expression giving the size of
the step in the result.

Comments: The return value is arrived at by dividing X by Size and tak-
ing only the portion before the decimal point, then mul-
tiplying by Increment. Note that negative numbers are
taken down to the next lower number (e.g. -0.1 becomes
-1). If any parameters are invalid, the return value is
invalid.
This function is useful for determining the coordinates for
menu highlight bars and for rounding numbers to the
nearest multiple of another value.

Examples:

p = Step(4, 1.5, 2);
q = Step(2.31, 2, 10);
r = Step(10, 100, 0.25);

The values for p, q and r will be 4, 10 and 0 respectively.

Stop

Description: Causes the immediate termination of VTScada, closing all
windows.

Returns: Nothing (optional return parameter may be used)

Usage: Script Only.

Function Groups: Software and Hardware

Related to: Slay | WindowClose |

Format: Stop([ExitValue])

Parameters:

ExitValue

An optional parameter that can be used to return a
value to the calling program or batch file when
VTScada exits. If not specified, the exit value from
VTScada is 0, indicating "normal exit".

Comments: Not recommended in general, and especially not
recommended for use in page code, where it may
cause an untidy exit.
Shutdown resulting from the Stop() function may
take a long time complete.

StrCmp

Description: Performs a case sensitive comparison of two text expres-
sions and returns an indication of whether the first string is
greater than, less than or equal to the second.

Returns: Numeric

Usage: Script or steady state.

Function Groups: String and Buffer

Related to: StrLen

Format: StrCmp(String1, String2)

Parameters:

String1

Required. Any text expression giving the first string to
be used for the comparison.

String2

Required. Any text expression giving the second string
to be used for the comparison.

Com-
ments:

When one string is referred to as greater than or less than another, it
means each character has been converted to its ASCII value and the
two strings have been compared character value by character value.
In ASCII, the alphabet is numbered in ascending order, and uppercase
letters are listed first, so their values are less than lower case letters.
This function returns the following values:

Value Meaning

-1 String1 is less than String2

0 String1 is equal to (identical to) String2

+1 String1 is greater than String2

Examples:

p = StrCmp("ABC", "abc");
q = StrCmp("AbC", "ABc");
r = StrCmp("ABC", "ABCD");
s = StrCmp("ABC", "ABC");

The values for p, q, r and s will be -1, 1, -1 and 0 respectively.

StreamEnd

Description: Returns whether or not a stream is at the end.

Returns: Boolean

Usage: Script Only.

Function Groups: Stream and Socket

Related to: BuffStream | ClientSocket | FileStream |
 GetStreamLength | PipeStream | ServerSocket |
 TCPIPReset

Format: StreamEnd(Stream)

Parameters:

Stream

Required. Any stream to test.

Comments: This function returns true (1) if the current stream pointer
for Stream is at the end of the stream and false (0) oth-
erwise.

Example:

If MatchKeys(2, "r");
[
SRead(file1, "%d%n", val, filePos);
end = StreamEnd(file1);

]
ZText(10, 30, Concat("At end of file ? ", end), 11, 0);
ZText(10, 40, Concat("Position in file = ", filePos), 11, 0);
ZText(10, 50, Concat("The value is ", val), 11, 0);

In this example, every time the user presses the letter r on the keyboard,
a new data value is read and a check is done on whether or not the end
of the file has been reached. All of these values are written to the screen.
Note that the position in the file (filePos) that is displayed by the ZText
command is the position after the read has taken place.

StrICmp

Description: Case Insensitive Text Comparison

Returns: Numeric

Usage: Script or steady state.

Function Groups: String and Buffer

Purpose: This function performs a case insensitive comparison of

two text expressions and returns an indication of whether
the first string is greater than, less than or equal to the
second.

Related to: StrCmp | StrLen

Format: StrICmp(String1, String2)

Parameters:

String1

Required. Any text expression giving the first string to
be used for the comparison.

String2

Required. Any text expression giving the second string
to be used for the comparison.

Com-
ments:

When one string is referred to as greater than or less than another, it
means each character has been converted to its ASCII value and the
two strings have been compared character value by character value.
In ASCII, the alphabet is numbered in ascending order, and uppercase
letters are listed first, so their values are less than lower case letters.
This function returns the following values:

Return Value Meaning

-1 String1 is less than String2

0 String1 is equal to (identical to) String2

+1 String1 is greater than String2

Lower case letters are considered to be the same as the cor-
responding upper case letters. For example, "VTS" and "vts"
are considered to be identical.

Examples:

p = StrICmp("ABC", "AbC");
q = StrICmp("ABC", "ABCD");
r = StrICmp("ABCE", "abcde");

The values of p, q and r are 0, -1 and 1 respectively.

StrJustify

System Module

Description: Performs a word-wrap such that the string will break on or
before each multiple of the maximum line length.

Returns: Text

Usage: Script Only.

Function Groups: String and Buffer

Related to: StrLen

Format: \System\StrJustify(Str [, Width])

Parameters:

Str

Required. The string to be formatted.

Width

An optional parameter indicating the maximum width
for line length. If Width is Invalid, the width will be
taken from the PrintWidth Setup.ini variable (see
"Setup.ini [SYSTEM] Section Variables").

Comments: Inserts CR LF characters (0D 0A), either at each multiple of
Width characters or after the first space (20) preceding
Width characters.

Examples:

If Watch(1);
[
var1 = "AllDayLong";
var2 = \system\StrJustify(var1, 6);
var3 = "AllDay Long";
var4 = \system\StrJustify(var3, 6);
var5 = "All Day Long";
var6 = \system\StrJustify(var5, 6);

]

After running, the byte codes of var1 through var 6 are:

var1: 41 6C 6C 44 61 79 4C 6F 6E 67
var2: 41 6C 6C 44 61 79 0D 0A 4C 6F 6E 67

var3: 41 6C 6C 44 61 79 20 4C 6F 6E 67
var4: 41 6C 6C 44 61 79 0D 0A 20 4C 6F 6E 67
var5: 41 6C 6C 20 44 61 79 20 4C 6F 6E 67
var6: 41 6C 6C 20 0D 0A 44 61 79 20 0D 0A 4C 6F 6E 67

StrLen

Description: Returns the length of a text string

Returns: Numeric

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: String and Buffer

Related to: CharCount | Concat | Replace | SubStr

Format: StrLen(String)

Parameters:

String

Required. Any text expression.

Comments: This function does not return the number of characters in
String, but rather, the number of bytes, including 0 (NULL)
bytes. May be done on a stream value, but if the stream is
longer than 65,523 characters, the return value will be
65,523.

Example:

v = StrLen("ABCDEF");
w = StrLen("ABC_DEF");
x = StrLen("ABC DEF");

The values of v, w and x are 6, 7 and 7 respectively.

Struct

Description: Creates a new dictionary and loads it with the keys listed in
the parameters.

Returns: Dictionary structure

Usage: Script Only.

Function Groups: Variable Functions

Related to: Dictionary | MetaData

Format: Struct(A, B[, C ...]);

Parameters:

A

The first value to add to the dictionary.

B, C, etc.

Subsequent values to be added.

Comments: The dictionary created by this function is case insensitive
and has a root value of NULL. The keys are assigned W_
LONG values incrementing from zero that match their para-
meter positions. All of this is done with the idea that the res-
ulting dictionary can then be used as a structure definition.

Examples:

S = Struct("A", "B");

SubStatementIndex

Description: Returns the index of a function within the statement where
it is called.

Warning: This function should be used by advanced users only.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, States

Related to:

Format: SubStatementIndex(CodePointer)

Parameters:

CodePointer

Required. Any code pointer value expression for the
function.

Comments: This function returns 0 if CodePointer is a statement.

SubStr

Description: Returns a string that is a portion of another string.

Returns: Text

Usage: Script or steady state.

Function Groups: String and Buffer

Related to: Concat | StrLen | Replace

Format: SubStr(String, Start[, Length])

Parameters:

String

Required. Any text expression giving the original
string to extract the sub-string from.

Start

Required. Any numeric expression giving the char-
acter offset from the start of String of where to start
the resulting string. A value of 0 refers to the first char-
acter in String. If the Start is past the end of String, the
result is invalid.

Length

Optional. Any numeric expression giving the number
of characters to include in the resulting string starting
with Start. Defaults to string length.

Comments: If any parameter of this function is invalid, the return value
is invalid. If length exceeds the remaining number of char-
acters in the string past Start, then only the remaining char-
acters will be returned.

Examples:

piece1 = SubStr("ABCDEF", 2, 3);
piece2 = SubStr("ABCDEF", 3, 4);

The values of piece1 and piece2 are "CDE" and "DEF" respectively.

Sum

Description: Returns the arithmetic sum of all the valid array elements
in a specified portion of a numeric array.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Array, Generic Math

Related to: AMin | AValid | FiltHigh | FiltLow | FitOffset | FitSlope |
 Mean | SDev | SumBuff | Variance

Format: Sum(ArrayElem, N)

Parameters:

ArrayElem

Required. Any array element giving the starting point
in the array. The subscript for the array may be any
numeric expression. If processing a multidimensional
array, the usual rules apply to decide which dimension
should be used.

N

Required. Any numeric expression giving the number
of array elements to use starting at the element given
by the first parameter.

Comments: Invalid array elements are not included in the calculation.
The function returns an invalid result if either of its para-
meters is invalid, if there are no valid numerical array ele-
ments in the specified range, or if the number of elements
to use is 0.

Example:

data[0] = 1;
data[1] = Invalid();
data[2] = 1.5;
data[3] = 3;
data[4] = 100;
dataSum = Sum(data[0], 4);

The value of dataSum is 5.5.

SumBuff

Description: Returns the summation of bytes in a buffer.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Generic Math, String and Buffer

Related to: BuffOrder | BuffRead | BuffStream | BuffToArray |
 BuffToParm | BuffToPointer | BuffWrite | Sum

Format: SumBuff(Buffer, Offset, N, Increment)

Parameters:

Buffer

Required. Any text expression giving the buffer to
sum.

Offset

Required. Any numeric expression that gives the buf-
fer offset from 0 to start the sum.

N

Required. Any numeric expression that gives the num-
ber of bytes to sum. If N is negative, the absolute value
of N is used, but the operation is changed from sum-
mation to XOR (each successive byte is XORed with
rather than added to the first byte).

Increment

Required. Any numeric expression that gives the incre-

mental step of the sum in bytes.

Comments: This function returns the 32 bit sum of N bytes in Buffer,
starting at Offset and stepping by Increment bytes. This
function is useful for computing checksums for serial com-
munications.

Examples:
Given that myBuff is length 256, and values are the bytes from 0 to 255:

sum1 = SumBuff(myBuff, 0, 256, 1);

sum1 would add 0 + 1 + 2 + ... + 254 + 255

sum2 = SumBuff(myBuff, 5, 100, 1);

sum2 would add 5 + 6 + 7 + ... + 103 + 104

sum3 = SumBuff(myBuff, 1, 100, 2)

sum3 would add 1 + 3 + 5 + ... + 197 + 199
To compute a 16 bit checksum which adds 16 bit words in a 100 byte buf-
fer with the low byte first:

serCheckSum = And(SumBuff(buff2, 0, 50, 2) +
256 * SumBuff(Buffer, 1, 50, 2), 0xFFFF);

SWrite

Description: Performs a formatted write of ASCII or binary data to a pre-
existing stream and returns the number of data items not
written.

Returns: Numeric

Usage: Script Only.

Function Groups: Stream and Socket

Related to: BuffWrite | FileSize | Format | FWrite | GetStreamLength
| Print | PrintLine | Redirect | Save | SRead | StreamEnd

Format: SWrite(Stream, Format, V1, V2, ...)

Parameters:

Stream

Required. A stream as returned from BuffStream or
FileStream.

Format

Required. Any text expression giving the format
of how the values (Vn parameters) are to be writ-
ten. This format is similar, but not identical, to
the C language format string for the printf func-
tion, whereby each of the Vn parameters in the
statement is assigned to a % format spe-
cification in the order in which each appears in
the list.
Note that like a standard text string, these
format specifiers must also be enclosed by
double quotes.
If a format specification appears for which there
are no remaining V parameters, the format spe-
cification characters themselves are output to
the stream exactly as they appear in the Format.
For the % format specifications, the following
form applies (where the [] indicates optional ele-
ments):
%[-][+][SPACE][#][width][.precision]type
where
% (percent sign) is mandatory;
- (minus sign) causes the data to be left jus-
tified within the field (for binary types b and
ASCII character types c, this option is ignored);
+ (plus sign) causes positive numbers to be pre-
faced with a + sign (negative numbers are unaf-
fected). This allows easy alignment of positive
and negative numbers in a printed column of
numbers. For binary types b and non-numerical

types, this option is ignored;
space represents the single space character, and
is similar to the [+] option but places a single
space rather than a plus sign in front of positive
numbers (negative numbers are still unaffected).
This allows alignment of a column of numbers
without having to show all signs. For binary
types b and non-numerical types, this option is
ignored;
(hash mark) When used with the o , x , or X
format, the # flag prefixes any nonzero output
value with 0, 0x, or 0X, respectively.
width is a number that specifies the minimum
number of characters to output. Numbers that
require more characters than specified by the
width value are truncated on output. If the num-
ber of characters in the number or string is less
than width, blanks will be added to the left or
right, depending upon whether the output is left
or right justified (i.e. whether or not the [-]
option has been specified) until the width is
reached. For binary types b and ASCII character
types c, this option is ignored;
precision has a different meaning for each of
the type options as follows:

l Integer types d, l, u, o, x, and X precision spe-
cifies the minimum number of digits to output. If
the number contains fewer digits, leading zeroes
will be added to the left of the number. If pre-
cision is 0, omitted, or if the decimal point
appears without a number following it, the pre-
cision defaults to 1. The number is not trun-
cated.

l Floating point types e and E precision specifies
the number of digits after the decimal point. The
last digit is rounded. The default precision in this
case is 6. If the precision is 0 or if the decimal
point appears without a number following it, no
decimal point appears in the output.

l Floating point type f precision specifies the num-
ber of digits after the decimal point. The last digit
is rounded. The default precision is 0. If the pre-
cision is explicitly 0, no decimal point is output.
If a decimal point is output, at least one digit will
be placed before the decimal point.

l Floating point types g and G precision specifies
the maximum number of significant digits to be
output. If no precision is specified, all significant
digits are written.

l String type s precision specifies the maximum
number of characters of the string to be output.
If the string contains more characters than spe-
cified by the precision, the string is truncated
and only the first characters are written. If the
precision is not specified, all of the string char-
acters are output.

l ASCII character type c The precision option is
ignored.

l Binary type b The precision option is ignored.
x unsigned hex integer using "abcdef"
znnn Escape character where nnn is the 3-digit
ASCII code
type is mandatory. The type specification must
be one of those listed below.
Note: The case of the letter is important. Spe-
cifying a character for the type that is not in this
list will result in all the characters following the

% up to that point to be output exactly as they
appear in the Format string.

Type Meaning

nb Binary format, where n is a number indic-
ating the type of value (see below).

c Single ASCII character (byte)

d Signed decimal integer

e Signed exponential; exponent key is "e".

E Signed exponential; exponent key is "E".

f Signed floating point.

g e or f format, whichever is shorter.

G E or f format, whichever is shorter.

h Handle to a window.

i Signed decimal integer.

o Unsigned octal integer.

p Pointer to a buffer.

s Text string.

u Unsigned decimal integer.

x Unsigned hex integer using "abcdef".

X Unsigned hex integer using "ABCDEF".

nb, Binary type For the format specification of
%nb, where n specifies the type of number, n
must be a single digit from one of the following
choices. All are low-byte-first.

n Value Type

0 Byte, unsigned

1 Signed short integer (2 bytes)

2 Signed long integer (4 bytes)

3 IEEE single precision float (4 bytes)

4 <obsolete>

5 IEEE double precision float (8 bytes)

6 <obsolete>

7 Unsigned short integer (2 bytes)

8 Unsigned long integer (4 bytes)

Note: Other options such as width and precision
do not apply to the b type.
c, ASCII character type: This type is not rep-
resentative of a single character in a string, but
rather, represents single byte ASCII characters.
Input values (the Vn parameter to which this
format specification applies) must be integers in
the range of 0 to 255 in order for the output to
be a valid ASCII equivalent character. Strings are
not acceptable input values. Note that the %c
format specifier behaves differently when used
in an output statement such as BuffWrite than
when used in an input statement, such as
BuffRead.
d, Signed decimal integer:
e, Signed exponential: Exponent key is “e”
E, Signed exponential: Exponent key is “E”
f, Signed floating point
g, e or f formats: Whichever is shorter
G, E or F formats: Whichever is shorter
h, Window handle type: This type is used for
building structures to be handed to DLLs and

should be used by advanced users only.
p, Buffer pointer type: This type is also used
for building structures to be handed to DLLs
and should be used by advanced users only.
s, Text string type:
Plain text Text in the Format parameter is writ-
ten exactly as it appears, with three exceptions:

l Percentage sign (%) Since format specifications
for the Vn parameters are indicated by a per-
centage sign, to include an actual percentage
sign as part of the Format parameter, precede it
with a backslash character (i.e. \%).

l Backslash character (\) Since this is used to indic-
ate special control characters such as line feed,
carriage return, and form feed, to write a back-
slash as part of the Format parameter, use two
backslash characters (i.e. \\).

l Quotation marks (") The entire test string is
delimited by quotation marks, so to include a set
of quotation marks as part of the Format para-
meter, use a set of quotations marks (i.e. "").

Control characters In order to encode certain
control characters as part of the Format para-
meter, one of two methods may be used. The
first is to use a backslash character followed by
one of the single character codes listed below to
produce the desired result (notice that the let-
ters must be lower case):

Code Meaning

\b Backspace

\f Form feed

\n Line feed

\r Carriage return

\t Horizontal tab

\v Vertical tab

\nnn In addition to the above predefined codes,
\nnn may be used, where nnn is a three digit
integer in the range of 0 to 255 specifying a cer-
tain ASCII character. If the number contains less
than three digits, the leading spaces must be
padded with zeroes; this is not the case with the
previously listed single character control char-
acters. For example, to include the one byte
ASCII character G in the output, you could place
its decimal equivalent of 71 in the Format string
as \071.
u, Unsigned decimal integer,
x, Unsigned hex integer using “abcdef”
X, Unsigned hex integer using “ABCDEF”
Offset is any numeric expression giving the start-
ing buffer position in characters or bytes for the
write, starting at 0.

V1, V2, ...

Required. Any expressions giving the values to be out-
put in the form described by the Format parameter.
Each of the Vn parameters is evaluated and written in
the order in which each appears in the parameter list.
The way in which they are formatted is dictated by the
% format specifications. V1 is formatted by the first %
sequence in the Format parameter, V2 by the second,
and so on. If there are more V parameters than %
sequences in the Format string, the remainder are
ignored. If there are fewer V parameters than %

sequences in the Format string, the remaining %
sequences are written literally without any translation.

Comments: You cannot write to a read-only file. You may use GetFileAt-
tribs and SetFileAttribs to get/set the read-only attribute.
If one of the values to be written is outside of the range of
the type indicated by the format specifier, a "0" is written.
If the value to be written is invalid, nothing is written for
most format specifiers, with the exception of %nb, which
will write a "0" in the place of the invalid. Please note that
an invalid output does not prevent the execution of the
SWrite function.
This function returns the number of Vn parameters not
written to the stream. A 0 return value indicates success.
Variables that contain invalid values that were not written
due to their invalidity do not increment this count. An
invalid return value indicates an error with one of the para-
meters.

Examples:

If MatchKeys(2, "W");
[
b = MakeBuff(16, 65) { Create buffer; fill it with A's },
buff = BuffStream(b) { Create the stream },
SWrite(buff { Write to the stream },

"A=%d B=%4.2d C=%5.2f\r\n%s\r\n" { Format },
1, 2, 2/3, "Hello World" { Output values });

]

This statement would write the following two lines of text to the stream
buff :

A=1 B= 02 C= 0.67
Hello World

If you replaced the third line of the script with the following:

SWrite(buff { Write to the stream },
"\072\105\n%c%c%c" { Format },
77, 111, 109 { Output values });

The following two lines would instead be written to buffer stream buff:

Hi
Mom

SystemSelf

Description Returns the object value of the system module for the
given application.

Returns Object value

Usage Script or steady state.

Function Groups Basic Module

Related to: Self

Format: SystemSelf(Object)

Parameters

Object

Required. Any object value expression for any module
instance in the application.

Comments There is one and only one instance of the system module
for each application.

T Functions
The sections that follow identify all VTScada functions beginning with
"T".

TableSynch

(ODBC Manager Library)

Description: Synchronizes the fields matching a specified criteria within
matching tables in two databases. Should be run as a
called module, waiting for completion. Do not call as a sub-
routine.

Returns: Nothing

Usage: Script Only.

Function Groups: ODBC

Related to:

Format: \ODBCManager\TableSynch(DSNSource, DSNDest,
TableName, WhereFields, WhereOperators, WhereValues,
WhereSQLDataTypes, WhereAND, SourceUsername,
SourcePass, DestUsername, DestPass, [TransObj,]
NRecords, CurrRecord)

Parameters:

DSNSource

Required. Data source name of the database to retrieve
data from.

DSNDest

Required. Data source name of the destination data-
base to send data to

TableName

Required. Table name to read/write in both databases

WhereFields

Required. A text array of field names to select using an
SQL WHERE clause

WhereOperators

Required. A text array of operators to use when select-
ing fields using an SQL WHERE clause

WhereValues

Required. A text array of values to use when selecting
the above fields using an SQL WHERE clause

WhereSQLDataTypes

Required. Values indicating the data type of the Where
values. Should be a simple value or an array matching
the WhereFields parameter. Refer to Data Type Codes
used in the ODBC Manager for a list of the codes.

WhereAND

Required. Set to true (1) if the fields in the SQL WHERE
clause are to be AND'ed. Otherwise, OD'ed

SourceUsername

Required. User name for source db

SourcePass

Required. A password for source db

DestUsername

Required. A user name for destination db

DestPass

Required. A password for destination db

TransObj

The object value of transaction

NRecords

Required. A number of records to synchronize

CurrRecord

Required. Current record being written

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.

Tag

Description: Returns a Tag value, which works like (and in place of) a
Normalize value.

Returns: Tag

Usage: Steady State only.

Function Groups: Graphics, Generic Math, Variable

Related to: Normalize | Rotate | Scale | Trajectory

Format: Tag(Value, LowInput, HighInput, LowScale, HighScale,
Mode, Freq)

Parameters:

Value

Required. Any numeric expression to be normalized.

LowInput

Required. Any numeric expression, which represents
the lowest normal input value of Value. This is not a
limit.

HighInput

Required. Any numeric expression, which represents
the highest normal input value of Value. This is not a
limit.

LowScale

Required. Any numeric expression, which represents
the lowest normal scaled value of Value. This is not a
limit.

HighScale

Required. Any numeric expression, which represents
the highest normal scaled value of Value. This is not a
limit.

Mode

Required. Any numeric expression that specifies how
this I/O tag is to be simulated. If the application isn't
simulating I/O, this parameter is ignored, but must be
present and valid.

Freq

Required. Any numeric expression that specifies the
frequency at which the simulation runs. This applies
only if this tag is simulated, and only if the Mode spe-
cifies a cyclic simulation; however, this parameter
must always be present and valid.

Comments: This function scales an expression from the low and high
input range to between low and high values. The return

value is a Normalize value.
If a Tag value is used in an expression, it will return the
scaled value.

Example:

pumpFlow = Tag(rawPumpFlow, 0, 4095, 0, 150);

This sets the variable pumpFlow to a Tag value. The variable
rawPumpFlow is scaled from between 0 to 4095, to between 0 and 150.
This Tag value might be used to scale a rectangle (to show a bar graph of
the pump flow), as shown:

GUIRectangle(0, 100, 100, 0 { Rectangle bounding box },
1, 1, 1, pumpFlow, 1 { Scale top of bar only },
0, 0 { No trajectory, rotation },
1, 0 { Visible; reserved },
0, 0, 0 { No focus, selection },
12, 15 { Lt red, white outline });

The variable pumpFlow could also be reused in other expressions, graph-
ics functions, rotations, or trajectories.

TagIconMarker

Description: Draws an "IconMarker" in the center of its transform area,
and optionally shows a blank icon when in editing mode.

Returns: Object

Usage: Steady State only.

Function Groups: Graphics

Related to:

Format: TagIconMarker(TagReference[, ShowInConfigParm])

Parameters:

TagReference

Required. A reference to the tag for which the unlinked
widget, questionable, manual or dummy tag indicator
should be shown.

ShowInConfigParm

Optional Boolean. If TRUE, the marker will be visible
(but blank) in the Idea Studio. Defaults to FALSE.

Comments:

Examples:

GUITransform(0, 30, 30, 0,
 1, 1, 1, 1, 1 { Scaling },
 0, 0 { Movement },
 1, 0 { Visibility, Reserved },
 0, 0, 0 { Selectability },
 Variable("Code\Library")\TagIconMarker(\Root));

Tan

Description: Returns the trigonometric tangent of an angle in radians.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Trigonometric Math

Related to: ACos | ASin | ATan | Cos | Sin

Format: Tan(Angle)

Parameters:

Angle

Required. Any numeric expression giving the angle in
radians.

Comments: The returned value is a number in the range of -1.00 to
+1.00. To convert an angle from degrees to radians mul-
tiply by \pi / 180 or (approximately) 0.0174533.

Example:

x = Tan(45 * \pi / 180);

The value of x will be 1.

Target

Description: Returns an indication of whether the locator (e.g. mouse)
is within a specified screen area.

Returns: Boolean

Usage: Script or steady state.

Function Groups: Locator

Related to: Click | Pick | SetXLoc | SetYLoc | XLoc | YLoc |
 GUITransform

Format: Target(X1, Y1, X2, Y2)

Parameters:

X1

Required. Any numeric expression giving the X
coordinate on the screen of one side of the screen area
("target").

Y1

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the screen area ("target").

X2

Required. Any numeric expression giving the X
coordinate on the screen of the side of the "target"
opposite to X1.

Y2

Required. Any numeric expression giving the Y
coordinate on the screen of either the top or bottom of
the target, whichever is the opposite of Y1.

Comments: This function returns true if the locator position is
within the boundaries of the "target" ((X1,Y1) -
(X2,Y2)). If the locator is not installed, the function
will return false (0).

Note: This function is disabled when using a
GUITransform as a GUIStrectch.

Example:

If Target(120, 50, 220, 80);
[

...
]

This statement will cause the script to execute whenever the mouse
passes over the target area.

TCPIPReset

Description: Shuts down and resets all TCP/IP functions.

Returns: Nothing

Usage: Script Only.

Function Groups: Network

Related to: ClientSocket

Format: TCPIPReset()

Parameters: None

Comments: This statement may only appear in a script.

TempFileStream

Description: Creates a temporary file on disk and connects a stream to
the temporary file. The temporary file is removed when the
stream is closed or no longer referenced or if the VTScada
process is terminated.

Returns: Stream

Usage: Script or steady state.

Function Groups: File I/O, Stream and Socket

Related to: BlockWrite | BuffStream | ClientSocket | CloseStream |

 FileStream | GetStreamLength | PipeStream | SRead |
 StreamEnd | SWrite

Format: TempFileStream(Buffer)

Parameters:

Buffer

Required. Any text or buffer expression. This serves as
the initial content of the stream.

Comments: This function returns a stream connected to a temporary
disk file with the contents of Buffer; the pointer at which an
action (read or write) begins will be at the start of the
stream. Writing to this stream can overwrite or expand (or
both,) the size of this initial stream and file.

Example:

Stream = TempFileStream("0123456789");

The variable stream would contain "0123456789".

Text

Note: Deprecated. Do not use in new code.

Description Displays text in a window.

Returns Nothing

Usage Steady State only.

Function Groups Graphics

Related to: GUIText | Output | TextAttribs | ZText

Format: Text(X, Y, Value, Foreground, Fill, Background, Size,
Obsolete)

Parameters

X

Required. Any numeric expression giving the X screen

coordinate of the lower left corner of the text on the
screen.

Y

Required. Any numeric expression giving the Y screen
coordinate of the lower left corner of the text on the
screen.

Value

Required. Any text expression giving the value to be
displayed.

Foreground

Required. Any numeric expression giving the color of
the characters to be displayed.

Fill

Obsolete - set to zero.

Background

Required. Any numeric expression giving the color of
the background area for the output characters.

Size

Required. Any numeric expression giving the height of
the characters in units of Y screen coordinates. If this
value results in a specification of less than 12 screen
pixels high, the text will be the small text (8 pixels
high); otherwise, the text will be the large text. If Size
is negative, it will be interpreted as a dot text output of
size equivalent to the absolute value of the size. The
number will be displayed to the nearest multiple of the
base 8 pixel by 8 pixel text. This produces faster, non-
destructive large characters than the normal large text
characters.
Setting size greater than 12 results in non-XOR draw-
ing.

Obsolete

No longer used, but is maintained for backward com-
patibility with previous versions of VTS; set to 0.

Comments This statement has been superseded by the GUIText
and ZText statements and is maintained for back-
wards compatibility only.
As of version 11, this is now drawn in the same z-
order as other graphics, making it similar to the z-
graphics functions.

Note: Within an Anywhere Client session, this func-
tion does nothing.

TextAttribs

Description: Returns graphic-related information about a text, given a
font.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Graphics

Related to: GUIText | Output | ZText

Format: TextAttribs(Text, Font, Option)

Parameters:

Text

Required. Any text expression.

Font

Required. Any font expression.

Option

Required. Any numeric expression for the desired para-

Option Parameter

0 Width of text in user coordinates

1 Height of text in user coordinates

Example:

width = TextAttribs("Testing" { Text to display },
Font("ARIAL", 0, 16, 0, 5, 0, 0) { Font },
0 { Width in user coordinates });

The value of width will be 61, which is the width of the given text string
in the given font.

TextBox

(System Library)

Description: Displays a text string, breaking it into multiple lines at
space or CRLF.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to:

Format: \System\TextBox(X1, Y1, X2, Y2, Msg, FontVal, Style,
BevelTitle [,BackColor, BodyTextColor, HorizontalAlign,
VerticalAlign, Height])

Parameters:

X1

Required. The left side coordinate.

Y1

Required. The bottom side coordinate.

X2

Required. The right side coordinate.

Y2

Required. The top side coordinate.

Msg

Required. The message buffer to display.

FontVal

Required. The font to use (defaults to _DialogFont).

Style

Required. The bevel/border/wordwrap requirements.
This can be one of:

Bit 0 Draw a bevel at X1/Y1/X2/Y2. An 8-pixel
margin will be added when determining the
text rectangle. The default is TRUE.

Bit 1 Draw a border around the text rectangle. A
further 4-pixel margin will be added. The
default is TRUE.

Bit 2 Word wrap text. The default is TRUE.

Bit 3 Transparent background. Can be clicked-
through to the controls beneath. Default is
FALSE

Bit 4 Disables the vertical scroll bar when TRUE.
Default is FALSE

Bit 5 Disables the horizontal scroll bar when TRUE.
Default is FALSE.

BevelTitle

Required. The title to display for the bevel (if relevant).

BackColor

An optional parameter specifying the background
color Defaults to #SYS…BUTTONFACE.

BodyTextColor

An optional parameter specifying the text color.
Defaults to 0, black.

HorizontalAlign

An optional numeric value, specifying the horizontal
alignment of the text.
0 == Left,

1 == Center,
2 == Right.
Defaults to 1, Centered.

VerticalAlign

An optional numeric value, specifying the vertical align-
ment of the text.
0 == Top,
1 == Center,
2 == Bottom.
Defaults to 1, Centered.

Height

Optional Numeric. The height of the text, not including
borders and bevels will be returned to the caller in this
parameter.

Comments: If the current text cannot be accommodated by breaking
at a word boundary, then the word will be hyphenated (not
grammatically). A vertical scrollbar will be automatically
added if required.

TextIP2Bin

(RPC Manager Library)

Description: Returns the Binary representation of the specified IP.

Returns: Text

Usage: Script Only.

Function Groups: String and Buffer, Network

Related to: BinIP2Text

Format: \RPCManager\TextIP2Bin(IP)

Parameters:

IP

Required. The IP that you want converted to Binary
format. Formatting example 192.168.0.200.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.src.
If you have an IP of the format 192.168.0.200/24, the /24
will be ignored.

TextOffset

Description: Returns the character offset to the definition text of a
desired item.

Warning: This function should be used by advanced users only.

Returns: Numeric

Usage: Script Only.

Related to: AdjustCode | GetModuleText | GetOneParmText |
 GetParmText | GetStateText | GetTransitText |
 GetVariableText | SetModuleText | SetOneParmText |
 SetParmText | SetStateText | SetTransitText |
 SetVariableText | TextSize

Format: TextOffset(CodeValue, Type)

Parameters:

CodeValue

Required. Any code value expression for the item.

Type

Required. Any numeric expression for the value type
of CodeValue.

TextSearch

Description: Returns the array index of the first occurrence of the given
text key in an alphabetically ordered array.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Array, String and Buffer

Related to: ArrayStart | ArraySize | LookUp

Format: TextSearch(ArrayElem, N, Text, Case)

Parameters:

ArrayElem

Required. Any array element giving the starting index
for the array operation. The index for the array may be
any numeric expression.
If processing a multidimensional array, the usual rules
apply to decide which dimension should be used.

N

Required. Any numeric expression for the number of
array elements to search.

Text

Required. Any text expression to search for.

Case

Required. Any logical expression. If true, the search is
case-sensitive; otherwise, the search is case-insens-
itive.

Comments: If the key is not found in the array, the function returns
invalid. Notice that the array (or the elements being
searched in the array) must be in ascending alphabetical
order for this statement to return a valid value.

Example:

index = TextSearch(dataArray[0] { Start of search in array },
ArraySize(dataArray, 0)
{ Search all elements },
"green" { Text string to search for },
0 { Case insensitive search });

Given that dataArray is an array of text strings of various color names,
index will be set to the subscript of the array element whose entry is
"green".

TextSize

Description: Returns the size in characters of the definition text of a
desired item.

Warning: This function should be used by advanced users only.

Returns: Numeric

Usage: Script Only.

Function Groups: String and Buffer

Related to: AdjustCode | GetModuleText | GetOneParmText |
 GetParmText | GetStateText | GetTransitText |
 GetVariableText | SetModuleText | SetOneParmText |
 SetParmText | SetStateText | SetTransitText |
 SetVariableText | TextOffset

Format: TextSize(CodeValue, Type)

Parameters:

CodeValue

Required. Any code value expression for the item.

Type

Required. Any numeric expression for the value type
of CodeValue.

Comments: This function may only appear in a script.

TGet

Note: Deprecated. Do not use in new code.

Description: This threaded function reads an array of historical data
from a file (written by Save or SaveHistory) and returns an
indication of parameter errors.

Returns: Numeric

Usage: Script Only.

Function Groups: Log, File I/O

Threaded: Yes

Related to: TGet | HistorianDeleteRecords | HistorianGetData |
 HistorianGetInfo | HistorianReadRecords |
 HistorianWriteRecords | Get | GetHistory | GetLogInfo |
 Save | SaveHistory

Format: TGet(Array, N, File, FieldNum, StartDate, StartTime, TPP,
Mode [, ErrorCode, StaleTime, PathPrefix])

Parameters:

Array

Required. A variable which will be set to an array upon
completion of the data retrieval.

N

Required. Any numeric expression giving the number
of array entries to create.

File

Required. Any text expression giving the file name for
the historical data file. The file extension should not be
added to the name since the default of ".DAT" is auto-
matically added.If the file name is prefixed with a
period, the path will be to the directory the module is
contained in.

FieldNum

Required. Any numeric expression giving the field
number to be read from the file. The value number for
the actual data starts at 0 and corresponds to the
columns specified in Save or SaveHistory. It is also pos-
sible to retrieve time data associated with each record
by setting this parameter to a negative value.Time
options are:

FileNum Time Option

-1 Time of day only

-2 Date only

-3 Time since January 1, 1970

It is possible to retrieve more than one field in a
single TGet statement. To do this, pass an array
of values in as the FieldNum parameter.

StartDate

Required. Any numeric expression giving the date to
search for in the file as the starting date for the data.
This date is expressed as the number of days since
January 1, 1970. If StartDate is less than zero, it indic-
ates the relative file position to read rather than the
date.
A -1 indicates the last entry in the file. A -2 the second
last and so on.
It is important to note that in cases where Save has
been used with a non-negative Buffers parameter, the
last entry in the file will be invalid (a fact that is useful
in data logging). In cases such as this, the first valid
entry will be indicated by -2, the second by -3 and so
on.

StartTime

Required. Any numeric expression giving the time of
day on StartDate to search for in the file as the starting

time for the data. This time is expressed as the number
of seconds since midnight on StartDate.
It is legal for StartTime to be greater than one day. It is
legal for StartTime to be negative, where data will start
the previous day at (86400 - StartTime) seconds after
midnight. If StartDate is less than zero, StartTime is
ignored.

TPP

Required. Any numeric expression giving the time
span in seconds for each array entry. Each array ele-
ment will contain the data which correspond exactly to
this time period which corresponds to 0 or more data
points in the file. If TPP is positive and FieldNum
selects a text value, the first entry which falls in a time
is read, and Mode is ignored.
If TPP is equal to 0, the data is read from the file and
placed in the array on a one to one basis.
If TPP is less than 0, the data is read on a one to one
basis from the StartDate and StartTime for (negative)
TPP seconds, TPP places an upper limit on the time
span to read. In both of these cases, the Mode para-
meter is ignored.

Mode

Required. Any numeric expression giving the method
of handling the data. If TPP is greater than 0, the values
that fall in each time span will be represented as fol-
lows:

Mode Time Span Representation

0 Time weighted average

1 Minimum in range

2 Maximum in range

3 Change in value over the range

4 Value at start of range

5 Time of minimum in range (in seconds
since Jan 1, 1970)

6 Time of maximum in range (in seconds
since Jan 1, 1970)

7 Count the total number of zero to non-
zero transitions within each TPP period.

8 Totalizes, for each TPP, the amount of
time when the value is non-zero (Invalid
is counted as zero).

9 Totalizes, for each TPP, the arithmetic
sum of the recorded values.

10 Interpolates between values.

In the case of modes 5 and 6, FieldNum should
still be set to indicate the field number on which
the mode is to act; the return values will be
times indicating the maximum or minimum in
that field for each time span.
If TPP is less than or equal to 0, Mode is
ignored. If the data is text, the first entry in a
given time range is used for the array entry and

Mode is ignored.
It is possible to retrieve more than one mode in
a single TGet statement. To do this, pass an
array of values in as the Mode parameter.

ErrorCode

An optional parameter that is any variable which will
be set to a valid value upon completion of the TGet. Its
meaning is as follows:

Value Error

0 No error

1 Parameter values out of described
range

2 File could not be opened

3 Corrupted .DAT file

4 Field requested could not be found

If ErrorCode is not required but either StaleTime
or PathPrefix is, then ErrorCode should be given
as an Invalid value.

StaleTime

An optional parameter that sets a maximum validity
duration for data elements that are being TPP pro-
cessed. Normally, every data point is treated as remain-
ing valid until the next data point. If a valid StaleTime
parameter is given, then any data point will be treated
as invalid StaleTime seconds after the recorded time. If
TPP is less than or equal to 0, StaleTime is ignored. If
StaleTime is not required but PathPrefix is, then
StaleTime should be given as either an Invalid value or
a constant zero.
It is possible to specify more than one stale time in a
single TGet statement. To do this, pass an array of val-
ues in as the StaleTime parameter.

PathPrefix

An optional text expression parameter that enables
and controls the retrieval of data from across a set of
files. No default.

Comments: This function is similar to Get except that it runs in its own
thread - it is typically used when a large amount of data is
being read. When the TGet is executed in its script, it starts
its own thread and VTScada will continue executing; when
it is finished executing, it will set the data in Array. Note
that Array will not be initially invalidated upon execution of
this statement. This means that if Array already contained
data when the TGet was executed, that data will remain
untouched until all of the data requested by TGet has been
amassed, at which time Array will be set to its new value.

There is a return value for this function that indicates if any
of its parameters are invalid. The function will immediately
return a value of false (0) unless a parameter was invalid,
in which case it will return true (1). Note that the return
value only signals completion of the function's execution if
it is true, otherwise the function will continue executing in
its thread.
If StartDate is given a negative value, indicating that a par-
ticular entry is to be retrieved, it must be stressed that the
file being read by the TGet may or may not contain an
invalid record at the end of the file. If the Save that created
the file was given a negative number for its Buffers para-
meter, the invalid record would not have been written to
the file, however, a zero or positive value for Buffers will
mean that the last record of the file will be one whose fields
are all invalid and whose time and date stamp reflect the
cessation of writing to the file by the Save.
If FieldNum is an array with more than one element,
then TGet will retrieve multiple fields from the file.

In this case, ArrayElem must represent an array with
at least two dimensions. The requested values will
be returned in a manner analogous to GetHistory;
that is, with the data for a column in the rightmost
dimension, and the column index in the previous
dimension.
When FieldNum is specified as an array, Mode or
StaleTime, or both, may be specified as either a
single value or an array of values. If a single value is
specified, that value will be used for each of the
fields specified in FieldNum. If an array of values is
specified, the first element in the array will be
applied to the first element of FieldNum, and so on.
If PathPrefix is specified, then this changes the inter-
pretation of the File parameter. In this case, the ref-
erenced file is not the source of the data, but a file
containing references to other files which are the
data sources. This file should be in standard
VTScada logfile format and should contain a file ref-
erence as the first text value of each record (other
values are ignored). The records should be in the
correct time order with respect to the data files. The
value of the PathPrefix is a string, which when pre-
fixed to one of the file references, will yield a full
pathname to the target file. If no prefix is required,
but expansion of the dataset is required, then
PathPrefix should be an empty string.
If a filename entry does NOT begin with a "\" or
"<drive letter>:\", then the PathPrefix will be pre-
pended to the filename.
If a filename entry DOES begin with "<drive let-
ter>:\", then the PathPrefix will NOT be prepended
to the filename.

If a filename entry does begin with a "\", then the
"<drive letter>:" from the PathPrefix will be pre-
pended to the filename. If there is no "<drive let-
ter>:" in the PathPrefix then the "<drive letter>:"
from the path of the File parameter will be used
instead.
PathPrefix would normally be the application path.

Example:

Init [
If 1 Main;
[
TGet(trend { Destination array },
100 { Get 100 array elements fr file },

"G:\mix\mixtrend" { path and file name },
0 { Read first 'column' from file },
Today() { Starting today },
Seconds() - 3600 { Starting 1 hour ago },
18 { Each element covers 18 secs },
0 { Time weighted average });

]
]
Main [
If Valid(trend) DoneReading;
ZText(10, 20, "Reading Data", 10, 0);

]

This reads a half hour of data from a file, starting one hour ago. Note
that just after midnight, the expression Seconds() - 3600 may be neg-
ative; the TGet statement interprets this as before midnight on the pre-
vious day (which is correct). X is set to the record following the last
record read from the file. Note also that a full path name may be spe-
cified, including network drives. Also note that it is irrelevant when data
were logged to the file; the Save statement trigger could have been a reg-
ular timer (such as AbsTime), or an event (such as Change(level, 1)).

Thread

Description: Launches a module in its own separate thread.

Returns: The object value of the instance of the module that is
launched into the new thread.

Usage: Script Only.

Function Groups: Basic Module

Related to: Call | FindVariable | Launch | LoadModule |
 ThreadHistory | ThreadList | ThreadName

Format: Thread(Module, Parent, Caller, Name, P1, P2, ...)

Parameters:

Module

Required. A module pointer or a text expression giving
the module to run. If the module is in scope, the text
expression giving its name may be used, otherwise the
module pointer returned from either a LoadModule or
FindVariable statement is typically used.

Parent

Required. The object value of the module where Mod-
ule is to resolve its global variable references. If a valid
non-object value is supplied Module will resolve its
global variable references to the scope defined by the
first parameter. If this is invalid, the module will still
run, but global references will be invalid.

Caller

Required. The object value of the window to draw in.
This specifies the module instance where Module acts
as if it were called from. If this is invalid, the module
will still run but will not stop without a Slay. If it is valid,
the module will stop when the Caller module instance
stops or when a Slay is executed upon it.

Name

Required. Any text expression giving the name that is
to be associated with this particular thread. This is the
name that will be returned by the ThreadList function.

P1, P2, ...

Required. Are any expressions which will be supplied
as parameters to the module.

Comments: This function behaves similar to Launch except that a sep-
arate thread is created in which the module is executed.
This means that it will not block execution of other mod-
ules; the CPU time will be divided equally amongst threads
of equal priority. Great care should be exercised when
using this function since each thread created by Windows™
uses certain system resources and will by its very existence
slightly slow the running of the application. In general, the
Thread function should only be used when a module would
otherwise monopolize system resources to such an extent
that other critical modules would be severely hampered in
their execution.

This function returns an object value of the newly started
module, in the same way that Launch does. This means
that parameters are passed to the module as a value only,
and if the module instance changes one of their values, its
value will not change outside of the scope of the threaded
module. Variables external to the module that the module
itself will be required to alter should reside within the
scope of Parent and be set directly, rather than passed as
parameters.

Example:

If ! Valid(ptr);
[
ptr = Thread("CheckTank" { Module to launch },

Self(), Self() { Parent and caller },

CheckTankThread { Name },
pressure1, pressure2, level { Parameters });

]

ThreadHistory

Description: Returns in an array the history of execution for a specified

thread.

Returns: Array of text

Usage: Script Only.

Function Groups: Basic Module

Related to: Thread | ThreadList | ThreadName |

Format: ThreadHistory(ThreadName)

Parameters:

ThreadName

Required. The name of the thread for which you wish
the history of execution to be returned.

Comments: The return value for ThreadHistory is a listing of the last
8192 operations on the thread (max) with five data points
per operation. This array should be interpreted in the
format, [column][row].
The five rows (data operations) are as follows:
0 = Time of execution
1 = Module, State and Statement (type 13) for the
operation
2 = State name where the operation is located
3 = Statement number of the operation
4 = Object value for the owning module instance

ThreadIdle

Description: Returns TRUE when the ToDo list for a given thread is
empty.

Returns: Boolean

Usage: Script or steady state.

Function Groups: Basic Module

Related to: Thread | ThreadHistory | ThreadList | ThreadName |

Format: ThreadIdle(ObjectValue)

Parameters:

ObjectValue

Required. The object value of the thread to monitor.

ThreadList

Description: Returns a two dimensional array containing the name and
statement last executed by each VTScada thread.

Returns: Array

Usage: Script Only.

Function Groups: Basic Module, Software and Hardware

Related to: Profile | Thread | ThreadHistory | ThreadIdle |
 ThreadName |

Format: ThreadList()

Parameters: None

Comments: This function returns an allocated array such that the first
row of the array (array[0][n]) contains the name of each
thread, while the second row (array[1][n]) contains the
statement most recently executed statement in that
thread. The threads are ordered in the array in chro-
nological order with the most recently started thread is at
the beginning of the array.

Example:

If MatchKeys(1, "thread");
[
allthreads = ThreadList();

]

ThreadName

Description: Returns the name of a thread.

Returns: Text

Usage: Script Only.

Function Groups: Basic Module, Software and Hardware

Related to: Profile | Thread | ThreadList | ThreadIdle | ThreadName
|

Format: ThreadName(Instance)

Parameters:

Instance

Required. Any object value designating the thread for
which the name is required.

Comments: This function returns the name of the thread in which
Instance is executing.

Example:

If ! Valid(myThread);
[
myThread = ThreadName(Self());

]

ThreadPriority

Description Allows advanced users to set a specified thread to one of
six priorities, ranging from idle to time critical.

Warning: This statement is recommended for advanced users only.

Returns: Nothing

Usage: Script Only.

Function Groups: Basic Module

Related to:

Format: ThreadPriority(ObjectReference, Priority)

Parameters:

ObjectReference

Required. Indicates the thread to be modified.

Priority

Required. A value from –3 to 3 that indicates the pri-
ority of the thread. This may be one of:

Priority Description

-3 THREAD_PRIORITY_IDLE

-2 THREAD_PRIORITY_LOWEST

-1 THREAD_PRIORITY_BELOW_NORMAL

0 THREAD_PRIORITY_NORMAL
(Default)

1 THREAD_PRIORITY_ABOVE_NORMAL

2 THREAD_PRIORITY_HIGHEST

3 THREAD_PRIORITY_TIME_CRITICAL

Comments: All threads default to THREAD_PRIORITY_NORMAL. The
operating system will place priority on threads operating at
higher priorities over threads operating at lower priorities.
The responsiveness of higher priority threads is therefore
improved (at the expense of lower priority thread respons-
iveness).
Threads that share information amongst themselves may
see performance drop if they don’t all operate at the same
priority; similarly high priority threads that perform exten-
ded operations may prevent lower priority threads from
operating at all. Use of high priority threads is typically
appropriate to short operations that need to be performed
without delay or to processes that are intolerant of inter-
ruption.

Time

Description: Returns a formatted string for a time of day.

Returns: Text

Usage: Script or steady state.

Function Groups: Time and Date

Related to: Date | Now | Seconds

Format: Time(Sec, TimeForm [, Flags])

Parameters:

Sec

Required. Any numeric expression giving the number
of seconds since mid night. The function, Now(1), is
commonly used as it returns the current time of day,
expressed in seconds.

TimeForm

Required. Any numeric expression giving the option
for the time predefined Time Formats. If TimeForm is
numeric, the format for the time will be interpreted.
If TimeForm is a text value that does not resolve to a
numeric, it is interpreted as a time formatting string as
follows.

String Description

"h" Hours with no leading zero for single-
digit hours; 12-hour clock.

"hh" Hours with leading zero for single-
digit hours; 12-hour clock.

"H" Hours with no leading zero for single-
digit hours; 24-hour clock.

HH Hours with leading zero for single-
digit hours; 24-hour clock.

"m" Minutes with no leading zero for
single-digit minutes.

"mm" Minutes with leading zero for single-
digit minutes.

"s" Seconds with no leading zero for
single-digit seconds.

"ss" Seconds with leading zero for single-
digit seconds.

"t" One character time-marker string,
such as A or P.

"tt" Multi character time-marker string,
such as AM or PM.

In the event that the TimeForm parameter does
not resolve to either a numeric or text value, the
system-configured time format, as specified

through the Windows Control Panel, is used. In
this case, the Flags parameter is used to select
from a number of options for the date.

Flags

An optional parameter that is only used in the event
that the DateForm parameter does not resolve to a
numeric or a text value. The Flags parameter may be
set as follows to adjust the format of the date.

Value Description

1 Do not generate minutes or seconds.

2 Generate minutes, but do not generate
seconds.

8 Force 24-hour time format.

Note: The format string characters are case-
sensitive. If you wish to include one of the
formatting characters in your output string,
then you must surround it with single quo-
tation marks. For example, "h'h'" would display
the current hour number in 12-hour clock
format, with a lowercase h suffixed to it.

Comments: The Sec parameter may be negative, in which case it spe-
cifies the time before midnight. If greater than 86400, it
specifies the time in the next day. The text string returned
is at most 11 characters long.

Examples:

ZText(10, 10, Time(Now(1), 2), 0, 0);
time1 = Time(28800, 2);
time2 = Time(28800, 7);
time3 = Time(now(1), "m");

The first statement will display the current time in the upper right corner
of the window in the form "08:24:13", and will update every second. The

value of time1, time2, and time3 will not be displayed, but will be set to
"08:24:00", "08:24 AM" , and "24" respectively.

TimeArrived

Description: Indicates whether a given time has occurred.

Returns: Boolean

Usage: Steady State only. See: Rules for Usage.

Function Groups: Time and Date

Related to: CurrentTime

Format: TimeArrived(TriggerTime)

Parameters:

TriggerTime

Required. A UTC timestamp, specifying when the
TimeArrived function will become true..

Example:

If TimeArrived(Timestamp);
[

...
]

This statement will trigger when the current time reaches the specified
timestamp (Timestamp must be changed or invalidated in the cor-
responding script, otherwise the statement will trigger repeatedly). This
example is exactly equivalent to the hypothetical statement:

If CurrentTime(1) >= Timestamp;

Except that CurrentTime may not be used in steady state.

TimeOut

Description: Returns true when the uninterrupted time that an expres-
sion is true reaches the specified value.

Returns: Boolean

Usage: Steady State only. See: Rules for Usage.

Function Groups: Time and Date

Related to: AbsTime | Now | RTimeOut

Format: TimeOut(Enable, Time)

Parameters:

Enable

Required. Any numeric expression giving the con-
dition that results in the timer counting. When this
parameter is true (not 0), the timer is "running." When
this parameter is false (0), the timer stops and the
timer is reset to 0.

Time

Required. Any numeric expression giving the time-out
limit in seconds. When the cumulative time that Enable
is true reaches this value, the function becomes true
(1). If this value is 0 the function will trigger imme-
diately and will continue to trigger as long as the state
containing this function is active.

Comments: This function is reset when either parameter becomes
invalid, the Enable becomes false, or when the state con-
taining the function is started. When the function is reset,
counting starts at 0 and the returned value is false (0).
Note that this function is reset automatically when it
occurs in a true action trigger or function parameter of a
function which resets its parameters after evaluation (e.g.
Latch, Toggle & Save).

Example:

ZText(10, 10 { Lower left corner of text },
"Emergency!" { Text to display },
Cond(Toggle(TimeOut(1, 0.3)), 12, 4
{ Toggle lt red/dark red every 0.3 secs }),
0 { Default font });

This displays a message which flashes bright red and dark red every 0.3
seconds. Another common usage of the TimeOut function is as an action
trigger for a script:

If TimeOut(1, 5) NextState;
[

...
]

This script will be executed 5 seconds after entering the state, and then a
state change to NextState will occur.

TimeZone

Description: Returns information on the current time zone setting of the
machine.

Returns: Varies

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Time and Date

Related to: Date | DateNum | Day | Month | Now | Seconds |
 CurrentTime | SetClock | Time | Today | Year |
 ConvertTimeStamp | TimeZoneList

Format: TimeZone(Option)

Parameters:

Option

Required. Any numeric expression giving the inform-
ation to return as follows:

Option Returns

0 Time displacement in seconds to UTC

1 Name of time zone (maximum of 32
characters) in "Daylight Time" or
"Standard Time", which ever is applic-
able. Commonly used for display pur-
poses.

2 Name of time zone (maximum of 32
characters) in "Standard Time" only.
Commonly used as an input to Con-
vertTimestamp, but only if using an
English OS.

3 A structure of time zone information:
StdTimeZone (Standard time zone)
ObservesDST (Boolean indicating Day-
light Savings Time usage when true)

Comments: Note that the first two options take account of whether day-
light savings is in effect (assuming that that option has
been selected on the machine). This means that not only
the numeric time displacement, but also the name ("Day-
light Time" versus "Standard Time") will vary according to
the current date.
The output from the third option (2) is commonly used as
an input to the ConvertTimestamp function since that func-
tion cannot use the adjusted timezone string from
TimeZone(1). Only English is recognized.

Example:

If 1 Main;
[

msg = Concat("It is now ", CurrentTime(), " ", TimeZone(1));
]

TimeZoneList

Description: Returns a list of time zones.

Returns: Array of text

Usage: Script Only.

Function Groups: Time and Date

Related to: ConvertTimeStamp | TimeZone

Format: TimeZoneList()

Parameters: None

Comments: Entries in the returned list may be used as parameters for
the ConvertTimestamp function.
TimeZoneList produces a list of time zones in English, even
on non-English versions of Windows.

Example:

Init [
If 1 Main;
[
{ Get a list of time zones }
TZList = TimeZoneList();

]
]

Today

Description: Returns the current number of days since January 1, 1970.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Time and Date

Related to: Date | DateNum | Day | Month | Now | Seconds | Year

Format: Today()

Parameters: None

Example:

ZText(10, 10 { Lower left corner of text },
Date(Today(), 4) { Display in Mmm dd, yyyy format },
0 { Black color },
0 { Default font });

This displays today's date in the upper left corner of the screen in the
format "Mar 18, 1996".

TODBC

Description Performs an ODBC command; it is similar to ODBC except
that it runs in its own thread (see "Comments" section for
differences).

Returns Nothing (see parameters)

Usage Script Only.

Function Groups Database and Data Source, ODBC

Threaded Yes

Related to: ODBC | ODBCConfigureData | ODBCConnect |
 ODBCDisconnect | ODBCSources | ODBCStatus |
 ODBCTables | TODBCConnect | TODBCDisconnect

Format: TODBC(DB, SQLCommand, Attrib, Result, ErrorMsg,
SQLState, ErrorCode [, QueryTimeout])

Parameters

DB

Required. An ODBC value for the ODBC database as
returned by TODBCConnect or ODBCConnect.

SQLCommand

Required. Any text expression for the SQL command
to perform on the ODBC database driver.

Attrib

Required. Any variable that will be set to an array that
gives certain information regarding the table returned
in the next parameter. The first dimension of the array
contains the name of the column in the return table,
while the second dimension contains the type - 0 for
character data, 1 for numeric data.

Result

Required. Any variable that will be set to an array con-
taining the data resulting from the SQL command. The
format for the array is Result[Field][Record].

ErrorMsg

Required. Any variable that will contain the last error
message returned by the function. If no errors
occurred this parameter will be set to 0 to indicate the
termination of the thread.

SQLState

Required. Any variable that will contain the SQL state
that the statement was in when the last error occurred.

ErrorCode

Required. Any variable that will contain the native error
code for the given driver and an error condition for the
last error that occurred.

QueryTimeout

An optional parameter that sets the period (in seconds)
which the driver will wait for a query request to com-
plete. The default value of "0" indicates that there is no
timeout. Please note that not all ODBC drivers support
the optional QueryTimeout parameter; in particular,
the Microsoft Access (.mdb) driver. If the driver does
not support this option, then an error message will be
returned by the statement. If this occurs, then the para-
meter should be left as Invalid to allow the statement
to proceed.

Comments This command will require a knowledge of SQL (Structured
Query Language).
This function is typically used when a large amount of data
is being processed. When TODBC is executed in its script, it
starts its own thread and VTScada will continue executing.
When the TODBC statement is finished executing, it will set
the data in Attrib, give the resultant table in Result and set
ErrorCode. Some SQL statements, such as the one for
inserting a record into a table, do not return any data, in
this case the only indication that the thread has terminated
will be that ErrorCode will be set to a valid value - 0 if no
errors occurred.
Notice that unlike ODBC, the resultant table is returned in
one of the parameters, rather than as a return value and
the last three parameters are not optional.
If any error, no matter how minor, occurs as a result of the
SQL command having been executed, and the TODBCCon-
nect or ODBCConnect that connected to the database had
its Disconnect parameter set true, the value of DB will
become invalid (i.e. the connection to the database will be
dropped). This includes such trivial indiscretions as using
an incorrect table name in the SQL command.

Differences between blocking and non-blocking ODBC
calls:

l Prior to VTS version 10.0, executing one of the fol-
lowing blocking ODBC operations - ODBC, ODBCT-
ables, ODBCConnect, ODBCDisconnect,
ODBCBeginTrans, ODBCCommit or ODBCRollback
would cause all VTScada script code execution and
window painting to suspend until the operation was
complete. From VTS 10.0 onwards, only the VTScada
script thread making the call is suspended. All other
threads and window painting continue to function.

l Prior to VTS version 10.0, a non-blocking ODBC oper-
ation was used to avoid this issue (same set of oper-
ations with a 'T' prepended). This leads to more
complex script code insofar as you have to initiate an
operation in a script and wait for completion in
steady-state, but did allow script threads and window
painting to continue. However, the Txxx operations
were more time consuming to execute, as they each
spin up a thread to execute the operation asyn-
chronously. From VTS 10.0 onwards, these oper-
ations are more efficient - there is now no
performance difference between the Txxx non-block-
ing variants and the blocking ones. As blocking
ODBC calls no longer suspend all other threads, the
only reason for using a Txxx variant call is where you
wish to allow other script code statements in the
same VTScada script thread to execute while the
ODBC operation is processing.

Example:

If TimeOut(1, 3) { Execute SQL command every 3 seconds };
[
TODBC(ODBCHandle { Handle to database },

"SELECT ALL * FROM LogTasks" { SQL command },
Attrib, ReturnArray { Results of command },
ErrMsg, ErrState, ErrCode { Error details });

]

TODBCBeginTrans

Description: Indicates to an ODBC-compliant database that a trans-
action is to be started. TODBCBeginTrans is similar to
ODBCBeginTrans, except that it runs in its own thread (see
the Comments section for differences).

Returns: Nothing (see parameters)

Usage: Script Only.

Function Groups: Database and Data Source, ODBC

Threaded: Yes

Related to: ODBCBeginTrans | ODBCCommit | ODBCRollback |
 TODBCCommit | TODBCRollback

Format: TODBCBeginTrans(DB[, ErrorMsg, SQLState, ErrorCode])

Parameters:

DB

Required. A n ODBC value for the specified ODBC data-
base as returned by ODBCConnect.

ErrorMsg

A parameter that will contain the last error message
returned by the function.

SQLState

A parameter that will return the SQL state that the state-
ment was in when the last error occurred.

ErrorCode

A variable that will contain the native error code for the
given driver and an error condition for the last error
that occurred.

Comments: TODBCBeginTrans indicates that a transaction is to be star-
ted on the specified ODBC database. The statement
executes in its own thread, and completion is indicated by
the ErrorCode parameter being set to a valid value, or to
"0" in the case of no errors.
If any error, no matter how minor, occurs as a result of the
statement, and the TODBCConnect or ODBCConnect that
connected to the database had its Disconnect parameter
set to true, the value of DB will become invalid (i.e. the con-
nection to the database will be dropped).

Example:

StartBegin [
If Condition WaitBegin;
[
TODBCBeginTrans(DB, Invalid, Invalid, ErrCode);

]
]
WaitBegin [
If ErrCode WaitWork;
[
{ Check Error code }
…
ErrCode = Invalid;
{ Do some transaction work }
…

]
]
WaitWork [
If ErrCode WaitCommit;
[
ErrCode = Invalid;
TODBCCommit(DB, Invalid, Invalid, ErrCode);

]
]
WaitCommit [
If ErrCode Done;

]

TODBCCommit

Description: Indicates to an ODBC-compliant database that a trans-
action is to be committed. TODBCCommit is similar to
ODBCCommit, except that it runs in its own thread (see the
Comments section for differences).

Returns: Nothing

Usage: Script Only.

Function Groups: Database and Data Source, ODBC

Threaded: Yes

Related to: ODBCBeginTrans | ODBCCommit | ODBCRollback |
 TODBCBeginTrans | TODBCRollback

Format: TODBCCommit(DB [, ErrorMsg, SQLState, ErrorCode])

Parameters:

DB

Required. An ODBC value for the specified ODBC data-

base as returned by ODBCConnect.

ErrorMsg

A parameter that will contain the last error message
returned by the function.

SQLState

A parameter that will return the SQL state that the state-
ment was in when the last error occurred.

ErrorCode

A parameter that is a variable that will contain the nat-
ive error code for the given driver and an error con-
dition for the last error that occurred.

Comments: Commits a transaction defined as all the SQL statements
since the transaction began. The statement executes in its
own thread, and completion is indicated by the ErrorCode
parameter being set to a valid value, or "0" in the case of
no errors.
If any error, no matter how minor, occurs as a result of the
statement, and the TODBCConnect or ODBCConnect that
connected to the database had its Disconnect parameter
set to true, the value of DB will become invalid (i.e. the con-
nection to the database will be dropped).

Example:

StartBegin [
If Condition WaitBegin;
[
TODBCBeginTrans(DB, Invalid, Invalid, ErrCode);

]
]
WaitBegin [
If ErrCode WaitWork;
[
{ Check Error code }
…
ErrCode = Invalid;
{ Do some transaction work }
…

]
]
WaitWork [

If ErrCode WaitCommit;
[
ErrCode = Invalid;
TODBCCommit(DB, Invalid, Invalid, ErrCode);

]
]
WaitCommit [
If ErrCode Done;

]

TODBCConnect

Description: Forms a connection to an ODBC database; it is similar to
ODBCConnect except that it runs in its own thread (see
"Comments" section for differences)

Returns: Nothing

Usage: Script Only.

Function Groups: Database and Data Source, ODBC

Threaded: Yes

Related to: ODBC | ODBCConfigureData | ODBCConnect |
 ODBCDisconnect | ODBCSources | ODBCStatus |
 ODBCTables | TODBC | TODBCDisconnect

Format: TODBCConnect(DSName, UserName, Password, DB,
ErrorMsg, SQLState, ErrorCode [, Disconnect,
LoginTimeout, ConnectionTimeout])

Parameters:

DSName

Required. Any text expression for the ODBC data
source name, as configured in the ODBC setup menu
under Microsoft Windows™.

UserName

Required. Any text expression for the ODBC login user
name.

Password

Required. Any text expression for the ODBC login pass-
word.

DB

Required. An ODBC value for the ODBC database once
a connection has been established.

ErrorMsg

Required. Any variable that will contain the last error
message returned by the function. If no errors
occurred this parameter will be set to 0 to indicate the
termination of the thread.

SQLState

Required. Any variable that will contain the SQL state
that the statement was in when the last error occurred.

ErrorCode

Required. Any variable that will contain the native error
code for the given driver and an error condition for the
last error that occurred.

Disconnect

An optional parameter which is any logical expression
that determines how errors are to be handled. If true
(non-0), the connection to the database will be dis-
connected should any error (no matter how minor)
occur; if false (0) an error will not cause a disconnect
to occur. The default value is false.

LoginTimeout

Sets the period (in seconds) which the driver will wait
for a login request to complete. The default value of
"0" indicates that there is no timeout.

ConnectionTimeout

Sets the period (in seconds) which the driver will wait
for any request other than a query or login on the con-
nection to complete. The default value of "0" indicates
that there is no timeout.

Comments: When TODBCConnect is executed in its script, it starts its
own thread and VTScada will continue executing. This is
similar to ODBCConnect except that execution of the
application is not suspended while waiting for the con-
nection to the database (i.e. waiting for the return value to
be set). Instead, execution continues and sometime in the
future when the connection to the database is established,
DB will be set to the ODBC value for the database. If any
errors occurred, the error parameters, ErrorMsg, SQLState
and ErrorCode, would be set at that time to indicate the
nature of the error. ErrorCode will be set to zero if no error
occurs.
64-bit VTScada. 64-bit VTScada is able to connect to
either 64-bit or 32-bit ODBC data sources. ODBCConnect
will first try to connect to the database through a 64-bit
ODBC driver. If this fails for any reason it will then try the
connection through a 32-bit ODBC driver. This means that
any ODBC code that worked under 32-bit VTScada should
not need to be modified for use with 64-bit VTScada, but
64-bit VTScada has the extra ability of being able to use
64-bit ODBC drivers.

Example:

Init[
If 1 Wait;
[
TODBCConnect("VTS_data" { Driver name },

" "," " { No user name or password },
ODBCHandle { Handle to use },
ErrMsg, ErrState, ErrCode { Error details });

]
]
Wait[
If TimeOut(1, Retry) Init { Retry ODBC every Retry seconds };
If Valid(ODBCHandle) Main { If valid connection go to Main };

]

TODBCDisconnect

Description: Stops a connection to the ODBC database; it is similar to

ODBCDisconnect except that it runs in its own thread (see
"Comments" section for differences).

Returns: Nothing

Usage: Script Only.

Function Groups: Database and Data Source, ODBC

Threaded: Yes

Related to: ODBC | ODBCConfigureData | ODBCConnect |
 ODBCDisconnect | ODBCSources | ODBCStatus |
 ODBCTables | TODBC | TODBCConnect

Format: TODBCDisconnect(DB)

Parameter:

DB

Required. An ODBC value for the ODBC database as
returned by TODBCConnect or ODBCConnect.

Comments: When TODBCDisconnect is executed in its script, it starts
its own thread which will not stop execution of VTScada,
and which will exist until the connection to the database
has been broken.

Example:

Main [
If 1 Idle;
[
TODBC(ODBCHandle { Handle to database },

"SELECT ALL * FROM Table1" { SQL command },
Attrib, Result { Results of command },
0, 0, 0 { No err details req'd });

]
]
Idle [
If Valid(Result) Done;
[
TODBCDisconnect(ODBCHandle);

]
]

TODBCRollback

Description: Indicates to an ODBC-compliant database that a trans-
action is to be discarded. TODBCRollback is similar to
ODBCRollback, except that it runs in its own thread (see
the Comments section for differences).

Returns: Nothing

Usage: Script Only.

Function Groups: Database and Data Source, ODBC

Threaded: Yes

Related to: ODBCBeginTrans | ODBCCommit | ODBCRollback |
 TODBCBeginTrans | TODBCCommit

Format: TODBCRollback(DB[, ErrorMsg, SQLState, ErrorCode])

Parameters:

DB

Required. An ODBC value for the specified ODBC data-
base as returned by ODBCConnect.

ErrorMsg

A parameter that will contain the last error message
returned by the function.

SQLState

A parameter that will return the SQL state that the state-
ment was in when the last error occurred.

ErrorCode

A variable that will contain the native error code for the
given driver and an error condition for the last error
that occurred.

Comments: Discards a transaction defined as all the SQL statements
executed on a database since the transaction began.
If any error, no matter how minor, occurs as a result of the
statement, and the TODBCConnect or ODBCConnect that
connected to the database had its Disconnect parameter

set to true, the value of DB will become invalid (i.e. the con-
nection to the database will be dropped).

Example:

StartBegin [
If Condition WaitBegin;
[
TODBCBeginTrans(DB, Invalid, Invalid, ErrCode);

]
]
WaitBegin [
If ErrCode WaitWork;
[
{ Check Error code }
…
ErrCode = Invalid;
{ Do some transaction work }
…

]
]
WaitWork [
If ErrCode WaitEnd;
[
{ Check error code, rollback if bad }
IfElse(ErrCode != 0, Execute(
ErrCode = Invalid;
TODBCRollback(DB, Invalid, Invalid, ErrCode);
);
{ Else } Execute(
ErrCode = Invalid;
TODBCCommit(DB, Invalid, Invalid, ErrCode);
));

]
]
WaitEnd [
If ErrCode Done;
]

Toggle

Description: Returns its previous status value except when its para-
meter changes from a false to a true, in which case it
changes its value.

Returns: Boolean

Usage: Steady State only.

Function Groups: Variable

Related to: Latch

Format: Toggle(X)

Parameters:

X

Required. Any numeric expression giving the status
value to use to cause the function value to change
state.

Comments: This function starts in a state with its return value being the
same as its parameter. If the parameter X changes from an
in valid value to a valid false, the return value will be 0. If
the parameter X changes from an invalid value to a valid
true, the return value will be 1.
This function resets its parameters after they evaluate to
true. This is significant only for functions which can be
reset such as MatchKeys, TimeOut, Intgr and RTimeOut.

Example:

on = Toggle(MatchKeys(2, "A"));

The variable on begins set to 0. Pressing the "A" key will change it to 1;
pressing "A" again will change it back to 0. Pressing "A" a third time will
change it to 1 again, and so on.

Related Information:
See: "Latching and Resetting Functions" in the VTScada Programmer's
Guide

ToLower

Description: Returns a text string with all the characters converted to
lower case.

Returns: Text

Usage: Script or steady state.

Function Groups: String and Buffer

Related to: ToUpper

Format: ToLower(String)

Parameters:

String

Required. Any text expression giving the string to con-
vert to all lower case characters.

Comments: The return value will contain all the same characters as the
original string, except each character which is an upper
case letter will be replaced with the corresponding lower
case letter. All other characters remain unchanged.

Example:

lowerString = ToLower("Hello, Chum");

Upon execution of this statement, lowerString will contain the string
"hello, chum".

ToolBar

(System Library)

Description: Draws and maintains a toolbar and its buttons.

Returns: Object Value

Usage: Steady State only.

Function Groups: Graphics

Related to: Bevel | CheckBox | Droplist | GridList | HScrollbar |
 Listbox | RadioButtons | Spinbox | SplitList | VScrollbar

Format: \System\Toolbar(Left, Top, Right, Data [, ParOffset,
ParHasBevel])

Parameters:

Left

Required. The coordinate of the left edge of the tool-
bar.

Top

Required. The coordinate of the top of the toolbar.

Right

Required. The coordinate of the right edge of the tool-
bar.

Data

Required. A 2-dimensional array of button inform-
ation.

ParOffset

An optional parameter that is the data index at which
to start. The default for ParOffset is 0.

ParHasBevel

An optional parameter that can be set to FALSE (0) to
draw a bevel around the toolbar, or TRUE (1) to inhibit
bevel drawing. The default for ParHasBevel is 1.

Comments: Toolbar returns its object value when ready.

ToUpper

Description: Returns a text string with all the characters converted to
upper case.

Returns: Text

Usage: Script or steady state.

Function Groups: String and Buffer

Related to: ToLower

Format: ToUpper(String)

Parameters:

String

Required. Any text expression giving the string to con-
vert to all upper case characters.

Comments: The return value will contain all the same characters as the
original string, except each character which is a lower case
letter will be replaced with the corresponding upper case
letter. All other characters remain unchanged.

Example:

upperString = ToUpper("Bye-bye Birdie");

Upon execution of this statement, upperString will contain the string
"BYE-BYE BIRDIE".

Trajectory

Description: Move a Layered Graphic and return a Trajectory value.

Returns: Trajectory

Usage: Steady State only.

Function Groups: Graphics

Related to: Normalize | Path | Point

Format: Trajectory(Normalize, Path)

Parameters:

Normalize

Required. Any expression that returns a Normalize
value. This gives the low and high scales for the anim-
ation.

Path

Required. Any expression which returns a Path value,
which specifies the path along which the object moves.

Comments: This function must be called from within a window; that is
to say, if for example the user uses the application tem-
plate and has Graphics and Calculations as the two mod-

ules of the application, the Trajectory statement must go
into Graphics.

Example:

bucketTraj = Trajectory(Normalize(bucketPos, 0, 100),
bucketPath);

If this Trajectory value is used in a Point, or in a layered graphics func-
tion, that graphic will move along the path bucketPath. If bucketPos is 0,
the graphic will be displayed at the beginning of bucketPath; if bucketPos
is 100, the graphic will be displayed at the end of bucketPath.

Transaction

(ODBC Manager Library)

Description: Launches a transaction in the specified database con-
nection. The transaction takes care of its own shut-down
process.

Returns: Nothing

Usage: Script Only.

Function Groups: ODBC

Related to: TransactionCached

Format: \ODBCManager\Transaction(TransObjPtr, ReadyPtr,
TErrorPtr, CallerObj, UseTrans, DSN, UserName, Pass-
word)

Parameters:

TransObjPtr

Required. A Pointer to the transaction object

TReadyPtr

Required. A Pointer to a variable, used to set the ready
status

TErrorPtr

Required. A Pointer to a variable, used to set the error

status

CallerObj

Required. The object value of the original calling mod-
ule

UseTrans

Required. Set to true (1) to use BEGIN and END of trans-
action

DSN

Required. DSN of the database to start transaction
within

UserName

Required. User name, if required by the database

Password

Required. Password, if required by the database

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.

TransactionCached

(ODBC Manager Library)

Description: Launches a transaction in the specified database con-
nection. The transaction will be cached locally if it fails and
then sent to the database after the next successful trans-
action. This module is designed to provide logging of val-
ues that must not be lost.

Returns: Returns an object value for the transaction.

Usage: Script Only.

Function Groups: ODBC

Related to: Transaction

Format: \ODBCManager\TransactionCached(ErrorPtr, CmdStr,
DSN, UserName, Password[, BatchSize])

Parameters:

ErrorPtr

Required. A Pointer to the error status. Always set valid
on completion.

CmdStr

Required. The SQL command to be processed within
the transaction.

DSN

Required. DSN of the database within which to start the
transaction.

UserName

Required. A user name, if required to connect to the
database

Password

Required. A password, if required to connect to the
database

BatchSize

Obsolete.

Comments: This module is a member of the ODBCManager Library,
and must therefore be prefaced by \ODBCManager\, as
shown in "Format" above.

TransferFields

Deprecated. Do not use in new code. (Alarm Manager module)

Description The TransferFields subroutine will transfer the values for
each field into the returned FieldValues array. The values
are found in the scope passed in using the variable names
found in the FieldNames array.

Returns Numeric

Usage Script Only.

Function Groups Alarm

Related to:

Format: \AlarmManager\TransferFields(AlarmObject);

Parameters

AlarmObject

Required. The scope to use when searching for the vari-
ables to transfer.

Comments TransferFields always returns "0".

Trip

Note: Deprecated. Do not use in new code.

(Alarm Manager module)

Description: Tell the Alarm Manager to when a trip alarm event occurs.
This subroutine will signal an alarm as unacknowledged.

Returns: Numeric

Usage: Script Only.

Function Groups: Alarm

Related to: Register (Alarm Manager) | CurrentTime

Format: \AlarmManager\Trip(AlarmObject[, EventTime]);

Parameters:

AlarmObject

Required. The object value for the alarm that was
passed to the Register subroutine.

EventTime

Optional. The time stamp to use when adding this
event to the alarm lists. If invalid or not defined, the
default is CurrentTime().

Comments: The Trip subroutine always returns "0".

TRUE

Description: For use in expressions that perform Boolean logic. Using
"TRUE" will make your code easier to read than using "1".

Returns: With no parameters, returns the value, 1. If given a para-
meter, this function will return a 1 or 0 depending on
whether the parameter evaluates to TRUE or FALSE. Always
returns 0 if the parameter is Invalid.

Usage: Script or steady state.

Function Groups: Logic Control

Related to: FALSE

Format: TRUE[(TestExpr)]

Parameters:

TestExpr

Optional. Any expression that evaluates to a 1 or 0
value. If no parameter is provided, then there is no
need to include the parentheses.

Comments: This function exists to make your code more readable. It is
equivalent to

PickValid(Cast(Parameter, 0) == 1, 0);

TServerList

Description: Executes in its own thread and creates a pointer to an
array of all servers visible from this workstation; it returns
a flag indicating its status upon completion.

Returns: Boolean

Usage: Script Only.

Function Groups: Database and Data Source, Network

Related to: ServerList | WKStaInfo

Format: TServerList(Result, Domain)

Parameters:

Result

Required. Any variable in which the resultant one-
dimensional array of servers or an error code will be
returned.

Domain

Required. Any text expression for the domain. If this is
invalid, the current domain will be used.

Comments: When TServerList is executed in its script, it creates its own
thread and VTScada continues executing. When it is fin-
ished executing, it will store resultant data in Result (unlike
ServerList which returns its result). Result will be set to an
error code if any network problems were encountered, or
if Domain was not found on the network.
This function returns 1 if the thread was successfully star-
ted and 0 otherwise.

Example:

If ! Valid(serverArray) Wait;
[
started = TServerList(serverArray, WkStaInfo(2));

]

U Functions
The sections that follow identify all VTScada functions beginning with
"U".

UIErrorToText

Security Manager Module

Description Returns a text string corresponding to the error code
provided.

Returns String

Usage Script or steady state.

Related to: GetAccountID | GetAccountInfo | GetFullName |
GetGroupName | GetUserName | IsLoggedOn | IsSecured |
IsSuspended | SecurityCheck |

Format: \SecurityManager\UIErrorToText(ErrCode)

Parameters

ErrCode

One of the #SMAPIErrxxx error codes.

Comments None.

Related Information:
See "Security Manager Return Codes" in the VTScada Programmer's
Guide.

Unpack

Description: Unpacks a set of values from a stream into a single dimen-
sional array or a set of variables referenced by object para-
meters, and returns the number of items unpacked.

Returns: Numeric

Usage: Script Only.

Function Groups: Array, Stream and Socket

Related to: Pack

Format: Unpack(Data, Start, End, Stream[, TruncateAt,
DataLength, MirrorKey])

Parameters:

Data

Required. An object value or an array containing the
data or the object value of the module whose para-
meters address variables into which to store the data.

For example, if you have 5 numeric values to unpack,
you would allocate a 1-dimensional array, 5 elements
in length. You would pass this array to Unpack's Data
parameter, and specify that you wish to unpack from
subscript 1 to 5. Refer to the example section for more
information.

Start

Required. The starting array index (zero-based), or
parameter number (one-based) of the data to unpack.

End

Required. The last array index, or parameter number
of the data to unpack.

Stream

Required. A variable holding the stream that contains
the data to be unpacked. The stream must have been
generated with the Pack function.

TruncateAt

An optional parameter. If present specifies that all text
values and stream values unpacked from the stream
will be truncated after the number of bytes specified in
this parameter.

DataLength

An optional parameter. If present, specifies an array
into which will be stored the length of each text and
stream value unpacked from the source stream.
Each length is stored at the array index corresponding
to the index of the value itself. For example, if the
value that would go in the destination array at index 5
were a text value, its length would be stored at index 5
in the array addressed by this parameter.
Unpacked values of numeric type have Invalid stored
in their entry in this array.

MirrorKey

Optional. A short name or number. Must be
used if the data was packed using a Key.
There is no requirement for the Pack Key para-
meter and the Unpack MirrorKey parameter to
have the same number of elements. All that is
required is that the Unpack MirrorKey dictionary
has all of the structures that are in that par-
ticular packed stream. If the Key doesn’t have
the structure that was packed, the returned data
is a simple array rather than a structure.

Comments: This function returns the number of values
unpacked.
If the Data parameter is an array, the data from the
stream will be unpacked into that array.
If the Data parameter is an object value, the para-
meters of that object must contain pointers to vari-
ables into which the data from the stream will be
unpacked.
If the Pack function used the optional parameter,
Key, to pack a record into a smaller stream, then
Unpack must be able to provide a mirrored version
of that dictionary in order to access the data in the
structure.

Example:
If you wish to pack 2 3-dimensional arrays, you would allocate a 1-
dimensional array, 2 elements in length. You would then assign the 3-
dimensional arrays to the 1-dimensional array elements, and then Pack
the 1-dimensional array.
For example:

Array1D = New(2);
Array1D[0] = Array3D_1;
Array1D[1] = Array3D_2;
Pack(Array1D, 0, 1, &Stream);

Unpacking this is almost an identical operation:

Array1D = New(2);
UnPack(Array1D, 0, 1, Stream);
Array3D_1 = Array1D[0];
Array3D_2 = Array1D[1];

All you need to know is how many things you wish to pack and unpack,
not the sizes or types of the things (a ValueType(Array1D[0]) will tell you
the type). As the stream position is moved after each pack or unpack, you
can simply unpack one item at a time and check the return value of
UnPack.

Example 2:
In this example, the presence of a Key parameter allows the example to
be packed into a stream that is less than half the size that would be
obtained without the Key parameter. (Exact number depending on the
names used in the structure definitions.)
"Record", "Values", and "AA_Info" are all STRUCTs.

Rec = Record(GetGUID(1) { GUID },
1 { Priority },
Values(87, 54, "feet") { Values },
System\MakeDictionary("AA",

 AA_Info("AAData1", 2)) { Extensions });

{ Omitted: Place record in ArrayToPack }

Key = \System\MakeDictionary("Record", 0,
 "Values", 1,
 "AA_Info", "AA")

Pack(ArrayToPack, 0, 0, &PackStream, Key);

{ Omitted: Rewind stream }

MirrorKey = \System\MakeDictionary("0", Record,
 "1", Values,
 "AA", AA_Info));

UnPack(UnpackedArray, 0, 0, PackStream, Invalid, Invalid, MirrorKey);

UnpackData

(RPC Manager Library)

Description: This method unpacks a stream into an array or set of mod-

ule instance parameters. Subroutine call only.

Returns: Nothing (see parameters)

Usage: Script Only.

Function Groups: Array, Stream and Socket

Related to:

Format: \RPCManager\UnpackData(Source, Start, End, Stream [,
TruncLen, DataLen]));

Parameters:

Source

Required. The array to contain the data or the object
value of the module whose parameters address vari-
ables into which to store the data.

Start

Required. The starting array index or parameter num-
ber of the data to unpack (zero-based).

End

Required. The last array index or parameter number of
the data to unpack (zero-based).

Stream

Required. The stream that contains the data to be
unpacked. The stream must have been generated with
the PackData function.

TruncLen

An optional parameter that specifies that all text values
and stream values unpacked from the stream will be
truncated after the number of bytes specified in this
parameter.

DataLen

An optional parameter that specifies an array into
which the length of each text and stream value

unpacked from the source stream will be stored. Each
length is stored at the array index corresponding to
the index of the value itself.
For example, if the value which would go in the des-
tination array at index 5 were a text value, its length
would be stored at index 5 in the array addressed by
this parameter.
Unpacked values of numeric type have Invalid stored
in their entry in this array.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.SRC.
The stream contents to be unpacked by the UnpackData
method must have been packed by the PackData method.
If the Source parameter is an array, the data from the
stream will be unpacked into that array. If the Source para-
meter is an object value, the parameters of that object
must contain pointers to variables into which the data from
the stream will be unpacked.
From VTS 5.20 onwards, this method is a wrapper for the
Unpack() statement. Prior to that release, the Unpack()
statement was effectively coded in script by this method.
New code should use the Unpack() statement, rather than
this method.

Related Functions:
 Pack | Unpack

UnpackParms

(RPC Manager Library)

Description: This method unpacks a stream into the supplied para-
meters. Subroutine call only.

Returns: Nothing

Usage: Script Only.

Function Groups: Network, Stream and Socket

Related to: PackParms

Format: \RPCManager\UnpackParms(Stream [, &P1, &P2, …]);

Parameters:

Stream

Required. A stream produced by PackParms.

P1, P2, …

Optional parameters that are pointers to variable
instances into which the values that were packed into
the stream will be unpacked. Up to 100 parameters are
allowed.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.SRC.
The stream contents must have been packed by the Pack-
Parms method.

Unregister (Alarm Manager)

Note: Deprecated. Do not use in new code.

(Alarm Manager module)

Description: Notify the Alarm Manager that an alarm has been
removed. This will not generate an alarm; it only removes
it from the list of all configured alarms.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Alarm

Related to:

Format: \AlarmManager\Unregister(AlarmObject);

Parameters:

AlarmObject

Required. The object value of the alarm to remove
from the Alarm Manager database.

Comments: The Unregister subroutine always returns "0".

UnselectGraphics

Description: Will deselect all of the graphics in the specified window.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Graphics, Window

Related to: SelectArea | SelectDAG | SelectGraphic | UnselectObject

Format: UnselectGraphics(Window)

Parameters:

Window

Required. Any expression which gives the object value
of any module instance which is drawn in the window.

Example:

If ZButton(30, 100, 130, 70, "Deselect", 1);
[
UnselectGraphics(Self());

]

If the button that is displayed in the upper left corner of the window is
pressed, all graphic objects I that window that were selected will become
deselected.

UnselectObject

Description: Will deselect a statement in the context supplied.

Returns: Nothing

Usage: Script or steady state.

Function Groups: Graphics

Related to: SelectArea | SelectDAG | SelectGraphic |
 UnselectGraphics

Format: UnselectObject(Object, Statement)

Parameters:

Object

Required. Any expression which gives the object value
for the instance where the graphic is to be deselected.

Statement

Required. The value of the statement which is to be
deselected.

UnTransform

Description: Will undo a previous transform so that the module instance
and everything it has called will not be transformed.

Returns: Nothing

Usage: Script Only.

Function Groups: Graphics, Advanced Module

Related to: GUITransform | GetXformRefBox

Format: Untransform(Object)

Parameters:

Object

Required. Any expression which gives the object value
for the instance to be untransformed.

Comments: This function is used to allow a module instance to draw in
the default window coordinates even if the instance is con-
tained within a transform.
This statement may only appear in a script.

Example:
Suppose that the System module calls module Pump inside of a trans-
form as follows:

GUITransform(0, 90, 90, 0 { Bounding box for transform },
1, 1, 1, 1, 1 { No scaling },
0, 0 { No trajectory or rotation },
1, 0 { Graphics visible; reserved },
0, 0, 0 { Cannot be focused },
Pump() { Module to transform });

Now let us further suppose that Pump calls a module named Reservoir.
This module will also be affected by the transform of its caller unless it
uses Untransform to nullify the effects of the transform performed on
Pump. The following is the first state of module Reservoir:

Init [
If 1 Main;
[
Untransform(Self());

]
]

With this as its first state, Reservoir will now be drawn in the window as if
it were called directly from System, that is to say, it will not be affected
whatsoever by the transform that resizes its caller, Pump. Notice that the
Untransform function need only be called once; no matter what further
state changes occur within Reservoir, it will remain unaffected by the
transform that affects Pump.

UpdateCoordinates

Description: Will update a graphic statement's coordinates to the doc-
ument file in which it is specified.

Returns: Nothing

Usage: Script Only.

Function Groups: Graphics, Advanced Module

Related to:

Format: UpdateCoordinates(Statement)

Parameters:

Statement

Required. Any expression which gives a statement
pointer or code value for the graphic statement which
is to be updated.

Comments: It should be noted that once this graphic statement is
recompiled that any new instances of that statement will
have the new coordinate information stored in them.

UserCredChange

Security Manager Module

Description: The return value will increment each time there is a change
in the user session’s logged-in user or their password.

Returns: Integer

Usage: Steady State only.

Related to: AlternateIdCheck | AlternateLogoff | AlternateLogon |
Authenticate | LogOff | QuietLogon | UserLogonDialog

Format: \SecurityManager\UserCredChange(Session);

Parameters:

Session

The object value of the user session.

Comments: Initially returns zero
For VIC sessions, this additionally increments its return
value at twice the rate specified by the Ses-
sionTokenTimeout configuration setting. This is used by
internal system components to refresh a VIC’s security ses-
sion token.

UserLogonDialog

Security Manager Module

Description: Launches the Logon dialog

Returns: Nothing

Usage: Script Only.

Related to: AlternateIdCheck | AlternateLogoff | AlternateLogon |
Authenticate | LogOff | QuietLogon | UserCredChange

Format: \SecurityManager\UserLogonDialog([Device, Namespace,
Center, Embed, DialogX, DialogY, DialogDirection,
pULDObj, AppLayer]);

Parameters:

Device

Name of device logging on

NameSpace

Default setting for the Group name (optional)

Center

TRUE to center dialog on screen (default=0)

Embed

TRUE to draw the dialog embedded in a page
FALSE to show the dialog in a window (default)

DialogX

X coordinate to base dialog position upon

DialogY

Y coordinate to base dialog position upon

DialogDirection

Numeric code giving the direction from (Dia-
logX,DialogY) to displace:

Code value Direction to displace

0 Down and Right

1 Down and Left

2 Up and Right

3 Up and Left

pULDObj

Returns a pointer that is set to the logon dialog

AppLayer

Layer value of the calling Layer. This may differ from
LayerRoot when shared security is enabled.

Comments: None

V Functions
The sections that follow identify all VTScada functions beginning with
"V".

Valid

Description Returns true if the parameter is valid.

Returns Boolean

Usage Script or steady state.

Function Groups Variable

Related to: Invalid

Format: Valid(X)

Parameters:

X

Required. Any expression to be tested for validity.

Comments This function always returns a valid value.

Examples:

a = Valid(1.23);
b = Valid("Help");
c = Valid(Invalid);
d = Valid(12.3 / 0);

The values for a, b, c and d will be 1, 1, 0 and 0 respectively.
A common use for this function is as an action trigger to prevent "if 1"
conditions:

If ! Valid(startTime);
[
startTime = Seconds();

]

This will cause the script to execute once and once only; startTime will
be set to the time (in seconds since midnight) that the script was
executed.

ValidateEmailAddrs

Description: This subroutine validates a string of email addresses, and
returns TRUE if the email addresses in the string are syn-
tactically valid, or FALSE if they are not.

Returns: Boolean

Usage: Script or steady state.

Function Groups: Email

Related to: SendMail

Format: \ValidateEmailAddrs(EmailAddress)

Parameters:

EmailAddress

Required. The string of email addresses to check.

Comments: Multiple addresses are assumed to be separated by semi-

colons in the input string. This subroutine returns TRUE if
the email addresses in the string are syntactically valid, oth-
erwise, FALSE is returned.

ValidateEmailAddrs checks that each address has an @
symbol that is not the first or last character, and that each
address has a dot appearing at least 2 characters after the
@ symbol, with no dot appearing immediately after the @
sign, and no dot as last character.

ValueType

Description: Returns the type of value passed to it.

Warning: This function should be used by advanced users only.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Variable

Related to: Cast

Format: ValueType(Val)

Parameters:

Val

Required. Any expression.

Comments: This returns the type of the value passed in the parameter

Example:

type = ValueType(2.31);

The value of type will be 3.

Related Information:
VTScada Value Types - Numeric Reference

VarAttributes

Description: Returns the attributes bit field of a variable.

Warning: This function should be used by advanced users only.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Compilation and On-Line Modifications, Variable

Related to:

Format: VarAttributes(Variable)

Parameters:

Variable

Required. Any variable value expression.

Com-
ments:

The return value indicates the attributes of the variable by setting cer-
tain bits in the value as follows:

Return Value Bit No. Attribute

1 0 Array

2 1 Shared

4 2 Persistent

8 3 Module

16 4 Parameter

32 5 Constant

64 6 <obsolete>

128 7 <obsolete>

256 8 Temporary

512 9 Protected

Variable

Description: Accesses a variable by its text name; its return value is
optional.

Returns: Varies – see comments

Usage: Script Only.

Function Groups: Variable

Related to: FindVariable | Scope | SetDefault

Format: Variable(Name)

Parameters:

Name

Required. Any text expression giving the name of the
variable.

Comments: This function can be used on the left side of an
assignment, in which case the value will be assigned
to the variable named in the Name parameter. This
function can be used for debugging, or to create
sophisticated data logging and monitoring pack-
ages which access any variable by its typed-in
name.
Note that the string containing the name may not
contain leading or trailing spaces, or square brack-
ets [].

This function is the same as the '\' operator, when
the '\' operator is before a single operand. (\Mem-
ber).

This function is able to resolve variables that have
the PROTECTED attribute.

LocalVariable
A related function, LocalVariable() exists, but will be
used rarely. No documentation is provided beyond

the following note:
LocalVariable(Name) is the same as Scope(Self,
Name, TRUE). This expression is useful only in the
case that there is a value containing the name of a
variable, which is added after the module is com-
piled and is referenced within the local module.
LocalVariable is the same as the '.' operator.
.Member (i.e. without an object before the dot) com-
piles to LocalVariable("Member"), which is the equi-
valent of Variable("Member", TRUE).

Example:

trendValue = Variable(trendPointName);

The variable trendValue is set equal to the value of the variable named by
variable trendPointName. The variable trendPointName is a text variable,
which might hold the text name of a point entered by the operator from
the keyboard.

Variable(motorSPName) = newSP;

This shows how to set the value of a variable given its text name. The
variable motorSPName is a text variable that holds the name of the des-
tination variable.

VariableClass

Description: Returns the class of a variable.

Returns: Numeric

Usage: Script Only.

Function Groups: Variable

Related to: SetVariableClass

Format: VariableClass(Variable)

Parameters:

Variable

Required. Any expression for the variable value.

Comments: This function may only appear in a script.

Example:
The following sets the variable "class" to the class of variable newVar.

If ! Valid(class);
[
class = VariableClass(FindVariable("newVar", Self(), 0, 1));

]

Find the class of Alarm Priority tags:

Class = VariableClass(FindVariable("AlarmPriority", \Code, 0, 0));

Variance

Description: Returns the statistical sample variance for a subsection of
an array.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Array, Generic Math

Related to: AMax | AMin | AValid | FiltHigh | FiltLow | FitOffset |
 FitSlope | Mean | SDev | Sum

Format: Variance(ArrayElem, N)

Parameters:

ArrayElem

Required. Any numeric array element giving the start-
ing point in the array for the computation. The sub-
script for the array may be any numeric expression. If
processing a multidimensional array, the usual rules
apply to decide which dimension should be examined.

N

Required. Any numeric expression giving the number

of array elements to compute. If N extends past the
upper bound of the lowest array dimension, this com-
putation will "wrap-around" and resume at element 0,
until N elements have been processed.

Comments: The invalid parameters are not skipped over, but they are
not included in the calculation. The function returns an
invalid result if either of its parameters is invalid or if there
are less than two valid numerical array elements in the spe-
cified range.

Example:

weight[0] = Invalid();
weight[1] = 0;
weight[2] = 1;
weight[3] = 3;
weight[4] = 1;
weight[5] = 5;
prodVariance = Variance(weight[4] { Starting array element },
4 { No. of elements to use });

The variable prodVariance will be the variance of elements 4, 5, 0 and 1
of the array weight, which is 7. Since element 0 is an invalid element, the
variance will be calculated using only the 3 valid elements.

Version

Description: Returns the version number of the copy of VTScada cur-
rently running.

Returns: Text

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Software and Hardware

Related to: SerialNum | VersionRequired

Format: Version([MiniDumpHandle, InfoType])

Parameters:

MiniDumpHandle

For advanced use only. If provided, will return inform-
ation about the version number or bit-width of a mini
dump file. Data is stored in a MiniDumpHandle (value
type: 42)
It is recommended that you simply use INVALID as a
placeholder for this parameter when the second para-
meter is required.

InfoType

If 0 or omitted, Version simply returns the VTScada ver-
sion number.
If 1, will return 32 for 32-bit VTScada or 64 for 64-bit
VTScada, instead of the version number

Comments: This function can be used to perform various tasks based
on the version number of VTScada.

Example:

ZText(10, 10, Concat("VTScada version ", Version()), 0, 0);

This displays the version number of VTScada.

VersionRequired

Description: Returns the version number of VTScada that is required to
execute any .RUN files loaded since the last execution of
this statement.

Returns: Text

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Software and Hardware

Related to: Version

Format: VersionRequired()

Parameters: None

Comments: This function returns the minimum version of VTScada

required to execute any and all modules (.RUN files)
loaded since the last call to this function, or if no other call
was made, since startup. Once the call is made to this func-
tion, it will reset the version to invalid until another module
is loaded.

Example:

If 1 Next;
[
minVersion = VersionRequired();
IfThen(minVersion > Version(),
msg = Concat(".RUN files require version ", minVersion);
msgOpen = 1;
);

]

This script tests the version number of VTScada required to execute .RUN
files loaded prior to this point in the application and executes a series of
statements if they are greater than the version of VTScada that is cur-
rently running.

Vertex

Description: Returns a Vertex value, which is a collection of 3 points
and a mode.

Returns: Vertex

Usage: Steady State only.

Function Groups: Graphics

Related to: Path | Point

Format: Vertex(Mode, CenterPoint, InHandlePoint,
OutHandlePoint)

Parameters:

Mode

Required. Any numeric constant that specifies the
behavior of the handle points, as shown in the fol-
lowing table

Mode Handle Point Behavior

0 Rectangular - handles are ignored

1 Cusp - no restrictions on handle points

2 Reserved for future use

3 Reserved for future use

4 Manhattan1 - handles are ignored. Right
angles between this vertex and neigh-
boring vertices are preserved, enforcing
horizontal or vertical lines.

CenterPoint

Required. Any expression that returns a point object.
This is the center point and location of this Vertex.

InHandlePoint

Required. Any expression that returns a point.

OutHandlePoint

Required. Any expression that returns a point.

Comments: Vertex values are used in paths to specify points along the
path. For each vertex, the center point defines a point on
the path. Each line segment or Bezier curve along the path
is defined by two vertices, one at each end. The vertices'
center point is the end point of the Bezier curve. The
OutHandlePoint of one vertex and the InHandlePoint of the
other vertex define the Bezier curve shape points. So, each
Bezier curve is defined by 4 points: the two end points, and
two 'handle' points.

1Meaning that all lines are horizontal or vertical. Inspired by a skyline of
tall, rectangular buildings.

Vertex values are also used in the graphics functions
GUIArc, GUIChord, and GUIPie to determine the start and
end angles for those graphics functions. The angle from
the center point to the InHandlePoint defines the starting
angle. The angle from the center point to the
OutHandlePoint defines the ending angle

Example:

GUIArc(10, 100, 100, 10 { Bounding box for the arc },
1, 1, 1, 1, 1 { No scaling },
0, 0 { No trajectory or rotation },
1, 0 { Arc is visible; reserved },
0, 0, 0 { Cannot be focused/selected },
Pen(12, 1, 1) { Solid lt red line, 1 pixel wide },
Vertex(0 { Rectangular mode },
Point(50, 50, Invalid, Invalid) { Arc center },
Point(50, 0, Invalid, Invalid) { Start angle },
Point(0, 50, Invalid, Invalid) { End angle }));

The Vertex function in this case defines the center, starting angle and
ending angle for the arc. The center point is (50, 50); the starting angle
is defined by the center point and a point that lies directly above it, and
the ending angle is defined by the center point and a point that lies dir-
ectly to the left of it. The result is a small arc that starts at the 12 o'clock
position and runs counter-clockwise to the 9 o'clock position.

VICInfo

Description: Provides information about the VTScada Internet Clients
connected to the machine where this code is run.

Returns: Array – see comments

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: VTScada Internet Client

Related to: VICMessage

Format: VICInfo()

Parameters: None

Comments: The return value of VICInfo is an array of information. Each
row [leftmost subscript] contains the information for one
session, and each column within the row contains the
fields of session information, as follows:
[n][0] Object value of the root (BrowserClient) mod-
ule instance for this session.
[n][1] VIC process session ID [a 16-byte binary
GUID]. This is guaranteed to be unique per VIC pro-
cess. i.e. two sessions from the same VIC process
will have the same VIC instance ID.
[n][2] IP of the remote computer, from the
server's point of view [note this may be the IP of a
gateway or proxy that the remote computer con-
nects via].
[n][3] Total bytes transmitted to the VIC in this ses-
sion.
[n][4] Total bytes received from the VIC in this ses-
sion.
[n][5] Approximate round trip time to the VIC, in
milliseconds.
[n][6] Uncompressed bytes transmitted to the VIC.
[n][7] Session identifier for the connection to the
server.

VICMessage

Description: Transmits a message to one or all currently connected
VTScada Internet Client sessions. The message is displayed
in a dialog box on the VIC computer.

Returns: Nothing

Usage: Script Only.

Function Groups: VTScada Internet Client

Related to: VICInfo

Format: VICMessage(Object, Message)

Parameters:

Object

Required. Object value of the root (BrowserClient) mod-
ule instance for the VIC session to receive the mes-
sage. If this parameter is not a valid object value, the
message is broadcast to all VIC sessions.

Message

Required. The textual message to be sent to the VIC
recipients.

Comments: There is no return value for this statement.
The Object value is typically retrieved from the return
value of a VICInfo statement.

VoiceTalk

Description: Opens and returns a handle to a SAPI text-to-speech
stream.

Returns: Stream handle

Usage: Steady State only.

Function Groups: Speech and Sound

Related to: Configure | GetDevices | GetVoices | Reset |
 ShowLexicon | Speak

Format: \VoiceTalk([SpeakCount, BookmarkNum])

Parameters:

SpeakCount

An optional parameter that is any variable in which the
number of outstanding VoiceTalk\Speak requests
(those that have not yet finished speaking) on this
stream will be maintained.
When this parameter is set to zero, this SAPI text-to-

speech stream is not speaking (i.e. it is initially set to
zero). If this parameter is omitted or Invalid, no speak
count will be maintained.
Note that SAPI could still be speaking on another
stream when this count is zero on one stream.

BookmarkNum

An optional parameter that is any variable that will be
set to the value of the last text bookmark encountered
by the speech engine on this stream (a bookmark is
denoted by the XML tag <BOOKMARK MARK-
K="bookmark"/>). It is initially set to Invalid.

Comments: This function returns the error code resulting from issuing
the command to the speech engine, or zero if no error was
encountered.
This function is not threaded; however, it creates a thread
inside of which the handle referring to the text-to-speech
stream is accessed. All other speech functions on this
stream do not create their own thread, but will execute in
the thread created by this function. This thread will exist
for as long as the VoiceTalk statement remains active (i.e.
until a state change occurs). For this reason, the state con-
taining the VoiceTalk call must remain active until all other
speech statements have finished executing. There can be
multiple SAPI text-to-speech streams open at any time.

Example:

speechHandle = \VoiceTalk();

This will create a SAPI text-to-speech stream that will maintain neither
speak count nor bookmark positions.

speechHandle = \VoiceTalk(sCount, bNum);

This will create a SAPI text-to-speech stream that will maintain both a
speak count and bookmark positions.

speechHandle = \VoiceTalk(invalid, bNum);

This will create a SAPI text-to-speech stream that will maintain book-
mark positions only.
The following list consists of the methods that a VoiceTalk stream
provides for external use.

VScrollbar

(System Library)

Description: Draws a vertical scroll bar and returns its position.

Returns: Numeric

Usage: Steady State only.

Function Groups: Graphics

Related to: Bevel | CheckBox | ColorSelect | Droplist | Edit |
 HScrollbar | Listbox | RadioButtons | SplitList | Spinbox

Format: \System\VScrollbar(Left, Bottom, Height, Steps, PageLen[,
Offset, StepSize, MouseWheelInputObj])

Parameters:

Left

Required. Any numeric expression for the left side
coordinate of the scrollbar.

Bottom

Required. Any numeric expression for the bottom
coordinate of the scrollbar.

Height

Required. Any numeric expression for the height of the
scrollbar in pixels.

Steps

Required. Any numeric expression giving the number
of steps in the scrollbar.

PageLen

Required. Any numeric expression giving the number

of steps in each page.

Offset

Optional. A variable whose value gives the position of
the thumb tab. Defaults to 0 unless otherwise spe-
cified.

StepSize

Optional. Any numeric expression giving the number
of lines to scroll through when the user clicks on an
arrow. Defaults to 1 if not specified.

MouseWheelInputObj

The Window object that should capture mouse
wheel messages for this VScrollbar. Every
VScrollbar module requires a unique source win-
dow in order for mouse wheel scrolling to func-
tion properly. On the server and the VIC, this
parameter is used so that scroll wheel events
that happen over MouseWheelInputObj's window
are redirected to the VScrollbar.
On the Anywhere Client, in addition to redir-
ecting scroll wheel events as above (if the cli-
ent's platform happens to have a mouse), this
parameter is also necessary to redirect vertical
touch panning events over a given region to the
VScrollbar. This is of increased importance
because on most touch screen devices, you can-
not touch and drag the scrollbar directly, so this
kind of touch redirection is often the only way to
scroll a VScrollbar.

Comments: This module is a member of the System Library, and must
therefore be prefaced by \System\, as shown in the
"Format" section. If you are developing a script application,
use "System\..." rather than "\System\..." in the function

call.
Steps can be calculated by subtracting the number of vis-
ible items from the total number of scrollable items, while
PageLen is equal to the number of visible items.
Custom script graphics using the VScrollbar module dir-
ectly need to pass in a window object to serve as source for
the mouse wheel messages. Typically this would be the win-
dow that the VScrollbar module is controlling. Note that
the VScrollbar module itself uses a native windows scroll-
bar which will therefore work automatically without any
script changes, so long as the mouse pointer is over the
actual scrollbar.

Example:

\System\VScrollBar(VStatus(Self, 11) - VStatus(Self, 21)
{ Left },
VStatus(Self, 12) - 1 { Bottom },
VStatus(Self, 12) { Height },
Length - LinesVisible { Total steps },
LinesVisible { Steps in page },
Offset { Thumb tab pos });

VStatus

Description: Returns the video board and screen characteristics for
VTScada.

Returns: Varies - see table in Option parameter

Usage: Script or steady state.

Function Groups: Software and Hardware, Window

Related to: Coordinates | PalStatus

Format: VStatus(Window, Option)

Parameters:

Window

Required. The object value of the window to request
information on. This may be invalid and is therefore

ignored for Options which do not depend upon a par-
ticular window.

Option

Option Video Characteristic

0 Reserved for future use

1 Reserved for future use

2 Reserved for future use

3 X Coordinate of left side of the win-
dow. This is the client area of the win-
dow and does not include the title or
borders.

4 Y Coordinate of bottom side of the win-
dow. This is the client area of the win-
dow and does not include the title or
borders.

5 X Coordinate of right side of the win-
dow. This is the client area of the win-
dow and does not include the title or
borders.

6 Y Coordinate of top side of the win-
dow. This is the client area of the win-
dow and does not include the title or
borders.

7 Number of horizontal pixels of res-
olution of the virtual client area of the
window. This doesn’t include the win-
dow border. Shrinking the window to
make scroll bars appear doesn’t affect
this number.

8 Number of vertical pixels of resolution
of the virtual client area of the window.
This doesn’t include the title or border
of the window. Shrinking the window
to make scroll bars appear doesn’t
affect this number.

9 Number of color indexes available in
the palette for the window. This is
always 256.

10 Background color of the window as an
RGB color string. Any areas of the win-
dow which are not drawn appear as
this color.

11 Number of horizontal pixels currently
visible in the client area of the window.
This doesn’t include the window bor-
ders. Shrinking the window to make
scroll bars appear decreases this num-
ber.

12 Number of vertical pixels visible in the
client area of the window. This doesn’t
include the window title bar or bor-
ders. Shrinking the window to make
scroll bars appear decreases this num-
ber.

13 Window width in pixels including the
window borders.

14 Window height in pixels including the
title bar and borders.

15 Current coordinates of left side of win-
dow on the screen. The coordinates
used are in pixels and relative to the
screen where 0, 0 represents the upper
left corner of the screen. The position
referred to is the upper leftmost
corner of the window title bar.

16 Current coordinates of top side of win-
dow on the screen. The coordinates
used are in pixels and relative to the
screen where 0, 0 represents the upper
left corner of the screen. The position
referred to is the upper leftmost
corner of the window title bar.

17 Current coordinates of left side of vis-
ible area taking into account the pos-
ition of the horizontal scroll bar.

18 Current coordinates of top side of vis-
ible area taking into account the pos-
ition of the vertical scroll bar.

19 Window title bar height in pixels.

20 Horizontal scroll bar height in pixels.

21 Vertical scroll bar width in pixels.

22 Window thick border width in pixels.
This border type may or may not be
used in the present window. This
information is a general property of
the desktop configuration of the user
and can be acquired without a valid
first parameter to VStatus.

23 Window thick border height in pixels.
This border type may or may not be
used in the present window. This
information is a general property of
the desktop configuration of the user
and can be acquired without a valid
first parameter to VStatus.

24 Window thin border width in pixels.
This border type may or may not be
used in the present window. This
information is a general property of
the desktop configuration of the user
and can be acquired without a valid
first parameter to VStatus.

25 Window thin border height in pixels.
This border type may or may not be
used in the present window. This
information is a general property of
the desktop configuration of the user
and can be acquired without a valid
first parameter to VStatus.

26 Width of full screen in pixels.

27 Height of full screen in pixels.

28 1 if window is minimized.

29 1 if window is maximized.

30 Maximum horizontal scroll position.

31 Maximum vertical scroll position.

32 Number of horizontal pixels offset
from the left outside edge of the win-
dow border and the first usable pixel
in the client area of the window.

33 Number of vertical pixels offset from
the top of the window title bar and the
first usable pixel in the client area of
the window.

Example:

ZGrid(VStatus(Self(), 3) { Left edge of window },
VStatus(Self(), 4) { Bottom edge of window },
VStatus(Self(), 5) { Right edge of window },
VStatus(Self(), 6) { Top edge of window },
12 { Grid is red },
10, 10 { X and Y spacing });

This draws a 10 by 10 red color dotted grid in the entire area of the cur-
rent window.

W Functions
The sections that follow identify all VTScada functions beginning with
"W".

Watch

Description: Watches its parameters and returns true when any of their
types or values change.

Returns: Boolean

Usage: Steady State only. See: Rules for Usage.

Function Groups: Variable

Related to: Change | Edge | WatchArray

Format: Watch(Start[, Parm1 [, Parm2, ...])

Parameters:

Start

Required. Any expression which evaluates to a false (0)
or true (non-0) value. This will be the initial return
value of the function.

Parm1, Parm2, ...

Are any number of optional variables that are to be
monitored by this function.

Comments: This is a reset-able function whose initial return value will
be set by the first parameter. This parameter is ignored
after the initial evaluation of the function.
The Watch function will not be triggered by a variable
whose value has been set to its existing value. That is to
say, if a variable has a value of 3 and it is set in the code
again to a value of 3, then there is no change and this func-
tion will not be triggered.
Only the first parameter (Start) is mandatory. Use Watch(1)
to trigger a script once only on the first entry to a state.

Examples:

If Watch(1);
[
...;

]

This script will be executed once only, and then the function will be reset
to false (i.e. the script will not again execute unless the module, or con-
taining state, is stopped and restarted).

If Watch(0, xValue, yValue);
[
...;

]

This script will be executed if either of the variables' values change by
any amount, if they become invalid, or if their type changes.

Note: Note that the behavior will differ depending on whether you use
this function in a script code module or in a tag expression. In script
code, the function will be reset as described, and will wait for the next
trigger to occur.
In a tag expression, this function will not be reset after triggering.

Related Information:
See: "Latching and Resetting Functions" in the VTScada Programmer's
Guide

WatchArray

Description: Watches an array and returns true if any of its elements'
types or values change.

Returns: Boolean

Usage: Steady State only.

Function Groups: Array, Variable

Related to: Change | Edge | Watch

Format: WatchArray(Start, ArrayElem, NumElem)

Parameters:

Start

Required. Any expression which evaluates to a false (0)
or true (non-0) value. This will be the initial return
value of the function.

ArrayElem

Required. Any numeric array element giving the start-
ing element of the group of elements to watch. The
subscript for the array may be any numeric expres-
sion. If processing a multidimensional array, the usual
rules apply to decide which dimension should be
examined.

NumElem

Required. Any numeric expression giving the number
of array elements to watch. If NumElem extends past
the upper bound of the lowest array dimension, this
computation will "wrap-around" and resume at ele-
ment 0, until N elements have been located.

Comments: This is a resettable function whose initial return value will
be set by the first parameter. This parameter is ignored
after the initial evaluation of the function.

Example:

If WatchArray(0, dataArray[0], 10);
[

...;
]

This script will be executed if any of the elements from 0 to 9 inclusive
experience a change by any amount, if they become invalid, or if their
type changes.

Related Information:
See: "Latching and Resetting Functions" in the VTScada Programmer's
Guide

WatchForTagChanges

Description: Watches for tag changes, either external or local

Returns: Boolean

Usage: Steady State only. See: Rules for Usage.

Function Groups: Variable

Related to:

Format: WatchForTagChanges();

Parameters: None

Comments: To prevent multiple rapid external changes from causing
heavy execution, a slight delay, during which there must
be no changes, occurs between triggers

WCSubscribe

Description: Working Copy Subscribe. After this function has been
called, any configuration change will result in the specified
callback subroutine being called.

Returns: Nothing

Usage: Script Only.

Function Groups: Basic Module, Variable

Related to: ReadConfiguration | ModifyConfiguration

Format: WCSubscribe(SubscriberObj[, CallbackModuleName])

Parameters:

SubscriberObj

A required object, in which the callback module will be
called. Often, Self().

CallbackModuleName

An optional text value which is the name of the call-
back object to be launched into the subscriber object.
If invalid or not provided, there must be a submodule
in the code, named Notify(), which will be used by
WCSubscribe.

Comments: This function is commonly used in conjunction with
ReadConfiguration(). The callback() will be notified
when a particular file has changed and will trigger
another module to call ReadConfiguration() to read
the changes from that file.
"ChangedFiles" contains absolute file paths.

Example:

Init [
If 1 Main;
[
\WCSubscribe(Self(), "ChangeNotification");
ConfigChanged = 1 { Cause initial read of

files };
]

]

Main [
If ConfigChanged;
[
ConfigChanged = 0;
\ReadConfiguration("ConfigReader");

]
]

<
{============================ \ChangeNotification
========================}
{==-
=====}

ChangeNotification
(
ChangedFiles { Dictionary of changes files

};
)

Main [
If 1;
[
IfThen(ChangedFiles["MyConfigFile.txt"],
ConfigChanged = 1;

);
Return(Invalid);

]
]
>

WhileLoop

Description: Repeatedly executes a parameter while a condition is true.

Returns: Nothing

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Logic Control

Related to: Case | Cond | DoLoop | IfElse | IfThen

Format: WhileLoop(Condition, Function1, Function2, ...)

Parameters:

Condition

Required. An expression that will be evaluated to
determine if the Function parameters should be
executed. If it is true, the Function parameters will be
executed and then Condition will be re-evaluated and
the process repeated until Condition is either false or
invalid.

Function1, Function2, ...

Required. Are any expressions which are to be
executed while Condition is true. The Function para-
meters are executed in order.

Comments: No other statement will execute as long as Condition is
true. Care must be taken that the statement terminates
since it has the potential of locking up the system if it does
not exit.

Note: While the WhileLoop statement has its place in VTScada pro-
gramming, it should be noted that speed can be enhanced by a factor
of approximately 5 through the use of array processing functions
(please refer to "Array Processing" for further details). Array functions
are listed in "Array Functions".

Example:

i = 1;
...
If 1 Main;
[
WhileLoop(i < 100 { Looping condition },

arrayEven[i] = i * 2 { Store even numbers },
arrayOdd[i] = i * 2 - 1 { Store odd numbers },
i++);

]

This causes all even numbers from 1 to 198 to be stored in arrayEven
and all odd numbers from 1 to 198 to be stored in arrayOdd.

WinButton

Description Windows native button.

Returns Integer

Usage Steady State only.

Function Groups Graphics, Window

Related to:

Format: WinButton(X0, Y0, X1, Y1, Style[, Text, FocusID, Font,
ToggleVal, Bitmap, BitmapJustify])

Parameters

X0, Y0, X1, Y1

Required. Any four numeric values, locating the edges
of the button in the window. To ensure consistent siz-
ing, these parameters should be set using constants.
A commonly-seen example follows:

WinWd-2*BtnWd-2*Space, WinHt-Space, WinWd-
BtnWd-2*Space, WinHt-BtnHt-Space

Style

Required. Defines the button's appearance. A binary
OR operation is done with a style number and the extra
style bits shown in the following table.
If the style number is 0, the button will have a normal
appearance. If the style number is 1, the button will be
a toggling button. Further style refinements are as fol-
lows:

Value Meaning

0x00000100 orient text to the left

0x00000200 orient text to the right

0x00000400 orient text to the top

0x00000800 orient text to the bottom

0x00002000 allow multiple lines of text on
button

Text

An optional expression for text to display on the but-
ton.

FocusID

An optional parameter indicating the focus id. If Invalid
or "0", no user interaction is permitted.

Font

An optional parameter specifying the font to use for
text.
Note that underlining is not supported.

ToggleVal

An output value, whose meaning depends on the but-
ton style.
In a toggling button, ToggleVal is set to the toggle
state of the button - 1 for pushed-in and 0 for not-
pushed-in.
For this button style, ToggleVal can also be used to pro-
grammatically change the state of the button.
In a normal button, ToggleVal is purely an output para-
meter, indicating whether the button is currently being
pressed.

Bitmap

An optional parameter specifying an image to use on
the button. May be used with or without a value for the
Text parameter. See example.

BitmapJustify

An optional numeric value, specifying how the image
is aligned on the button. Possible values are as fol-
lows:

Value Meaning

0 align image to the left (default)

1 align image to the right

2 align image to the top

3 align image to the bottom

4 align image to the center (not a valid
option if text is also provided for the
button)

Comments: None.

Example:
Plain button, with monitoring of the current toggle state.

If WinButton(232, 148, 412, 100,
 0 { normal appearance },
 Concat("Press Me ", ButtonPresses) { label },
 1 { focus id enables button },
 0 { default system font },
 ToggleVal { monitor state});
[
 ButtonPresses++;
]

Button with image

MyImage = MakeBitmap("..\Bitmaps\warning symbol.bmp", 12, 9);
If WinButton(232, 148, 412, 100,
 0 { normal appearance },
 Concat("Press Me ", ButtonPresses) { label },
 1 { focus id enables button },
 0 { default system font },
 Invalid { no ToggleVal used },
 MyImage { image displayed in the button});
[
 ButtonPresses++;
]

WinComboCtrl

Note: Programmers are encouraged to use System\DropList instead.

Description: Windows native "combo" control. A "combo" control is an
enhanced form of drop list. Displays a child window con-
taining a Windows combo control.

Returns: Numeric. See comments.

Usage: Steady State only.

Function Groups: Graphics, Window

Related to: Droplist | Edit | WinEditCtrl

Format: WinComboCtrl(X0, Y0, X1, Y1, Style, Data, DataTrigger,
Index [, FocusID, MaxCharacters, Font, BackgroundColor,
ForegroundColor])

Parameters:

X0, Y0, X1, Y1

Required. Coordinates.

Style

Required. Comprised of a combination of bit values to
yield the desired effects.
Bits 0 and 1 define mutually-exclusive styles of oper-
ation. They can be set to one of the following values. If
neither is set, the result is a Listbox with selected item
above it

Bit Number Definition

0 Droplist. The current droplist selection
is editable.

1 Droplist. The current droplist selection
is not editable.

Bits 2 and 3 define input character handling.
They can be set to one of the following values:

Bit Num-
ber

Definition

4 Input is converted to all uppercase.

8 Input is converted to all lowercase.

Bit 4 controls list sorting

Bit Num-
ber

Definition

4 List is presented to the user in alpha-
numerically sorted order.

Bits 5 and 8 are reserved.
Bit 9 Specifies that the size of the combo box is
exactly the size specified by the application
when it created the combo box. Normally, the
system sizes a combo box so that it does not dis-
play partial items.

Bit Num-
ber

Definition

9 Enable application-defined geometry.

Data

Required. The one-dimensional array of data to be dis-
played.

Trigger

Required. Can be set to non-zero to cause control data
to refresh. WinComboCtrl will set this parameter back
to zero after the data has been refreshed.

Index

Required. The current selection index in the data
array.

FocusID

An optional parameter indicating the focus id. If
Invalid, negative, or zero, no user interaction is per-
mitted.
This value is stored in a short. Values above 32767 will
cause the control to be non-editable on VTScada Inter-
net Clients.

MaxCharacters

An optional parameter indicating the maximum num-
ber of characters permitted for input.

Font

Required. An optional parameter indicating the
font to use.
Note that underlining is not supported.

BackGroundColor

An optional numeric parameter specifying the back-
ground color. Uses an unsigned integer, therefore sys-
tem colors with negative values may not be specified
here.

ForegroundColor

An optional numeric parameter specifying the fore-
ground color. Like BackgroundColor, may not be neg-

ative.

Comments: The return value for WinComboCtrl can be one of
the following values:

Invalid - Nothing happened or there is a problem
with the control.
0 Internal buffer changed
1 Selection made from list or Enter key
pressed
2 Focus has been lost.
Data must be a one-dimensional array of text val-
ues. Index is a variable that receives the current
selection array index, or the text value if the
droplist has an editable selection and new text is
entered that does not match any item in the array. If
FocusID is Invalid or less than or equal to "0", the
current selection cannot be modified.

Window

Description: Opens a new window, starts a module inside, and even-
tually returns the module's value.

Returns: Module Instance

Usage: Steady State only.

Function Groups: Basic Module, Window

Related to: SizeWindow | MoveWindow | VStatus | WindowClose |
 WindowOptions

Format: Window(Left, Top, ViewWidth, ViewHeight, VirtualWidth,
VirtualHeight, Module, Style, Title, Color, Enable [,
HelpFileName, HelpContext, enableDynamicPositioning])

Parameters:

Left

Required. Any numeric expression that gives the left
coordinate of the new window. If the new window is a
child window, Left is the user coordinate within the win-
dow of the calling module. If the new window is not a
child window, Left is the number of pixels from the left
of the screen.

Top

Required. Any numeric expression that gives the top
coordinate of the new window. If the new window is a
child window, Top is the user coordinate within the win-
dow of the calling module. If the new window is not a
child window, Top is the number of pixels from the top
of the screen.

ViewWidth

Required. Any numeric expression that gives the win-
dow width in pixels. The minimum width allowable is
based on the operating system in use and the style
options of the window (see the Comments section for
more details).

ViewHeight

Required. Any numeric expression that gives the win-
dow height in pixels. This value must be greater than
or equal to 0.

VirtualWidth

Required. Any numeric expression that gives the width
inside the new window in user coordinates (which may
be pixels). If VirtualWidth is larger than the client area
specified, a horizontal scroll bar appears.

VirtualHeight

Required. Any numeric expression that gives the
height inside the new window in user coordinates
(which may be pixels). If VirtualHeight is larger than
the client area specified, a vertical scroll bar appears.

Module

Required. Any expression that uses a module call. The
module will start, and all graphics in the module will
draw in the new window.

Style

Bit Num-
ber

Description

0 Enable system close button (if bit 1 is set)

1 Show title bar

2 Thick border, not resizable

3 Thin border, not resizable

4 Enable minimize button (if bit 1 is set)

5 Enable maximize button (if bit 1 is set)

6 Create window minimized

7 Create window maximized (full virtual
size)

8 Disable scroll bars

9 Child window

10 Always on top

11 Reserved for future use

12 Modal window (like dialog box)

13 Use pixel coordinates in window (oth-
erwise user coordinates)

14 Use Load statement to size window

15 Owned window

16 Initially inactive window

17 Invokes "automatic" alpha blending,
where the window is set to be 50% trans-
lucent when inactive and opaque when
active

18 Window is to be rendered as transparent,
with whatever color is specified as the
background color being the transparent
color.

19 Indicates that a WindowClose statement
will be associated with this window. See
"WindowClose" for more details.

20 Force the window to remain at a fixed
aspect ratio

21 Reserved.

22 Window may serve as a drop target for
GUITransforms dragged from a palette.

23 Window may serve as a palette, from
which GUITransforms may be dragged.

Title

Required. Any text expression that gives the window
title.

Color

Required. Any numeric expression that gives the back-
ground color of the window's client area when the win-
dow opens.
If set to -1, then the resulting window will be trans-
parent, as will anything drawn in black (RGB 0,0,0)
upon it.
This parameter has no effect after the window has
opened.
Any of the following may be used:

l a palette index VTScada Color Palette

l a Constants for System Colors

l an RGB string in the format, "<RRGGBB>"

Enable

Required. Any logical expression. If true, the window
opens and Module starts. If false, the window is closed
and Module is stopped.

HelpFileName

Optional file name of the help file to use if the user
presses F1 while this window is the active window. If
absent or invalid when the user presses F1, the parent
window will be checked for a file name. This continues
recursively until the top of the window tree is reached.
If no help file name is found, the default help file is
used. The default help file can be set through the
Setup.ini variable WEBHelp, or by using the EnableHelp
statement.

HelpContext

Optional help context. If absent or invalid, but the
HelpFileName is valid, then the "finder" dialog for help

is displayed when the user presses F1. If valid and
numeric, the help file is searched for a matching topic
number and help is displayed for that topic.
If valid and textual, the help file is searched for an
exact match on the text string among the topic index
of the help file. If there is more than one text match,
the index is positioned at the first partial string match.
If valid but a topic match is not found (neither textual
nor numeric), the same action as an Invalid HelpCon-
text is taken. If the HelpFileName parameter is Invalid,
this parameter is ignored.

enableDynamicPositioning

An optional parameter that, when set to TRUE, will
cause the window position to be updated if the window
is a child window inside a GUITransform that moves, or
if the LEFT or TOP parameters change. Set to FALSE by
default.

RibbonName

Optional text string, identifying the ribbon. See com-
ments.

RibbonState

Optional. A retained variable name, holding the
persisted state of the ribbon.The persisted state
is an XML snippet generated internally by the
Microsoft ribbon API and is opaque to VTScada
script code.
The retained variable is typically set in the
destructor for the module instance the Window
statement runs.

Comments: This function returns the value returned by Module.

When a window is maximized, its maximized size is

not based on the size of the screen, although for
many commercial applications the two are the same,
but rather, its full size is defined by the fifth and
sixth parameters, namely virtual width and height. If
the view area and the virtual area of the window
have been defined to be the same, selecting the
maximize button will appear to have no effect.
The minimum size of a window is based on the oper-
ating system under which the application is running,
as well as the attributes of the window itself as
defined by the Style parameter. The width need only
be greater than or equal to 0. Window heights sim-
ilarly need only be greater than or equal to 0.
GUITransform functions may make use of VStatus to
inquire about the boundaries of the window they are
within.
A window can be turned into a drag and drop target
by adding the callback modules, OLEDrag and
OLEDrop. Further details can be found in the
chapter, Create Windows & Use Graphics Functions.
If a ribbon is to be associated with this window,
then the ribbon must be instantiated at the same
time that the window is created, using the two
optional parameters, RibbonName and RibbonState.
Ribbons are compiled into resources, using
Microsoft Visual Studio. The resources can then be
linked directly into VTS.EXE (Trihedral use only) or
into an external DLL. This allows multiple ribbons
to be provided in separate DLLs. You can have more
than one ribbon in VTS.EXE or a DLL.
RibbonName is of the form "dllname|ribbonname",
being the name of the DLL, a vertical pipe symbol
and the name of the ribbon resource within the DLL.

If the ribbon is compiled into VTS, the dllname and
the pipe separator character are omitted.
If adding a ribbon to a window, and if there is a
chance that the window will be maximized, you
should use the window's virtual width and virtual
height as follows:

Window(0,0,1024,768,
 VStatus(Self(),26), VStatus(Self(), 27) +
VSTatus(Self(), 23), ...

The virtual height in particular is important as oth-
erwise there will be a gap at the bottom of the win-
dow (normally, eight pixels) that is the size of the
frame height.

Example:

Window(0, 0 { Upper left corner },
 800, 600 { View area },
 800, 600 { Virtual area },
 Graphics() { Start user graphics },

{65432109876543210}
 0b00010000000110011, "Sample Window", 0, 1);

This statement will open a window, and run the module Graphics() in it.

Related Information:
See: "Create Windows & Use Graphics Functions" in the VTScada Pro-
grammer's Guide. A collection of best practices and related information.

WindowClose

Description: Returns true if an attempt to close the window is made.

Returns: Boolean

Usage: Steady State only.

Function Groups: Window

Related to: VStatus | Window | WindowOptions

Format: WindowClose(Object)

Parameters:

Object

Required. Any expression that returns the object value
of any module instance drawn in the window.

Comments: If this function is active when an attempt to close a window
is made, the window will not close, and the module(s) in
that window will not stop. It is up to the calling module to
close the window and stop the module(s) by switching to
another state.
This function may be used to control what happens when a
window is closed (or to prevent it from being closed).
When the attempt is made to close the window, an action
(or actions) can be triggered. For example, this might write
some data to file. Then a variable could be set (or a value
could be returned by the module) which signals the calling
module to switch states, which closes the window and
stops the module(s) inside.

Note: It is possible for a WindowClose statement to be associated with a
window, but to not yet be running when the attempt to close the win-
dow is made. If this happens the slay of the module running in the win-
dow will continue up the module tree until a running WindowClose is
found, or the top of the tree is reached. This behavior may be undesir-
able. The scenario can be avoided by setting bit 19 of the Style option
in the Window statement. Doing so will warn VTScada that a Win-
dowClose statement will be associated with this window.

Example:

If ZButton(110, 240, 200, 270, "CANCEL", 1) ||
WindowClose(Self()) CloseEverything;

This statement causes a state change to CloseEverything if the Cancel but-
ton is selected, or if the toaster bar on the window is selected.

WindowOptions

Description: Alters the options on a window once it has been opened.

Returns: Nothing

Usage: Script or Steady State

Function Groups: Window

Related to: MoveWindow | SizeWindow | Window | WindowClose

Format: WindowOptions(Object, Option, OptValue);
Or
WindowOptions(Object, 15, Width, Height);

Parameters:

Object

Required. Any expression that returns the object value
of any module instance drawn in the window.

Option

Option Attribute to alter

0 Visibility of the window

1 Horizontal scroll line step size

2 Horizontal scroll page step size

3 Vertical scroll line step size

4 Vertical scroll page step size

5 Set Horizontal Scroll position

6 Set Vertical Scroll position

7 Locator reporting rate from the VIC is
accelerated. Typically this would be
used when fast, dynamic feedback of
mouse movement from the VIC is
required for a rapid, interactive
response. CAUTION: Unnecessary use
of this option can seriously degrade
the VTScada window update rate on the
VIC.

8 Locator reporting rate from the VIC is
returned to normal. Locator position
reports are only sent when the VIC con-
siders them significant. This is the
default mode of operation.

9 Sets the level of alpha-blending (win-
dow translucency) of the window.
OptValue determines the level of
alpha-blending from 0 (completely
transparent) to 255 (completely
opaque). An OptValue of 128 would
give 50 percent translucency.

10 Set background color of tooltips. Must
be provided as a palette color. You
may set the option value to -1 to use
default colors or -2 (the default) to use
parent window settings. Will work only
when visual themes are disabled in Win-
dows.

11 Set tooltips text color. Must be
provided as a palette color. You may
set the option value to -1 to use
default colors or -2 (the default) to
use parent window settings. Will work
only when visual themes are disabled
in Windows.

12 Set tooltips show delay. Will work only
when visual themes are disabled in Win-
dows.

13 Set tooltips show duration. This value
is limited by the operating system to
less than 33 seconds. Will work only
when visual themes are disabled in Win-
dows.

14 Set tooltips neighbor re-show delay.
Will work only when visual themes are
disabled in Windows.

15 Sets the minimum window width and
height, using two option value para-
meters instead of one, e.g. Win-
dowOptions(Self(), 15, Width, Height);

16 The Source window will redirect its
mouse wheel messages to the Destin-
ation window. A source window can
only have one redirect at a given time.
In an Anywhere Client with touch
screen, this will redirect vertical pan-
ning.
For advanced users only.

17 Reserved.

18 Turn alignment cue drawing and behavior
on or off.

19 Set the color of the alignment snaps.

20 Set the color of the distance snaps.

21 Set the color of the spacing snaps.

22 Set the color of the sweep area border.

23 Set the color of the sweep area fill.

24 Dark color of the bounding box edges in a
selection.

25 Handle inner fill color.

26 Snap sensitivity in pixels.

27 Drag sensitivity in pixels.

28 X translation of the window.

29 Y translation of the window.

30 Set the size of distance snaps.

31 Set the background color of the window.

32 In an Anywhere Client with touch screen,
this will redirect horizontal panning.
For advanced users only.

OptValue

Required. Any numeric expression that specifies the
value to set the given option to.
For an Option of 0 (visibility), OptValue produces the
following effects:

OptValue Effect

0 Activate and display in current pos-
ition

1 Bring to foreground without activ-
ating

2 Maximize and activate

3 Minimize. Deactivate if active

4 Hide

5 Similar to OptValue 0, but the graphic
editing window in-use is not modified.

Width

Required. Used when the Option value is 15. Sets the
minimum window width

Height

Required. Must be present and valid when the Option
value is 15. Sets the minimum window height.

Comments: This statement will alter the attributes of the window as it is
running. The values that the given options can be set to
are from -32763 to 32763.
When the option value is set to 15, the function requires
four parameters, all of which must be valid. The last two
set the minimum width and height

Example:

If MatchKeys(2, "I");
[

WindowOptions(Self(), 0, 3);
]

If an "I" is pressed on the keyboard, the window that this module is run-
ning in will be minimized.

If ZButton(10, 50, 110, 80, "SetSize", 2, \System\DefFont);
[
WindowOptions(Self(), 15, 200, 150);

]
If ZButton(10, 90, 110, 120, "ClearSize", 3, \System\DefFont);
[
WindowOptions(Self(), 15, 0, 0);

]

WindowsLogon

Description: Authentication request to Windows Authentication ser-
vices.

Returns: Boolean to indicate success or failure

Usage: Steady State only.

Function Groups: Security

Related to:

Format: WindowsLogon(Username, Password)

Parameters:

Username

Required. The account name to authenticate.

Password

Required. The password, required to authenticate the
given account.

Comments: This function should not be used for VTScada-based
authentication.
Note that this function may take some time to com-
plete and will block the caller until it does. Other
threads in the VTScada system will continue to run
while this function is executing.

WindowSnapshot

Description: Creates an image file containing a screen capture of the
specified window.

Returns: Boolean indicating success (TRUE) or failure of the oper-
ation.

Usage: Script Only.

Function Groups: Window

Related to:

Format: WindowSnapshot(Filename, WindowObj, MimeType[, Left,
Top, Right, Bottom]);

Parameters:

Filename

Required. Any expression that is a string, or an array
of strings containing the full filename(s) to which the
screen capture should be saved.

WindowObj

Required. An object (often, "Self()") specifying the win-
dow to be captured.

MimeType

Required. Any expression that is a string, or an array
of strings specifying the mime type(s) to be used for
the image.

Left, Top, Right, Bottom

Optional. Short integer values, providing the bounding
area of the region to be captured within the window. If
any one of these parameters is provided, all four must
be provided. If not provided, a snapshot will be taken
of the entire window.

Comments: Available mime types include image/bmp,
image/jpeg, image/gif, image/tiff, image/png.

Note: Runs asynchronously from a VTScada Internet
Client. In this case, the return value is meaningless.

Note: Within an Anywhere Client session, this func-
tion does nothing.

Example:

[
Mimetypes { Set of mime types we can snapshot to

};
Filetypes { Corresponding file types (extensions)

};
SelectedMimetype { Work var - iterator through above

arrays };
Constant #NUM_TYPES = 5 { Number of entries in the above arrays

};
]
Init [
{***** Allow enough time for the window to paint *****}
If Timeout(1, 1) TakeSnapshots;
[
Mimetypes = New(#NUM_TYPES);
Mimetypes[0] = "image/bmp";
Mimetypes[1] = "image/jpeg";
Mimetypes[2] = "image/gif";
Mimetypes[3] = "image/tiff";
Mimetypes[4] = "image/png";
Filetypes = New(#NUM_TYPES);
Filetypes[0] = "bmp";
Filetypes[1] = "jpg";
Filetypes[2] = "gif";
Filetypes[3] = "tiff";
Filetypes[4] = "png";
SelectedMimetype = 0;

]
]

TakeSnapshots [
{***** Snapshot the window for each mime type *****}
If SelectedMimeType < #NUM_TYPES;
[
WindowSnapshot(Concat(PathString, "\Lighthouse.", FileTypes[Selec-

tedMimetype]),
Self(),
Mimetypes[SelectedMimetype]);

SelectedMimetype++;
]

WinEditCtrl

Description: Windows native edit control. This function returns a value

indicating the status of an edit field.

Returns: Numeric

Usage: Steady State only.

Function Groups: Graphics

Related to: Droplist | Edit | WinComboCtrl | ZEditField

Format: WinEditCtrl(X0, Y0, X1, Y1, Style, Data [, FocusID, MaxChar-
acters, Font, BackgroundColor, ForegroundColor])

Parameters:

X0, Y0, X1, Y1

Required. Coordinates.

Style

Optional. Default 0. Comprised of a combination
of bit values to yield the desired effects. Note
that some combinations should not be used as
they could be mutually exclusive; for example
converting input to all uppercase and to all
lowercase (bits 2 and 3 both set).
Bits 0 and 1 are reserved for bit compatibility
with WinComboCtrl, and should be set to "0".
Bits 2, 3 and 4 define input character handling.
It is reasonable to set bit 2 and 4 or 3 and 4, but
not bits 2 and 3. If not set, input is used exactly
as typed.

Bit Num-
ber

Definition

2 Input is converted to all uppercase.

3 Input is converted to all lowercase.

4 Input is masked. Any characters
typed will appear as asterisks. (use-

ful for password fields)

Bit 5 controls multi-line edit controls.

Bit Num-
ber

Definition

5 Multiline editing. When set, this bit
causes a typed Enter key to be inter-
preted as "move to the start of the
next line".
Text that contains carriage-return &
line-feed characters has a line break
inserted at each set.

Bit 6 forces the background color when the con-
trol is disabled, rather than allowing it to gray
as it should.
Bits 8 and 9 are reserved.

Data

Required. The data to be displayed and possibly
edited.

FocusID

An optional parameter specifying the focus id. If
Invalid, negative, or zero, no user interaction is
permitted. This value is held in a short. Values
above 32767 will cause the control to be non-
editable on VTScada Internet Clients.

MaxCharacters

An optional parameter specifying the maximum num-
ber of characters permitted for input. Defaults to
32767.
Note that this property is not obeyed in a VTScada
Internet Client.

Font

An optional parameter specifying the font to use.
Note that underlining is not supported.

BackGroundColor

An optional numeric parameter specifying the back-
ground color. Uses an unsigned integer, therefore sys-
tem colors with negative values may not be specified
here. May be any of:

l a palette VTScada Color Palette

l a Constants for System Colors

l an RGB string in the format, "<RRGGBB>"

ForegroundColor

An optional numeric parameter specifying the fore-
ground color. Like BackgroundColor, may not be neg-
ative.

Com-
ments:

The return value for WinEditCtrl can be one of the following:

Return
Value

Meaning

Invalid Nothing happened or there is a problem with the
control

0 Internal buffer changed or selection made from
list.

1 <CR> (Enter or Return pressed). Only applies to
single-line edit controls.

2 Focus has been lost.

If FocusID is Invalid or less than or equal to "0", the current
selection cannot be modified.

WinLocSwitch

Description: Returns the current status of the locator (mouse) buttons
in a certain window and its ancestors.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Locator, Window

Related to: Click | LocSwitch | SetXLoc | SetYLoc | Target | WinXLoc
| WinYLoc | XLoc | YLoc

Format: WinLocSwitch(Object)

Parameters:

Object

Required. Any expression that returns the object value
of any module instance drawn in the window.

Com-
ments:

If the mouse isn't over the specified window or one of its ancestors,
the function returns the mouse button status for the last time it was
over the window (or ancestor). If the locator is not installed, the func-
tion returns 0. Otherwise, the return value has the following sig-
nificance:

Return Value Mouse Button(s) No. of Clicks

0 No buttons -

1 Right button Single

2 Middle button Single

3 Right and middle buttons Single

4 Left button Single

5 Left and right buttons Single

6 Left and middle buttons Single

7 All three buttons Single

8 No buttons -

9 Right button Double

10 Middle button Double

11 Right and middle buttons Double

12 Left button Double

13 Left and right buttons Double

14 Left and middle buttons Double

15 All three buttons Double

Note: It cannot be over-emphasized that this function looks at the
status of the mouse over not only the window indicated by Object, but
all ancestral windows of Object as well. That is to say, any of its chil-
dren, grandchildren, parents, grandparents, etc. For example, a
WinLocSwitch statement in a certain module, we'll call it ModA, and a
WinLocSwitch statement in a child module of ModA, call it ModB, will

both return a value of 4 if the left mouse button is pressed over either
one of them. If this action is not what is required for your application,
the LocSwitch function may be more appropriate, since it will return a
value of 4 only if the left mouse button is pressed while over the same
window containing the module with the LocSwitch statement in it. From
the previous example, this means that ModA's function will return the
expected value only when over the window containing that module, not
when the mouse is over ModB's window, and vice versa.

Example:

If WinLocSwitch(Cond(CurrentWindow() != secondaryWin,
CurrentWindow(),
Invalid())) == 4 TestDraw;

[
...

]

This statement will check the status of the left mouse button if its cur-
rent window is not the one called secondaryWin. If there has been a
change over any of the windows but secondary window, the script will
execute and a change of state to TestDraw will occur. At some point
prior to this, secondaryWin would have been set to a module instance
inside the desired window.

WinMatchKeys

Description: Returns true if the specified keyboard keys have been
pressed in the sequence given, in another window.

Returns: Boolean

Usage: Steady State only. See: Rules for Usage.

Function Groups: Keyboard

Related to: MatchKeys

Format: WinMatchKeys(Object, Enable, Keys)

Parameters:

Object

Required. Any expression which gives the object value
of any module instance which is running in the win-
dow.

Enable

Required. Any numeric expression giving an
enable for the function. Testing of keyboard
input is enabled when this parameter is true
(not 0). If this parameter is false(0), the func-
tion's value is false(0).
In addition, the Enable parameter controls the
type of comparison done. If the Enable is 1, a
case-sensitive match is made. If the Enable is 2,
then the match is not case-sensitive.
(Any non-zero value other than 2 will cause a
case-sensitive match. The use of 1 and 2 is
recommended for clarity.)

Keys

Required. A text expression giving the key sequence to
test for. The case of individual letters may be sig-
nificant, depending on the Enable parameter.

Comments: The Object is used to determine which window to watch for
the keystrokes in.
The Enable is a status expression controlling the com-
parison. The comparison starts once the Enable becomes
true. If the Enable becomes false, the function's value
becomes false and the comparison starts at the beginning
of the Keys string again once the Enable becomes true.
This feature is useful for resetting the WinMatchKeys func-
tion once an action using the function's result has been per-
formed.

The WinMatchKeys function is also reset automatically
when it occurs in an action trigger that becomes true.
The function's result is automatically set to false(0) when
the state containing the function is entered. Once the func-
tion becomes true, it remains true as long as the state does
not change and the Enable remains true.
Any key sequence may be used for the Keys parameters
including the function keys. Note that the WinMatchKeys
function is case sensitive (upper and lower case letters are
treated as different characters) when the Enable is an odd
number. Often only one key is included in the Keys string.
Several keys may be used in the Keys string and function
as a password. The keys typed are not displayed on the
screen by this function. Several WinMatchKeys functions
may be active at any time, each comparing the keyboard
input against their own Keys parameter.

Example:

If WinMatchKeys(secondaryWin, 2, "go");
[
...

]

This statement will wait until the window designated by secondaryWin is
active and then will further wait until the keys "go" (in any case, upper or
lower) is entered at the keyboard. At that point the function will return
true and the script will execute.

Related Information:
See: "Latching and Resetting Functions" in the VTScada Programmer's
Guide

WinShiftKeys

Note: Deprecated. Works only on VTScada servers, not on Internet cli-
ents. Use WinMatchKeys for new code.

Description: Returns a value which contains the current status of the

Shift, Control and Alt control keys.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Keyboard

Related to: WinMatchKeys

Format: WinShiftKeys(Object)

Parameters:

Object

Required. Any expression that gives the object value of
any module instance which is drawn in the window.

Com-
ments:

The return value will be a sum of the individual key values (i.e. each
key has a bit which when set indicates that the key is currently
pressed)

Return Value Bit No. Key

1 0 Shift

2 1 Control

4 2 Alt

8 3 Caps lock (locked on)

16 4 Num lock (locked on)

32 5 Scroll lock (locked on)

64 6 Left arrow

128 7 Down arrow

256 8 Right arrow

512 9 Up arrow

1024 10 Page down

2048 11 Page up

WinTooltipCtrl

Description: Windows native "tooltip" control. A "tooltip" is a pop-up
text window that provides operational hints to users when
the mouse pointer is rested over a tool or object.

Returns: Invalid

Usage: Steady State only.

Function Groups: Graphics, Locator

Related to: WindowOptions

Format: WinTooltipCtrl(X0, Y0, X1, Y1, Style, Text [, Title, Icon-
Index, Enable, Font])

Parameters:

X0, Y0, X1, and Y1

Required. Coordinates of a rectangular screen area.
When the mouse enters that area (the "hit area"), and
stops moving for a time, the pop-up tooltip will be dis-
played.

Style

Required. One or more of the following bit flags, used
to control the style of the tooltip:

l 1 – If set, the tooltip will respond to the mouse in
the hit area regardless as to whether the con-
taining window is the active window. If clear
(default), the tooltip only responds if it is the act-
ive window.

l 32 – If set, fading of the tooltip is disabled. If
clear (default), the tooltip fades in and (under
some circumstances) out.

l 64 – If set, the tooltip is displayed as a balloon. If
clear (default), the tooltip is displayed as a rect-
angular window.

l 128 – If set, the tooltip is displayed in-place (i.e.

over the top of the hit area). This is most useful
when the hit area is occupied by clipped text and
the tooltip contains the full text, so that hovering
over the clipped text shows the full text in a tool-
tip window positioned over the top of the clipped
text. Note: \System\ListBox uses this ability.

Text

Required. Any expression yielding a simple text value
or a 1-dimensional array of text values. If this yields a
simple text value, the text value is displayed in the tool-
tip control, interpreting any carriage return/line feed
pairs (CRLF) as a line break, causing what follows to be
displayed on the following line. If this yields an array,
each element of the array is displayed in a new line of
the tooltip control.

Title

An optional parameter that can be any expression
yielding a simple text value. The text value is displayed
in the tooltip control as a title (emboldened at the top
of the tooltip).

IconIndex

Selects an optional icon to be displayed to the left of
the title:
Invalid or 0 – No Icon
1 – Information Icon
2 – Warning Icon
3 – Error Icon
Note that while the operating system may define
other icons for other values of this parameter,
these are not defined at the present, and are
hence subject to change.

Enable

An optional parameter that if non-zero enables the

popping-up of the tooltip. If Invalid, the default is true
(i.e. pop-up enabled).

Font

An optional parameter that can be set to a font
value for the font to be used by the tooltip. If
Invalid, the default system font is used.
Note that underlining is not supported.

Comments: This statement returns Invalid.
The background color, text color, and delay timings are
set on a per-window basis using the WindowOptions state-
ment.

Note: Detailed information about native Windows tooltip support is
provided in "Common Tasks: Native Windows Tooltip Support".

WinXLoc

Description: Returns the X coordinate of the locator (mouse) for a win-
dow.

Returns: Numeric

Usage: Script or steady state.

Related to: WinLocSwitch | WinYLoc | XLoc | YLoc | GUITransform

Format: WinXLoc(Object)

Function Groups: Graphics, Locator, Window

Parameters:

Object

Required. Any expression that gives the object value of
any module instance which is drawn in the window.

Comments: Returns the location of the mouse for a particular
window. If the mouse is not over that window, it
retains the value from the last time that the mouse
was over that window. If the window that the mouse

is over is a child window, a WinXLoc/WinYLoc state-
ment in the parent will register the same values as
one in the child. That is, the coordinate position in
the child window. Similarly, when the mouse is
moved over the parent, the values for
WinXLoc/WinYLoc in both the parent and child win-
dows will be the same. That is, the location of the
mouse in the parent window.
Note: This function is disabled when using a
GUITransform as a GUIStrectch.

Example:

If Change(WinXLoc(myWin), 0) || Change(WinYLoc(myWin), 0);
[
...

]

This statement checks for any movement of the mouse in the window des-
ignated by myWin and executes the script when it occurs.

WinYLoc

Description: Returns the Y coordinate of the locator (mouse) in a win-
dow.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Graphics, Locator, Window

Related to: WinLocSwitch | WinXLoc | XLoc | YLoc | GUITransform

Format: WinYLoc(Object)

Parameters:

Object

Required. Any expression that gives the object
value of any module instance which is drawn in

the window.
Note: This function is disabled when using a
GUITransform as a GUIStrectch.

Example:

ZBar(10, 500, 100, WinYLoc(myWin), 14);

This statement draws a yellow bar on the left side of the window whose
top follows the movement of the mouse in the window designated by
myWin.

WKSList

Description: Generates a list of sub-paths from the query returned by
the WKSPath function.

Returns: Array

Usage: Script Only.

Function Groups: Network

Related to: WKSPath | WKSStatus

Format: WKSList(QueryPath)

Parameters:

QueryPath

Required. A query path as generated by WKSPath. Due
to the complexity of the included symbols and format-
ting rules, this path should not be hand-coded.

Comments: Returns an array of sub-paths that are a refinement of the
query path returned from WKSPath. If the query path
provided is a broad category, the resulting array may be
quite large.
Returns a Windows™ PDH error code upon failure. This is a
long integer containing a 32-bit code.

WKSPath

Description: Given set of path components, generates a query path for
use in the WKSStatus command.

Returns: Text

Usage: Script Only.

Function Groups: Hardware and Software, Network

Related to: WKSList | WKSStatus | WKStaInfo

Format: WKSPath(MachineName, ObjectName[, InstanceName, Par-
entInstance, InstanceIndex, CounterName)

Parameters:

MachineName

Required. The name of the computer to query. Can be
obtained dynamically using the function call,
WkStaInfo(0);

ObjectName

Required. The system object to query. (corresponds to
the objects in the top list in the provided image). "Pro-
cessor" is an example.

InstanceName

The name of the instance of the system object to
query. The wildcard, * may be used to query all
instances.

ParentInstance

The name of the parent instance of the system object.
The wildcard, * may be used to query all parent
instances.

InstanceIndex

An integer assigned to the system object, if unnamed.

CounterName

The name of the data item to query from the system
object. The wildcard, * may be used to query all sub

items of the system object.

Comments: If the optional parameters are to be included but not spe-
cifically set, then wildcard values must be provided. For
text parameters, use the asterisk *, and for numeric para-
meters, use -1.
The output from WKSPath will usually be passed to WKSList
for further processing, then to WKSStatus to use to query
workstation status. The parameters to this function and the
resulting query path are best understood in the context of
the Windows™ Performance Monitor.
Returns a Windows™ PDH error code upon failure. This is a
long integer containing a 32-bit code.

Example:

If 1 Main;
[
MachineName = WkStaInfo(0); { Set up some defaults }
ObjectName = "Processor";
InstanceName = "*"; { These last four match the

native defaults of the WKSPath func-
tion }

ParentInstance = "*";
InstanceIndex = "0";
CounterName = "*";

]
]

Main [
If ZButton(10, 70, 950, 50, "Create Query", 7);
[{ Converts a set of parameters into a query string }
Query = WKSPath(MachineName, ObjectName, InstanceName,

ParentInstance, InstanceIndex, CounterName);
]

WKSStatus

Description: Sends a query to the Windows™ Performance Monitor inter-
face (see image in WKSPath) and returns the result as a
query handle.

Returns: Handle

Usage: Script Only.

Function Groups: Hardware and Software, Network

Related to:

Format: WKSStatus(Query, OperationType)

Parameters:

Query

Required. The query to be sent to the Performance
Monitor. The query path should be built using
WKSPath, possibly refined by being passed through
WKSList.

OperationType

Required. Controls the operation according to the fol-
lowing values:

OperationType Action

0 Get value

1 Get error value.

2 Generate handle
(QueryHandle must be a
path)

3 Clear handle

Comments: Returns a number of type double as a result of the query
provided. Upon error, the result will be invalid. The oper-
ation type can be set to 1 in order to obtain the error code.
Note that some queries must be checked multiple times
before a result will be produced, therefore not all error
codes are critical.

Related Functions:
 WKSPath | WKSList

Example:

handle = WKSStatus("\\MyPC\Processor(_Total)\% Processor Time", 2);
{ get a handle that will query total processor time }

IfThen(status = WKSStatus(handle, 1), { test for errors }
… error …
{ error code zero means things are okay,

everything else is a fault code }
);
value = WKSStatus(handle, 0);

{ make a priming read - some queries require two reads before
producing data }

… wait one second …
{ let some time pass before the second read }

value = WKSStatus(handle, 0); { read some data }
IfThen(status = WKSStatus(handle, 1),

{ before using the data make sure there weren't any problems }
… error …

);
WKSStatus(handle, 3);

{ close the handle when done, note that the same handle can be
reused as long as needed. }

{ A new handle is not necessary for each read }

WKStaInfo

Description: Returns the characteristic information about this work-
station.

Returns: Text

Usage: Script only.
May be used in optimized Tag Parameter Expressions.

Function Groups: Network, Hardware and Software

Related to: VStatus | Platform | BuffToHex

Format: WKStaInfo(Option)

Parameters:

Option

Required. Selects the characteristic to return, as shown
in the following table

Option Return characteristic

0 Workstation name

1 User name

2 Domain name

3 Unique Machine Identifier

4 Returns TRUE if the local machine is con-
figured to resolve names using DNS.

5 Returns the domain name of the computer.

Comments: This function will only return a valid value if the
machine has a workstation name assigned to it (i.e.
if network services have been installed). If network
services have not been installed it will return
invalid.
Option 3, the unique machine identifier, returns a
6-byte binary buffer. Use the function \Sys-
tem\BuffToHex on the returned value if you would
like to use the MachineID as a Hex string.

Note: VTScada relies on a Windows function call to
obtain the NetBios name of workstations. That
function will truncate names that are longer than
15 characters. You are advised to limit workstation
names to be 15 characters or less.

Write

(VTSDriver Library)

Description: Used by a tag to create a write request to a driver address.

Returns: Object value of underlying write module.

Usage: Script Only.

Function Groups: String and Buffer, Stream and Socket

Related to: AddRead

Format: …\Driver\Write(Address, N, Val[, DType, TagName, Suc-
cess])

Parameters:

Address

Required. The starting address to write the data to.

N

Required. The number of elements to write.

Val

Required. The data to be written. If Val is a single value
or a statically-declared array, it should be preceded by
a pointer reference (&). Do not use the pointer ref-
erence if passing a dynamically-declared array of val-
ues.

DType

No longer used. Was: the data type to be written to the
I/O device.

TagName

The name of the tag that is writing the data.

Success

Pointer to a Boolean, used to pass success/fail inform-
ation.

Comments: Allows the writing of a specific address on demand. The
resulting data will be sent only to the requesting machine.
Will not work for client writes via a server.
The object value of the underlying read module is returned
from the function. When the write finishes, the returned
object’s value will go to Invalid, signaling the end of the
write operation.

Example:
{ Simple variable example - writes a value of 12 to address 49500 }

WriteData = 12;
\Root\Driver\Write(49500, 1, &WriteData, Invalid(), Invalid(), &Suc-
cess);

{ Multi-variable (array) example - writes 12, 14, 30123 to addresses
40001, 40002, & 40003 respectively }

WriteData = New(3);
WriteData [0] = 12;
WriteData [1] = 14;
WriteData [2] = 30123;
\Root\Driver\Write(40001, 3, WriteData, Invalid(), Invalid(), &Suc-
cess);

WriteHistory

(Historian Manager Library)

Description: Interface to write tag history.

Returns: Numeric

Usage: Script Only.

Function Groups: Log

Related to: GetTagHistory

Format: \HistorianManager\WriteHistory(TagObj[, TimeStamp,
Data, HistorianObj, BroadcastMode])

Parameters:

TagObj

Required. The tag instance for which the data is to be
written

TimeStamp

Optional UTC timestamp.
If invalid, a timestamp will be generated using the cur-
rent time.
If the number of records to be written is 1 then this
should be a simple value.
If several records are to be written, this should be a

simple array having a size that matches the number of
records.

Data

Optional data values to record.
If invalid, current values from TagObj will be used.
Otherwise, this may be:

l A simple value to log a single variable.

l A simple array, the size of which must match the
number of records to write if the number of vari-
ables for each record is 1. Otherwise, this must
match the number of logged variables for each
record.

l An array of arrays – to be used only if the num-
ber of logged variables for each record (NumLo-
gVars) is > 1 and the number of records to
record (NumRecords) is > 1. The containing
array size must match NumLog Vars and the nes-
ted array size must match NumRecords. See
examples.

HistorianObj

An optional instance of the Historian tag used to log
this value. If invalid, TagObj\HistorianName will be
used.

BroadcastMode

An optional Boolean value. If TRUE, then the history is
automatically relayed to all Historian-potential servers.
Defaults to FALSE.

Comments: In order to ensure that the history is successfully
written, this function must be called with the same
data on all Historian-potential servers, (which can
be done by calling it on all workstations,) unless
BroadcastMode is TRUE, in which case it need only
be called on exactly one workstation (any work-

station).
Possible return values are as follows:
 -1 if the number of timestamps passed in does
not match the number of data entries passed in.
 0 otherwise. This does not indicate that the data
was written, just that the above condition on the
parameters held true.

Examples:
Simple case:

\HistorianManager\WriteHistory(TagObj, TimestampInUTC, Value);

More complex use case:
Given a tag with two logged variables, defined as:

Value(5)
Comment(6)

Perhaps you would like to log 3 records for each of them.

NumLoggedVars = 2;
NumRecords = 3;

TimestampsinUTC = New(NumRecords);
TimestampsinUTC[0] = CurrentTime(1);
TimestampsinUTC[1] = CurrentTime(1) + 1;
TimestampsinUTC[2] = CurrentTime(1) + 2;

ValueArray = New(NumRecords);
ValueArray[0] = 10;
ValueArray[1] = 20;
ValueArray[2] = 30;

CommentArray = New(NumRecords);
CommentArray[0] = "Comment1";
CommentArray[1] = "Comment2";
CommentArray[2] = "Comment3";

DataArray = New(NumLoggedVars);
DataArray[0] = ValueArray;
DataArray[1] = CommentArray;

\HistorianManager\WriteHistory(TagObj, TimestampsInUTC, DataArray);

Note that, when building the array of arrays, the order is important. The
values should correspond to the variable declared alphabetically by vari-
able class type. Thus, Value(5) comes before Comment(6). See: Data
Logged or Trended Variables in Tag Modules.

WriteINI

Note: Access to configuration files is not reliable unless the caller holds
the working copy lock. Acquiring the lock is a steady-state only oper-
ation, and therefore legacy operations that used script-mode access to
these files are deprecated or no longer supported (see comments)

(System Library)

Description: This subroutine writes a variable's value to a configuration
file or a buffer containing one and returns its error code.
Will not access .Startup or .Dynamic files.

Returns: Numeric

Usage: Script Only.

Function Groups: File I/O

Related to: CheckFileExist | CheckPathExist | ReadINI | ReadSectINI
| WriteSectINI

Format: \System\WriteINI(File, Section, VarName, Value [,
UseBuff])

Parameters:

File

Required. Any text expression giving the absolute path
and file name of the Settings file or a pointer to the buf-
fer containing its contents, depending on parameter
UseBuff.

Section

Required. Any text expression giving the name of the
section in the file. This should not include the square
brackets delimiting the section.

VarName

Required. Any text expression giving the name of the
variable for which the value is to be set.

Value

Required. Any giving the value to be assigned to vari-
able VarName.

UseBuff

An optional parameter that is any logical expression. If
true (non-0) the value of File must be a pointer to a buf-
fer, if false (0) it is a file that is to be used. The default
used if this parameter is omitted is false.

Comments: For developers the lock means that access to VTScada
working copy files, both reading and writing, should not
be done without having the lock. The lock is across all
applications and system layer VTScada code. The lock pre-
vents two different piece of code from changing the same
code such that one piece of code sees inconsistent data
while the other code is in the middle of changing it.
This subroutine was a member of the System Library, and
must therefore be prefaced by \System\, as shown in the
"Format" section. If you are developing a script application,
use "System\..." rather than "\System\..." in the function
call.
The subroutine returns true (1) if the write was successful
and invalid otherwise. If the Settings file, the section, or the
variable does not exist, they will be created.
Searches performed by this function are case insensitive.
Alignment of equal signs in the file is preserved.

Example:

If 1 Main;
[
System\WriteINI("C:\VTScada\Setup.ini"){filename},

"System " { Name of section },
"OrderlyShutdown" { Name of variable },
10 { Value of variable },
0 { Write file format });

]

This assigns a value of 10 to the variable OrderlyShutdown in the System
section of the Setup.INI file.

WriteINIProperties

Description: Writes properties to the local layer's various settings files in
one operation.

Returns: Nothing

Usage: Script Only.

Function Groups: Configuration Management

Related to: WritePropertiesFile |

Format: Layer\WriteINIProperties(INIProperties[, ExternalLock])

Parameters:

INIProperties

Required. A dictionary containing the properties and
values to be written. This dictionary must have the
same structure as that returned by ReadINIProperties.

ExternalLock

Optional Boolean. Set to TRUE if you do not want to
acquire and release the lock. Defaults to FALSE.

Comments: This function is the opposite of ReadINIProperties.
In nearly all cases, it is recommended that WriteProp-
ertiesFile be used in place of this function.

Examples:
none

WriteLock

(RPC Manager Library)

Description: This subroutine attempts to require a Write lock for the spe-
cified service. Subroutine call only.

Returns: Nothing

Usage: Script Only.

Function Groups: Network

Related to: ReadLock

Format: \RPCManager\WriteLock(ActivePtr, Service [, OptGUID]);

Parameters:

ActivePtr

Required. A reference to a variable that will be set to
"1" when the Read lock is obtained.

Service

Required. The name by which the service is known.

OptGUID

An optional parameter indicating the GUID of the
application in which the service instance is located.
The default is the application to which the caller
belongs.

Comments: This subroutine is a member of the RPC Manager's Library,
and must therefore be prefaced by \RPCManager\, as
shown in the "Format" section. If the application you are
developing is a script application, the subroutine call must
be prefaced by System\RPCManager\, and the System vari-
able must be declared in AppRoot.SRC.

WritePropertiesFile

(System Library)

Description: Write a single Settings file according to the properties in an
INIFile structure.
Replaces WriteINI and WriteSectINI

Returns: Boolean indicating success or failure.

Usage: Script Only.

Function Groups: Configuration Management, File I/O

Related to: ReadPropertiesFile | GetINIProperty | SetINIProperty

Format: \System\WritePropertiesFile(INIData, TargetDirectory[,
IsBuffer])

Parameters:

INIData

Required. An INIFile data structure, containing the file
name to write to and the application properties to be
written. Created as follows... IniData = \Sys-
tem\INIFiles();
See the Comments section for a description of the
INIFile data structure.

TargetDirectory

A text expression providing a directory name to be
concatenated in front of the FileName provided by the
INIData parameter. If left blank, a base path to the
VTScada install directory will be appended to the what
is in the FileName member of the INIFile structure.

IsBuffer

An optional logical expression. Set TRUE if the Tar-
getDirectory parameter is a buffer, which will receive
the output of the function. Defaults to FALSE (0).

Comments: Many properties can be modified with a single call to
WritePropertiesFile.
The INIFile structure is as follows:

INIFiles Struct [
FileName { File name to the settings file.

Path may be included,
but is better specified in the

TargetDirectory
parameter.

};
OEM { TRUE if an OEM layer file

};
Workstation { Name of the workstation or

invalid if global };
Layer { Instance of application layer

owning the file };
Dynamic { TRUE if a dynamic property

};

Sections { Dictionary of sections each ele-
ment of which

is an array of Property struc-
tures };
Changed { User sets to true if the file

has been changed,
initialized to false

};
]

The INIProperty structure is…

INIProperty Struct [
Name { Variable name in the .star-

tup/.dynamic file };
Value { Simple value

};
Comment { Text comment if present in the

file };
Hidden { TRUE if not visible in Edit

Properties GUI };
];

Note that if your intention is to write to a con-
figuration file, this function should be called from
within a ReadConfiguration callback or a Modi-
fyConfiguration callback.

Example:
A \System\INIProperty() structure is used in the INIFIles\Sections

{ Setup the INIFiles Struct }
INIData = \System\INIFiles();
INIData\FileName = Concat(ProfileName, ".ini");
INIData\Workstation = Invalid;
INIData\Dynamic = 0;
INIData\Sections = Dictionary();
INIData\Changed = 0;
{ Now write to the .ini file }
\System\WritePropertiesFile(INIData, "MyProject\Profiles\");

WriteSectINI

(System Library)

Description: This subroutine writes an entire section to a configuration
file or a buffer containing one and returns its error code.
Will not access .Startup or .Dynamic files.
Access to configuration files is not reliable unless the caller

holds the working copy lock. Acquiring the lock is a
steady-state only operation, and therefore similar legacy
operations that used script-mode access to these files are
deprecated or no longer supported (see comments)

Returns: Numeric

Usage: Script Only.

Function Groups: File I/O

Related to: CheckFileExist | CheckPathExist | Edit | Folder |
 ReadINI | ReadSectINI | WriteINI

Format: \System\WriteSectINI(File, Section, VarList [, UseBuff])

Parameters:

File

Required. Any text expression giving the absolute path
and file name of the Settings file or the name of the buf-
fer containing its contents.

Section

Required. Any text expression giving the name of the
section in the file. This should not include the square
brackets delimiting the section.

VarList

Required. A 2 dimensional array containing the vari-
ables and their values to write to the file. The first row,
VarList[0][N], contains the variable names, while the
second row, VarList[1][N] contains their values.

UseBuff

An optional parameter that is any logical expression. If
true (non-0) the value of File must be a pointer to a buf-
fer, if false (0) it is a file that is to be used. The default
used if this parameter is omitted is false.

Comments: WriteSectINI is a subroutine, and as such it needs to return

quickly. It therefore cannot wait for a lock. For developers
the lock means that access to VTScada working copy files,
both reading and writing, should not be done without hav-
ing the lock. The lock is across all applications and system
layer VTScada code. The lock prevents two different piece
of code from changing the same code such that one piece
of code sees inconsistent data while the other code is in
the middle of changing it.
This subroutine is a member of the System Library, and
must therefore be prefaced by \System\, as shown in the
"Format" section. If you are developing a script application,
use "System\..." rather than "\System\..." in the function
call.
The subroutine returns true (1) if the write was successful
and invalid otherwise. If the Settings file or the section
does not exist, they will be created. If the VarList para-
meter is invalid, a blank section will be created. This is a
destructive write. That is to say, the entire section of the
file is overwritten by the new section, regardless of the con-
tents of either.
Searches performed by this function are case insensitive.
Alignment of equal signs in the file is preserved.

Example:

If 1 Main;
[
Vals[0][0] = "OrderlyShutdown";
Vals[1][0] = 1;
Vals[0][1] = "ShdownOnLowBattery";
Vals[1][1] = 1;
System\WriteSectINI("C:\VTScada\Setup.INI" { Name of file },
"System" { Name of section },

Vals { Arrays of data },
0 { Write file format });

]

This causes the variables OrderlyShutdown and ShutdownOnLowBattery
in the System section of the Setup.INI file to have their values set to 1
and 1.

X Functions
The sections that follow identify all VTScada functions beginning with
"X".

XLoc

Description: Returns the X window coordinate of the locator (mouse).

Returns: Numeric

Usage: Script or steady state.

Function Groups: Graphics, Locator, Window

Related to: SetXLoc | SetYLoc | WinXLoc | WinYLoc | YLoc

Format: XLoc()

Parameters: None

Example:

ZBox(10, YLoc(), XLoc(), 10, 11);

This statement will draw a box in the window whose upper left corner is
fixed at (10, 10), but whose lower right corner follows the mouse.

XMLAddSchema

Description: Adds a schema to an XML Processor.

Returns: Numeric

Usage: Script Only.

Function Groups: XML

Related to: XMLParse | XMLProcessor | XMLWrite | XMLCloneNode
| XMLCreateNode | XMLDeleteMember | XMLGetNode |
GetXMLNodeArray

Format: XMLAddSchema(XMLProcessorHandle, NamespaceURI,
URL[, ErrorMessageOut])

Parameters:

XMLProcessorHandle

Required. A valid processor, as returned by the func-
tion XMLProcessor.

NamespaceURI

Required. A URI that specifies the namespace that the
schema represents.

URL

Required. The URL to fetch the schema from.

ErrorMessageOut

An optional text parameter that allows an error mes-
sage to be returned from the function.

Comments: Each schema will be validated for standards conformance
before being added to the cache. Returns 0 if it succeeds,
otherwise it returns a numeric specifying a Windows error
code and sets the variable named in the optional ErrorMes-
sageOut parameter to a text error message. If the schema
load succeeds, the types identified by the schema are
added to the factory.

XMLCloneNode

Description: Clones an existing XMLNode, optionally adding additional
members.

Returns: The cloned XMLNode, with any additional members sup-
plied.

Usage: Script Only.

Function Groups: XML

Related to: XMLParse | XMLProcessor | XMLAddSchema |
 XMLWrite | XMLCreateNode | XMLDeleteMember |
 XMLGetNode | GetXMLNodeArray

Format: XMLCloneNode(XMLNode [, MembersDictionary])

Parameters:

XMLNode

Required. A valid XMLNode.

MembersDictionary

An optional dictionary containing additional members
to be added to the cloned node.

Comments: If the optional member dictionary parameter is supplied,
any additional members will be added to the cloned node
in the same order that they were added to the dictionary.

Example:

MembersDict = Dictionary(0);
MembersDict["ISBN"] = XMLCreateNode("01234567890");
MyNode = XMLCloneNode(XMLNode\catalog\book, MembersDict);

XMLCreateNode

Description: Creates a new XMLNode.

Returns: An XMLNode.

Usage: Script Only.

Function Groups: XML

Related to: XMLParse | XMLProcessor | XMLAddSchema |
 XMLWrite | XMLCloneNode | XMLDeleteMember |
 XMLGetNode | GetXMLNodeArray

Format: XMLNode([Contents, AttributesDictionary, Namespace,
MembersDictionary])

Parameters:

Contents

A text value to be placed in the #content member of
the XMLNode.

AttributesDictionary

A dictionary containing attributes for the XMLNode

Namespace

A text value containing the namespace for the
XMLNode.

MembersDictionary

A dictionary containing additional members to be
added to the XMLnode.

Comments: If the optional member dictionary parameter is supplied,
any additional members will be added to the XMLNode in
the same order that they were added to the dictionary.
If the #comment or #cdata members require values, they
can be assigned after the node has been created.

Example:

AttribsDict = Dictionary(0);
AttribsDict["id"] = 42;
MembersDict = Dictionary(0);
MembersDict["Item1"] = XMLCreateNode("01234567890");
MyNode = XMLCreateNode("abc", AttribsDict,

http://trihedral.com/XML", MembersDict);

Creates the following XMLNode:

XMLDeleteMember

Description: Deletes a member from an XMLNode in-place.

Returns: Nothing.

Usage: Script Only.

Function Groups: XML

Related to: XMLParse | XMLProcessor | XMLAddSchema |
 XMLWrite | XMLCloneNode | XMLCreateNode |
 XMLGetNode | GetXMLNodeArray

Format: XMLDeleteMember(XMLNode, MemberName)

Parameters:

XMLNode

Required. The XMLNode to delete the member from.

MemberName

Required. The name of the member to delete.

Comments: The deletion of the member is done "in-place".

XMLGetNode

Description: Returns an XMLNode from a tree.

Returns: The XMLNode specified.

Usage: Script Only.

Function Groups: XML

Related to: XMLParse | XMLProcessor | XMLAddSchema | XMLWrite
| XMLCloneNode | XMLCreateNode | XMLDeleteMember
| GetXMLNodeArray

Format: XMLGetNode(XMLNode)

Parameters:

XMLNode

Required. The XMLNode to return.

Comments: When isolating a particular XMLNode, to pass to a sub-
routine for instance, the automatic subscripting of an
XMLNode to provide the value in its #content member
means that this is passed to the subroutine.
Thus,

GoodXML = Valid(XMLGetNode(XMLData));

Is not equivalent to

XMLObject = XMLGetNode(XMLData);
GoodXML = Valid(XMLObject);

To defeat the automatic subscripting, use this func-
tion.

Example:
Given an XMLNode named "MyNode" as created with the following code:

AttribsDict = Dictionary(0);
AttribsDict["id"] = 42;
MembersDict = Dictionary(0);
MembersDict["Item1"] = XMLCreateNode("01234567890");
MyNode = XMLCreateNode("abc", AttribsDict,

"http://trihedral.com/XML", MembersDict);

Then calling a subroutine as follows will pass the value of the #content
member to the subroutine, in this case: "abc":

MySub(MyNode);

To pass the actual node use the following construct:

MySub(XMLGetNode(MyNode));

Note that a similar construct uses the address-of operator (&) but then
the subroutine will have to de-reference the parameter (using the * oper-
ator) on every use.

XMLParse

Description: Parses the supplied XML using the specified XML Pro-
cessor.

Returns: Numeric error code

Usage: Script Only.

Function Groups: XML

Related to: XMLProcessor | XMLAddSchema | XMLWrite |
 XMLCloneNode | XMLCreateNode | XMLDeleteMember |
 XMLGetNode | GetXMLNodeArray

Format: XMLParse(XMLProcessorHandle, XMLin [, ErrorMes-
sageOut, XMLNodeTreeOut, NamespaceDictionary])

Parameters:

XMLProcessorHandle

Required. A valid processor, as returned by the
XMLProcessor function.

XMLin

Required. The XML text to be parsed. May be either
text or a valid stream. If the text supplied (either in the
text value or the stream) is identifiable as a URL, the
XML is fetched from that URL.

ErrorMessageOut

A text parameter into which a return error message
may be placed.

XMLNodeTreeOut

Must be a variable into which the XMLNode tree, cre-
ated by parsing the XML successfully, will be placed.

NamespaceDictionary

(Return value) A dictionary of namespaces and pre-
fixes found in the parsing of the XML.

Comments: The XML may be either a stream or a text value. Returns 0
if it succeeds. Otherwise returns a numeric specifying a
Windows error code and sets the variable named in the
optional ErrorMessageOut parameter to a text error mes-
sage.

Note: In versions of VTS prior to release 10, it is
necessary to explicitly slay the XMLNodeTree (the
XMLNodeTreeOut parameter to XMLParse) when
you are finished with it

The output parameter, XMLNodeTreeOut, will
receive a valid XMLNode tree from a validating pro-

cessor even if validation fails, so long as the XML
can be parsed. A valid "XMLNodeTreeOut" with a
valid "ErrorMessageOut" indicates a parse-able mes-
sage that fails validation.
A helper function, GetXMLNodeArray, can be used
on the result to extract an array of XMLnodes match-
ing a given type name.

XMLProcessor

Description: Creates a new XML Processor.

Returns: XML Handle

Usage: Script Only.

Function Groups: XML

Related to: XMLParse | XMLAddSchema | XMLWrite |
 XMLCloneNode | XMLCreateNode | XMLDeleteMember |
 XMLGetNode | GetXMLNodeArray

Format: XMLProcessor(SchemaCacheDictionary)

Parameters:

SchemaCacheDictionary

Required. Must be a variable to hold the Schema Cache
Dictionary. All the data types specified by the schemas
in the cache will be added to this cache. Provide
"Invalid" for a non-validating processor.

Comments: If SchemaCacheDictionary is a valid variable, the XML Pro-
cessor will be a validating processor, otherwise it will be a
non-validating processor. To destroy an XML Processor,
invalidate the last reference to it.

XMLWrite

Description: Converts the instance of a type, as specified by
XMLNodeTreeIn, into XML.

Returns: Numeric

Usage: Script Only.

Function Groups: File I/O, XML

Related to: XMLParse | XMLProcessor | XMLAddSchema |
 XMLCloneNode | XMLCreateNode | XMLDeleteMember |
 XMLGetNode | GetXMLNodeArray

Format: XMLWrite(XMLProcessorHandle, XMLNodeTreeIn, XMLOut,
ErrorMessageOut[, NamespaceDictionary, XSLTString])

Parameters:

XLProcessorHandle

Required. A valid processor, as returned by the func-
tion XMLProcessor.

XMLNodeTreeIn

Required. An XMLNodeTree such as would be created
by XMLParse (XMLNodeTreeOut parameter).

XMLOut

Required. The name of a stream where the XML text
will be placed.

ErrorMessageOut

Required. A text parameter into which any return error
message is placed.

NamespaceDictionary

An optional dictionary of namespaces and prefixes
such as would be created by XMLParse (NamespaceDic-
tionary parameter).

XSLTString

An optional string containing an XSLT (extensible style
sheet language transform) to be applied to the output
XML.

Comments: The XML is in the form of a stream and is inserted to the

stream passed in XMLOut, starting at its current position. If
XMLOut does not contain a stream, a new BufferStream is
created and returned in XMLOut. Returns 0 if it succeeds.
Otherwise returns a numeric specifying a Windows error
code and sets the variable named in the optional ErrorMes-
sageOut parameter to a text error message.
If XSLTString is not a valid XSLT transform, the XML out will
not be transformed, but ErrorMessageOut and the return
value will be set to indicate the transform failure.

XOr

Description: Returns the bitwise exclusive OR of its parameters.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Bitwise Operation

Related to: And | Not | Or

Format: XOr(Parm1, Parm2)

Parameters:

Parm1, Parm2

Required. Any numeric expressions. If floating point
values are supplied, they will be truncated to integers.

Comments: This functions returns the 32 bit bitwise exclusive OR (XOR)
of its arguments.

Example:

var1 = XOr(0b1100, 0b1010);

The value of var1 will be 0b0110.

Y Functions
The sections that follow identify all VTScada functions beginning with
"Y".

Year

Description: Returns the year for a given date number.

Returns: Numeric

Usage: Script or steady state.

Function Groups: Time and Date

Related to: Date | DateNum | Day | Month | Today

Format: Year(Date)

Parameters:

Date

Required. Any numeric expression giving the number
of days since January 1, 1970.

Comments: This function works in conjunction with the Day and Month
functions to decompose a date number into the cor-
responding day, month and year.

Example:

whatYear = Year(8394 { 25 December 1992 });

The value of whatYear will be 1992.

YLoc

Description: Returns the Y window coordinate of the locator (mouse).

Returns: Numeric

Usage: Script or steady state.

Function Groups: Graphics, Locator, Window

Related to: SetXLoc | SetYLoc | WinXLoc | WinYLoc | XLoc

Format: YLoc()

Parameters: None

Example:

If Change(YLoc(), 10);
[
...

]

The action trigger will become true when the Y-coordinate of the mouse
changes by more than 10 pixels, and the script will then execute.

Z Functions
The sections that follow identify all VTScada functions beginning with
"Z".

ZBar

Description: Draws a layered bar in a window.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: Bar | Box | GUIRectangle | ZBox

Format: ZBar(Left, Bottom, Right, Top, Color)

Parameters:

Left

Required. Any numeric expression for the left side
coordinate of the bar.

Bottom

Required. Any numeric expression for the bottom side

coordinate of the bar.

Right

Required. Any numeric expression for the right side
coordinate of the bar.

Top

Required. Any numeric expression for the top side
coordinate of the bar.

Color

Required. May be any of the following:

l An RGB string in the form, "<RRGGBB>"

l A Constants for System Colors

l A VTScada Color Palette number from the
palette.

l -1 (transparent)

Comments: Although this is a layered graphic, it cannot be edited
using the Idea Studio. It is for use within text mode editing
only.

Example:

ZBox(10, 200, 210, 10 { Bounding box for box },
0 { Box is black });

ZBar(10, 200, 210,
Limit(Scale(fluid, 0 { min }, 2000 { max },
200 { scaled min }, 10 { scaled max }),
10 { Min value from Scale },
200 { Max value from Scale }),
{ Bounding box for bar }
10 { Color of bar });

These two statements simulate a tank that is outlined in white (using
ZBox) and whose changing fluid level is represented in the ZBar state-
ment by scaling and limiting the value of fluid. Notice that the Scale func-
tion converts (and inverts) the value from a real world fluid level to
window coordinates. Because its return value is not limited by any of its
parameters, the Limit function is used to declare absolute limits. Even if

the value of fluid goes beyond its limits, the bar will not be drawn out-
side of the box.

ZBox

Description: Draws a layered box in a window.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: Bar | Box | GUIRectangle | ZBar

Format: ZBox(Left, Bottom, Right, Top, Color)

Parameters:

Left

Required. Any numeric expression for the left side
coordinate of the box.

Bottom

Required. Any numeric expression for the bottom side
coordinate of the box.

Right

Required. Any numeric expression for the right side
coordinate of the box.

Top

Required. Any numeric expression for the top side
coordinate of the box.

Color

Required. May be any of the following:

l An RGB string in the form, "<RRGGBB>"

l A Constants for System Colors

l A VTScada Color Palette number from the
palette.

l -1 (transparent)

Comments: Although this is a layered graphic, it cannot be edited
using the Idea Studio. It is for use within text mode editing
only.

Example:

ZBox(10, 110, 220, 10 { Bounding box for box },
 12 { Box is red });

This statement draws a (hollow) box in the window.

ZButton

Description: Draws a layered button in a window and returns true when
selected.

Returns: Boolean

Usage: Steady State only.

Function Groups: Graphics

Related to: GUIButton

Format: ZButton(Left, Bottom, Right, Top, Label, FocusID [, Font])

Parameters:

Left

Required. Any numeric expression for the left side
coordinate of the button.

Bottom

Required. Any numeric expression for the bottom side
coordinate of the button.

Right

Required. Any numeric expression for the right side
coordinate of the button.

Top

Required. Any numeric expression for the top side
coordinate of the button.

Label

Required. Any text expression for the button label.

FocusID

Required. Any numeric expression for the focus
ID number. This is used to force the focus to
this item. If this value is 0, the button text will
be grayed, the button cannot be focused and
will not respond to mouse clicks. Values above
or below zero allow the control to be used.
This value is stored in a short. If greater than
32767, the button will not be visible.

Font

An optional parameter that is any expression for the
font value to use. If this value is omitted, the default
value of system font is used.

Comments: Although this is a layered graphic, it cannot be edited
using the Idea Studio. It is for use within text mode editing
only. The colors for this graphic are taken from Microsoft
Windows™.
This function behaves like a Pick with the pressing of the
left mouse button being the button combination to be
detected. It will return 1 on the pressing of the left mouse
button.

Example:

If ZButton(10, 70, 110, 40 { Bounding box for button },
"OK" { Text label on button },
1 { Focus ID })
DoneState;

[
...

]

This action trigger will become true when the left mouse button clicks on
the button drawn in the window. At that point the script will execute and
then there will be a state change to DoneState.

ZColorChange

Description: Changes one color within a region to another color. This is
an older function, intended for use on objects that used a
color range, such as pipes prior to release 11 of VTScada.

Returns: Nothing

Usage: Steady State only.

Function Groups: Color, Graphics

Related to: GetSystemColor | PixelColor

Format: ZColorChange(Left, Bottom, Right, Top, Original, New)

Parameters:

Left

Required. Any numeric expression for the left side
coordinate of the change region.

Bottom

Required. Any numeric expression for the bottom side
coordinate of the change region.

Right

Required. Any numeric expression for the right side
coordinate of the change region.

Top

Required. Any numeric expression for the top side
coordinate of the change region.

Original

Required. Any one of the colors of the existing region.

New

Required. Any one of the colors which will replace the
old.

Comments: Although this is a layered graphic, it cannot be edited
using the Idea Studio. It is for use within text mode editing

only. A solid pattern should be used if you wish to change
the color back to its original color.

The order of graphics statements are an important factor
in determining which objects will have their color changed.
The ZColorChange function affects all objects underneath
it, which means, any object whose graphic statement is
before the ZColorChange statement (including images that
are displayed using a Load statement). Any object whose
statement follows the ZColorChange statement will be unaf-
fected. The background color will also be affected by ZCo-
lorChange.

Example:

ZBar(100, 500, 500, 40, 12 { Draws a large red bar });
ZColorChange(10, 210, 210, 10 { Bounding box for change },

12, 14 { Change all red in to yellow });
ZBar(20, 60, 60, 20, 12 { Draws a small red bar });

The ZColorChange statement here will cause the upper left corner of the
first large bar to be yellow, while the rest of the bar (outside the bound-
ing box for ZColorChange) will remain red. The second bar, although
drawn inside of the ZColorChange's bounding box, will be drawn in red,
not yellow, because its statement follows the statement that effects the
color change.

ZEditField

Note: Deprecated. Do not use in new code.

Description: Draws a layered text edit field in a window and returns a
status value. Not editable when viewed on a VTScada Inter-
net Client.

Returns: Numeric

Usage: Steady State only.

Function Groups: Editor, Graphics

Related to: Cast | WinEditCtrl

Format: ZEditField(Left, Bottom, Right, Top, TextVar, Length, Font,
FocusID)

Parameters:

Left

Required. Any numeric expression for the left side
coordinate of the field.

Bottom

Required. Any numeric expression for the bottom side
coordinate of the field.

Right

Required. Any numeric expression for the right side
coordinate of the field.

Top

Required. Any numeric expression for the top side
coordinate of the field.

TextVar

Required. Must be a variable. The result of the text edit-
ing will be stored here. The value in this field will be
automatically inserted into the field.

Length

Required. Any numeric expression for the number of
characters allowed in this field.

Font

Required. Any expression for the font value to use.

FocusID

Required. Any numeric expression for the focus
ID number. This is used to force the focus to
this item. Values below zero will render this con-
trol invisible. A value of zero makes this control
visible, but not editable. With values above zero,

the control will be editable.

Com-
ments:

Although this is a layered graphic, it cannot be edited using the Idea
Studio. It is for use within text mode editing only. The colors for this
graphic are taken from Microsoft Windows™.
The return values for this function are as follows

Return Value Meaning

0 Internal buffer changed

1 <CR> pressed

2 Focus has been lost

Although data may be entered in the field, TextVar is not set
until <RETURN> is pressed, or a change in focus occurs. This
is crucial when setting other variables based on TextVar. As
their values may not be set prior to a state change if
<RETURN> has not been pressed.
This function does not check the input type, but converts all
data to text. Data that is required to be of a type other than
text must be converted to that type using the Cast function.

Note: Within an Anywhere Client session, this function does
nothing.

Note: if the application is to be used on a VTScada Internet Client,
WinEditCtrl should be used instead of ZEditField.

Example:

ZEditField(100, 500, 200, 470 { Bounding box for field },
inputVal { Input value },
3 { Max chars allowed in input },
0, 1 { Default font and focus ID });

This statement will accept up to 3 characters of input and store it in
inputVal. If inputVal has a default value, that value will be shown in the
white edit field box until it is changed.

ZGrid

Description: Draws a layered point grid in a window.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: Grid

Format: ZGrid(Left, Bottom, Right, Top, Color, XSpace, YSpace)

Parameters:

Left

Required. Any numeric expression for the left side
coordinate of the grid.

Bottom

Required. Any numeric expression for the bottom side
coordinate of the grid.

Right

Required. Any numeric expression for the right side
coordinate of the grid.

Top

Required. Any numeric expression for the top side
coordinate of the grid.

Color

Required. May be any of the following:

l An RGB string in the form, "<RRGGBB>"

l A Constants for System Colors

l A VTScada Color Palette number from the
palette.

l -1 (transparent)

XSpace

Required. Any numeric expression giving a positive
integer value for the spacing of the x-grid.

YSpace

Required. Any numeric expression giving a positive
integer value for the spacing of the y-grid.

Comments: Although this is a layered graphic, it cannot be edited
using the Idea Studio. It is for use within text mode editing
only.

Example:

ZGrid(100, 200, 200, 100 { Bounding box for grid },
12 { Grid is light red },
5, 5 { X and Y spacing for grid });

This places a light red 5x5 point-grid on the screen in the area bounded
by the first four parameters.

ZLine

Description: Draws a line between given x and y coordinates in a win-
dow.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUIPolygon | Line

Format: ZLine(X1, Y1, X2, Y2, Pen)

Parameters:

X1, Y1

Required. Any numeric expressions for the X and Y
coordinates of the first endpoint of the line.

X2, Y2

Required. Any numeric expressions for the X and Y
coordinates of the second endpoint of the line.

Pen

Required. Any expression that returns the PEN object

to use to draw the line.
A color value is also acceptable here, which may be
any of the following:

l An RGB string in the form, "<RRGGBB>"

l A Constants for System Colors

l A VTScada Color Palette number from the
palette.

l -1 (transparent)

Comments: Although this is a layered graphic, it cannot be edited
using the Idea Studio. It is for use within text mode editing
only.

Example:

ZLine(0, 0 { First endpoint for line },
799, 599 { Second endpoint for line },
14 { Line is yellow });

This statement draws a yellow line diagonally from the upper left corner
to the lower right corner of the window.

ZPipe

Note: Deprecated. Do not use in new code.

Description: Draws a layered three-dimensional pipe in a window.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUIPipe | Pipe

Format: ZPipe(XArrayElem, YArrayElem, N, LowIndex, HighIndex,
PixelWidth)

Parameters:

XArrayElem

Required. Any numeric expression that specifies the

starting array element. The array contains the X
coordinates of the path along which to draw the pipe.
If processing a multidimensional array, the usual rules
apply to decide which dimension should be examined.

YArrayElem

Required. Any numeric expression that specifies the
starting array element. The array contains the Y
coordinates of the path along which to draw the pipe.
If processing a multidimensional array, the usual rules
apply to decide which dimension should be examined.

N

Required. Any numeric expression giving the number
of array elements to use to define the path of the pipe.

LowIndex

Required. Any numeric expression specifying the low
index into the current color palette. It is used in con-
junction with the next parameter to adjust the bright-
ness and contrast of the shading.

HighIndex

Required. Any numeric expression specifying the high
index into the current color palette. It is used in con-
junction with the previous parameter to adjust the
brightness and contrast of the shading.

PixelWidth

Required. Any numeric expression specifying the
width of the shaded pipe in pixels and is subject to
applicable scaling factors.

Comments: Although this is a layered graphic, it cannot be edited
using the Idea Studio. It is for use within text mode editing
only.
The pipe will be drawn with a miter effect, such that pipe
segments meet at 45-degree angles.

Example:

ZPipe(x[0], y[0] { First endpoint for pipe },
8 { Number of vertices },
176, 239 { Very dark gray to very light gray },
24 { Width of pipe in pixels });

ZText

Description: Draws a layered text label in a window.

Returns: Nothing

Usage: Steady State only.

Function Groups: Graphics

Related to: GUIText | Format

Format: ZText(Left, Bottom, Value, Color, Font)

Parameters:

Left

Required. Any numeric expression for the left side
coordinate of the text.

Bottom

Required. Any numeric expression for the bottom side
coordinate of the text.

Value

Required. Any text expression to display on the
screen.

Color

Required. May be any of the following:

l An RGB string in the form, "<RRGGBB>"

l A Constants for System Colors

l A VTScada Color Palette number from the
palette.

l -1 (transparent)

Font

Required. Any expression for the font value to use. A
numeric zero (0) may be used to get the default sys-
tem font.

Comments: Although this is a layered graphic, it cannot be edited
using the Idea Studio. It is for use within text mode editing
only.

Examples:

ZText(100, 100 { Lower left corner of text },
"Hello World" { Text to display },
2 { Text is green},
0 { Use default font });

This places the string "Hello World" on the screen at (100, 100) with
white text in the system font.

ZText(500, 100 { X, Y coordinates },
Format(0, 2, DeadBand(pressure, 5)) { Displayed value },
0, 0);

This displays the value of variable, "pressure" on the screen. However,
the display is only updated when pressure changes by more than 5
(higher or lower) from the last update.

Index: 4BtnDialog – AlmEnable

Index

4

4BtnDialog 1010

A

ABS 1014

ABSharedRPC 754

AbsTime 1015

accounts.dynamic - definition 781

Accumulate 1017

Acknowledge 1019

ACos 1020

AcquireLock 1021

action trigger 94

actions 92

Active 1023

ActiveCode 1024

ActiveMonitor 1008

ActiveState 1024

ActiveWindow 1025

ActiveX 1025

add equals operator 133

AddAccount 1028

AddConnection 1031

AddContributor 1034

AddContributor, overview of 441

AddEditorText 1036

AddModule 1037

AddOptional 1039

AddPageToApp 1008

AddParameter 1040

AddPrivToUser 1041

AddRead 1043

addread example 413

address operator 129

AddressAssist 290

AddressEntry 1045

addressing scheme 289

AddSection 2244

AddState 1048

AddStatement 1049

AddUser 1050

AddVariable 1052

AdjustArray 1055

AdjustCode 1057

Alarm (obsolete function) 1008

alarm manager 254

AlarmCat 1008

AlarmInst 1008

AlarmListFormats.XML. 267

AlarmSoundCheck 1008

AlignSelected 1058

AlmAck 1008

AlmAckID 1008

AlmArray 1008

AlmCatName 1008

AlmColor 1008

AlmEnable 1008

- 2611 -

Index: AlmList – Box

AlmList 1008

AlmTone 1008

alpha-blended window 214

AlternateIdCheck 1060

AlternateLogoff 1061

AlternateLogon 1061

alwaysShowShelved 271

AMax 1062

AMin 1063

ancestor 110

and 132

And 1064

AnimateState 1009

AppIsRunning 1065

AppIsStarted 1066

AppIsStarting 1067

ApplyChangeSetFile 1067

Arc 1069

array 144

array processing 148

ArrayDimensions 1070

ArrayOp1 1071

ArrayOp2 1075

ArraySize 1078

ArrayStart 1079

ArrayToBuff 1079

ASin 1083

ATan 1083

Audio Call 645

audio discriminator 642

audio mode, modem manager 642

AudioFileLength 1084

Authenticate 1085

Automation Interfaces 605

AValid 1086

B

B Functions 1087

Ball 1087

Bar 1089

Base64Decode 1091

Base64Encode 1092

Baud Rate 663

Beep 1093

Bevel 1093

binary notation 137

binding 111

BinIP2Text 1095

Bit 1096

BitmapInfo 1097

Blend 1098

BLOB 337

block cipher 339

BlockDecrypt 1099

BlockEncrypt 1100

BlockWrite 1100

Boolean 1102

boolean logic 134

and 134

not 135

or 135

xor 135

Box 1103

- 2612 -

Index: breakpoint – coalescing

breakpoint 510

Broadcast 733

Brush 1104

BuffOrder 1106

BuffRead 1107

BuffStream 1116

BuffToArray 1117

BuffToHex 1120

BuffToParm 1121

BuffToPointer 1125

BuffWrite 1128

BuildDelete 1136

BuildFullName 1138

BuildInsert 1139

BuildSelect 1140

BuildUpdate 1142

C

C Functions 1144

Call 1144

call progress codes 654

CalledInstances 1145

Caller 1147

CallerID 1148

CancelCall 1148

CanEditDoc 1149

canonical address format 637

CaptureImage 1151

CaptureSettings 1152

Case 1153

Cast 1155

Ceil 1155

Change 1156

ChangePersistentSize 1158

CharCount 1159

Checkbox 1160

CheckFileExist 1163

CheckPathExist 1164

CheckTagGroup 1164

child module 110

child tags 452

child tags, considerations 464

child tags, drawing 462

child windows 215

ChildDocs 1165

ChildInstances 1167

CIPENIPSharedRPC 754

ciphertext 337

Circle 1169

ClassFactory 839

CleanModule 1170

ClearModule 1171

ClearState 1171

ClearVarMetaData 1172

Click 1173

ClientSocket 1175

ClipboardGet 1181

ClipboardPut 1181

Cloned Modems 664

CloseStream 1182

Cls 1183

CLSID 606

coalescing 286

- 2613 -

Index: code coverage – CopyObjects

code coverage 536

code paths 509

CodeText 1184

CollapseTree 1009

color palette 874

ColorSelect 1185

ColumnFormats 269

COM 604

COM objects, accessing 606

COM, related functions 619

Combine 1189

COMClient 1190

COMEvent 1194

CommaFormat 1195

CommandLine 1196

CommIndicator, module 334

Commission 1197

CommitEditedFiles 1199

common module 404

communication driver design 287

Communication Driver Templates 327

communication drivers 280

communication drivers, debugging 335

communication drivers, drawing 334

communication drivers, essential com-
ponents 293

Compile 1201

component object model 604

COMPort 1204

Compress 1211

COMStatus 1212

Concat 1213

Cond 1214

ConfigFolder, tag module 388

configuration folders 378

configuration parameters 355

Configure 1216

ConnectInitString 653

ConnectToMachine 1217

constants 135

constants - declaration of 135

constants in tags 364

ConstCount 1219

constructors 113

containers 439

ContextType 366

contributors 439

conversions 918

convert value types 140

ConvertTimeStamp 1219

ConvertToDbDate 1222

ConvertToDbTime 1223

ConvertToDbTimeStamp 1224

ConvertToVTSDate 1225

ConvertToVTSTime 1226

ConvertToVTSTimeStamp 1227

Coordinates 1228

coordinates application 466

CoordToPixel 1229

CopyDir 1231

CopyIn 1231

CopyObjects 1232

- 2614 -

Index: CopyOut – debugging

CopyOut 1233

CopyRecords 1234

Cos 1235

CoverageSnapshot 1236

CRC 1238

CRCTable 1239

CreateModule 1241

CriticalSection 1241

Crop 1242

CrossReference 1244

CryptoAPI 337

cryptographic key 337

cryptography 337

cryptography, architecture 340

CSP 338

CurrentLine 1247

CurrentTime 1248

CurrentWindow 1249

custom reports 237

custom tags 350

custom widgets 390

CustomSiteListGetSubTags 440

CustomSiteMapGetSubTags 441

Cut 1009

D

D Functions 1250

Data Call 645

data mode, modem manager 641

data types for tag parameters 357

DataIdleTime 641

DataPort 643

DataradioSharedRPC 754

Date 1250

date format codes 885

date, concepts 235

DateNum 1252

DateSelector 1253

day 1250

Day 1254

DBAdd 1255

DBDropList 1258

DBGetStream 1260

DBGridList 1262

DBInsert 1265

DBListGet 1268

DBListSize 1278

DBRemove 1286

DBSystem 1287

DBTrace 1293

DBTransaction 1294

DBUpdate 1297

DBValue 1300

DDE 619

function 1302

DDEPoke 1303

DDEShareAdd 1305

DDEShareDel 1306

DDESharedRPC 754

DeadBand 1306

Debugger 1308

debugger utility 466

debugging 465

- 2615 -

Index: Decode – DrawPath

Decode 1309

Decommission 1310

Decrypt 1311

decryption 338

default values 108

DefaultNamingContext 1313

DefaultPrinter 1313

Deflate 1314

DeleteAccount 1319

DeleteArrayItem 1321

DeleteContributor 1322

DeleteContributor, overview of 442

DeleteListItem 1009

DeleteModule 1323

DeleteOptional 1324

DeletePrivFromUser 1325

DeleteSection 2247

DeleteState 1327

DeleteStatement 1327

DeleteUser 1328

DeleteVariable 1329

DelPageFromApp 1330

DelRead 1331

delta tolerance 813

Deriv 1332

DeriveKey 1333

descendant 110

destructors 115

diagnostic files 249

diagnostics 465

DialerSpeechInit 646

DialogInitPos 1335

DialogLibrary, tag module 388

dictionaries - definition 155

Dictionary 1336

dictionary operations 158

DictionaryCopy 1338

DictionaryRemove 1339

Diff 1339

Dir 1343

DirectApply 1347

Disable 1349

DisconnectFromMachine 1350

discriminator 649

DisplayAddress 363

DisplaySection 2248

divide equals operator 134

DLL 1352

DLLs 633

DNP3SharedRPC 755

DoAcknowledge 1009

DoLoop 1353

DOM 816

DragHandle 1355

DragState 1009

DrawArcPath 1355

DrawChordPath 1358

DrawEllipticalPath 1360

DrawHeight, tag variable 404

DrawLabel 368, 391

DrawLabel, tag constant 404

DrawPath 1361

- 2616 -

Index: DrawPiePath – fill patterns

DrawPiePath 1362

DrawScale 1364

DrawWidth, tag variable 404

DriveInfo 1368

driver module instances 329

DriverSetupDelay 755

Droplist 1370

DropTree 1376

DTD 816

dump file 508

dynamic array 149

dynamic binding 111

Dynamic Data Exchange 619

dynamic link libraries 633

E

E Functions 1379

Edge 1379

Edit 1380

EditFile 1387

EditINI 1388

EditINICheckbox 1392

Editor 1394

Ellipse 1397

Enable 1398

EnableHelp 1399

Encode 1400

Encrypt 1401

encryption 345

ErrMessage 1403

error checking, communication
drivers 332

error codes, TAPI 655

error messages (wizard engine) 862

ErrorMsg, module 334

EvaluateAlarm 1404

Event 1405

exclusive or 132

Execute 1406

ExecuteQuery 1407

ExecuteQueryCached 1410

Exp 1411

ExportKey 1412

expression 58

expression support 387

ExpressionEdit 450

expressions - quick reference 55

expressions, as tag parameters 446

extending structures 164

externalvalue, tag variable 370

extra 271

F

F Functions 1414

Fail 1414

False 1414

FFT 1415

FIFO 665

FileDialogBox 1418

FileFind 1423

FileRootModule 1425

FileSize 1426

FileStream 1427

fill patterns 888

- 2617 -

Index: Filter – GetCryptoProvider

Filter 1433

FiltHigh 1435

FiltLow 1436

FindAction 1438

FindModem 1439

FindVariable 1440

FirstState 1441

FitOffset 1442

FitR2 1443

FitSlope 1445

Fixed modules 106

Flush 1446

FlushCache 1449

focus id - discussion 221

FocusID 1450

Folder 1451

Font 1452

font character sets 889

FontDialog 1454

ForceEvent 1457

ForceMove 865

ForceServers 1461

ForceState 1462

FormalParms 1463

Format 1464

FormatBatchQuery 1465

FormatInteger 1467

FormatNumber 1468

FRead 1469

Freeze 1478

functions defined 117

FWrite 1479

G

G Functions 1490

GenerateKey 1490

Get 1493

GetAccountID 1501

GetAccountInfo 1502

GetAlarmConfiguration 1503

GetAlarmList 1505

GetAlarmObject 1509

GetAlarmStateStats 1510

GetAlarmStatus 1511

GetAppInstance 1512

GetAttValue 826

GetByte 1513

GetClientDiverts 1514

GetClientGUIDs 1515

GetClientIPs 1516

GetClientList 1517

GetClientMode 1518

GetClientNodes 1519

GetClientsListed 1009

GetCodeObj 1520

GetColorInfo 1520

GetConfiguration 1521

GetConnList 1524

GetContainerNumActive 1525

GetContainerNumUnacked 1525

GetContributors 1526

GetContributors, overview of 443

GetCryptoProvider 1527

- 2618 -

Index: GetDefaultValue – GetStatus

GetDefaultValue 1529

GetDevices 1529

GetFileAttribs 1530

GetFullName 1533

GetGroupName 1533

GetGUID 1534

GetHistory 1535

GetHostByName 1539

GetID 1540

GetInhibitedServiceList 1541

GetINIProperty 1541

GetInstance 1543

GetInSyncServers 1543

GetIP 1544

GetKeyCount 1545

GetKeyParam 1545

GetLoadedAppInstance 1547

GetLocalIP 1547

GetLocalNumber 1548

GetLog 1549

GetLogHeader 1009

GetLogInfo 1553

GetMachineNode 1556

GetMakeAltPtr 1556

GetModuleRefBox 1557

GetModuleText 1559

GetNameOfRecord 1560

GetNextKey 1561

GetNumUnacked 1563

GetOEMLayer 1565

GetOneParmText 1566

GetOutputTypes 1567

GetOverrides 1568

GetParameter 1568

GetParmText 1569

GetParserOffset 1570

GetPathBound 1571

GetPlatformInfo 1572

GetPowerState 1573

GetReferencedValues 1574

GetRemoteVersion 1574

GetReportTypes 1575

GetReturnValue 1576

GetSelected 1576

GetSelectedInfo 1577

GetServer 1578

GetServerChanges 1579

GetServerMode 1581

GetServerNumber 1582

GetServerSIDPtr 1583

GetServersListed 1584

GetServiceScope 1585

GetSessionContainers 1586

GetSessionContainerTags 1587

GetSessionID 1589

GetShapePath 1590

GetSocketStatus 1591

GetState 1592

GetStatement 1593

GetStatementNum 1594

GetStateText 1594

GetStatus 1596

- 2619 -

Index: GetStreamLength – HistorianConnect

GetStreamLength 1597

GetStreamType 1598

GetSubGraphic 1009

GetSystemColor 1599

GetTagHistory 1601

GetTagList 1608

GetTagTypes 1610

GetToken 1611

GetTrajectoryPath 1612

GetTransform 1613

GetTransitText 1613

GetUserID 1615

GetUserName 1615

GetUserNameOfRecord 1615

GetUserSession 1616

GetValue 1618

GetVariableText 1619

GetVariableType 1620

GetVarMetadata 1621

GetVoices 1622

GetWCPath 1624

GetWCRevision 1625

GetXformRefBox 1625

GetXMLNodeArray 1627

GoToOffset 1628

graphic editor panel 395

graphics function order 123

Grid 1629

GridList 1631

GroupLogin 804

GUIArc 1638

GUIBitmap 1644

GUIButton 1650

GUIChord 1664

GUIEllipse 1671

GUIPie 1676

GUIPipe 1683

GUIPolygon 1689

GUIRectangle 1696

GUIStretch 1719

GUIText 1702

GUITransform 1716

H

H Functions 1724

HasCompilationErrors 1724

Hash 1725

HasMetaData 1726

HasReturnStatement 1727

HasUndeployedChanges 1727

hatch patterns 888

HelloPacketLength 641

Help 1728

help file, custom 444

help files - adding custom help 878

HelpLaunch, module 445

hexadecimal format 137

HexToBuff 1730

HighlightState 1009

HighlightTree 1009

historian API 592

historian manager 589

HistorianConnect 1731

- 2620 -

Index: HistorianDeleteRecords – key

HistorianDeleteRecords 1734

HistorianGetData 1735

HistorianGetInfo 1740

HistorianReadRecords 1743

HistorianWriteRecords 1744

hours 2465

HRESULT 605

HScrollbar 1746

I

I Functions 1748

IconMarker 402, 1748

If 1750

IfElse 1752

IfElse (Inline) 132

IfOne 1754

IfThen 1755

ImageArray 1756

ImageSweep 1759

ImportAPI 1761

ImportKey 1762

In 1764

index padding 150

inheritance 112

InitCheckBox 866

InitialDataDelay 641

input, keyboard 74

input, mouse 73

InsertArrayItem 1765

InsertListItem 1009

Instance 1766

instance count utility 471

Int 1768

Intgr 1769

Invalid 1770

invalid value 143

InWord 1771

IPAddressList 1772

IsActive, alarm function 1774

IsAppEditable 1775

IsChild 1776

IsClient 1777

IsDictionary 1780

IsDisabled, alarm function 1780

IsEqual 1779

IsExpression, expression manager mod-
ule 447

IsLoggedOn 1781

IsMatch 1781

IsOnLocalBranch 1782

IsPotentialServer 1783

IsPrimaryServer 1784

IsRunning 1786

IsRunOnly 1786

IsSecured 1787

IsServiceReady 1787

IsShelved 1789

IsSuspended 1789

IsUnacked 1790

IsVICSession 1791

K

K Functions 1791

key 338

- 2621 -

Index: keyboard input – MakePersistent

keyboard input 74

KeyCount 1791

KeyFake 1792

Keys 1793

L

L Functions 1794

LastSelected 1794

LastSelectedModule 1009

LastSelectedState 1009

Latch 1795

late binding 111

LatitudeValue 444

Launch 1796

launched module 103

LayerInUse 1799

LayerRoot\Stop 1800

library, defined 353

Limit 1800

Line 1802

line types 893

LinearIndicator 1803

LinearLegend 1807

ListAdd 1809

Listbox 1810

ListKeys 1815

ListRemove 1817

ListVars 1818

Ln 1824

Load 1009

LoadDLL 1824

LoadMIB 1827

LoadModule 1830

local modems 647

LocalGroup 1832

LocalGUID 1535

LocalScope 1833

LocalVariable 2511

Locate 1834

LocCapture 1836

LocSwitch 1837

Log 1839

LogContributors 426

logging, operator actions 261

logging, security 802

logging, security events 261

LogNTEvent 1839

LogOff 1843

LongitudeValue 444

LookUp 1844

LValue 1845

M

M Functions 1846

MACID 1846

MakeBitmap 1847

MakeBuff 1849

MakeCall 1850

MakeDAG 1855

MakeEditor 1856

MakeFixedBuff 1856

MakeNonPersistent 1857

MakeNonShared 1858

MakePersistent 1859

- 2622 -

Index: MakeShared – Month

MakeShared 1859

MakeTypeArray 824

MakeTypeInstance 825, 1009

Manhattan 2517

manual data 402

MapDraw 1860

MatchKeys 1863

Max 1866

MCSInstance 1867

MCSMod 1867

MDSSharedRPC 755

Mean 1868

member 111

MemIn 1869

Memory 1870

memory tracer utility 472

MemOut 1871

MemTrace 1872

Merge 1873

Merge2 1874

MetaData, function 1877

Min 1878

MinAltIDLength 782

minutes 2465

MkDir 1879

modem address format 637

Modem Initialization Strings 663

modem manager error codes 654

modem manager, API 649

modem manager, constants 658

modem manager, event recording 648

modem manager, operation 636

modem manager, overview 634

modem manager, properties 658

modem return values 657

ModemControl 653

ModemCount 1880

ModemDev 1881

ModemDial 1882

ModemDigits 1887

ModemList 1887

ModemMedia 1889

modems, local 647

ModemStream 1891

ModemTransfer 1895

ModiconPortSharedRPC 755

ModiconSharedRPC 757

ModifyAccount 1895

ModifyBitmap 1897

ModifyConfiguration 1900

ModifyTags 1903

ModifyUserPrivilege 1908

module definition 98

ModuleCollapsed 1009

ModuleFileName 1910

ModuleHighlighted 1911

ModuleTree 1009

ModuleTreeSize 1009

modulus 130

modulus equals operator 134

month 1250

Month 1911

- 2623 -

Index: mouse input – OpChange

mouse input 73

MoveEditor 1912

MoveSelState 1009

MoveSibling 1913

MoveState 1009

MoveWindow 1913

multidimensional arrays 145

multiply equals operator 134

MuteSound, alarm function 1914

N

N Functions 1916

NameSpaceDelimiter 803

namespaces 803

Namespaces 845

Navigator 405

network values 170

New 1916

newdata module 414

NewPage 1009

NextFocusID 1918

NextIs 865

NoBack (wizard engine) 866

NoNext 866

Normal 1919

Normalize 1920

NormalTrip, alarm function 1922

not 128

Not 1923

NotifyVIC 1923

Now 1924

NParm 1925

NumAlarm 1009

numbers 136

NumericParameterEdit 1927

NumInstances 1929

NumParms 1930

NumSelected 1930

NumSets 1931

NumTagFiles 365

NumVariables 1931

O

O Functions 1932

Obsolete Functions 1008

octal notation 137

ODBC 632, 1932

ODBCBeginTrans 1940

ODBCCommit 1942

ODBCConfigureData 1943

ODBCConnect 1947

ODBCDisconnect 1951

ODBCRollback 1952

ODBCSources 1953

ODBCStatus 1954

ODBCTables 1955

OffNormal 1957

OKStopPtr 252

OLEDrag 227

OLEDrop 227

OmronSharedRPC 757

Ones 1957

OPCClientSharedRPC 757

OpChange 1958

- 2624 -

Index: OPCServer – PEditfield

OPCServer 1960

Open Data Base Connectivity 632

OperationalChange 1009

Operator

! 128

&& 132

..* 70

? 132

[< >] 71

|| 132

operator precedence 126

operator priority 126

Operators 127

operators defined 125

or 132

Or 1967

Out 1968

Output 1969

OutWord 1972

owned windows 215

OwningModule 1973

P

p-functions 384

P Functions 1974

Pack 1974

PackData 1009

PackParms 1978

PackRPC 1979

PAddressEntry 1980

pages, concepts 217

Palette 1009

PAlmPriority 1983

PalStatus 1986

panel, tag module 402

Parameter 1987

parameter functions 383

parameter metadata 109

ParameterEdit 1989

parameters 108, 120

ParameterSet 1992

PAreaSelect 1992

parent module 110

parent tags 452

ParentModule 1995

ParentObject 1996

ParentWindow 1997

ParmEditColor 894

ParmEditExprMovement 894

Parms 395

ParmToBuff 1998

ParserSRO 2001

Pass-by-reference 120

PasteObjects 2002

Path 2002

PathDraw 2003

PatternMatch 2005

PCheckbox 2006

PColorEdit 2009

PColorSelect 2012

PContributor 2015

PDroplist 2018

PEditfield 2023

- 2625 -

Index: PEditName – PSecBit

PEditName 2030

PeekStream 2031

Pen 2032

Pending 2033

persisted variables 165

PersistentSize 2034

PHSliderBar 2035

PHueSelect 2037

Pick 2039

PickModule 1009

PickState 1009

PickValid 2043

PID 2044

Pie 2050

PIPAddressList 2051

Pipe 2056

PipeStream 2057

PixelColor 2058

pktrend example 408

plaintext 338

Platform 2059

Play 2062

Plot 2064

PlotBuff 2072

PlotXY 2080

PMultiCheckBox 2088

Point 2090

pointer dereference 128

pointer dereferencing 150

pointers 154

PointerToBuff 2091

PointList 2094

points, defined 350

PopupStandard 268

post-decrement 129

post-increment 129

POverride 2096

Pow 2098

PPageSelect 2099

PPPDial 2102

PPPHandles 2104

PPPStatus 2107

PRadioButtons 2108

pre-decrement 129

pre-increment 129

precedence - rules of 126

Print 2110

PrintDialogBox 2112

PrintLine 2115

Priority 2116

PriorityLoad 365

PriorityReady 365

PriorityWeight 2118

ProcInfo 2118

Profile 2119

profiler utility 476

ProgID 606

ProgressBar 2121

properties folder 378

protected - variables & modules 176

PrtScrn 2122

PSecBit 2125

- 2626 -

Index: PSelectObject – retained variables

PSelectObject 2128

PSpinbox 2131

PtrWaitClose 395

PType 2135

PTypeToggle 2137

public/private key pair 338

Q

Q Functions 2141

questionable data 402

queued module 105

queued modules 105

QuietLogon 2141

R

R Functions 2142

race condition 90

RadialIndicator 2142

RadialLegend 2146

RadioButtons 2148

Rand 2151

Read 2152

ReadBlock 2153

ReadConfiguration 2154

ReadINI 2156

ReadINIProperties 2158

ReadLock 2159

ReadNum 1009

ReadPropertiesFile 2161

ReadSectINI 2162

ReadText 1009

ReadX 2165

ReadXY 2166

RecommendAlternate 2168

RecommendPrimary 2169

RecordProperty 2170

Redirect 2172

refresh 374

refresh, tag module 376

RefreshData 305

Register 2177

Register - SocketServerManager 807

Register, alarm function 2173

Register, modem function 2174

RegisterCustomTable 2180

relative tag references 70

ReleaseLock 2187

RemCfgTransLog 757

RemoveParameter 2187

RemWSDL 2188

Rename 2188

Replace 2189

ReplaceStatement 2191

ReportError 2192

ReportFault 826

reports - create using code 237

ReportTraffic 324

RepoSubscribe 2195

Reset 2195

ResetParm 2196

ResultFormat 2197

ResyncDoc 2198

retained variables 167

- 2627 -

Index: Return – scope resolution operator

Return 2198

Reverse 2200

RibbonCmd 2201

RibbonContextUI 2202

RibbonGalleryItems 2203

RibbonPersistState 2204

RibbonSetProperty 2205

RmDir 2209

root, tag variable 370

RootTransform 2210

RootValue 2211

RootWindow 2212

Rotate 2213

RPC manager service 665

RPC properties 753

RPC, definition 665

RPCBufferLength 747

RPCConnectPort 747

RPCConnectStrategy 748

RPCDiagnostics 748

RPCExecute 734

RPCExecuteAll 734

RPCExecuteServer 734

RPCMaxPacketSize 748

RPCMaxQLen 749

RPCMaxStartDelay 749

RPCMemBuffLimit 749

RPCMemSendLimit 750

RPCReconnectTime 750

RPCResendDelay 750

RPCs 672

RPCServerPort 751

RPCSktConnectAttemptMax 751

RPCSktResendAttempts 751

RPCSocketDeadTime 751

RPCSocketResendAttempts 752

RPCTrace 752

RPCUseBuffered 752

RTimeOut 2214

RUNFileName 2216

RUNFileVersion 2216

RunPack 2217

S

S Functions 2218

SafeAssign, expression manager
module 448

SafeCopy, expression manager
module 448

SafeRefresh, expression manager mod-
ule 448

Save 2218

SaveCommStats 325

saved variables 170

SaveHistory 2229

SaveImage 2233

SaveModule 2235

Scale 2235

scaling parameters 212

schema cache 838

Scientific notation 136

Scope 2237

scope resolution operator 111

- 2628 -

Index: ScopeLocal – SetInstanceName

ScopeLocal 2239

script applications 191

script tags 62

SDev 2240

SecAlarm 802

SecDenied 802

seconds 2464

Seconds 2241

SectionControl 2242

security manager 780

security manager plug-ins 801

SecurityCheck 2249

Seek 2250

segment offset 128

SelectArea 2251

SelectCodePointer 2252

SelectDAG 2253

SelectGraphic 2254

SelectHandle 2255

SelectHandleNum 2256

Selection Input 75

SelectPath 2257

SelectStates 1009

Self 2257

Send 2258

SendAll 733

SendMail 2262

sequence of execution 90

SerBreak 2266

SerCheck 2266

SerialNum 2268

SerialStream 2268

SerIn 2273

SerLen 2274

SerOut 2275

SerRcv 2276

SerRTS 2277

SerSend 2278

SerStrEsc 2280

SerString 2282

ServerList 2284

ServerSocket 2285

Service Synchronization, definition 665

SerWait 2287

Session ID 674

Set 419

SetAllBlocks 2288

SetBit 2289

SetByte 2290

SetClock 2291

SetCodeText 2292

SetCursor 2293

SetDDEServer 2295

SetDefault 2296

SetDivert 2296

SetEditMode 2297

SetEnable 2298

SetFileAttribs 2299

SetHandle 2300

SetHelp 2300

SetINIProperty 2303

SetInstanceName 2304

- 2629 -

Index: SetInstanceRefBox – SocketServerManager\StringToArray

SetInstanceRefBox 2305

SetKeyParam 2307

SetLibrary 2309

SetLogHeader 1009

SetModuleRefBox 2309

SetModuleText 2312

SetOneParmText 2314

SetOPCData 2314

SetOverride 2316

SetParameter 2317

SetParmText 2318

SetParserParm 2319

SetRefRect 2320

SetRemoteValue 2321

SetReturnValue 2322

SetShelved 1009, 2323

SetStateColor 1009

SetStateText 2324

SetStats, module 334

SetSyncComplete 2325

SetTransfer 2326

SetTransitText 2327

SetVariableClass 2328

SetVariableText 2329

SetVariableType 2330

SetVarMetadata 2331

SetVicParms 2332

SetWSDL 2334

SetXLoc 2336

SetYLoc 2336

ShadowTree 1010

shared variables 170

ShelvedEvent 1010

shift (bits) 130

ShiftStream 2337

shortcut menu 405

ShowComm, module 334

ShowLexicon 2338

ShowPage 2339

ShowStats, module 334

shutdown process 251

SHUTDOWN_HOOK 251

SiemensS7PortSharedRPC 758

SiemensS7SharedRPC 758

SilenceSound 2340

SilentErrorCounts 329

SimpleOpChange 2341

SimulateMouse 2342

Sin 2344

SizeWindow 2345

SkipIf 863

Slay 2346

SlippyMapRemoteTileSource1 907

SNMP agent 623

SOAP 815-816

SocketAttribs 2348

SocketPingSetup 2350

SocketServerEnd 2351

SocketServerManager\ArrayToString
807

SocketServerManager\Register 807

SocketServerManager\StringToArray

- 2630 -

Index: SocketServerManager\StringToArray – Sum

810

SocketServerManager\UnRegister 810

SocketServerStart 2352

SocketWait 2354

SOM 817

Sort 2355

SortArray 2358

Sound 2361

source debugger utility 482

Spawn 2363

Speak 2364

SpeakToFile 2368

speech 250

SpeechEnum 1010

SpeechLexiconDlg 1010

SpeechReset 1010

SpeechSelect 1010

SpeechSpeak 1010

SpeechStream 1010

Spinbox 2372

SplitList 2377

SplitListSelector 2381

SplitPath 2383

SplitTagSelector 2385

SQL data types 907

SQLQuery 262, 2386

SQLQueryRetrieveData 2183

Sqrt 2391

SquelchDetectDelay 641

SquelchIdleTime 641

SquelchPacketLength 641

SRead 2392

Start 2401

Start, expression manager module 447

StartSound 1010

StartTag 2402

StateDiagram 1010

StateHighlighted 1010

StateList 2408

StatementInstance 2408

StateName 2409

static array 149

StaticSize 2409

statistics, communication drivers 333

StatsWin 2410

Step 2413

Stop 2414

StrCmp 2414

stream cipher 339

StreamEnd 2415

StrICmp 2416

strings 137

StrJustify 2418

StrLen 2419

Struct 2419

structures

overview 162

subroutine module 104

SubStatementIndex 2420

SubStr 2421

subtract equals operator 134

Sum 2422

- 2631 -

Index: SumBuff – time formats

SumBuff 2423

switch 382

SWrite 2424

symmetric encryption 339

Synchronizable State, definition 665

syntax rules for expressions 62

SystemSelf 2433

T

T Functions 2433

Table 1010

TableSynch 2433

Tag 2435

tag groups 366

tag I/O 412

tag parameters 355

tag states 370

tag sub-modules 368

Tag Symbol

[* 71

tag template modules 353

rules for drawing methods 402

tag tooltips 408

tag widgets 389

TagIconMarker 2437

tags - custom 350

TagShutdown 377

Tan 2438

TAPI 634

TAPI errors 655

TAPI Errors 664

Target 2439

TCP/IP Networking 620

TCPIPReset 2440

telephony application programming
interface 634

TempFileStream 2440

templates, alarm messages 263

temporary variables 175

test framework 539

text 137

Text 2441

TextAttribs 2443

TextBox 2444

TextIP2Bin 2446

TextOffset 2447

TextSearch 2447

TextSize 2449

TGet 2449

Thread 2457

thread display 509

thread list utility 549

thread snapshot 549

threaded module 106

ThreadHistory 2459

ThreadIdle 2460

threading 124

ThreadList 2461

ThreadName 2461

ThreadPriority 2462

Time 2463

time adjustments 814

time formats 908

- 2632 -

Index: time synchronization manager – UserLogonDialog

time synchronization manager 813

time zone functions 236

time, concepts 235

TimeArrived 2467

TimeOut 2467

timers 236

TimeZone 2469

TimeZoneList 2471

Today 2471

TODBC 2472

TODBCBeginTrans 2475

TODBCCommit 2477

TODBCConnect 2479

TODBCDisconnect 2481

TODBCRollback 2482

Toggle 2484

ToLower 2485

ToolBar 2486

tooltips 216

ToUpper 2487

ToValue, expression manager
module 449

trace viewer utility 551

trace VTS actions 583

traffic monitor 324

Trajectory 2488

Transaction 2489

TransactionCached 2490

TransferFields, alarm function 2491

translucent window 214

transparent window 214

TreeControl, system module 232

trending 592

trigger 94

trigger condition 92

Trihedral voice modem service 634

Trim (wizard engine) 862

Trip, alarm function 2492

troubleshooting 465

True 2493

TServerList 2493

TypeFilter 243

U

U Functions 2494

UIErrorToText 2494

unary minus 128

UniModem 663

Unimodem V 634

uninstalling 921

UniqueID 351

Unpack 2495

UnpackData 2498

UnpackParms 2500

Unregister 2501

UnRegister - SocketServerManager 810

UnselectGraphics 2502

UnselectObject 2503

UnTransform 2503

UpdateCoordinates 2504

user input 73

UserCredChange 2505

UserLogonDialog 2506

- 2633 -

Index: V Functions – wizard engine

V

V Functions 2507

Valid 2507

ValidateEmailAddrs 2508

ValidateHistory 1010

value 362

ValueIsErrorAbove 390

ValueIsErrorBelow 390

ValueIsErrorStatus 390

ValueSyncService 372

ValueType 2509

VAMStopAppCheck 251

VarAttributes 1010, 2509

Variable 2510

VariableClass 2512

variables 135

Variance 2513

Version 2514

version property (wizard engine) 847

VersionRequired 2515

Vertex 2516

VICInfo 2518

VICMessage 2519

VoiceTalk 2520

VScrollbar 2522

VStatus 2524

VTable Interfaces 605

VTSDriver module 283

VTSDrvr.web 283

VTSExit 252

VTSGetAddr, driver module 295

VTSMaxBlock, driver module 312

VTSRead, driver module 302

VTSSQLInterface 262

VTSWrite, driver module 309

W

W Functions 2527

W3C 817

Watch 2527

WatchArray 2528

watches - source debugger 516

WatchForTagChanges 2530

WCSubscribe 2530

Web Service 817

web services 815

WhileLoop 2532

WinButton 2533

WinComboCtrl 2536

Window 2539

window creation 209

WindowClose 2546

WindowOptions 2547

WindowsLogon 2551

WindowSnapshot 2552

WinEditCtrl 2553

WinLocSwitch 2556

WinMatchKeys 2559

WinShiftKeys 2561

WinTooltipCtrl 2563

WinXLoc 2565

WinYLoc 2566

wizard engine 847

- 2634 -

Index: wizard engine, interface – ZText

wizard engine, interface 853

WizardFinishText1 869

WizardFinishText2 869

WizardFinishText3 869

WizardFinishTitle 869

WizardWelcomeTitle 869

WKSList 2567

WKSPath 2567

WKSStatus 2569

WKStaInfo 2571

workspace - source debugger 529

Write 2572

WriteHistory 2574

WriteINI 2577

WriteINIProperties 2579

WriteLock 2579

WritePropertiesFile 2580

WriteSectINI 2582

WSDL 817

WSDL document 815

WSDrvr, web services variable 822

X

X Functions 2585

XLoc 2585

XML 815, 817

XML API 837

XML Document 817

XML Processor 817, 838

XML Schema 817

XMLAddSchema 2585

XMLCloneNode 2586

XMLCreateNode 2587

XMLDeleteMember 2588

XMLGetNode 2589

XMLParse 2590

XMLProcessor 2592

XMLWrite 2592

xor 132

XOr 2594

XSLT 817

Y

Y Functions 2595

year 1250

Year 2595

YLoc 2595

Z

Z Functions 2596

ZBar 2596

ZBox 2598

ZButton 2599

ZColorChange 2601

ZEditField 2602

ZGrid 2604

ZLine 2606

ZPipe 2607

ZText 2609

- 2635 -

	 Scripting and Automation
	 Start Here for Scripting and Automation
	Quick Reference Guide for Expressions
	Expressions in Tags and in Widget Properties
	Script Code in Modules
	Configuring a Script Tag
	Syntax Rules and the Expression Editor
	Test Conditions
	Comparing Values in Expressions
	Triggers and Events in Expressions

	Access a Tag Value or Application Property
	Relative Tag and Property References

	Mark the Passage of Time
	Obtaining User Input
	Mouse Input
	Keyboard Input
	Selection Input

	Usage Rules for Functions
	Math Functions in Expressions
	Text Functions in Expressions
	Time and Date in Expressions
	Examples of Expressions

	 The VTScada API
	Parts of a VTScada Program
	States and Steady State
	State Naming Rules
	Event-Driven Execution and Efficiency

	Action Triggers and Scripts
	The Trigger
	The Script Block

	VTScada Modules
	Store and Declare Modules
	Types of Module
	Declaring and Passing Parameters
	Parameter Metadata

	Module Scope
	Scope Resolution Operators
	Module Inheritance

	Constructors
	Destructors
	Reference Boxes in Graphic Modules

	Functions
	Format Examples for Functions
	Function Parameters
	Latching and Resetting Functions
	Considerations for Graphics Functions

	Threading
	Operators in Statements
	Operator Priority in Statements
	List of VTScada Operators
	Boolean Logic Operators

	Value Types and Storage
	Value Type Conversions
	Invalid Values
	Using Arrays
	Multidimensional Arrays
	Mismatched Array Dimensions
	Comparison of Static and Dynamic Arrays

	Using Pointers
	Dictionaries
	Creating a Dictionary
	Dictionary Operations

	Meta Data
	Structures
	Variable Storage, Retention, Access
	Persisted Variables
	Retained Variables
	Shared Variables
	Saved Variables
	Network Values
	Temporary Variables
	Protected Variables

	Variable Class Definitions
	VTScada Value Types - Numeric Reference

	Style Guide for VTScada Code

	 Basic Programming Tasks
	Create a New Script Application
	The Bonus Program

	Add a Module to a VTScada Application
	A 15-Minute Snapshot Report
	Hide the VAM from Operators, but not Managers

	Working with Pages
	Create Windows & Use Graphics Functions
	Best Practices for Graphics
	Owned Windows versus Child Windows
	Native Windows Tooltip Support
	Working with Pages
	Focus ID
	Switching Graphics Pages
	Placing Focus on an Object vs. Selecting an Object
	Reference Boxes for Graphics Modules
	Use Scaling to Position Graphic Objects
	Drag & Drop to a Window
	TreeControl Module

	Time and Date
	VTScada Time Zones
	Timers and Timing

	Build Custom Reports
	How Reports Collect Data
	Report Formatting
	Common Features of a Report Module
	Type Filters - Limiting the List of Available Tags
	Parameters in a Custom Report
	Query Modes and Time Ranges
	A 15-Minute Snapshot Report

	Diagnostic Files
	Working with Speech
	Interrupt the Shutdown Process

	 Alarm Manager
	Alarm API Structure Definitions
	Alarm Configuration Structure
	Alarm Status Structure
	Alarm Transaction Structure
	Alarm Record Structure

	Alarm Manager Function Constants
	VTScada Event Logging
	Query the Alarm History
	Alarm Message Templates
	Custom Alarm Hook API
	Customize Columns in Alarm Displays
	Alarm Column Graphics Modules

	 Configuration Management
	Configuration Management API

	 Communication Drivers
	Communication Driver Fundamentals
	Data Exchange between VTScada and a Driver
	What Happens Within the VTScada Code?

	Communication Driver Design
	Steps to Write a Communication Driver
	Researching a Communication Driver Protocol
	Designing an Addressing Scheme
	Providing an AddressAssist Module
	Controlling Access to Shared Resources
	Modem Support
	Writing a Communication Driver
	Mandatory Communication Driver Components
	Optional Communication Driver Components
	VTSGetAddr
	VTSRead
	Data Propagation
	VTSWrite
	VTSMaxBlock

	Communication Driver Template
	The VTSDriver API
	VTSDriver and Remote Applications

	Driver Diagnostic tools
	Statistics Logging

	Rules for Writing a Communications Driver
	Driver Module Instance Object Value
	Error Checking
	Maintaining Statistics
	Common Driver Widgets
	Debugging and Testing Communications Drivers

	Add a New Driver to Your Application

	 Cryptography in VTS
	Cryptography Terms and Abbreviations
	Cryptography Architecture
	Cryptographic Service Providers
	Cryptographic Keys
	Storage and Exchange of Cryptographic Keys

	Data Encryption and Decryption
	Cryptography Example

	 Custom Tag Types
	Guide to This Chapter
	Terms for Tag Types
	Tag Template Modules
	The Basic Tag - TagName.SRC
	Tag Configuration Parameters
	SQL Data Types for Tag Parameters
	Adding New Parameters to Existing Tags
	Encrypted Parameters
	Example - The Analog Status Tag's Parameters

	The Tag Variables Section
	Required Variables
	Optional Variables
	Constant Definitions
	Other Constants
	Assigning Tag Groups
	Submodule Declarations

	Rules for Tag Variables, Constants and Modules

	Tag States
	ValueSyncService
	API

	The Refresh Module
	TagShutdown Module
	Tag Configuration Folders
	Declaring the Configuration Folder Module
	The Configuration Folder Module
	Switching Tabs
	Configuration Tab Contents
	Alarm Tab Notes
	Adding Expression Support for Parameters
	Rules for Config Folders

	Create or Assign Tag Widgets
	Create a Custom Tag Widget
	Widget Parameters
	Example – Parameters for the Analog Status's Draw Widget
	Edit Mode versus Run Mode
	The Properties Panel
	Widget States
	Indicating Questionable and Manual Data
	Rules for Tag Widgets

	Common Module
	Navigator Calls (Shortcut Menu)
	Navigator Module Parameters

	ToolTip Contents
	Opening an HDV (PKTrend) Window
	Common Module Example
	Rules for the Common Module

	Linking to a Driver
	Triggering a Data Read
	The NewData Module
	Writing Data: The Set Module

	Make a Custom Tag Visible to OPC Clients
	Logging Tag Data
	Configure a Tag for Logging
	Custom Logging for Tags
	Upgrading Tags That Used LogManager or Logger

	Adding Alarms to Custom Tags
	Alarm Containers
	Adding Built-in Alarms to a Tag

	Security Features for Tags
	Containers, Contributors and Site Tags
	Custom Filtering of the Sites List and Map
	Overview of the AddContributor Function
	Overview of the DeleteContributor Function
	Overview of the GetContributors Function

	Latitude and Longitude for Site Tags
	Custom Help Systems
	Expressions as Tag Parameters
	ExpressionManager Usage for VTScada Programmers
	Adding Expression Support to an Application
	The ExpressionEdit Widget
	Issues and Risks

	Programming Parent Tags
	Building Parent Tags
	Widgets for Parent Tags
	Optimizations and Considerations When Using Child Tags

	 Debugging and Analysis
	Coordinates Application
	Debugger Utility
	Instance Count Application
	Memory Tracer Application
	Using the Memory Tracer Utility
	Analyzing a Memory Trace File
	Sorting Data in the Allocation Information List
	Viewing Smaller Segments of a Time Slice

	Profiler Application
	Profiler Settings

	RPC Timing Utility
	Source Debugger
	Source Debugger Components
	Source Debugger: Tool Bar
	Source Debugger: Module Tree
	Source Debugger: Code Display
	Source Debugger: Summary (Live) Tab
	Source Debugger: Summary (Dump) Tab
	Source Debugger: Module Content Window
	Switch to module
	View contents
	Convert number
	View metadata

	Source Debugger: Action Window
	Source Debugger: Watch Window

	Selecting an Application for Debugging
	Open a Source Code File for Debugging
	Editing Code and Recompiling

	Dump Files
	Examining Code Paths Using Thread Display
	Working with Breakpoints and Data Breakpoints
	Setting a Breakpoint
	Set a Data Breakpoint
	Conditional Breakpoints
	Examining State at a Breakpoint
	Enable or Disable a Breakpoint
	Run Code from a Breakpoint to a Selected Line

	Working with Watches
	Set a Watch
	Remove a Watch

	Working with Variables, Arrays, Pointers, Constants, and Parameters
	Working with Modules
	Display the Contents of a Module in a Separate Window
	Search for a Specific Module Instance
	Slay a Module Instance
	Refresh the Module Tree
	Step Into a Statement
	Step Over Code
	Sort Data in the Module Tree or Module Content Window
	Filter Data in the Module Content Window

	Working with the Execution History
	Filter the Thread History
	Select the Thread to Display

	Copying and Pasting Code Using the Source Debugger
	Source Debugger Options
	Source Debugger Options Dialog: General Tab
	Source Debugger Options Dialog: Source Paths Tab
	Source Debugger Options Dialog: Symbol Server Tab

	Confirm Workspace Load
	Code Coverage
	The Code Coverage Display
	Refreshing the Code Coverage Display
	Stepping Between Blocks of Covered Code
	Using a Code Coverage Merge File
	Resetting the code coverage counts

	Test Framework Application
	Test Framework Application Components
	Writing Tests for the Test Framework
	Assert Subroutines
	Fixture Modules
	Using the ThreadIdle Function

	Running Tests
	Running a Test
	Viewing Test Results

	Thread List Application
	Trace Viewer Application
	What the Trace Viewer can show you
	Features for Driver Tracing
	Features for SOAP Message Tracing
	Features for Historian Diagnostics
	Historian Trace Information
	Historian Trace Options

	Features for Remote Procedure Call (RPC) Tracing
	Interpreting RPC Diagnostics Data
	RPC Diagnostics Settings Dialog
	Inter-machine Sockets Dialog
	Inter-machine Sockets Data for Remote Machines
	Inter-machine Sockets Data for the Local Machine
	Services Dialog
	Information Displayed for a Local Machine
	Information Displayed for a Remote Machine
	Information Displayed for a Client

	Using the Trace Viewer
	Select a Live Data Source to View
	Viewing vs. Logging a Data Source
	Select a Log File to View
	Trace Viewer Options and Controls
	Information Displayed for a Server
	Clear the Current Trace
	Print the Trace Viewer's Data
	Export Data from the Trace Viewer
	Highlight Records
	Annotate Records
	Navigate to the Previous or Next Mark
	Pause and Run the Live Display
	Toggle the Timestamp Display
	Filter the Trace Viewer's List
	Filtering Options

	Select Columns for Display in the Trace Viewer's List
	Trace Viewer Visibility and Display Options

	Trace VTScada Actions Application

	 Historian - API and Queries
	Recording Data
	Specify the Storage Type for Historian Data
	Specify the Location for Historian Data

	Historian Manager API
	Trending and Plotting Functions and Statements
	Data Logged or Trended Variables in Tag Modules

	VTScada SQLInterface Module

	 Programming Other Modes of Communication
	Communicating Directly With Hardware
	Configuring a VTSIO Driver as the Interface to PC Hardware
	Configuring a single instance of the VTSIO driver:

	Using COM in VTS
	Introduction to COM
	Accessing COM Objects
	Syntactic Structure
	Sample Code
	Functions and Statements Related to COM

	Using DDE
	TCP/IP Networking
	SNMP Agent Configuration
	MIB Objects
	Agent Tag Setup
	Agent Tag Fields
	Trihedral MIB Definition
	Agent Tag Change Notification Traps
	Custom MIB Setup
	Support for Analog Tag Values
	Support for Data Time Stamps

	Using ODBC
	Using DLLs

	 Modem Manager Service
	Modem Manager Concepts
	Canonical Address Format
	Modem Manager Configuration Variables
	Sequence of Events for Incoming Calls
	Modem in Data Mode
	Modem in Audio Mode

	Sequence of Events for Outgoing Calls
	Data Call
	Audio Call

	Allocating Modems in a Managed Pool for Outgoing Calls
	Local Modems
	Modem Manager Alarm and Event Reporting
	Internal Event Recording

	Modem Manager API
	Required Subroutines in Custom Drivers
	Modem Manager Functions
	ModemControl Plug-in
	Call Progress and Error Codes
	Modem Tag Return Values
	Modem Manager Constants
	Modem Manager Properties
	Example Audio Discriminator
	Example Data Discriminator

	TAPI and UniModem Considerations

	 RPC Manager Service
	Overview of the RPC Manager Service
	RPC High Level Design
	Remote Procedure Calls (RPCs)
	Session IDs
	Types of RPC
	Cross-Application RPC
	Permitted Data Types in RPC
	Compression
	Packed RPC Streams

	Services
	Programming Example: Create a Simple Service
	Adding Server-Only Synchronization
	Configuring the Service
	Adding More Servers
	Server List Consistency
	Client Revision Information
	Client Changes
	Read and Write Locks

	Synchronization Sequence
	Alternate Status
	Sticky Status
	Preventing Synchronization with Lower-Order Servers
	Server Evaluation Rules

	RPC Call-Backs

	Connection Configuration and Management
	Link Maintenance Cycle
	Link Tolerances

	Multi-homed Systems
	Clients of Clients
	WANs

	Configure Cross-Application RPC
	Cross-Application Services
	Cross-Application Service Variations
	Revised Code Example
	CurSourceAppGUID

	Application Control of Servership
	RPCManager API
	VTScada Plug-In API
	Service Synchronization

	System Level Services
	Creating a System Level Service

	API Reference
	RPC Manager Functions
	Deprecated RPC Methods
	Server List Source Callback Methods
	ServerListSubscribe
	ServerListUnsubscribe
	GetServerList
	GetRPCServiceSettings

	Diagnostics
	RPC Routing and Execution
	RPC Internal Routing
	RPC External Routing
	RPC Execution

	RPC Security
	Security Measures
	[RPCManager-AllowIP]

	Configuration
	SETUP.INI [System] Values for RPC
	RPCBufferLength
	RPCConnectPort
	RPCConnectStrategy
	RPCDiagnostics
	RPCMaxPacketSize
	RPCMaxQLen
	RPCMaxStartDelay
	RPCMemBuffLimit
	RPCMemSendLimit
	RPCPingInterval
	RPCReconnectTime
	RPCResendDelay
	RPCServerPort
	RPCSktConnectAttemptMax
	RPCSktResendAttempts
	RPCSocketDeadTime
	RPCSocketResendAttempts
	RPCTrace
	RPCUseBuffered

	Variables available in \RPCManager
	Application Settings for RPC
	ABSharedRPC
	CIPENIPSharedRPC
	DataradioSharedRPC
	DDESharedRPC
	DNP3SharedRPC
	DriverSetupDelay
	MDSSharedRPC
	ModiconPortSharedRPC
	ModiconSharedRPC
	OmronSharedRPC
	OPCClientSharedRPC
	RemCfgTransLog
	SiemensS7PortSharedRPC
	SiemensS7SharedRPC

	Name Resolution
	HOSTS File
	Centralized Name Resolution
	RAS Clients
	Fully Qualified Domain Names

	Protocol
	Protocol Versions
	General Structure
	Version 3 Packet Format
	Version 4 Packet Format
	Session Table Message
	Version 3 RPC Messages
	Version 4 RPC Messages
	Packed Parameters

	 Security Manager
	Accounts
	Account Storage
	Alternate Identification

	Roles
	The Logged Off Role

	Security Rules
	Combining Security Roles and Rules

	Security Implementation
	System Privilege Reference for Programmers
	Application Privileges
	Shared Security

	The SecurityManager API
	AccountData Structure
	SecurityRule Structure
	Security Manager Return Codes
	Security Manager Functions
	Security Manager Public Variables
	Security Plug-in Modules

	Security Event Logging
	Security NameSpaces

	 Socket Server Manager
	Socket Server Manager - Error Logging
	Socket Server Manager API
	SocketServerManager\ArrayToString
	SocketServerManager\Register
	SocketServerManager\StringToArray
	SocketServerManager\UnRegister

	 Time Synchronization Manager Service
	Special Considerations for Time Adjustments

	 Web Services and XML
	Terms Used with Web Services
	Web Services Process
	Module and Parameter Naming
	VTScada Web Service Commands
	WSDrvr Services
	Web Services Example
	Configuring a Realm
	Creating a WSDL File
	Create the VTScada Module
	Modifying AppRoot.SRC
	Requesting Values via the Web Service

	VTScada Engine XML API
	Validating versus non-Validating XML Processors
	The Schema Cache Dictionary
	XMLNodes
	Accessing a portion of an XMLNode tree.
	Obtaining a list of child tags
	Determining if a member is an XMLNode or an array of nodes
	Assigning values to an array of XMLNodes
	Adding or deleting child tags
	XML Namespaces

	 The VTScada Wizard Engine
	Getting Started
	Basic Wizard Engine Module
	Wizard API
	Flow Direction
	Text Input and Output
	Cleaning Up Input [Trim]
	Error Messages [Error]
	Skipping [SkipIf]
	Branching [Switch]
	Triggered Branch [ForceMove]
	Unconditional Branch [NextIs]
	Dead Ends [NoNext]
	Dead Ends [NoBack]
	Initial Action [InitCheckBox]
	Final Action [FinalCheckBox]
	Final Processing Stage [EndControl]

	Wizard Configuration Settings
	Cautionary Notes for Wizards

	 General Reference
	ASCII Constants
	VTScada Color Palette
	Color Theme Definition
	Constants for System Colors
	Integrating Custom Help Files into VTS
	User-Topics in the VTScada Help Folder

	Database Type Codes used in the ODBC Manager
	predefined Date Codes
	Date Formatting Strings
	Fill Patterns
	Font Character Sets
	GUI Object Return Codes
	Known Path Aliases for File-Related Functions
	Line Types
	ParameterEdit Snap-ins
	SlippyMapRemoteTileSource1
	SQL Data Types
	predefined Time Formats
	Time Formatting Codes
	VTScada and Time Synchronization
	VTScada Value Types - Numeric Reference
	Value and Type Conversions
	Uninstall VTScada
	Language Support
	Using a Non-English Character Set

	 VTScada Functions - Grouped by Type
	Usage Rules for Functions
	Format Examples for Functions
	Obsolete Functions
	4BtnDialog
	A Functions
	ABS
	AbsTime
	Accumulate
	Acknowledge
	ACos
	AcquireLock
	Active
	ActiveCode
	ActiveState
	ActiveWindow
	ActiveX
	AddAccount
	AddConnection
	AddContributor
	AddEditorText
	AddModule
	AddOptional
	AddParameter
	AddPrivToUser
	AddRead
	AddressEntry
	AddState
	AddStatement
	AddUser
	AddVariable
	AdjustArray
	AdjustCode
	AlignSelected
	AlternateIdCheck
	AlternateLogoff
	AlternateLogon
	AMax
	AMin
	And
	AppIsRunning
	AppIsStarted
	AppIsStarting
	ApplyChangeSetFile
	Arc
	ArrayDimensions
	ArrayOp1
	ArrayOp2
	ArraySize
	ArrayStart
	ArrayToBuff
	ASin
	ATan
	AudioFileLength
	Authenticate
	AValid

	B Functions
	Ball
	Bar
	Base64Decode
	Base64Encode
	Beep
	Bevel
	BinIP2Text
	Bit
	BitmapInfo
	Blend
	BlockDecrypt
	BlockEncrypt
	BlockWrite
	Boolean
	Box
	Brush
	BuffOrder
	BuffRead
	BuffStream
	BuffToArray
	BuffToHex
	BuffToParm
	BuffToPointer
	BuffWrite
	BuildDelete
	BuildFullName
	BuildInsert
	BuildSelect
	BuildUpdate

	C Functions
	Call
	CalledInstances
	Caller
	CallerID
	CancelCall
	CanEditDoc
	CaptureImage
	CaptureSettings
	Case
	Cast
	Ceil
	Change
	ChangePersistentSize
	CharCount
	CheckBox
	CheckFileExist
	CheckPathExist
	CheckTagGroup
	ChildDocs
	ChildInstances
	Circle
	CleanModule
	ClearModule
	ClearState
	ClearVarMetaData
	Click
	ClientSocket
	ClipboardGet
	ClipboardPut
	CloseStream
	Cls
	CodeText
	ColorSelect
	Combine
	COMClient
	COMEvent
	CommaFormat
	CommandLine
	Commission
	CommitEditedFiles
	Compile
	COMPort
	Compress
	COMStatus
	Concat
	Cond
	Configure
	ConnectToMachine
	ConstCount
	ConvertTimeStamp
	ConvertToDbDate
	ConvertToDbTime
	ConvertToDbTimeStamp
	ConvertToVTSDate
	ConvertToVTSTime
	ConvertToVTSTimeStamp
	Coordinates
	CoordToPixel
	CopyDir
	CopyIn
	CopyObjects
	CopyOut
	CopyRecords
	Cos
	CoverageSnapshot
	CRC
	CRCTable
	CreateModule
	CriticalSection
	Crop
	CrossReference
	CurrentLine
	CurrentTime
	CurrentWindow

	D Functions
	Date
	DateNum
	DateSelector
	Day
	DBAdd
	DBDropList
	DBGetStream
	DBGridList
	DBInsert
	DBListGet
	DBListSize
	DBRemove
	DBSystem
	DBTrace
	DBTransaction
	DBUpdate
	DBValue
	DDE
	DDEPoke
	DDEShareAdd
	DDEShareDel
	DeadBand
	Debugger
	Decode
	Decommission
	Decrypt
	DefaultNamingContext
	DefaultPrinter
	Deflate
	DeleteAccount
	DeleteArrayItem
	DeleteContributor
	DeleteModule
	DeleteOptional
	DeletePrivFromUser
	DeleteState
	DeleteStatement
	DeleteUser
	DeleteVariable
	DelPageFromApp
	DelRead
	Deriv
	DeriveKey
	DialogInitPos
	Dictionary
	DictionaryCopy
	DictionaryRemove
	Diff
	Dir
	DirectApply
	Disable
	DisconnectFromMachine
	DLL
	DoLoop
	DragHandle
	DrawArcPath
	DrawChordPath
	DrawEllipticalPath
	DrawPath
	DrawPiePath
	DrawScale
	DriveInfo
	Droplist
	DropTree

	E Functions
	Edge
	Edit
	EditFile
	EditINI
	EditINICheckBox
	Editor
	Ellipse
	Enable
	EnableHelp
	Encode
	Encrypt
	ErrMessage
	EvaluateAlarm
	Event
	Execute
	ExecuteQuery
	ExecuteQueryCached
	Exp
	ExportKey

	F Functions
	Fail
	FALSE
	FFT
	FileDialogBox
	FileFind
	FileRootModule
	FileSize
	FileStream
	Filter
	FiltHigh
	FiltLow
	FindAction
	FindModem
	FindVariable
	FirstState
	FitOffset
	FitR2
	FitSlope
	Flush
	FlushCache
	FocusID
	Folder
	Font
	FontDialog
	ForceEvent
	ForceServers
	ForceState
	FormalParms
	Format
	FormatBatchQuery
	FormatInteger
	FormatNumber
	FRead
	Freeze
	FWrite

	G Functions
	GenerateKey
	Get
	GetAccountID
	GetAccountInfo
	GetAlarmConfiguration
	GetAlarmList
	GetAlarmObject
	GetAlarmStateStats
	GetAlarmStatus
	GetAppInstance
	GetByte
	GetClientDiverts
	GetClientGUIDs
	GetClientIPs
	GetClientList
	GetClientMode
	GetClientNodes
	GetCodeObj
	GetColorInfo
	GetConfiguration
	GetConnList
	GetContainerNumActive
	GetContainerNumUnacked
	GetContributors
	GetCryptoProvider
	GetDefaultValue
	GetDevices
	GetFileAttribs
	GetFullName
	GetGroupName
	GetGUID
	GetHistory
	GetHostByName
	GetID
	GetInhibitedServiceList
	GetINIProperty
	GetInSyncServers
	GetInstance
	GetIP
	GetKeyCount
	GetKeyParam
	GetLoadedAppInstance
	GetLocalIP
	GetLocalNumber
	GetLog
	GetLogInfo
	GetMachineNode
	GetMakeAltPtr
	GetModuleRefBox
	GetModuleText
	GetNameOfRecord
	GetNextKey
	GetNumUnacked
	GetOEMLayer
	GetOneParmText
	GetOutputTypes
	GetOverrides
	GetParameter
	GetParmText
	GetParserOffset
	GetPathBound
	GetPlatformInfo
	GetPowerState
	GetReferencedValues
	GetRemoteVersion
	GetReportTypes
	GetReturnValue
	GetSelected
	GetSelectedInfo
	GetServer
	GetServerChanges
	GetServerMode
	GetServerNumber
	GetServerSIDPtr
	GetServersListed
	GetServiceScope
	GetSessionContainers
	GetSessionContainerTags
	GetSessionID
	GetShapePath
	GetSocketStatus
	GetState
	GetStatement
	GetStatementNum
	GetStateText
	GetStatus
	GetStreamLength
	GetStreamType
	GetSystemColor
	GetTagHistory
	GetTagList
	GetTagTypes
	GetToken
	GetTrajectoryPath
	GetTransform
	GetTransitText
	GetUserID
	GetUserName
	GetUserNameOfRecord
	GetUserSession
	GetValue
	GetVariableText
	GetVariableType
	GetVarMetadata
	GetVoices
	GetWCPath
	GetWCRevision
	GetXformRefBox
	GetXMLNodeArray
	GoToOffset
	Grid
	GridList
	GUIArc
	GUIBitmap
	GUIButton
	GUIChord
	GUIEllipse
	GUIPie
	GUIPipe
	GUIPolygon
	GUIRectangle
	GUIText
	GUITransform

	H Functions
	HasCompilationErrors
	Hash
	HasMetaData
	HasReturnStatement
	HasUndeployedChanges
	Help
	HexToBuff
	HighlightModule
	HistorianConnect
	HistorianDeleteRecords
	HistorianGetData
	HistorianGetInfo
	HistorianReadRecords
	HistorianWriteRecords
	HScrollbar

	I Functions
	IconMarker
	IF
	IfElse
	IfOne
	IfThen
	ImageArray
	ImageSweep
	ImportAPI
	ImportKey
	In
	InsertArrayItem
	Instance
	Int
	Intgr
	Invalid
	InWord
	IPAddressList
	IsActive
	IsAppEditable
	IsChild
	IsClient
	IsEqual
	IsDictionary
	IsDisabled
	IsLoggedOn
	IsMatch
	IsOnLocalBranch
	IsPotentialServer
	IsPrimaryServer
	IsRunning
	IsRunOnly
	IsSecured
	IsServiceReady
	IsShelved
	IsSuspended
	IsUnacked
	IsVICSession

	K Functions
	KeyCount
	KeyFake
	Keys

	L Functions
	LastSelected
	Latch
	Launch
	LayerInUse
	LayerRoot\Stop
	Limit
	Line
	LinearIndicator
	LinearLegend
	ListAdd
	Listbox
	ListKeys
	ListRemove
	ListVars
	Ln
	LoadDLL
	LoadMIB
	LoadModule
	LocalGroup
	LocalScope
	Locate
	LocCapture
	LocSwitch
	Log
	LogNTEvent
	LogOff
	LookUp
	LValue

	M Functions
	MACID
	MakeBitmap
	MakeBuff
	MakeCall
	MakeDAG
	MakeEditor
	MakeFixedBuff
	MakeNonPersistent
	MakeNonShared
	MakePersistent
	MakeShared
	MapDraw
	MatchKeys
	Max
	MCSInstance
	MCSMod
	Mean
	MemIn
	Memory
	MemOut
	MemTrace
	Merge
	Merge2
	MetaData
	Min
	MkDir
	ModemCount
	ModemDev
	ModemDial
	ModemDigits
	ModemList
	ModemMedia
	ModemStream
	ModemTransfer
	ModifyAccount
	ModifyBitmap
	ModifyConfiguration
	ModifyTags
	ModifyUserPrivilege
	ModuleFileName
	ModuleHighlighted
	Month
	MoveEditor
	MoveSibling
	MoveWindow
	MuteSound

	N Functions
	New
	NextFocusID
	Normal
	Normalize
	NormalTrip
	Not
	NotifyVIC
	Now
	NParm
	NumericParameterEdit
	NumInstances
	NumParms
	NumSelected
	NumSets
	NumVariables

	O Functions
	ODBC
	ODBCBeginTrans
	ODBCCommit
	ODBCConfigureData
	ODBCConnect
	ODBCDisconnect
	ODBCRollback
	ODBCSources
	ODBCStatus
	ODBCTables
	OffNormal
	Ones
	OpChange
	OPCServer
	Or
	Out
	Output
	OutWord
	OwningModule

	P Functions
	Pack
	PackParms
	PackRPC
	PAddressEntry
	PAlmPriority
	PalStatus
	Parameter
	ParameterEdit
	ParameterSet
	PAreaSelect
	ParentModule
	ParentObject
	ParentWindow
	ParmToBuff
	ParserSRO
	PasteObjects
	Path
	PathDraw
	PatternMatch
	PCheckBox
	PColorEdit
	PColorSelect
	PContributor
	PDroplist
	PEditfield
	PEditName
	PeekStream
	Pen
	Pending
	PersistentSize
	PHSliderBar
	PHueSelect
	Pick
	PickValid
	PID
	Pie
	PIPAddressList
	PIPListenerGroup
	Pipe
	PipeStream
	PixelColor
	Platform
	Play
	Plot
	PlotBuff
	PlotXY
	PMultiCheckBox
	Point
	PointerToBuff
	PointList
	Popup
	POverride
	Pow
	PPageSelect
	PPPDial
	PPPHandles
	PPPStatus
	PRadioButtons
	Print
	PrintDialogBox
	PrintLine
	Priority
	PriorityWeight
	ProcInfo
	Profile
	ProgressBar
	PrtScrn
	PSecBit
	PSelectObject
	PSpinbox
	PType
	PTypeToggle

	Q Functions
	QuietLogon

	R Functions
	RadialIndicator
	RadialLegend
	RadioButtons
	Rand
	Read
	ReadBlock
	ReadConfiguration
	ReadINI
	ReadINIProperties
	ReadLock
	ReadPropertiesFile
	ReadSectINI
	ReadX
	ReadXY
	RecommendAlternate
	RecommendPrimary
	RecordProperty
	Redirect
	Register (Alarm Manager)
	Register (Modem Manager)
	Register (RPC Manager)
	RegisterCustomTable
	ReleaseLock
	RemoveParameter
	RemWSDL
	Rename
	Replace
	ReplaceStatement
	ReportError
	RepoSubscribe
	Reset
	ResetParm
	ResultFormat
	ResyncDoc
	Return
	Reverse
	RibbonCmd
	RibbonContextUI
	RibbonGalleryItems
	RibbonPersistState
	RibbonSetProperty
	RmDir
	RootTransform
	RootValue
	RootWindow
	Rotate
	RTimeOut
	RUNFileName
	RUNFileVersion
	RunPack

	S Functions
	Save
	SaveHistory
	SaveImage
	SaveModule
	Scale
	Scope
	ScopeLocal
	SDev
	Seconds
	SectionControl
	SecurityCheck
	Seek
	SelectArea
	SelectCodePointer
	SelectDAG
	SelectGraphic
	SelectHandle
	SelectHandleNum
	SelectPath
	Self
	Send
	SendMail
	SerBreak
	SerCheck
	SerialNum
	SerialStream
	SerIn
	SerLen
	SerOut
	SerRcv
	SerRTS
	SerSend
	SerStrEsc
	SerString
	ServerList
	ServerSocket
	SerWait
	SetAllBlocks
	SetBit
	SetByte
	SetClock
	SetCodeText
	SetCursor
	SetDDEServer
	SetDefault
	SetDivert
	SetEditMode
	SetEnable
	SetFileAttribs
	SetHandle
	SetHelp
	SetINIProperty
	SetInstanceName
	SetInstanceRefBox
	SetKeyParam
	SetLibrary
	SetModuleRefBox
	SetModuleText
	SetOneParmText
	SetOPCData
	SetOverride
	SetParameter
	SetParmText
	SetParserParm
	SetRefRect
	SetRemoteValue
	SetReturnValue
	SetShelved
	SetStateText
	SetSyncComplete
	SetTransfer
	SetTransitText
	SetVariableClass
	SetVariableText
	SetVariableType
	SetVarMetadata
	SetVicParms
	SetWSDL
	SetXLoc
	SetYLoc
	ShiftStream
	ShowLexicon
	ShowPage
	SilenceSound
	SimpleOpChange
	SimulateMouse
	Sin
	SizeWindow
	Slay
	SocketAttribs
	SocketPingSetup
	SocketServerEnd
	SocketServerStart
	SocketWait
	Sort
	SortArray
	Sound
	Spawn
	Speak
	SpeakToFile
	Spinbox
	SplitList
	SplitListSelector
	SplitPath
	SplitTagSelector
	SQLQuery
	Sqrt
	SRead
	Start
	StartTag
	StateList
	StatementInstance
	StateName
	StaticSize
	StatsWin
	Step
	Stop
	StrCmp
	StreamEnd
	StrICmp
	StrJustify
	StrLen
	Struct
	SubStatementIndex
	SubStr
	Sum
	SumBuff
	SWrite
	SystemSelf

	T Functions
	TableSynch
	Tag
	TagIconMarker
	Tan
	Target
	TCPIPReset
	TempFileStream
	Text
	TextAttribs
	TextBox
	TextIP2Bin
	TextOffset
	TextSearch
	TextSize
	TGet
	Thread
	ThreadHistory
	ThreadIdle
	ThreadList
	ThreadName
	ThreadPriority
	Time
	TimeArrived
	TimeOut
	TimeZone
	TimeZoneList
	Today
	TODBC
	TODBCBeginTrans
	TODBCCommit
	TODBCConnect
	TODBCDisconnect
	TODBCRollback
	Toggle
	ToLower
	ToolBar
	ToUpper
	Trajectory
	Transaction
	TransactionCached
	TransferFields
	Trip
	TRUE
	TServerList

	U Functions
	UIErrorToText
	Unpack
	UnpackData
	UnpackParms
	Unregister (Alarm Manager)
	UnselectGraphics
	UnselectObject
	UnTransform
	UpdateCoordinates
	UserCredChange
	UserLogonDialog

	V Functions
	Valid
	ValidateEmailAddrs
	ValueType
	VarAttributes
	Variable
	VariableClass
	Variance
	Version
	VersionRequired
	Vertex
	VICInfo
	VICMessage
	VoiceTalk
	VScrollbar
	VStatus

	W Functions
	Watch
	WatchArray
	WatchForTagChanges
	WCSubscribe
	WhileLoop
	WinButton
	WinComboCtrl
	Window
	WindowClose
	WindowOptions
	WindowsLogon
	WindowSnapshot
	WinEditCtrl
	WinLocSwitch
	WinMatchKeys
	WinShiftKeys
	WinTooltipCtrl
	WinXLoc
	WinYLoc
	WKSList
	WKSPath
	WKSStatus
	WKStaInfo
	Write
	WriteHistory
	WriteINI
	WriteINIProperties
	WriteLock
	WritePropertiesFile
	WriteSectINI

	X Functions
	XLoc
	XMLAddSchema
	XMLCloneNode
	XMLCreateNode
	XMLDeleteMember
	XMLGetNode
	XMLParse
	XMLProcessor
	XMLWrite
	XOr

	Y Functions
	Year
	YLoc

	Z Functions
	ZBar
	ZBox
	ZButton
	ZColorChange
	ZEditField
	ZGrid
	ZLine
	ZPipe
	ZText

	 Index

