VTSCaaa

Software for Monitoring & Control

Programmer’'s Guide

Programmer's Guide

Excerpts from the VTScada Help Files
Copyright Trihedral Engineering Limited, 7/26/2016
All rights reserved.

Printed in Canada

Trihedral Engineering Limited Trihedral UK Limited Trihedral Inc.
Head Office Glover Pavilion, Campus 3 Suite 160
1160 Bedford Highway, Suite Aberdeen Science Park 7380 Sand Lake Road
400 Balgownie Drive, Aberdeen Orlando, Florida
Bedford, Nova Scotia UK, AB22 8GW USA
Canada 32819
B4A 1C1 Phone:+44 (0) 1224

258910 Phone: 407-888-8203
Phone: 902-835-1575 Fax: +44 (0) 1224 258911 Fax: 407-888-8213

Toll free: 800-463-2783
support@trihedral.com
sales@trihedral.com

Trihedral Calgary Office

Suite 505 - 888 4 Ave SW,
Calgary, AB,

T2P 0V2

403.921.5199

Contents

Scripting and Automation ... 51
Start Here for Scripting and Automation ... 53
Quick Reference Guide for Expressions .. 55
Expressions in Tags and in Widget Properties 58
Script Code in Modules ... 61
Configuring a Script Tag ... 62
Syntax Rules and the Expression Editor ... 62
Test ConditioNs .. 65
Comparing Values in Expressions ... 66
Triggers and Events in EXpressions ... 67
Access a Tag Value or Application Propertyo............. 69
Relative Tag and Property References 70
Mark the Passage of Time 72
Obtaining User INput ... 73
MoOUSe INPUL L 73
Keyboard Input ... 74
Selection INPUL .o 75
Usage Rules for Functions ... L 76
Math Functions in EXpressions ... 77
Text Functions in EXpPressioNns ... 78
Time and Date in EXPressions ... 79
Examples of EXPressions ... 81
The VTScada APl ... L 84
Parts of a VTScada Program 86
States and Steady State ... 88
State Naming Rules .. 89
Event-Driven Execution and Efficiency 90
Action Triggers and SCripts 92
The TrigQer oo 94
The Script BlOCK ..o 96
VTScada Modules . L 98

Types of Module .. 102

Declaring and Passing Parameters ... 107
Parameter Metadata 109
ModUle SCOPE .. o 110
Scope Resolution Operators ... 111
Module Inheritance ... 112
CONStTUCTOT S 113
DSt rUCTO S 115
Reference Boxes in Graphic Modules ... 116
FUNCRIONS 117
Format Examples for Functions ... 118
Function Parameters .. 119
Latching and Resetting Functions ... 120
Considerations for Graphics Functions 123
Threading .o 124
Operators in Statements ... 125
Operator Priority in Statements 126
List of VTScada Operators ... 127
Boolean Logic Operators ... 134
Value Types and Storage 135
Value Type CONVErSiONS ... e 140
Invalid Values 143
USING ANTaYS oo 144
Multidimensional Arrays ... 145
Mismatched Array Dimensions ... 147
Comparison of Static and Dynamic Arraysc.c....... 149
USiNg POINtersS oL 154
DI iONArI e 155
Creating a Dictionary ... 157
Dictionary Operations 158
Meta Data . 162

S U U S e 162

Persisted Variables 165

Retained Variables ... 167
Shared Variables .. 170
Saved Variables . 170
Network Values .. 170
Temporary Variables ... L 175

Protected Variables ... 175

Variable Class Definitions ... 176
VTScada Value Types - Numeric Reference 177
Style Guide for VTScada Code ... 185
Basic Programming Tasks ... 191
Create a New Script Application ... 191
The Bonus Program ... 195
Add a Module to a VTScada Application ... 197
A 15-Minute Snapshot Report 198
Hide the VAM from Operators, but not Managers 200
Working with Pages 202
Create Windows & Use Graphics Functions 209
Best Practices for Graphics ... 211
Owned Windows versus Child Windows ... 215
Native Windows Tooltip Support ... 216
Working with Pages ... 217
FOCUS I 221
Switching Graphics Pages 222
Placing Focus on an Object vs. Selecting an Object 222
Reference Boxes for Graphics Modules 223
Use Scaling to Position Graphic Objects ... 225
Drag & Drop to a Window ... 227
TreeControl Module ... 232
Time and Date ... 235
VTScada Time ZONeS ..o 236
Timers and Timing ... 236

Build Custom RepoOrtsS ... oo 237

How Reports Collect Data ... 238

Report Formatting ... 239
Common Features of a Report Module 239
Type Filters - Limiting the List of Available Tags 243
Parameters in a Custom Report 244
Query Modes and Time Ranges ... 245
A 15-Minute Snapshot Report 246
Diagnostic Files ... 249
Working with Speech ... 250
Interrupt the Shutdown Process ... 251
Alarm Manager ... 254
Alarm API Structure Definitions 255
Alarm Configuration Structure 255
Alarm Status StruCtUre ... 257
Alarm Transaction Structure ... 257
Alarm Record Structure 258
Alarm Manager Function Constants ... 260
VTScada Event LOgQing 260
Query the Alarm History ... 262
Alarm Message Templates 263
Custom Alarm Hook APl 265
Customize Columns in Alarm Displays ..., 267
Alarm Column Graphics Modules 272
Configuration Management 276
Configuration Management APl 276
Communication Drivers 280
Communication Driver Fundamentals 281
Data Exchange between VTScada and a Driver 282
What Happens Within the VTScada Code? ... 283
Communication Driver Design ... 287
Steps to Write a Communication Driver ... 288
Researching a Communication Driver Protocol 289

Designing an Addressing Scheme 289

Providing an AddressAssist Module 290

Controlling Access to Shared Resources ... 292
Modem SUP PO .o 293
Writing a Communication Driver 293
Mandatory Communication Driver Components 294
Optional Communication Driver Components 294
VTS GetAddr L 295
VTS ReAd . 302
Data Propagation 305
VT S Wt 309
VT SMaXBlOCK 312
Communication Driver Template ... 314
The VTISDriver APl 321
VTSDriver and Remote Applications ... 324
Driver Diagnostic tools 324
Statistics LOgQing ... 325
Rules for Writing a Communications Driver 327
Driver Module Instance Object Value 329
Error Checking ... 332
Maintaining Statistics L 333
Common Driver Widgets ... 334
Debugging and Testing Communications Drivers 335
Add a New Driver to Your Application ... 336
Cryptography in VTS 337
Cryptography Terms and Abbreviations 337
Cryptography Architecture ... 340
Cryptographic Service Providers 341
Cryptographic Keys .. 342
Storage and Exchange of Cryptographic Keys 344
Data Encryption and Decryption ... 345
Cryptography Example ... 346
CUStom Tag TYP@S .. 350

Guide to This Chapter ... 351

Terms for Tag TYPeS .o 352

Tag Template Modules ... L 353
The Basic Tag - TagName.SRC 354
Tag Configuration Parameters ..., 355
SQL Data Types for Tag Parameters ... 357
Adding New Parameters to Existing Tags 358
Encrypted Parameters 358
Example - The Analog Status Tag's Parameters 359
The Tag Variables Section 362
Required Variables 362
Optional Variables ... 363
Constant Definitions 364
Other Constants 365
Assigning Tag GroUPS ..o 366
Submodule Declarations ... 368
Rules for Tag Variables, Constants and Modules 369
TG StATOS L 370
ValueSYNCS BIVICe e 372
AP 373
The Refresh Module ... 374
TagShutdown Module ... 377
Tag Configuration Folders 378
Declaring the Configuration Folder Module 379
The Configuration Folder Module ... 379
Switching Tabs ... 382
Configuration Tab Contents ... 383
Alarm Tab NOteS ... 385
Adding Expression Support for Parameters 387
Rules for Config Folders 388
Create or Assign Tag Widgets 389
Create a Custom Tag Widget ... 390
Widget Parameters .. .o 392

Example - Parameters for the Analog Status's Draw Widget 392

Edit Mode versus Run Mode
The Properties Panel
Widget States o 399

Indicating Questionable and Manual Data 402
Rules for Tag Widgets 402
Common Module . 404
Navigator Calls (Shortcut Menu) 405
Navigator Module Parameters ... 405
ToolTip CoNteNntS . oo 408
Opening an HDV (PKTrend) Window 408
Common Module Example 409
Rules for the Common Module 411
Linking to @ Driver .. 412
Triggering a Data Read 413
The NewData Module ... 414
Writing Data: The Set Module ... 419
Make a Custom Tag Visible to OPC Clients 421
Logging Tag Data ... 425
Configure a Tag for Logging ... 425
Custom Logging for Tags ... 427
Upgrading Tags That Used LogManager or Logger 428
Adding Alarms to Custom Tags ... 429
Alarm Containers 430
Adding Built-in AlarmstoaTaqg ... 431
Security Features for Tags ... 437
Containers, Contributors and Site Tags ... 439
Custom Filtering of the Sites Listand Map 440
Overview of the AddContributor Function ._................................ 441
Overview of the DeleteContributor Function 442
Overview of the GetContributors Function 443
Latitude and Longitude for Site Tags ... 443
Custom Help Systems .. 444

Expressions as Tag Parameters 446

ExpressionManager Usage for VTScada Programmers 447

Adding Expression Support to an Application 449
The ExpressionEdit Widget ... 450
Issues and RiSKS 451
Programming Parent Tags 452
Building Parent Tags 454
Widgets for Parent Tags ... 462
Optimizations and Considerations When Using Child Tags 464
Debugging and Analysis ... 465
Coordinates Application ... 466
Debugger Utility ... 466
Instance Count Application ... 471
Memory Tracer Application ... 472
Using the Memory Tracer Utility ... 473
Analyzing a Memory Trace File 474
Sorting Data in the Allocation Information List 475
Viewing Smaller Segments of a Time Slice 475
Profiler Application 476
Profiler Settings 479
RPC Timing Utility ... 481
Source DebUgger 482
Source Debugger Components ... 484
Source Debugger: Tool Bar 485
Source Debugger: Module Tree ... 494
Source Debugger: Code Display ... 495
Source Debugger: Summary (Live) Tab ... 497
Source Debugger: Summary (Dump) Tab ... 498
Source Debugger: Module Content Window _............................ 500
Switch to module ... 502
VieW CONTENES L L 502
Convert NUMbeT L. 502
View metadata ... 503

Source Debugger: Watch Window ... 506

Selecting an Application for Debugging ... 506
Open a Source Code File for Debugging 508
Editing Code and Recompiling ... 508

DUMP FileS 508

Examining Code Paths Using Thread Display 509

Working with Breakpoints and Data Breakpoints 510
Setting a Breakpoint 511
Set a Data Breakpoint ... 513
Conditional Breakpoints ... 514
Examining State at a Breakpoint 514
Enable or Disable a Breakpoint ... 515
Run Code from a Breakpoint to a Selected Line 516

Working with Watches 516
Set aWatch ... 516
Remove a Watch .. 517

Working with Variables, Arrays, Pointers, Constants, and Para-

N O O S 517

Working with Modules 519
Display the Contents of a Module in a Separate Window 520
Search for a Specific Module Instance 520
Slay a Module Instance ... 522
Refresh the Module Tree 522
Step Into a Statement 522
Step Over Code ..o oL 523
Sort Data in the Module Tree or Module Content Window 523
Filter Data in the Module Content Window 524

Working with the Execution History ... 524
Filter the Thread History 525
Select the Thread to Display ... 526

Copying and Pasting Code Using the Source Debugger 526

Source Debugger OptioNns ... 527

Source Debugger Options Dialog: General Tab 528

Source Debugger Options Dialog: Source Paths Tab 529
Source Debugger Options Dialog: Symbol Server Tab 534
Confirm Workspace Load ... 535
Code CoVerage .. oo 536
The Code Coverage Display 537
Refreshing the Code Coverage Display ... 538
Stepping Between Blocks of Covered Code 538
Using a Code Coverage Merge File ... 539
Resetting the code coverage counts ... 539
Test Framework Application ... 539
Test Framework Application Components 540
Writing Tests for the Test Framework 544
Assert SUbroutines ... 545
Fixture Modules ... 546
Using the Threadldle Function 546
RUNNING T @SS 546
RUNNING @ TSt L 547
Viewing Test Results 548
Thread List Application ... 549
Trace Viewer Application ... 550
What the Trace Viewer can show you ... 552
Features for Driver TraCing ... 554
Features for SOAP Message Tracing ... 554
Features for Historian Diagnostics ..., 555
Historian Trace Information ... 557
Historian Trace OptioNns ... 557
Features for Remote Procedure Call (RPC) Tracing 558
Interpreting RPC Diagnostics Data 559
RPC Diagnostics Settings Dialog ... 559
Inter-machine Sockets Dialog 560
Inter-machine Sockets Data for Remote Machines 561
Inter-machine Sockets Data for the Local Machine 561

Services Dialog ... 562

Information Displayed for a Local Machine 563

Information Displayed for a Remote Machine 563
Information Displayed for a Client .. 564
Using the Trace VieWer 564
Select a Live Data Source to View ... 565
Viewing vs. Logging a Data Source 566
Select a Log File to View ... 567
Trace Viewer Options and Controls ... 568
Information Displayed for a Server ... 569
Clear the Current Trace 569
Print the Trace Viewer's Data ... 570
Export Data from the Trace Viewer 571
Highlight Records 571
Annotate Records 572
Navigate to the Previous or Next Mark 574
Pause and Run the Live Display ..., 575
Toggle the Timestamp Display ... 575
Filter the Trace Viewer's List ..., 576
Filtering OptioNns ... 578
Select Columns for Display in the Trace Viewer's List 580
Trace Viewer Visibility and Display Options 581
Trace VTScada Actions Application ... 582
Historian — APl and Queries ... 589
Recording Data ... 589
Specify the Storage Type for Historian Data 590
Specify the Location for Historian Data 590
Historian Manager APl 592
Trending and Plotting Functions and Statements 592
Data Logged or Trended Variables in Tag Modules 593
VTScada SQLInterface Module 595
Programming Other Modes of Communication 597
Communicating Directly With Hardware 597

Configuring a VTSIO Driver as the Interface to PC Hardware 598

Configuring a single instance of the VTSIO driver: 598

Using COM in VTS o 604
Introduction to COM 604
Accessing COM Objectso 606
SYNtaCtiC StrUCTUNe 608
Sample Code ..o 613
Functions and Statements Related to COM 619

Using DDE oL 619

TCP/IP NetWOrKing ... 620

SNMP Agent Configuration ... 623
MIB O OCtS o 625
Agent Tag SetUD ..o 625
Agent Tag Fields ... 627
Trihedral MIB Definition 628
Agent Tag Change Notification Traps ... 629
Custom MIB Setup ..o 630
Support for Analog Tag Values ... 632
Support for Data Time Stamps ... 632

Using ODBC .. 632

UsSiNg DLLS oo 633

Modem Manager Service 634

Modem Manager CONCEPLS ... oo 636

Canonical Address Format ... 637

Modem Manager Configuration Variables 639

Sequence of Events for Incoming Calls ... 641
Modem in Data Mode 641
Modem in Audio Mode ... 642

Sequence of Events for Outgoing Calls ... 644
Data Call L 645
Audio Call oo 645

Allocating Modems in a Managed Pool for Outgoing Calls 646

Local Modems .. 647

Internal Event Recording ... 648

Modem Manager APl 649
Required Subroutines in Custom Driversc.o.oo....... 650
Modem Manager FUNctions 652
ModemControl Plug-in ... 653
Call Progress and Error Codes 654
Modem Tag Return Values 657
Modem Manager Constants ... 658
Modem Manager Properties ... 658
Example Audio Discriminator ... 659
Example Data Discriminator ... 661

TAPI and UniModem Considerations ... 663

RPC Manager ServiCeo 665

Overview of the RPC Manager Service ... 666
RPC High Level Design 669
Remote Procedure Calls (RPCS) 672
SeSSION DS L 674
Types Of RPC . 676
Cross—Application RPC 676
Permitted Data Types in RPC 676
COMPIrES S ON 677
Packed RPC Streams 677

SOV 678
Programming Example: Create a Simple Service 679

Adding Server-Only Synchronization 684
Configuring the Service 690
Adding More Servers ... 693
Server List CONSISteNCY ..o 695
Client Revision Information 696
Client Changeso 698
Read and Write Locks 700
Synchronization SeqUeNCe ... 701

Alternate StatUsS . 702

Sticky STatUS .o 703

Preventing Synchronization with Lower-Order Servers 704
Server Evaluation Rules 704
RPC Call-Backs 705
Connection Configuration and Management 708
Link Maintenance Cycle 708
Link Tolerances ... 710
Multi—-homed Systems 713
Clients of Clients ... 714
W AN S 715
Configure Cross-Application RPC 715
Cross-Application Services L 716
Cross-Application Service Variations ... 718
Revised Code Example 719
CurSource AppGUID . L 721
Application Control of Servership ... 721
RPCManager APl L 722
VTScada Plug-In APl 723
Service Synchronization ... 726
System Level Services ... 727
Creating a System Level Service ... 727
APl RefereNCe 728
RPC Manager FUNCLiONS 728
Deprecated RPC Methods ... 733
Server List Source Callback Methods 734
ServerListSubscribe .. . 734
ServerListUnsubscribe ... 735
GetServerlist (oo 735
GetRPCServiceSettings ... oo 736
DIagNOS IS 736
RPC Routing and Execution ... 736

RPC Internal Routing
RPC External ROUtING 740

RPC EX@CULION L 742
RPC SeCUIIY oo 742
Security MeasUIesS . 743
[RPCManager-AlowlIP] . 744
Configuration ... L 745
SETUP.INI [System] Values for RPC 746
RPCBuUfferLength ... 747
RPCCoNNeCtPOt L 747
RPCCoONNeCtStrateqy ... o 748
RPCDIAgGNOSEICS .o 748
RPCMaxPacketSize ... 748
RPCMaX QLN 749
RPCMaxStartDelay ... 749
RPCMemBuUffLIimit . 749
RPCMemSendLimit 750
RPCPingIntervalo 750
RPCReconnectTime .. 750
RPCResendDelay ... 750
RPCServerPOrt L 751
RPCSktConnectAttemptMaXx ... 751
RPCSktResendAttemPtS ..o 751
RPCSocketDeadTime 751
RPCSocketResendAttempts 752
RPCTraCe ..o 752
RPCUseBuffered 752
Variables available in \RPCManager 752
Application Settings for RPC 753
ABSharedRPC 754
CIPENIPSharedRPC 754
DataradioSharedRPC 754
DDESharedRPC . 754
DNP3SharedRPC ... L 755

MDSSharedRPC 755
ModiconPortSharedRPC 755
ModiconSharedRPC .. 757
OmronSharedRPC 757
OPCClientSharedRPC 757
RemCfgTranslogo 757
SiemensS7PortSharedRPC 758
SiemensS7SharedRPC .. 758
Name Resolution .. L 758
HOSTS File oo 759
Centralized Name Resolution 760
RAS ClieNtS Lo 760
Fully Qualified Domain Names ... 762
ProtOCOl Lo 763
Protocol Versions ... 764
General StruCtUre L 765
Version 3 Packet Format 765
Version 4 Packet Format 768
Session Table Message 770
Version 3 RPC MeSSages 772
Version 4 RPC MeSSAgeso 774
Packed Parameters 777
Security Manager .. . 780
ACCOUNES 780
ACCOUNT STOrage oo 781
Alternate ldentification ... 782
ROIS 783
The Logged Off Role ... 783
SECUNItY RUIES L 784
Combining Security Roles and Rules ... 786
Security Implementation 787
System Privilege Reference for Programmers 787

Application Privileges 794

Shared SeCUNITY ..o 795

The SecurityManager APl . 795
AccountData Structure 796
SecurityRule Structure 798
Security Manager Return Codes ... 799
Security Manager Functions 799
Security Manager Public Variables 801
Security Plug-in Modules ... 801

Security Event LOgQing ... 802

Security NameSpPacCes .. oo 803

Socket Server Manager ... 806

Socket Server Manager - Error Logging ... 806

Socket Server Manager APl .. 806
SocketServerManager\ArrayToString 807
SocketServerManager\Register 807
SocketServerManager\StringTOArray ..o, 810
SocketServerManager\UnRegister ... 810

Time Synchronization Manager Service 813

Special Considerations for Time Adjustments 814

Web Services and XML ... 815

Terms Used with Web Services 816

Web Services ProCesso 818

Module and Parameter Naming 820

VTScada Web Service Commands ... 821

WS DIrVr SeIVICeS 822

Web Services Example ... 827
Configuring a Realm ... 828
Creating a WSDL File .. 830
Create the VTScada Module 833
Modifying AppROOt.SRC 834
Requesting Values via the Web Service 835

VTScada Engine XML APl .. 837

Validating versus non-Validating XML Processors 838

The Schema Cache Dictionary ... 839
XMLNOAES L 839
Accessing a portion of an XMLNode tree. ... 841
Obtaining a list of child tags 842
Determining if a member is an XMLNode or an array of nodes ..842
Assigning values to an array of XMLNodes 843
Adding or deleting child tags 844
XML NamesSPaCes .o 845
The VTScada Wizard Engine 847
Getting Started ... 848
Basic Wizard Engine Module 852
Wizard APl 856
Flow DireCtion ... L 860
Text Input and OUtPUL ... 860
Cleaning Up Input [Trim] .. 862
Error Messages [Error] ... 862
SKipping [SKipI] .o 863
Branching [Switch] 863
Triggered Branch [ForceMove] 865
Unconditional Branch [Nextls] 865
Dead Ends [NONeXt] ... 866
Dead Ends [NoBack] 866
Initial Action [InitCheckBoX] 866
Final Action [FinalCheckBOX] ... 867
Final Processing Stage [EndControl] 867
Wizard Configuration Settings 869
Cautionary Notes for Wizards ... 870
General Reference ... 871
ASCI CoNStaNtS Lo 872
VTScada Color Palette 874
Color Theme Definition 874
Constants for System Colors 877

Integrating Custom Help Files into VTS 878

User-Topics in the VTScada Help Folder 882

Database Type Codes used in the ODBC Manager 884
predefined Date Codes 885
Date Formatting Strings ... L 887
Fill Patterns oo 888
Font Character Sets ... 889
GUI Object Return Codeso 890
Known Path Aliases for File-Related Functions 891
Line Ty PO 893
ParameterEdit SNap—ins 894
SlippyMapRemoteTileSourcel 907
SQL Data TYPeS . 907
predefined Time Formats ... 908
Time Formatting Codes 909
VTScada and Time Synchronization ... 910
VTScada Value Types - Numeric Reference 911
Value and Type CONVEersiONSo 918
Uninstall VTScada 921
Language SUPPOIt 922
Using a Non-English Character Set ... 923
VTScada Functions — Grouped by Type 926
Usage Rules for Functions ... 1005
Format Examples for Functions 1006
Obsolete FUNCLIONS . 1008
ABtNDIAlOg ..o 1010
A FUNCHIONS 1014
ABS 1014
ADSTiMe 1015
ACCUMUIte 1017
Acknowledge .. 1019
AC O 1020
ACqUITELOCK .o 1021

AUV O 1023

ACTIVE S At 1024
ACtiVEeWINAOW 1025
ACTIVEX 1025
AdAACCOUNT L 1028
AddCoNnNection 1031
AddContributor ... L 1034
AddEditorText . oo 1036
AddModule L 1037
AddOptional 1039
AddParameter . 1040
AdAPrivToUSer o 1041
AddRead .. 1043
AddresSENtrY 1045
AddState o 1048
AddStatement .. 1049
AdAUS T 1050
AddVariable . 1052
AdJUSTATTAY 1055
AdjustCode . oo 1057
AlignSelected ..o 1058
AlternateldCheck ... 1060
AlternateLogoff 1061
AlternatelogoONn .o 1061
AM X 1062
AMIN 1063
AN 1064
APPISRUNNING L 1065
AppPlsStarted ... 1066
APPSO artiNg 1067
ApplyChangeSetFile ... L 1067
AT C 1069

ArraYOD T 1071
ArTaY O 1075
ATTAYS I ZO 1078
AT AY S At 1079
ArrayToBUTT 1079
AN L 1083
AT AN 1083
AudioFileLength .. 1084
Authenticate .. 1085
AV alid 1086
B FUNCHIONS 1087
Ball o 1087
Bl 1089
Baseb64Decode . .. 1091
BaseB4ENcode 1092
B o 1093
BeVel o 1093
Bin P 2T @ Xt 1095
B L 1096
BitmMaPINTO ..o 1097
Blend o 1098
BloCKD e CrY Pt 1099
BlOCKENCIY Pt o 1100
BlOCKWIIte 1100
BOOlaN L 1102
BOX o 1103
BruSh 1104
BUFfOrder o 1106
BuffRead .. 1107
BUuT S ream L 1116
BUT T OAITAY 1117
BUT TOH X 1120
BuffToParm 1121

BUTTTOPOIN T 1125

BUTTW it 1128
BuildDelete L 1136
BuildFullName .. 1138
BUuildInSert . 1139
BuildSeleCt . L 1140
BuildUpdateo 1142
C FUNCEIONS e 1144
Call 1144
CalledInstances ... 1145
Caller 1147
CallerlD oL 1148
CancelCall .o 1148
CanEditDOC .o 1149
Capturelmage ... 1151
CaptureSettings . ..o 1152
GOS0 1153
Gt 1155
il 1155
CRaNge L 1156
ChangePersistentSize L 1158
CharCoUNt L 1159
CheckBOX ... 1160
CheckFileEXiSt . oL 1163
CheckPathEXist 1164
CheckTagGroUp oo 1164
ChildDOCS .. 1165
ChildInstanCes . 1167
Circle o 1169
CleanModule ... 1170
ClearModule ... L 1171
ClearState oo 1171

ClientSoCKet 1175
ClipboardGet ... 1181
ClipboardPut ... 1181
CloseStream .. L 1182
ClS 1183
CodeT Xt oL 1184
ColorSelect ..o 1185
CombiNe L 1189
COMOCI Nt 1190
COMEV Nt 1194
CommaFormat . 1195
CommandLine ... 1196
COMMISSION L 1197
CommitEditedFiles ... 1199
ComMPIle 1201
COM PO 1204
COMIPI eSS e 1211
COM S AtUS . 1212
GO 1213
CONd 1214
CoNfigUIe o 1216
ConnectToMachine 1217
CoNStCOUNT L 1219
ConvertTimeStamp .o 1219
ConvertToDbDate ... 1222
ConvertToDbTime .. 1223
ConvertToDbTimeStamp ... 1224
ConvertToVTSDate ... 1225
ConvertToVTSTime 1226
ConvertToVTSTimeStamp ... 1227
CoordiNates .. .o 1228

COPYIN 1231
CopYODbeCES o 1232
CoPYOUT 1233
COPYRECOIAS .o 1234
GO 1235
CoverageSnapshot ... 1236
RO L 1238
CRCTable 1239
CreateModule .. 1241
CriticalSection ... L 1241
GO oo 1242
CrossRefereNnCeo 1244
CUrTeN LN 1247
CUrTeNntTime 1248
CurrentWindoW .. 1249
D FUNCHIONS 1250
DAt 1250
DateNUM L 1252
DateSeleCtor .o 1253
DAY 1254
DBAA 1255
DB rOP LISt .o 1258
DBG et S reaAM L 1260
DBG LISt o 1262
DBINS Ot 1265
D BLIStG et L 1268
DBLIStSIZe 1278
DBREMOVE . 1286
DB Y S M 1287
DB raCE . 1293
DB T ransaction ... 1294
DBUPAate ..o 1297

DBV alUe L 1300
DD 1302
DDEPOKE . 1303
DDEShareAdd ... 1305
DDEShareDel . 1306
DeadBand ... 1306
DU e 1308
DeCOde 1309
DeCOMMISSION L 1310
DIy P oo 1311
DefaultNamingConteXt 1313
DefaultPrinter . 1313
Deflate oo 1314
Delete ACCOUNT . 1319
DeleteArrayltem o 1321
DeleteContributor 1322
DeleteModule .. 1323
DeleteOptional ... 1324
DeletePrivFromUser .. . L 1325
DeleteState oL 1327
DeleteStatement . L 1327
DeleteUSer oL 1328
DeleteVariable 1329
DelPageFrOMADPD ..o 1330
DelReAd .. oL 1331
DIV o 1332
DEriVEK Y .o 1333
DialoglnitPOs 1335
DIt ONANY 1336
DictionNaryCOPY ..o 1338
DictionaryRemoVve ... 1339
D 1339

DireCtAPPIY o 1347
Disable oo 1349
DisconnectFromMachine 1350
DL 1352
DO 00D .. 1353
DragHandle ... 1355
DrawArcPath L 1355
DrawChordPath 1358
DrawEllipticalPath 1360
DrawPath 1361
DrawPiePath .. 1362
DrawS Cale o 1364
DrivelN o Lo 1368
DroPliSt 1370
DO T T 1376
E FUNCUIONS L 1379
EAQe o 1379
Bt 1380
EditFile 1387
EAitINT 1388
EditINICheckBoXo 1392
EditOr 1394
Bl DS o 1397
Enable L 1398
EnableHelp ..o 1399
ENCOde o 1400
EN YDt L 1401
ErrM eSS age 1403
EvaluateAlarm 1404
BV Nt 1405
EX e CUt e . 1406
EXeCUteQUETY 1407

ExecuteQueryCached L 1410

E XD oo 1411
EXPOIrtKRY 1412
F FUNCUIONS 1414
Fail 1414
FALSE 1414
BT 1415
FileDialogBoX ... o 1418
FileFind oo 1423
FileRootModule 1425
FileSiZe 1426
FileStream o 1427
Bl 1433
FiltHIgh 1435
Filt L OW 1436
FiNdACtiON L 1438
FindModem 1439
FindVariable 1440
FirstState 1441
FitOf SOt 1442
FItR 1443
FitS oD o 1445
FLUSH 1446
FlushCache ... L 1449
FOCUSID 1450
FOlder 1451
F Ot 1452
FontDialog ... 1454
ForCeEVeNt 1457
FOrCeS eIVl S 1461
FOrceState 1462
FormalParms 1463
FOrmat 1464
FormatBatchQuUery 1465

Formatinteger .o 1467

FormatNumber 1468
FREAA 1469
FreZe 1478
F I 1479
G FUNCHIONS 1490
GenerateKey oo 1490
Gt 1493
GetAccoUuNntlD o 1501
GetAccouNntIinfo ..o 1502
GetAlarmConfiguration 1503
GetAlarmUList 1505
GetAlarmObjeCt .. L 1509
GetAlarmStateStats ... 1510
GetAlarmStatus ..o 1511
GetApPPINStaANCe oL 1512
Gt BYte 1513
GetClientDiverts ..o 1514
GetClientGUIDS .. . o 1515
GetClientIPs oo 1516
GetClientList ..o 1517
GetClientMode ... 1518
GetClientNodes 1519
GetCodeOD) oo 1520
GetColorInfo ..o 1520
GetConfiguration 1521
GetConNnList o 1524
GetContainerNUMACtIVe .. 1525
GetContainerNumUnacked 1525
GetContributors .o 1526
GetCryptoProvider ... 1527
GetDefaultValue ... 1529

GetDeVICeS 1529

GetFileAttribS 1530

GetFullName . 1533
GetGroupNamMe o 1533
GetGUID 1534
GetHISt oY oL 1535
GetHoStBYNAMe .. 1539
GetlD L 1540
GetlnhibitedServiceList 1541
GetINIProPertY o 1541
GetlNSYNCSerVerS o 1543
GetlNStaANCe L L 1543
GOt 1544
GetKeyYCOUN 1545
GetKeyParam 1545
GetLoadedAppInstance ... 1547
GetLocallP .o 1547
GetLocalNumber . 1548
GethOg o 1549
GetloglInfo oo 1553
GetMachineNoOde .. o 1556
GetMake AP r 1556
GetModuleRefBoX oL 1557
GetModuleTeXt ..o 1559
GetNameOfRecord 1560
GetNeXTKeY 1561
GetNumUNacked ... 1563
GetOEM LAY T .o 1565
GetOneParmT eXt . o 1566
GetOUtPULTYPOS 1567
GetOVerrides o 1568
GetParameter 1568
GetParmT e Xt L 1569
GetParserOffset ... 1570

GetPlatformlInfo ... 1572
GetPoOWerState o 1573
GetReferencedValues 1574
GetRemoteVersion .. 1574
GetRepPOIrtTYPeS o 1575
GetReturnValue L 1576
GetSelected .. o 1576
GetSelectedInfo ... 1577
GO S IV 1578
GetServerChanges ... L 1579
GetServerMode ..o 1581
GetServerNUMber L 1582
GetServerSIDPtr 1583
GetServersListed ... 1584
GetServiCeSCOPe .o 1585
GetSessionContainers 1586
GetSessionContainerTags 1587
GetSessionID L 1589
GetShapePath 1590
GetSocketStatus ..o 1591
Gt S tat L 1592
GetStatement . 1593
GetStatementNUM 1594
GetState T Xt 1594
Gt S At US 1596
GetStreamlength . 1597
GetStream Ty Pe o 1598
GetSystemCoOlOr Lo 1599
GetTagHIStO Y oL 1601
GetTaglist oo 1608
GetTag Y PeS oo 1610

Gt O KON 1611

GetTrajectoryPath 1612
GetTranStOrmM 1613
GetTransitTeXt .o 1613
GetUserlD 1615
GetUserName oo 1615
GetUserNameOfRecord L 1615
GetUserSession 1616
GetValue oo 1618
GetVariableTeXt . o 1619
GetVariableType oo 1620
GetVarMetadata 1621
GetVOICS L 1622
GetWOCPAth 1624
GetWCReVISION . 1625
GetXformRefBOX ... o 1625
GetXMLNOAEAITAY ..o 1627
GOTOOM St 1628
G 1629
GridList 1631
GUI AT C 1638
GUIBIEMaAD oo 1644
GUIBUT O L 1650
GUIChOId 1664
GUIENT DS o 1671
GUIPI® 1676
GUIPIPE 1683
GUIPOIYGON 1689
GUIReCtaNgle .o 1696
GUIT Xt e 1702
GUITransform o 1716
H FUNCHIONS L 1724
HasCompilationErrorso 1724

HasReturnStatement ... 1727
HasUndeployedChanges 1727
He D o 1728
HexToBUf 1730
HighlightModule ... 1731
HistorianConneCt ... 1731
HistorianDeleteRecords ... 1734
HistorianGetData 1735
HistorianGetInfo 1740
HistorianReadRecords 1743
HistorianWriteRecords 1744
HScrollbar . 1746
| FUNCHIONS L 1748
ICONMaAr KT 1748
LF 1750
B S L 1752
HEON € L 1754
TN 1755
IMAGEATTAY o 1756
IM g S W D 1759
IMPOT AP 1761
IM POt RY 1762
I 1764
InsertArray I em 1765
TN S NG 1766
DN 1768
] (o | SRR 1769
Invalid L 1770
INWOrd 1771
IPAdAressList .. L 1772
LS A IV L 1774

ISChild 1776

ISCH @t 1777
ISEQUAl < 1779
ISDICHiONANY 1780
IsDisabled ... 1780
1SLOgQedON 1781
ISMatCh L 1781
IsOnLocalBranch 1782
ISPotentialServer 1783
ISPrimary S erVer 1784
IS RUNNING 1786
ISRUNONIY 1786
ISSeCUred o 1787
IsServiceReadY ... 1787
ISShelved . L 1789
IsSuspended ... 1789
IsUNACKed .. 1790
ISVICS @S SION 1791
K FUNCHIONS L 1791
KeYC OUNT L 1791
KeYFaKe . oL 1792
Y S 1793
L FUNCHIONS 1794
LastSelected ... 1794
LatCh 1795
LaUNGCN 1796
LayerinUsSe . oo 1799
LayerROOt\ S 0P . 1800
LM 1800
LN L 1802
LinearIndicator 1803
LinearLegendo 1807
LiStAAd 1809

LISt O X o, 1810

LISty S 1815
LiStREMOVE 1817
LStV ATS 1818
L 1824
Load DLl . 1824
LoadMIB .. 1827
LoadModule ... 1830
LOCalGrOUD <o 1832
LOCalSCOPE o 1833
L0 Cat e 1834
LoCCaPtUI e 1836
LOCSWItCh L 1837
L0 o 1839
LOgN T EVENt L 1839
oGO 1843
LOOKUD oL 1844
LVl U 1845
M FUNCHIONS L 1846
MACID 1846
MaKeBitMaP .o 1847
MakeBUtt 1849
MakeCall . 1850
MaKeDAG . 1855
MakeEditor (. 1856
MakeFixedBuff . L 1856
MakeNoNnPersistent 1857
MakeNonShared ... 1858
MakePersistent ... 1859
MakeShared . . 1859
Ma P D AW L 1860
MatChKeYS o 1863

MCSMOd 1867
M AN 1868
MM L 1869
MM OOTY 1870
MM OUL 1871
MM T T ACE 1872
Mg 1873
Mg L 1874
MetaData . 1877
N 1878
MK DT 1879
ModemCOUNT . 1880
ModemD eV . 1881
ModemDial ... L 1882
ModemDigits .. 1887
Modem LSt . 1887
ModemMedia 1889
Modem SEream 1891
ModemTransfer ... 1895
ModifyACCOUNT .. 1895
ModifyBitmMap .o 1897
ModifyConfiguration 1900
MOy TaAGS . o 1903
ModifyUserPrivilege ... 1908
ModuleFileName .. 1910
ModuleHighlighted 1911
MONTN 1911
MOVEEdItOr 1912
MoVeSibliNg o 1913
MoOVeWINAOW .. 1913
MUteSOUND 1914

N Functions

NeXtFOCUSID L 1918
NOIrmMal 1919
Normalize . o 1920
NOrMaA T D o 1922
N Ot 1923
NOtITYVIC 1923
N OW 1924
NP A 1925
NumericParameterEdit 1927
NUMINSEANCES 1929
NUMPAIMS 1930
NumSelected 1930
NUM S @S 1931
NumVariables . 1931
O FUNCHIONS 1932
OB .. 1932
ODBCBegIiNTraNns ... e 1940
ODBCCOMMIT 1942
ODBCConfigureData ... 1943
ODBCCONNGCT 1947
ODBCDISCONNGCT ... o 1951
ODBCRoOIIback ... o 1952
ODBCSOUICES ..o 1953
OB S AU 1954
ODBCTables .o 1955
OFfNOIrmMal L 1957
NS 1957
OPChaNge 1958
OP S IV 1960
O 1967
Ut 1968

OwningModule . 1973
P FUNCHIONS 1974
PaCK L 1974
PackParms 1978
PaCkRPC 1979
PAdAresSEN Y oo 1980
PAIM P O Iy 1983
Pal S At US 1986
ParaAmM et O 1987
ParameterEdit ..o 1989
ParameterS et 1992
PAreaSeleCt o 1992
ParentModule ... 1995
ParentOb et .. L 1996
ParentWindow 1997
ParmToBUTT 1998
ParserSRO o 2001
PasteObjeCtS o o 2002
Pt 2002
Path D AW L 2003
PatternMatch .. 2005
PCheckBOX ... o 2006
PCOlOFEIt . 2009
PColorSelect .. 2012
PCoNtributor 2015
PDrOPliSt o 2018
PEditfield .. 2023
PEditNAME 2030
Peek S tream o 2031
PN 2032
PenNding ..o 2033
PersiStentSize o 2034

PHUES el Ot 2037
P K 2039
PickValid 2043
PID 2044
PI i L 2050
PIPAdressList . .o L 2051
PIPLiStenerGrOUD .. . o 2054
PP L 2056
PIpeS T eaM L 2057
PiXelCOlOr 2058
P At O M 2059
P Y o 2062
P Ot 2064
PlOtBUT 2072
PlOtXY 2080
PMultiCheckBoXo 2088
PO Nt 2090
PointerToBUTf L 2091
POINTLI St L 2094
PO U L 2095
POVEITIde . 2096
P OW 2098
PPageSeleCt . 2099
PPP D Al . 2102
PPPHaANAIeS 2104
PP P S atUS o 2107
PRAdiOBULIONS o 2108
PN 2110
PrintDialogBoOX ... o 2112
PriNtLiNe 2115
P i O Y L 2116

PriorityWeight 2118

PrOCINT O 2118

PrOfile 2119
PrOgresSBar L 2121
P S O N 2122
P S @Bt . 2125
PSelectObject ... 2128
PSS PINDOX 2131
P YO o 2135
PTYPEeTOggle o 2137
Q FUNCHIONS o 2141
QUIEtLOGON 2141
R FUNCUIONS L 2142
Radiallndicator ... 2142
Radiallegend 2146
RadioBUttONS .. L 2148
RN 2151
ReAd 2152
ReadBloCK ... 2153
ReadConfiguration ... 2154
ReadINI L 2156
ReadINIProperties ... 2158
ReAdLOCK . L 2159
ReadPropertiesFile 2161
ReadSectINI 2162
ReAAX 2165
REAAXY L 2166
RecommendAlternate 2168
RecommendPrimary ... 2169
ReCOrdProOPeItY oo 2170
REdir Tt L 2172
Register (Alarm Manager) ... 2173
Register (Modem Manager) ... 2174
Register (RPC Manager) ... 2177

RegisterCustomTable 2180

ReleaseloCk . 2187
RemoveParameter 2187
REMW S DL 2188
ReNaAM e 2188
REPIACE L 2189
ReplaceStatement ... 2191
REePOIE O 2192
RepoSubscribe ..o 2195
RS O 2195
ResetPaArmM 2196
ResUItFOrmat . 2197
RESYNCDOC < 2198
ROEU N L 2198
ROV S 2200
RibboNCMd .. 2201
RibbonContextUl ... 2202
RibbonGalleryltems 2203
RibbonPersistState 2204
RibbONSetPrOPertY ..o 2205
RN DT 2209
ROOtTranstOrm L 2210
ROOtValUe 2211
ROOtWINAOW 2212
RO At 2213
RTIMEOUL 2214
RUNFIleNamMe 2216
RUNFIleVersioNn 2216
RUNPACK 2217
S FUNCUIONS 2218
S AV 2218
SaAVEHISTOTY 2229

SaAVEIMAG e L 2233

SaveModule . 2235
SCale 2235
SO o 2237
SCOPELOCAl - L 2239
S DOV 2240
SECONAS 2241
SectionControl ... 2242
SecurityCheck ... 2249
SO 2250
SelOCt AT A L 2251
SelectCodePointer ... 2252
SeleCtDAG .o 2253
SelectGraphiC . oo 2254
SelectHandle 2255
SelectHandleNum 2256
SelectPath 2257
Sl 2257
SN 2258
SendMail L 2262
SerBreak o 2266
SerCheck . oo 2266
SerialNUM 2268
SerialStream 2268
SO N 2273
S N 2274
SO 2275
ST ROV 2276
SEIR TS 2277
SIS eNd L 2278
SO S T ESC L 2280
S S ING L 2282
ServerList o 2284

SetAlIBlOCKS . 2288
SO BT L 2289
SO BY e 2290
SetCIOCK 2291
SetCode T eXt <L 2292
St U SO 2293
SetDDES Vel 2295
SetDefault o 2296
St DIV 2296
SetEditMode 2297
SetEnable 2298
SetFileAttribs o 2299
SetHandle . 2300
SetHEID o 2300
SetINIPrOPeItY oo 2303
SetlnstanceNamMe .. 2304
SetlnstanceRefBOX 2305
SetKeyParam o 2307
SetLibrary oo 2309
SetModuleRefBoX 2309
SetModuleTeXt ..o 2312
SetOneParmT eXt . 2314
SetOPCDaAta . L 2314
SetOVerTide L 2316
SetParaAmMe e 2317
SetParmM T Xt 2318
SetParserParm 2319
SetRefRECt 2320
SetRemoteValue ... 2321
SetReturnValue 2322
SetShelved ... 2323

SetSyncComplete ... 2325

SetTranSter L 2326
SetTransitTeXt .o 2327
SetVariableClass ... 2328
SetVariableTeXt . . 2329
SetVariableType ..o 2330
SetVarMetadata 2331
SetViCPaArmM S 2332
SetW S DL 2334
S tX L O 2336
SOtY L O 2336
ShiftStream L 2337
ShOWLEXICON L 2338
SNOWPAG e 2339
SilenceSound ... L 2340
SimpleOpChange 2341
SimulateMouSse o 2342
SN 2344
SiZeWINAOW 2345
S Y 2346
SOCKetALtribS o 2348
SocketPingSetUp .. o 2350
SocketServerEnd 2351
SocketServerStart 2352
SoCKetWalt 2354
SO L 2355
SO AT Y o 2358
SOUN L 2361
S PAWN 2363
SPCAK L 2364
SpeakToFile 2368
SPINDOX 2372

SplitListSelector . .o 2381

SplitPath 2383
SplitTagSelector . o 2385
SQLQUETY 2386
SOt 2391
SR 2392
) 2 1 o SRR 2401
S ANt TG 2402
S At i St 2408
StatementlinstanCe ... 2408
StateNaAM e 2409
S AtiCS I Ze 2409
StaAtSWIN L 2410
S D oo 2413
S O o 2414
Str M 2414
StreamENd .. 2415
St M 2416
StrUSTITY 2418
S L N 2419
ST UGCE 2419
SubStatementindeX ... 2420
SUB S 2421
SUM 2422
SUMBUTE 2423
S 2424
SystemMSelf L 2433
T FUNCHIONS L 2433
TableSyNch ..o 2433
TG 2435
TaglconMarker .. 2437
AN 2438

TempFileStream ... 2440
T Xt 2441
TexXUATriIDS 2443
T X BOX 2444
TeXtIP2Bin 2446
TextOff st L 2447
TeXtSearCN L 2447
T eXtSIZ 2449
TGO 2449
Thread oo 2457
ThreadHistOory ... 2459
Threadldle . 2460
Threadlist ..o 2461
ThreadName . 2461
ThreadPriority ..o 2462
T 2463
TimMeArTiVed 2467
TimMeEeOUL 2467
TiMEZONE 2469
TimeZoneLlist .o 2471
TOdaAY L 2471
TODB . 2472
TODBCBegiNTraNns o 2475
TODBCCOMMIT 2477
TODBCCONNEGCT ..o 2479
TODBCDISCONNECE ..o 2481
TODBCRollback ... 2482
TGl 2484
T O L OWeY 2485
TOOIBaAr L 2486
TOUP PO o 2487

Trajectory

TraNSaACtiON 2489

TransactionCached 2490
TransferFields . 2491
T D 2492
TRUE 2493
TS erVer st 2493
U FUNCHIONS e 2494
UIErrorT ol eXt o 2494
UNPack .o 2495
UnpackData ... 2498
UnpackParms o 2500
Unregister (Alarm Manager) ... 2501
UnselectGraphiCs ... 2502
UnselectObject ... 2503
UnTransform oo 2503
UpdateCoordinates ... 2504
UserCredChange ... 2505
UserLogonDialog 2506
V FUNCUIONS 2507
NValid 2507
ValidateEmailAddrs ... 2508
ValUBTY PO o 2509
VarAttribULesS 2509
Variable .o 2510
VariableClass ... 2512
VAl AN G 2513
VO S O L 2514
VersionRequired 2515
VT O X 2516
VICINTO 2518
VICM S S A L 2519
VoiceTalk .o 2520

NS CrOl AT 2522

W FUNCHIONS 2527
WatCh L 2527
WatCh ATTAY L 2528
WatchForTagChanges ... 2530
WCSUbSCribe o 2530
WhileLoop .o L 2532
WinBUt O 2533
WinComboCtrl ... L 2536
WiNdoOW Lo 2539
WindowCloSe 2546
WindowOPptioNS . L 2547
WindowsLogon o 2551
WindowSnapshot ... 2552
WINEditCrl 2553
WinLocSwWitch . 2556
WinMatchKeys .o 2559
WinShiftKeYS oL 2561
WinTooltipCtrl .o 2563
WiNX L OC 2565
WiNY LOC 2566
WK S LISt 2567
WS Path 2567
WK S S AU 2569
WKStalNTO L 2571
Wi 2572
WriteHIS oY Lo 2574
WrritelIN 2577
WritelINIProperties . L 2579
WHteLOCK .o 2579
WritePropertiesFile 2580
WriteSeCtINT 2582

X FUNCHIONS 2585

XMLAdASchema 2585
XMLCloneNoOde . oL 2586
XMLCreateNoOde ... 2587
XMLDeleteMember . 2588
XMLGetNOAe 2589
XML ParS e 2590
XML ProCeSSOr 2592
XMW 2592
KO o 2594
Y FUNCUIONS 2595
Y Al 2595

Y L O 2595
Z FUNCHIONS 2596
LBl 2596
LB OX o 2598
ZBUL ON L 2599
ZColorChangeo 2601
ZEditField .o 2602
ZGrid L 2604
N L 2606
P P L 2607
T Xt 2609
INA@X 2611

Scripting and Automation

Intended audience: Advanced developers who want to create new fea-
tures for their application.

VTScada includes (and is largely built with) its own programming lan-
guage. You can use this language to create unique tools for your applic-
ation development work, including custom tags, script applications,
wizards and more. Support is provided for all the features you would
expect in a programming language, and for many features that are
unique to VTScada.

Related Information:

...Start Here for Scripting and Automation - For those who are new to
VTS scripting. Covers the fundamentals and helps you get started with
tag-based expressions.

...The VTScada API - The complete introduction to the VTS language
...Basic Programming Tasks - Examples of how to achieve common goals.
...Custom Tag Types - Creating new types of tags from scratch.

...Programming Parent Tags - Included for historical reference only.
Obsolete.

...The VTScada Wizard Engine - Create user-interface wizards for cus-
tomization tasks.

...Communication Drivers - How to write a driver.

...Programming Other Modes of Communication - Alternative |/O
options.

...Cryptography in VTS- Guide to cryptography functions that you can
use.

...Web Services and XML - How to use SOAP services to create an auto-
mated interface to VTScada.

...— Writing your own WAP modules.

...Alarm Manager - Guide to the features and tools in the alarm man-
ager.

...Historian - APl and Queries - Guide to the features and tools in the his-
torian manager.

...Modem Manager Service - Guide to the features and tools in the
modem manager.

...Socket Server Manager - Guide to the features and tools in the socket
server manager.

...Security Manager - Guide to the publicly accessible tools in the security
manager.

...Time Synchronization Manager Service - An overview of the time sync.
service.

...RPC Manager Service - Detailed guide to remote procedure calls.

...Debugging and Analysis - Instructions for using the various tools
included with VTScada.

...Function Reference - See the VTScada Function Reference.

...Application Properties - See the VTScada Admin Guide. Control of your
application's appearance and behavior through settings.

Start Here for Scripting and Automation

If you are exploring the scripting and automation tools in VTScada, it is
likely that you will use some combination of the following components to
reach your goal.

On schedule, or in response to conditions...
« Atag's value changes or reaches a set point.
« A settime arrives, or an interval of time passes.

« An operator acts, including button-presses and security events.

... perform a calculation...
« Calculate values or words.

« Store avalue.

... and do a task

« Display a message.

o Run areport.

« Setor write a value.

. etc.
Before starting to write script code, you must decide where to place it.
You have a choice between three options:

« Expressions are written inside tags. The expression uses a sub-set of the

scripting language to calculate a new value, and relies on the tag to save or
write that value. Choose this option for most tag-related automation.

« A module can make use of the entire scripting language and is stored in a
file, located in your application folder. How it is used is determined by how it
is declared, whether as a tag type, a servicel, a report, etc. Choose this
option for reports, custom tag types that cannot be built in the Tag Browser,
enhanced security monitoring, etc.

1A VTScada module that is continuously running, usually waiting for an
event to trigger some action.

« A Script Tag combines the two, linking a module to a tag. The linked tag is
used either as a data source, a trigger, or both. Choose this option for tag-
related automation that requires tools from the entire VTScada scripting lan-
guage.

The following list of topics will provide everything you need to get star-
ted with scripting and automation:

Related Information:
Where to write your code...

...Expressions in Tags and in Widget Properties
...Script Code in Modules

...Configuring a Script Tag
On schedule, or in response to conditions...

...Test Conditions - Compare values and select which block of code to
run.

...Access a Tag Value or Application Property - Tools for accessing applic-
ation data.

...Mark the Passage of Time - Tools to run your code on time.

...0Obtaining User Input - Tools to watch for buttons and key-presses.
Perform a calculation and do a task.

...Math Functions in Expressions
...Text Functions in Expressions
...Time and Date in Expressions
...Examples of Expressions

...The VTScada APl - Complete reference to the VTScada scripting lan-
guage.

...Basic Programming Tasks - How to build common module types.

Quick Reference Guide for Expressions

This topic is for people who have some programming experience and
only want to see how fundamental tasks are done in the VTScada expres-
sion editor. Other topics in this chapter provide a comprehensive ref-
erence. You may also find the topic Expression Examples useful.

Reference Tag Values:
Tag values are referenced in expressions as follows:

[tag name]

Tag name must be the actual tag name string. This is a robust form to
use since it accommodates tag names with spaces and other punctuation
symbols.

Example: Averaging two tag values...

([Pump1 FlowRate] + [Pump2 FlowRate]) / 2

Reference Other Tag Parameters:

You can access parameters other than Value within tags. A few common
ones such as ScaledMin and ScaledMax might be useful to your expres-
sions.

Format:

[Tag Name]\ParameterName

Parameters will vary from one tag type to another and there is no guar-
antee that they will not change in future versions. Nonetheless, some
common parameter names are as follows:
« All tags:
\Value
\Name
\Area
\Description
\Questionable
« Analog tags:
\Scanlnterval
\UnscaledMin & \UnscaledMax

\ScaledMin & \ScaledMax
\Units

« Digital Input tags:
\BitOAddress
\Bit1Address

« Digital Output tags:
\Address
\DataSourceTag
You can use the Source Debugger application to discover what variables

are available within any particular tag in your version of VTScada.

Comments
Comments are always useful and can be located anywhere in an expres-
sion. They are enclosed in braces: {This is a comment }

Substitute a default if a tag’s value is INVALID
A communication error or other event may result in an expression break-
ing when a tag’s value goes to INVALID. You can substitute a default
when this happens by using the PickValid function. This has the general
form: PickValid(expr_1, optional_expr_2..., some_guaranteed_constant).
For example, the following will return a zero if the flow rate Analog
Input tag is invalid:

Pickvalid([Pump2 FlowRate]), 0)
Constants
Constant values include text and numbers (integers, floating point, bin-
ary and hex). These can be part of an expression as follows: Concat
("Level is ",[TankLevel_1]) or [TankLevel_1] / 3.
The value returned by an expression is whatever was last calculated. If
the expression contains nothing but a constant, then that is what is
returned. This is useful for displaying one of two messages depending
on current conditions (see the example for the If Else Operator)

Basic Math Operators
« + Addition
« —Subtraction

« * Multiplication

o / Division
Use parenthesis to control the precedence of operations:
2+ 3) /4
Value Comparisons & Relational Operators
e < Lessthan
« <= Less than or equal to
« == Equivalent
« => Greater than or equal to

o > Greater than
Caution! Note that the test for equivalency is two equal signs, not one.
Here is an example of good code:

[valveFlow] == 1 ? "on" : "Off"
The following is an example of a very serious programming error:
[valveFlow] = 1 ? "on" : "off"
Boolean Comparisons:
. && And
« || Or
If-Else Operator

o .7
test expression ? expression if testis true : expression if test is false

Example: Return a warning message if a tank level exceeds 90...

[TankLevel] > 90 ? "Dangerous level!" : "Level is safe"

Note that you can cascade these by adding new If Else operators, instead

of the simple text constants shown in this example.

Cond Function

The Conditional function does the same thing as the ?: (If Else) operator.

The only difference is in how it is written: Cond(test_expression, expres—

sion_for_true_case, expression_for_false_case)
cond([TankLevel] > 90, "Dangerous level!", "Level is safe")
Mathematic functions

Sqrt - Square root

Log - Logarithm

Min - Minimum of a list of values

etc. - see: Mathematic Functions

Read application property values

To access a value from the Settings.Dynamic file, you can use the fol-
lowing general form:

\Code\VarName

Expressions in Tags and in Widget Properties

An expression is "any calculation that returns a result".

In more practical terms, an expression is something that...
« Can combine or compare multiple tag values to better monitor your system.
« Can signal a need for control actions, based on any set of system conditions.
« Can take into account the time, date, logged-in operator, system status, etc.

« Can extend the capabilities of VTScada to meet any of your SCADA needs.

General steps to create an expression:
In any VTScada tag configuration field that has the options, Constant, Expres-
sion, Tag...

i =

T New Alarm Properties ==

ID Trigger Actions Display

Triggered by

*Murneric : Invalid @
_) Constant D) Tag
Functien
Equal To = ar== v]
Setpaoint

1
® Constant D) Tag
On Delay (s) Off Delay (s)

0 0
. Constan: Tag . Constan: Tag
Deadband

0

® Constant : Tag

QK] [Cancel

1. Click the Expression option to select it.

2. Click the expression editor button.

*) Expression) Tag

3. Enter an expression into the editor window.

T Expression @

Enter Mew Exprassicn
2+2 -

[oK][Cancel]

The expression editor window can be re-sized if required for a longer expres-
sion.

4. Click OK to save your work and return to the tag configuration.

Note: You cannot save an expression that contains a syntax error. For
example: unbalanced parenthesis "2 + (2/3", or using an operator
without an operand "2 + "

Where to use expressions:

While expressions are most commonly used in Calculation tags, they can
also be a data source option for a wide variety of other uses. For
example, the title of a parametrized page, or...

« Analog Control, I/0 tab configuration:
Data Source

[RainfallRate] > 20 &8 [PondLevel] > 20 :0 El[=

Constant ® Expression Tag

® Write cutput when Data Source changes
Use Data Source for display only

« MultiWrite tag, activation tab configuration:

1o Write List Activation
Activation Trigger
[PumpStatus] ==1 && [TankPressure] = 50 : 0 EI
Constant ®) Expression Tag

« Alarm tag, trigger tab configuration:

ID Trigger Actions Display
Triggered by
[Fuel Tank 1 Volume] + [Fuel Tank 2 Volume] : 41 (M
Constant ® Expressich Tag
Function
Less Than « - |
Setpoint
5
® Constant Expressicn Tag

Note: When looking through the reference guide for a function to use

in an expression, note the usage line of the definition. Many functions
are restricted to certain usages.

Related Information:

...Syntax Rules and the Expression Editor
...Quick Reference Guide for Expressions
...Access a Tag Value or Application Property
...Examples of Expressions

Related Functions:

...Math Functions in Expressions
...Comparing Values in Expressions

...Time and Date in Expressions

...Text Functions in Expressions

...Triggers and Events in Expressions

Script Code in Modules

Much of what you see in VTScada was written using the VTScada scripting
language. You can leverage the power of this language to write new func-
tions, reports, services, user-interface features and much more.

Like any programming language, there is a great deal to learn. You
should start with simple tasks and build your knowledge as you work
towards more powerful features. Please begin with the following topics:

Related Information:
...The VTScada API
...Basic Programming Tasks

...Create a New Script Application

Configuring a Script Tag

Script tags are one of the standard types built into VTScada. The script
tag links a VTScada script code module to another tag's value. It is used
to go beyond the power of in-tag expressions to allow the use of the full
VTScada scripting language inside a tag.

The module for a script tag must have two parameters, as follows:

Pointobj { object value of AI to monitor };
Scriptobj { Script object };

PointObj is the tag whose value is monitored and used by the Script tag.
This matches the first field, "In Tag Scope", found in the Execute tab of
the Script tag's configuration panel.

ScriptObj is used internally to link to your script tag. Whatever cal-
culation is performed in your module must assign a value to ScriptOb-
j\value. This enables the module to pass its calculated value back to your
Script tag.

Related Information:

...Script Tags - Example and details for creating a Script Tag can be
found in the VTScada Developer's Guide

Syntax Rules and the Expression Editor

Expressions are written inside an expression editor. They are not typed
directly into a tag configuration field. To open the editor, select the
expression option below a field, then click the box as indicated.

.

T Expression @
Enter Mew Expressicn
2+12
| oK | | Cancel |

An expression can be as simpleas 1 + 1, or even just "1". Expressions
can be as simple or complex as you need, but must always return exactly
one value. An expression that uses a variety of calculations on a mul-
titude of tags is perfectly acceptable, so long as the final result is to find
one value.

For example, the following expression is legal. (Multiple calculations on
multiple lines, returning one result. Counts pump starts.)

Latch(Pickvalid(Edge([Pumpl], 1), 0), watch(O,
[PumpCounter]))

? (value + 1)

: Pickvalid([PumpCounter], 0)

The next example is not legal (calculates two separate results).

1+ 1
2 + 2

If a valid expression has been entered, then when you close the editor
you will see the expression displayed, followed by a colon and the cal-
culated result of the expression. You must click on the expression
editor’s OK button in order to see the result of your expression - there is
no preview for the calculation.

Data Source
1+1:2 |i E

Constant) Expression Tag

An expression result

Note: Expressions are always examined by VTScada for syntax errors
before they are saved. If the expression doesn't follow the rules, then
you will be notified that a problem exists. Incorrect expressions are not
saved.

VTScada follows syntax rules that are common to most programming lan-
guages. The following is a quick overview for those who have not studied
programming:

« Every opening parenthesis must be matched by a closing parenthesis. (2 + 2)

« Text must be enclosed in quotation marks. Text not enclosed in quotation
marks is taken as the name of a variable. X = 2 + 3.

« Every opening quotation mark must be matched by a closing quotation
mark. "Hello World"

« To display a quotation mark in text, use a doubled set of quotation marks:
"The computer said, "'Hello World™. "

o Operators are symbols such as plus and minus signs. Operands are the
things being operated on by the operators. In the expression 2 + 2, the digits
"2" are operands and the "+" is an operator.

« You should always put a space between each operator and operand.
While not strictly required, the spaces will help you avoid errors and
will increase the clarity of your code. Operands must always be sep-
arated by spaces.

« Extra spaces are ignored.

« Line breaks are ignored, except that they count as a space between
operators and operands.

« There is a precedence to the order in which mathematic operations are per-
formed (multiplication before addition), but you should use parenthesis to
improve clarity and to explicitly control the order of the operations. ((2 + 3)
* 5). Evaluation proceeds from the inner-most sets of parenthesis to the
outer-most, thus in this example the 2 and 3 are added together before the
result is multiplied by 5.

Test Conditions

"If it is raining, then wear rubber boots, otherwise wear shoes."
Conditionals are used to compare values and then direct which actions to
take based on the result.
A conditional is built using the following parts:
« A keyword or symbol that indicates "this is a conditional”. In VTScada, this
takes the form "IfElse", "IfThen", "Cond" or the in-line, " ? : " syntax.
« A test that can evaluate to TRUE or FALSE. This may be a comparison "A >=
B", a function that watches the clock TimeArrived(x)", or it can simply be "A"
if the value of A can change between zero (FALSE) and non-zero (TRUE).
« The code to run, depending on the result of the test.
In an expression, you may use only IfElse and the in-line ?: conditional.
In a module, you may use these plus IfThen, IfOne, IF, and Cond.
In computer code, there is a special value called "Invalid". It is the value
assigned to a variable when no other value can be calculated - for
example, x divided by zero. Invalid is not zero or non-zero, it is neither
TRUE nor FALSE. All comparisons to Invalid return Invalid.
To deal with Invalid, you have two tools: PickValid() and Valid(). PickValid
() takes a list of values and returns the first that is valid. Thus, if you are
comparing the value of X, and there is a chance that X may be invalid,
you can substitute a known value such as zero using the expression, Pick-
Valid(X, 0), thus ensuring that a valid value is always used in the com-
parison.
Valid(X) tests whether X is valid or invalid, returning TRUE or FALSE.

Related Functions:
. IF

.. IfElse

.. IfThen

.. IfOne

.. Cond

...Inline If-Else.

Related Information:
...Triggers and Events in Expressions
...Comparing Values in Expressions

... Boolean Logic Operators

Comparing Values in Expressions

Any comparison will return 1 as the value of the expression if the com-
parison is true and O if it is not.

The following operators are provided to allow you to compare one value
to another value in an expression.

Symbol Meaning

> Greater than

< Less than

n_mn

== Equivalent (Notice the double equal sign. A single "=" won't do)

I= Not Equivalent

>= Greater than or equal

<= Less than or equal

An example of a comparison expression is as follows:

[TanklLevel] > 50

The preceding is a complete expression. The word "IF" is not required,
and indeed is not allowed.
Simply returning 1 if a comparison is true and 0 if it is false is useful (a
trigger for alarms is one example), but you can also provide your own val-
ues to be returned instead. This is done with an If... Else in four steps, as
follows:

1. Puta question mark after the comparison to indicate that you have finished

the IF part of the expression
2. Put the value or expression you want returned if the expression is TRUE
3. Puta colon to indicate the beginning of the ELSE part.

4. Putthe value or expression that you want returned if the comparison is
FALSE.

For example, the following expression will display the words "Within safe
limits" while a tank’s level is below 50%, but will display "Above safe lim-
its" when the value rises above 50:

[TankLevel_1] <= 50 ?
"within safe Timits" :
"above safe 1limits"

You are not restricted to constants for the values that are to be returned.
Any valid expression may be used for each of the two cases.
You could write the same expression using the IfElse function as follows:

;fElie([TankLeve1_1] <= 50, "within safe 1limits", "above safe T1im-

its

Multiple Comparisons

Often, you will want to check more than just one tag. For example, if a
tank level is above 90% AND the safety valve is closed, then open the
valve. (If the valve is already open, there's no point opening it, and if the
tank level is below 90% you also don't want to open the safety valve.)

You can join as many comparisons as you want together with the sym-
bols && (which means "AND") and || (which means "OR"). Don't forget that
you can use parenthesis to make it clear which value is being compared
to which.

The following example will return true only when both the level in Tank 1
and the level in Tank 2 exceed 80%

[TankLevel_1] > 80 && [TankLevel_2] > 80

The next example returns true whenever either tank exceeds 80%
[TankLevel_1] > 80 || [TankLevel_2] > 80

Note: Remember! Use a double equal sign for comparisons "==". A
single one means "assign” not "compare”.

Triggers and Events in Expressions

There are many functions that can be used to watch for a triggering
event that will start your code running.

When used in a tag-based expression, these functions will remain
latched after they have been triggered. Once the time has gone by, the

value has been reached, or the key has been pressed, your code will run,
but will not run again the next time. To reset the trigger for the next
event, you will need the Latch() function in your tag-based expressions
(description follows).

In your module-based script code, this does not apply. There is still a
use for the Latch() function, but many functions will automatically reset
themselves. This is noted in each function description.

Example:
The goal is to create an expression that toggles from TRUE to FALSE and
back again, switching every second. So, every two, four, six, eight ...
seconds, it becomes TRUE and every 3, 5, 7, 9 ... seconds it becomes
false.
AbsTime(1, 2, 0) will switch to TRUE on every multiple of a two-second
interval. But, in a tag-based expression, once it triggers to TRUE, it will
simply stay there. Let's add a Latch() to take care of this.
The Latch() function takes two parameters: when the first becomes TRUE,
the Latch() returns TRUE and the second parameter is reset if it was
TRUE. When the second becomes TRUE, the Latch () returns FALSE and
the first parameter is reset if it was TRUE.
The answer to the problem is:

Latch(AbsTime(1l, 2, 0), AbsTime(l, 2, 1))

Both AbsTime functions cycle every two seconds, but the second is offset
by one second. The first parameter switches the Latch on every two
seconds. The second switches the Latch off one second later, and resets
the first parameter so that it can switch back on.

Related Functions:

... Latch

...Latching and Resetting Functions
Related Information:

...Comparing Values in Expressions

...Access a Tag Value or Application Property

...Mark the Passage of Time

...Obtaining User Input

Access a Tag Value or Application Property

When writing an expression within a tag, you can obtain and use the
value of any tag in your application using the following syntax:

[TagName]

This creates an absolute reference to the tag matching that name. If you

have a hierarchical tag structure, then you should provide the full name

to the tag. Relative paths can also be built using dots and backslashes.

For example, to refer to a tag two levels up in the hierarchy, use:
[..\..\TagName]

The "value" property is assumed by default. Any other property of the tag
may be accessed by adding "\PropertyName" following the [TagName].

[TagName]\Area
[TagName]\ScaledMin

Property Values
Also within a tag expression, application properties can be read as fol-
lows:

\Code\PropertyName
For example, if you want to find the total value of three analog inputs
that are monitoring tank volumes, you might write the following expres-
sion:

[Tankvolume_1] + [Tankvolume _2] + [Tankvolume _3]

Note: Caution: Tag values may be "Invalid", especially at system startup.
The result of any calculation on an Invalid is always Invalid. (For
example, 1 + Ois 1, but 1 + Invalid is Invalid.)

To avoid errors and the possible repercussions of returning an unwanted
Invalid value, you can use the PickValid function to supply a default

value. The PickValid function examines a list of values that you provide
as parameters. The first value that is not Invalid will be the one returned.

Pickvalid([Tankvolume_1], 0)

- Returns the value of TankVolume_1 when that tag’s value is Valid
- Returns 0 when the tag’s value is Invalid.

The expression shown earlier that calculates the sum of three tank
volumes can be written as follows:

Pickvalid([Tankvolume_1], 0) +
Pickvalid([Tankvolume _2], 0) +
Pickvalid([Tankvolume _3], 0)

Should any tag’s value go to Invalid for any reason, this expression will
substitute O for its value.

Note that the PickValid function should be used with care: There may be
instances where it would be better to return an invalid rather than an
incorrect value.

If you are writing script in a module, rather than an expression, use the
following syntax to refer to a tag's value:

Scope(\VvTSDB, "FullTagName")\value
It is often worth the extra effort to find and use the tag's unique ID value

rather than its name. This ensures that your code will continue to work
after a developer moves or renames the tag.

Scope(\VTSDB, "... tag's unique ID value...")\Value
Related Information:

...Relative Tag and Property References - addressing parent-child tag
structures

Relative Tag and Property References

The tag that you are referencing in your expression may not be at the
same level in a parent-child tag structure as the tag that contains the
expression. There are several ways that you can specify the relationship
between tags.

Note: In older versions of VTScada, the standard method of referencing

a tag was to use the expression, "Variable("TagName")\value". You may

type that if you wish, but upon saving the expression, it will be replaced

with the most appropriate of the following for the situation.

Code References...
[TagName] Open Relative Path. References the closest tag with that
name.
[ParentName\TagName] Finds the closest tag with this match. Common ancestors

above ParentName need not be included

[*ContextName\ChildName

Ancestor Relative Path. References a sibling tag's value,
within a user-defined type. This format works across mul-
tiple instances of the type, always finding the sibling tag
in the local instance.

[..\..\TagName]

Fixed Depth Path. Finds the tag having that name, at dis-
tance above the current tag, as specified by the number of
.. repetitions.

[<\Full Path\Tag Name>]

Absolute path. Equivalent to providing the GUID of the tag
in question. This will continue to refer to the same tag,
even if that tag is moved or otherwise renamed.

The full path must be provided so that the correct tag can
be found. If that tag is moved, the path will update auto-
matically. This form of address is seldom used in a user-
defined type since it refers to one specific tag and is not
relative to each instance of the type.

[*TagType]

References the nearest ancestor of the specified tag type.
Valid options include: *Port (nearest port tag ancestor),
*Device (nearest driver tag ancestor), *Trigger (nearest Trigt
ger tag ancestor), *Numeric (nearest numeric tag
ancestor), and *SQLLoggerGroup. If the current tag is of
the same type as the one being referenced (common with
*Numeric) then it is necessary to explicitly point away
from the current tag by adding "..\".

Use this to create expressions that can be transferred
from one parent to another, and will automatically find the
nearest appropriate parent tag. For example: [*Driver].

Assuming there are several stations, each with its own par-
ent driver tag, this expression can be taken from one sta-
tion to ensure that 1/0 tags are linked to the appropriate

driver.

PropertyName Uses the value of that property, as defined in the current
tag.

..\PropertyName Uses the value of that property, as found in the parent tag.

Will automatically continue searching upwards through
the tree for an ancestor that has this property.

Mark the Passage of Time

The functions listed here can help you write code that will execute on

schedule. Developers who are creating tag-based expressions should

note that the Trigger tag is designed for exactly this purpose, and in cer-

tain cases may be easier to use than an expression.

AbsTime(Enable, Interval, Offset)

When enabled, becomes true when any mul-
tiple of Interval seconds since midnight has
passed. Times that are not evenly divisible by
Interval can be obtained by adding an offset.

CurrentTime(Type)

Returns the number of seconds since Jan 1,
1970. Set Type to 2 for UTC time.

TimeArrived(UTCTime)

Becomes true when the specified time (in UTC
format) arrives.

RTimeOut(Enable, NumSeconds)

A cumulative timer. Becomes true when NumSe+
conds have passed.

TimeOut(Enable, NumSeconds)

A continuous timer. Becomes true when an
uninterrupted NumSeconds have passed.

Related Functions:
...AbsTime

... CurrentTime

... TimeArrived
... TimeOut
... RTimeOut

Obtaining User Input

The tools listed in the topics of this chapter will help you watch for user
input, whether to request information or to respond to control events.
Choose the appropriate tool for the task: for much application devel-
opment work, it is far easier to use the widgets designed for control and
output tags than to write a user interface from scratch.

For programmers who are building dialog boxes for tag configuration: In
addition to the tools listed in this chapter, VTScada provides a set of
tools designed for use in tag configuration dialogs. These are the so-
called, "P-Tools," where "P" refers to "parameter editing".

Note: Tab order between user input controls follows their z-order
(that is, the order of the statements within the state), rather than their
Focus ID value.

Related Information:
...Mouse Input
...Keyboard Input
...Selection Input

...Placing Focus on an Object vs. Selecting an Object

Mouse Input

Several VTScada functions are designed to accept input from the user via
the screen pointer (mouse). Some, such as Pick, and ZButton are
designed to watch for click actions. Others, such as Target, XLoc and
YLoc simply watch the location of the pointer, and can be used to trigger
an action when the operator moves the pointer to a defined area.

All of the GUI-graphics commands (GUIButton, GUIBitmap, etc.) are
designed to watch for mouse input, and will return a numeric value indic-
ating which combination of mouse buttons were used when an operator
clicks on the graphic.

To use these functions, they must be placed in a module that is con-
tained in a window. They can be used as the trigger condition of an

action to allow scripts to be executed when an operator clicks within a
specified area.

Example:
If Target(120, 50, 220, 80);
[

]

This statement will cause the script to execute whenever the mouse
passes over the target area.

Related Information:
...Keyboard Input
Related Functions:
... Pick

...Click

.. ZButton

.. GUIButton

.. Target

.. XLoc

.. YLoc

Keyboard Input

Keyboard input may be used to allow an operator to respond Y (Yes) or N
(No) in response to a prompt. It is also used whenever there is a need to
prompt for a numeric or text value.

In most operating VTS applications, tags that require user input are
drawn using an appropriate, built-in widget. The tools discussed here

are used in script applications, which do not have access to the tag wid-
gets, or in a heavily customize page of an application. If designing a con-
figuration dialog for a new type of tag, you should use the various P-
Tools, which have been designed specifically for use in configuration dia-
logs.

The most commonly used keyboard functions are MatchKeys and
ZEditField. MatchKeys is typically used to trigger an action when a spe-
cified key or sequence of keys is pressed. It does not display the key-
strokes entered.

The ZEditField function is used to accept text entered by the operator.
Before typing, the operator must activate the object by clicking on the
area of the window where the graphic is displayed, or by pressing the
TAB key to set the focus to that input object.

Related Information:
...Mouse Input
...ASCII Constants
Related Functions:
... Keys

... MatchKeys

... ZEditField

Selection Input

Radio boxes, drop lists, combo-controls and check boxes are all
examples of selection input. For all of these tools, the user is provided
with a selection of options from which they can choose. Also in this
group are tools such as the VTScada color selector.

Related Functions:
.. CheckBox

.. ColorSelect

.. Droplist

.. Listbox

... RadioButtons
... Spinbox
... WinComboCtrl

Usage Rules for Functions

VTScada code runs in two modes: Script or Steady State. Many functions
will work in only one mode. The "Usage" line in each function description
tells you the mode where the function can be used.

Note: Just because a function can be used in a given situation, doesn't
mean that it should be. For example:

* It makes no sense to put a graphics function into a Calculation tag's
expression.

* MatchKeys will capture keystrokes only when used in a window or
page, not in a service or Calculation tag.

* Script-mode functions can be used for optimized tag parameter con-
figuration, but many are not appropriate in that context.

If you are writing...

General Expressions (Calc. tags)
If you are writing an expression for a Calculation tag, or anywhere that

you have the option "Constant / Expression / Tag":

Low Alarm Delay (s)
Mo Expression Entered |E||E|
Tag

Constant

If the function is marked as "Script Only" then you cannot use it here.
If the function works in Steady State, then it will compile when used in a
Calc tag expression, but it may or may not be useful there. For example,

Tag Parameter Expressions - Optimized
Only functions that can be used in Script may be used for optimized tag
parameter expressions. These expressions are evaluated as the tag is

initialized, then not run again during normal operations. You cannot use
Steady State-only functions in this situation.

Tag Parameter Expressions - Not Optimized

Only functions that can be used in Steady State may be used for non-
optimized tag parameter expressions. These expressions are re-eval-
uated whenever any of the parameter values change. You cannot use
Script-only functions in this situation.

Page Code, Services, Reports, etc.
These are full VTScada modules, declared in the application's AppRoot
file. The full VTScada language and function list can be used.

Math Functions in Expressions

The symbols on your keyboard to use for the basic math functions are as

follows:
+ addition
- subtraction

oo
*

multiplication

/ division
There are rules of precedence to control which operations are done first.
For example, multiplication and division happen before addition and sub-
traction. You may wish to use parentheses in order to override the rules
or to make your intentions clear.

4 +3%2:10
(4 +3)*2: 14

There is no limit to how many sets of nested or consecutive parentheses
you can use. Just be sure that for every opening parenthesis, there is a
matching one to close.

The following are a few of the mathematic functions available to your
expressions. For a complete list, see Math functions in the VTScada Func-
tion Reference. (All math functions can be used in an expression.)

Max(X, Y, Z, ...) Returns the variable having the largest value.

Pow(X, Y) Returns the value of X raised to the power of Y.

Sqrt(X) Returns the square root of the value in X.

Int(X) Returns the number with any digits following the decimal point trun-
cated.

Sin(X) Returns the trigonometric sine of X.

Cos(X) Returns the trigonometric cosine of X.

Related Functions:

...Math - Generic

...Math - Rounding

...Math - Trigonometric

Text Functions in Expressions

Expressions can be used to display calculated text as well as numeric val-

ues. For example, you might use the Concat() function to join the value

of a tag or the result of a calculation to a sentence.

A few of the string handling functions in VTScada are as follows. See

String and Buffer Functions for complete descriptions of these and other

functions. (Note: many string functions cannot be used in Steady State,

and thus cannot be used in an expression.)

Concat(a, b, c...)

Concatenates any number of sub-strings into one sentence.
concat("Level of Tank 1: ", [TankLevel_11, "%")

Returns (for example): "Level of Tank 1: 30.35552%"

Concat(" Vviewing Station: ", StationNumber)

Example shows how to set the title of a parametrized page, where Sta-
tionNumber is a text or numeric parameter of that page.

Format(width,

precision, value)

Turns a numeric value into a text string, having the specified width and
precision (number of decimal points).

Format(5, 2, [TankLevel_1])

Returns (for example): "30.36"

Replace(sen-
tence, start,

Searches the sentence, starting at the Start character and continuing for
Length characters, looking for every instance of Find and replacing it

length, find, with Replace. Note that character counting begins with 0.
replace) Replace("This is good", 1, 12, "is", "was")
Returns: "Thwas was good"
(Note that every instance of "is" is replaced. This may have unintended
consequences.)
SubStr(sen- Returns a substring of Sentence, beginning with the Start character and
tence, start, running for Length characters.
length) Substr("on a Halifax pier", 5, 7)

Returns: "Halifax"

Related Functions:

...String And Buffer

Time and Date in Expressions

VTScada counts time in seconds (and fractions of a second). This is use-

ful for calculating how long a pump has been running, but is not useful

for humans to view. Fortunately, VTScada also provides functions that

will translate the raw time into a format that is human-friendly.

Now(interval)

Returns the number of seconds elapsed so far today, updated every
(interval) seconds.

Time(seconds,
format)

Return the number of seconds since midnight in a format that's easier
for a human to read and understand.
Examples:

Time(Now(1l), 2)
Returns: 21:35:00

Time(Now(1l), 7)
Returns: 09:35 PM

Today() Returns the date as a count of days since January 1, 1970.

Date(Daycount, |Turns the result of the Today() function into a format that is easier for a
format) human to read.

Date(Today(), 2)
Returns: 12/25/09
Date(Today(), 21)

Returns: December 25

A partial list of the formatting codes for the Time function is as follows.
For a complete list of formatting codes and for other time-related func-
tions, see Time and Date Functions. (Many time and date functions work
only in Scripts, and thus may not be used in an expression.)

Format Example Code to use
No Time 0
hhmmss 173500 1
hh:mm:ss 17:35:00 2
hr:mm:ss HH 9:35:00 PM 6

The following table provides a partial list of formatting codes for the
Date function.

Value Date Format Value Date Format
0 No date 21 mmm..m d
1 yymmdd 22 mmm yyyy
2 mm/dd/yy 23 mmm..m yyyy
3 mm-dd-yy 24 dd/mm
4 mmm d, yyyy 25 dd-mm

Related Functions:

...Time And Date

Examples of Expressions

The following examples may be adapted to your application, or they may
spark an idea for what you can achieve using expressions.
Simple math. Add two Al tag values together:

[valvelFlow] + [valve2Flow]

Using logic to check conditions. All the tags in this example are Digital
Inputs that will be 1 (TRUE) or 0 (FALSE). In this test, we’re checking
whether either both of Valves 1 and 2 are open, or else if the overflow
valve is open.

([valvelstatus] && [Vvalve2status]) || [overflowvalveStatus]

Limit a return value to be no less than O

Max([valvelFlow], 0)

Write a 1 when a test is true, otherwise write nothing. The following
example takes advantage of the fact that VTScada will not write an
Invalid.

If the following were being used to control a pump for example, it would
turn the pump on when the flow rate went above 1500, but would not
turn the pump off.

[Flow] > 1500 ? 1 : INVALID

Conditional math. Add together only the MVAR values (in Al tags) for gen-

erators whose breakers are closed (DI tags == 1)
([GenlBreaker] == 1) * [GenlMvar] +
([Gen2Breaker] == 1) * [Gen2Mvar] +
([Gen3Breaker] == 1) * [Gen3Mvar]

Get the value of an INI file variable for display:

Scope(\Code, "MyAppVersion")

Build a text string based on values in bits of registers read from a PLC.

Bit([A13], 15) ? "on " : "Off "

Calculate a steam flow from a DP cell reading on an Al tag:
SQRT((([FT-518-RAW]) /4095)*100) * 1000

Calculate a steam flow from a DP cell reading on an Al tag. Force to 0 if a
DI tag is not on:

[BLR-001]==1 ? SQRT([FT-506-RAW]) * 3000 : O

Figure out the bit number that is turned on in a word read from a PLC
into an Al tag:

Int((Log([AI3] % 65536) / Log(2)) + .5) + 1

Create a time string based on an Al tag, Al3, and replace the 00 hour
reading with 24:

Concat("HE ",Replace(Substr(Time((Scope([AMA.STA.MW-TS]) - (9 *
3600)) % 86400, 2),0,2),0,2,"00","24"))

Get the name of the PC that the application is running on:

\Code\RPCManager\wWkStnName

Get the version of VTScada that is running:

Version()

Create a flag that toggles every 10 seconds
Latch(AbsTime(1l, 20, 0), AbsTime(l, 20, 10))

Check if any user is logged on to a client PC. This example returns a mes-
sage, but you could just as easily return a 1 or O to determine whether a
control action should proceed.

\Code\SecurityManager\IsLoggedon() ? "" : "Authorized Access Only.
Please Log On."

Get the name of the operator who is logged in:

\Code\SecurityManager\GetUserName ()

Given an application with the following set of application privileges, you
want to configure the Push Button widget so that confirmation is
required when the button is pressed by anyone whose account does not
have the "Confirmation Not Reqd" privilege.

<SECURITYMANAGER-PRIVAPP>
PrivBitsTotal = 3

PrivDescO = Page Priv,0

PrivDescl = Operational Priv,1
PrivDesc2 = Confirmation Not Reqd,2

Confirmation Not Reqd is enumerated as privilege 2, therefore its index
value is 16 + 2 = 18. The expression for the Confirmation Dialog para-
meter of the widget would be:

1 - Pickvalid(\SecurityManager\SecurityCheck(18, 1), 0)

In a parametrized page, find the name of the tag that was used for a
given parameter:

\NameOfGivenParameter\Name

In a parametrized page, where a parameter is of type tag, use the descrip-
tion of the tag as part of the title:

concat("Details for: ", \NameOfGivenParameter\Description)

The VTScada API

Script code lies behind everything that you see in VTScada. An interesting
exercise to illustrate this is to copy any object from a VTScada applic-
ation page (Ctrl-C) and paste it into a text editor (Ctrl-V). Rather than
seeing the same image that was on the page appear in the editor, you
will see the code that animates that image. The same will work in

reverse.
Copy Paste
i B
IJII\'III1II:IIIIITIII2IDIIII|IIISIDIIII|III4IEIIIII|IIISIDIIII|III6IDI
GUITransform(415, 323, 589, 149,
i, 1, 1, 1, 1 { Secaling .
0, O { Movement .
1, O { Vigibility, Reserved },
0o, 0, O { Belectability .

[<Welll\Depth>]\Meterd (4, 3, 1, 0, 100, O, O, 0));:

Every VTScada page is a modulel, stored in a separate file on disk, and
each of these files is a plain-text source file of VTS code. Examining the
source code for a page (or a user-defined drawing object) is a good way
to begin learning the language.

If you are familiar with programming other languages, you will quickly
discover that VTScada works in a unique way. Other than blocks of
script? code, everything runs in what is termed, "steady state3". This is a

1A collection of states, scripts, variables, parameters, comments and pos-
sibly other modules, all of which make up a VTS program. Modules are
separate tasks that run simultaneously in an application. Behind every
page is a module and behind every tag on that page is an instance of
another module (usually with submodules controlling separate tasks).
2\TScada statements that are evaluated in order as written. Scripts are
triggered by an IF statement within a VTS state.

3The operating condition of the code within a State.

form of event-driven programming. In a block of code (a state!), such as
that used to display the objects in a page, each line will run once (for
example, to initially display the page), and then not run again until a vari-
able within the line changes value (for example, an |/O tag obtaining a
new reading from the PLC). In steady state, each individual line of code
(called a "statement") may execute at any time, and will do so inde-
pendently of every other statement. This makes VTScada extremely effi-
cient, but you will need to learn new coding techniques.

Study Guide

To learn the VTScada script language:

« Start with the fundamental components of expressions, states and steady
state, and VTScada modules.

« Review the style recommendations for writing VTScada code.
« Learn how to add your code into an application.

« As you write your code, refer as necessary to the definitions of variable
types, operators, and functions.
When you have mastered these basics, refer to the remaining chapters of
this guide as needed for examples and guidance when creating custom
tags, user-interface wizards, device drivers, etc.

Related Information:

...Parts of a VTScada Program
...States and Steady State
...Action Triggers and Scripts
...VTScada Modules
...Functions

.. Threading

...0Operators in Statements

1A collection of statements, grouped together within square brackets
and given a name. A state is the part of the module that performs a task.
Modules can have many states, but only one may be active at a time.

...Value Types and Storage

Parts of a VTScada Program

This example shows a complete VTS script program. When run, it will dis-
play the words "Hello World" within a small window. A description of the

various parts follows the example.

A module.
The complete program

Parameters passed into
the module.

Declaration of variables
and sub-modules.

Systen { Provides access to system library fun
Layer { Provides access to the application 1
)
[
Graphics Module { Contains user graphics The body of the module. A
WinTitle = "User Lpplication™ { Window title '?tmﬁ"COHHHﬂﬂgUne
1 "statement”, which launches
Main [the sub-module within a new
Window{ O, 8] { Upper left corner e window
300, €00 View area I
200, €00 { Virtual area Fo
":_’ap:-j'f‘?fj___ o STATrt user grapnics i, The sub-module. This cne
{65432108876543210F) has no parameters, but does
Ob00010000000110011, WinTitle, O, 1}): have one variable declaration
1

i 5 module handl
Graphics
[

NameToGreet;

This statemeant is an
action-trigger. It starts a
script-block, and then passes
execution from state Init to

1 state Main.

Init|
1 Main; The statements in this state
[run once, then remain active.
NameToGreet = "World": If (somehow) NameToGreet
1 changed, ZText would run
1 again and update the screen.
HMain [
ZText (100, 100 { Lower left corner TEeXT },
Concat ("Hello ", HameToGreet) { Text to display @,
15 { Text is white },
0 { Use default font }):

Building it up piece by piece...

« The smallest bit of code that will return a value is called an expression!. An
expression might be simple math, a call to a function?, or some other pro-
gramming construct.

« Astatement3 is a complete line of code (possibly running over several lines

in the editor). Statements are built from one or more expressions.

. Statements are always found within a named state4. Code within a state is
executed in steady state>, which means that after running once when the
state is first activated, the statement lies dormant until triggered by a change
to a variable within it.

« Statements that must run in a given order, or run a predictable number of
times rather than being event-driven, are put into a script® block within a
state. A statement called an action-trigger is used to start a script block run-
ning. Action-triggers are also used to transfer execution from one state to
another within a module.

« The entire block of code that holds one or more states, as well as variable
— declarations, etc.isa module/ Within a module, only one state can be
1Any calculation that returns a result. Examples include a call to a func-
tion, assigning a value to a variable, and mathematic operations.
2A module that returns a value. For example, math functions such as
Sqrt(), Min() and Abs().
3A command made of one or more expressions and function calls,
always ending with a semi-colon, directing VTScada to perform an
action.
4A collection of statements, grouped together within square brackets
and given a name. A state is the part of the module that performs a task.
Modules can have many states, but only one may be active at a time.
>The operating condition of the code within a State.
6VTScada statements that are evaluated in order as written. Scripts are
triggered by an IF statement within a VTS state.

/A collection of states, scripts, variables, parameters, comments and pos-
sibly other modules, all of which make up a VTS program. Modules are
separate tasks that run simultaneously in an application. Behind every
page is a module and behind every tag on that page is an instance of
another module (usually with submodules controlling separate tasks).

active at a time. (You can get around this limit by having a module launch a
submodule with its own active state.)

States and Steady State

The executable code of a module is contained within one or more named
states. Each state contains a collection of instructions (statements)
describing what the module is to do while that state is active.

Note: Only one state in a module may be active at any time. While a
given state is active, all other states in the module are ignored.

The first state found in a module is always the one that will run when the
module starts. Execution can switch freely from one state to another
based upon programmer-defined action triggers (See: Actions and
Scripts). Until an action trigger occurs, the active state will remain active.
When a state becomes active, each statement within it will be executed
exactly once. The state remains active, but no statement is executed
again until one of the variables within it changes. This is referred to as
"steady state" in VTScada.

If two or more instances of a module are running, a different state may
be active in each.

A state is defined using a formal structure as follows. Note the square
brackets that enclose the body of the state.

StateName [
Statementl;
Statement?2;

]

The following rules apply to states:

« There is no limit to the number of states in a module (other than the com-
puter's RAM).

« Every state must have a State Naming Rules, and enclose all of its statements
in square brackets.

« In any module, only one state may be active at a time.

« All statements within a state will execute once when the state first activates.

« Following the first run-through, any statement will execute again only when
triggered by a changing variable value. In steady state, there is no way to pre-
dict which statements will be triggered in which order.

« If the module must do two things at once, create a submodule and call it
from the state.
« Inthe module for a page, the z-order of graphics matches the order of their
statements.
« Excepting the previous point, the order of the statements is largely irrel-
evant.
« If order of execution matters, use a script.
It is common for a module to have only one state. Modules in which the
operations remain constant fall into this category. Typically, modules
that display pages or that handle alarms, PID control or I/O need the
same instructions to remain active regardless of plant activities or oper-
ator inputs. For example, it would be undesirable for a PID instruction to
be placed in a module with several states since the PID control action
would only occur when the module was in the state containing the PID
instruction.
The mechanism that transfers control from one state to another is the
same one that controls when a script! should run: an Action Trigger.

Related Information:
...State Naming Rules

...Event-Driven Execution and Efficiency

State Naming Rules

State definitions begin with a name. Each state in a module must have a
unique name, however it is legal (although confusing) for a state to have
the same name as the module.

« State names must be a single word.

« Use an underscore or CamelCase to indicate multiple words

1VTScada statements that are evaluated in order as written. Scripts are
triggered by an IF statement within a VTS state.

« State names may not include most symbols, such as #&-+=<>{}{](), etc.

« State names are not case-sensitive. "Main" is the same as "main".

« State names may be numeric, so long as you do not include a negative sign.
In general, state names should be:

« Short

« Descriptive - of the state's purpose

« Verbs - when the state performs a task
You will often see modules that contain states named "INIT" and "MAIN".
There is no functional significance to these names, but by custom, INIT is
used for initialization tasks and MAIN is used for the state that forms the
main body of the module.

Event-Driven Execution and Efficiency

In steady-state, statements do not follow a strict sequential execution
after the initial run-through. All statements in a particular state are
executed once, in order, when that state first becomes active. After the
first execution, a statement or action trigger is executed again when the
value of any variable in the statement changes.

It is important to watch for possible race conditions. For example, if a
state called Monitor contains two action trigger statements:

If HighAlarm Shutdown;
If HighAlarm StartPump;

Both of these actions change to a new state on the same condition. It can-
not be predicted which will execute first, and the final state will be either
Shutdown or StartPump. This is called a "race condition", because the
module depends on which action trigger wins the race. When designing a
state, assume that all statements and action triggers will execute sim-
ultaneously. Although this is not strictly what happens, it is a good

design strategy to use.

Changes to a variable's value propagate through the system. For
example, consider the statement:

X =Y + 4;

Every time the variable Y changes, all statements that depend on the vari-
able Y will be updated, including the assignment to X. Then, because X
changed, all statements depending on the value of X will be updated.
This rule may affect how you write seemingly simple statements. For
example, if the following were to appear in steady state code, X would
continuously increment.

X=X+ 1;

Presumably, you would only want X to increment in response to some spe-
cific condition or at a particular time. For this purpose, you could use a
script block.

This event-driven model results in VTS being very efficient. For example,
an active state could contain hundreds of output statements that display
one variable each. If all statements were to execute, it would take a cer-
tain length of time. If a looping mechanism were used to continuously
poll for which variables had changed, then much more time would be
required. But, in VTScada, if only one variable changes, the CPU need
only process one statement instead of hundreds. This means that the
response time for the page is cut to one percent or less of the time it
would take to update all statements..

Another example is a state with many actions, each looking at the same
variable:

If Stage == 1 Alarms;
If Stage == 2 Mixer;

i%.Stage == 100 TankFarm;

In this example, every time the variable Stage changes, VTScada attempts
to execute each of the action triggers once, in an unknown order. This
does not necessarily mean that all 100 actions are checked -as soon as
one is found to be true and it contains a state change, it will stop this
state and start a new one. When the state is stopped, the remaining
actions are no longer checked. It could be possible that all 100 actions
would have to be checked, however, it is more likely that an average of
50 actions would be checked, based on a uniform random distribution of
Stage.

When designing a module, it is a good idea to identify activities that take
place continuously, such as a flashing lamp or PID loop, and keep them
separate from activities that start on a trigger, such as starting a pump
when a level is too high, or switching the graphics screen at the press of
a button.

Action Triggers and Scripts

An action trigger is the instruction that passes control from one state to
another. Being a trigger, it requires a conditional expression to signal
when the state transfer is to occur.

When the purpose is to transfer control to another state, an action trig-
ger always takes the form:

IF conditional_test NextStateName;

Note the semi-colon after the name of the state that control will be trans-
ferred to. This line of code is a statement and must follow the rules for
all statements. Since it runs in steady state, it will be triggered whenever
the variables in the conditional expression change and the test then
becomes TRUE.

The same code can also be used as the signal to run a script. A script is a
set of statements that will run in order for as long as the trigger con-
dition is true. Scripts are used within states in order to execute code
where the order of the statements matters, and where you need to con-
trol how many times the code will be repeated.

VTScada includes functions that are designed to run only in steady state
and functions that are designed to run only in a script block. When read-
ing about a function in the reference section of this guide, take care to
note the Usage field.

To run a script, the action trigger is modified to include the script state-
ments, within a set of closed parenthesis, and following the IF statement
and its semi-colon. The general form is as follows:

IF conditional_test NextStateName;

[
first_script_statement;
second_script_statement;

-

A common example is an initialization state. It's purpose is to initialize
variables, and perhaps open a file stream or other 1/0O. Those tasks must
be done once and once only, therefore it makes sense to put them in a
script rather than in steady-state code.

InitState { name of the first state to run}

[

IF 1 MainState; { "IF 1" is guaranteed to be true, therefore the
script will run and control will then switch to MainState }

[{ script that should be run once }

X = 1;

{ other initialization tasks ... }

]
] .
MainState { name of the state that does the work }

{ code that does the work }
]

Rules for Action Triggers
« When the next state name is provided, the script block is optional.
« When a script block is provided, the next state name is optional.

« When both are provided, the script block will be executed exactly once, and
then control will be transferred to the next state.

« If there is a script block, but no state to transfer to, then you must ensure
that the conditional test will become FALSE after one or more iterations
through the script. Otherwise, it will run indefinitely.

« While a scriptis active, no other statements in the state will execute (except-
ing the IF action trigger).

Note: Note: If the action trigger includes a destination state, all code in
the current state excepting the script block will STOP. This means that
variables outside the block will immediately become invalid and mod-
ules that were called from that state will terminate. If code in the script
block depends on any of these variables, use a ForceState function

within the script-block instead of a destination state in the action trig-
ger.

A typical action might look like the following example. Here, the first line
contains both the action trigger "If TimeOut(1, 5)" and the destination
state "Start". The square brackets delineate the script block.

IF Timeout(l, 5) Start;

The trigger statement will become true five seconds after the state con-
taining this code becomes active. When this happens, X will be set to 0
and execution switch to a state named Start.

Related Information:
...The Trigger
...The Script Block

The Trigger

IF Trigger DestinationState;

{ script block }

The trigger is any logical expression that determines if a state transfer is
to take place. Nothing happens as long as the trigger expression eval-
uates to a logical false (0).
While an action trigger is false, no action is taken. When it becomes true,
the following occurs:
1. If there is a destination state, the active state (and all its statements) is
stopped(*).
2. The script block (if any) is executed in order from the top of the list to the bot-
tom.
3. The destination state (if any) is started as the new active state.

4. If there is no destination state, the script will be executed repeatedly while
the action trigger remains true.

This will continue until the action trigger becomes false. Take care not to

inadvertently create such a repetitive loop since it will consume processing

time and greatly degrade the overall system performance.
(*)Note: If the action trigger includes a destination state, all code in the

current state excepting the script block will STOP. This means that vari-

ables outside the block will immediately become invalid and modules

that were called from that state will terminate. If code in the script block

depends on any of these variables, use a ForceState function within the

script-block instead of a destination state in the action trigger.

Note: When combining function calls and other operations in an action

trigger, use care to follow the rules of operator precedence to avoid

unexpected results.

"1" is a common trigger condition to use when you want to force a script

to execute, followed by a state-change. Use care when this is done inside

a module that is run as a subroutine. It is essential in this case, that the

subroutine's Return statement be located in code that will not remain act-

ive. This can be done by ensuring that the return statement is in a script

and that the script does not remain active. Consider the following four

examples of subroutine modules:

ExampleSubroutinel

(
Input;
A;

)

[
Result;

Stateonly [

IF 1;
[
Result = SomeFunction
(Input, A);
Return(Result)
]
]

This is dangerous. If this sub-

routine is called from a script, all is
well. But, if this is called in steady

ExampleSubroutine2

(
Input;
A;

)

[
Result;

Stateonly [
IF watch(l);

[
Result = SomeFunction
(Input, A);
Return(Result)
]

]

In this version of the module, the
script will be executed only once.

The IF statement resets the value

state (for example, in a Calculation of the Watch() function to Invalid
tag), then the script within it will after it runs once.

execute continuously, as fast as

VTScada can go, resulting in very

high CPU usage.

ExampleSubroutine3 ExampleSubroutine4
((
Input; Input;
A; A;
))
[[
Result; Result;
]]
StateStart [Stateonly [
IF 1 StateDone; IF watch(l, Input, A);
[[
Result = SomeFunction Result = SomeFunction
(Input, A); (Input, A);
Return(Result) Return(Result)
]]
]]
StateDone [In this module, the script will

{ empty state } C e
PEY execute when the module is first

In this module, the script will also started, and (if called from

be executed only once, but an extra steady-state) will then re-execute

state is required. While this works, whenever either of the inputs

it is generally regarded as poor change.

practice.

This is expected behavior that you can use to your advantage. Latching
and Resetting Functions

The Script Block

A script block contains a set of instructions that are executed in order
when the block is activated. The block is activated when its action trig-
ger's condition becomes true.

Standard programming constructs such as If-Else conditions and Do-
While loops may be found in a script block since the order of execution

is predictable. Script blocks are also used for most file I/0, for the same
reason.

Any number of statements may be present in a script, including none.
The only limitation upon the number of statements in a script is the avail-
able memory (RAM).

If the action trigger includes a transfer to another state, then the script-
block will execute exactly once before the state transfer occurs.

If the action-trigger does not include a transfer to another state, then
when the script block reaches its final statement, if the action-trigger's
condition remains true, the script-block will run again. Take care to not
create a script that run continuously.

While a script block is active, no instructions outside of the block will
execute. If the action trigger includes a destination state, then state-
ments outside the block will stop and all variables will go to INVALID.
For example...

X = DBSystem(...);
If A SomeOtherState;
[

// X is now invalid

If B;

[
// X would still be valid (if it was valid)
ForceState("SomeOtherState");

]

If either A or B becomes true, a script block will execute and then control
will transfer to the destination, SomeOtherState, but the action is not
quite the same. When A becomes true, X immediately becomes invalid
and is not available to code in the script block. When B becomes true, X
will not update (that statement being outside the script block) but it will
also not become invalid until after the call to ForceState.

If B does not force a state change, and does include code that will change
B back to Invalid thus stopping the script-block, then the current state
will resume and X will still have its value.

There is one exception to the rule about scripts being executed in their
entirety: If the module that contains the script is a "launched module"

and the script contains a Slay statement, then the module will be stopped
immediately and the script execution along with it.

VTScada Modules

A VTScada module is the collection of all of components defined in the
preceding topics (state!, script?, statement3, expression?) into a pro-
gram that does something. A formal definition is: a state-logic control
program.

For example, every page in your application is a module. Each user-
defined widget is also a module, as is every tag. An application is built
with many program modules, each providing the instructions for a sep-
arate task to be done by the system.

There are no limits to the types and numbers of modules that you can
define in an application. It is also common to find many separate
instances of the same module running simultaneously in an application -
for example, every Analog Status tag that you define is a separate and
independent instance of the Analog Status module.

Modules are very often built using several submodules. Since only one
state may be active in a module at any given time, submodules are
required in order for the module to do two things at once. For example,

1A collection of statements, grouped together within square brackets
and given a name. A state is the part of the module that performs a task.
Modules can have many states, but only one may be active at a time.
2VTScada statements that are evaluated in order as written. Scripts are
triggered by an IF statement within a VTS state.

3A command made of one or more expressions and function calls,
always ending with a semi-colon, directing VTScada to perform an
action.

4Any calculation that returns a result. Examples include a call to a func-
tion, assigning a value to a variable, and mathematic operations.

an existing instance of an Analog Status tag will continue to read values
from the 1/0 driver while its configuration dialog is open. Within the Ana-
log Status module, there is one module that handles 1/0O and another
module is used to display the configuration dialog.

Module Files:

Source code for modules is stored in plain-text .SRC files. Compilation
(part of the "Import File Changes" process) produces a set of files known
as .RUN files. Source files can be excluded from the File Manifest before
building a ChangeSet of an application for distribution. Only the .RUN
files are required in order for VTScada to run the module.

Module Calls:

How a module is started is almost as important as the code within the
module. Very different behaviors can be obtained depending on whether
the module is called from script or steady state.

Module Structure:

There is a formal definition for how the parts of a module are put
together.

A module.
The complete program

Parameters passed into
the module.

{
[/(
Systen { Provides access to system library fun

Declaration of variables
and sub-modules.

Layer { Provides access to the application la
)
[
Graphics Module { Contains user graphics The body of the module. A
WinTitle = "User Application™ { Window title "state” containing one
] "statement", which launches
Main [thle sub-module within a new
Window({ O, 4] { Upper left corner | window
300, €00 { View area Y
300, €00 { Virtual area Y
Graphics () { Start user graphics },

The sub-module. This cne
has no parameters, but does
have one variable declaration

{65432109876543210}

0b00010000000110011, WinTitle, 0, 1);:

This statement is an
action-trigger. It starts a
script-block, and then passes
execution from state Init to
state Main.

HameToGreet;

Init]
IF 1 Main: [The statements in this state
[run once, then remain active.
HameToGreet = "World"”; If (somehow) MameToGreet
1 changed, ZText would run
] again and update the screen.
Main [
ZText (100, 100 { Lower left corner text I,

Concat ("Hello ", HameToGreet)
15 { Text is white },

0 { Use default font

{ Text to display },

Py
1

{ End of Svyvstem\Graphics

>

In order from top to bottom, the parts are:
« A comment section, describing the module.
While this has no effect on the module’s operation, it is a vital component
from the point of view of good coding practice.
« Reference box numbers, enclosed in parentheses. [Optional]
Found only in modules that are used to draw graphics on a page. These four
integer numbers within parenthesis, override the reference box that would

otherwise be defined by the total size of the graphic statements within the
modules.

« Parameters section, enclosed in parentheses. [Optional]
Not all modules will require a set of parameters. If the module does not have
parameters, the parentheses are optional, and are normally not included.

« Variable section, enclosed in square brackets.
All variables, constants and submodules used in the module must be
declared.
Constants must have their values assigned as part of the declaration. Vari-
ables may optionally be assigned values when they are declared.
Sub-modules (if any) must declared and include the keyword "Module". Addi-
tionally, if the submodule is stored in another file, that file name must be
provided.

States.
Each state in the module begins with the name of the state, followed by

square brackets that enclose the code of the state. The first state found in
the module will always be the first state to run. It is commonly called "Init",
but the name has no special meaning.

Statements. [Optional]

Complete lines of code (possibly running over several lines in the editor) and

ending with a semi-colon. Statements are built from one or more expres-
sions.

Scripts, enclosed in square brackets and following an action-trigger state-

ment. [Optional]
States may include script blocks if there is code that must be executed in a
pre-determined order in response to a condition becoming true.

« Sub-modules, enclosed in angle brackets. [Optional]
These are also referred to as "child modules”. The first module within any file
need not be enclosed in angle brackets, but each child module within the
same file must be. Within each child module, the structure is the same as lis-
ted in the preceding points.

Related Information:

...Store and Declare Modules

...Types of Module
...Module Scope
...Constructors
...Destructors

...Reference Boxes in Graphic Modules

Store and Declare Modules

Where you will store your module code depends on the purpose of the
module.

Pages are stored in the application's Pages folder and you must register
them with the application by importing them into the Idea Studio. (This
serves to declare the module in the (PAGES) group of the AppRoot.SRC
file.

User-defined widgets are stored in the root folder of the application, and
must similarly be registered using the Standard Library - User Draw Meth-
ods folder.

If you are creating a script application from scratch, you will probably
add your code into the AppRoot.SRC file of the application. Or, you may
choose to declare it within the Variables section of AppRoot.SRC and
store the actual code in one or more separate files.

If your goal is to add functionality to an application, then you must save
your module code in its own file(s). You will then declare the code within
the appropriate section of the application's AppRoot.SRC file. For
example, new tag modules are declared in the (POINTS) group and new
report modules are declared in the (PLUGINS) group.

Types of Module

VTS defines module types according to how they are called and their
behavior when called.
Called Module

Called modules are started from steady state. A set of parenthesis must
always follow the module call, regardless of whether parameters are

included within in them.
A sample module call:

Motor (398, 765 { X-Y coordinates },
13 { color 1},
MtrStat { Motor status },
MtrAmps { Motor current 1});

The state containing the called module call is the "calling state". Called
modules may themselves contain module calls, but take care not to call
the first module from within the second. A circular or a recursive situ-
ation will result in a module calling itself repeatedly until a stack over-
flow fault occurs and the application crashes.

When the state containing a module call activates, an instance of the
called module will start. When the state containing the module call stops,
the called module’s instance will also stop. Thus, called modules are act-
ive only while the calling state is active.

Parameter values are passed by reference. Any change to the parameter
values in the calling or the called module will affect those in the other.

Launched Module

There are situations where you might want a module to execute
whenever the calling module is active regardless of which state it is in.
You may also have a situation where you want to create multiple
instances of a module, where the number of instances to be started is
not known until the application is running. Launched modules answer
these needs.

A module is launched by placing its module call in a script, or by using
the Launch function (which enables better control of the module
instance's parent and caller). When a module is launched, the parameters
of the module are evaluated at the moment in which the statement is
executed and the values are set in the corresponding parameter vari-
ables in the launched module. (Pass by value) A later change in the call-
ing parameters does not affect the parameters in the module. The return
value for a launched module is always the object value of the launched
instance.

The launched module is stopped either when the calling module stops
(provided it is not a subroutine) or when a Slay statement is executed to
explicitly stop the module instance. In the case of modules launched by a
subroutine, the subroutine itself is not considered to be the parent or
caller, but rather, the module will be launched with the caller of the
nearest non-subroutine caller. This means that when the subroutine
ends, any modules launched by it will continue running until its non-sub-
routine caller stops.

Since repeatedly executing the same module call in a script will create
new instances of the launched module, any number of module instances
can be launched without having to have a separate line of code for each
instance.

Note: Launched modules must not have a Return statement in them. If
they do, they will be considered subroutines.

Use care in how you write a Launch statement. For example:

X = Launch(Scope(<variable>, "Y", TRUE)...

If it is unknown whether Y exists in the module pointed to by <variable>
or if in fact <variable> is valid, then setting the ScopelLocal parameter to
TRUE as shown, may help to avoid undesirable results.

Subroutine Module

Subroutines are syntactically similar to modules that are launched impli-
citly by being called inside of a script. The difference is that subroutine
modules have one or more Return statements in them. This causes their
behavior to be different, since the calling module will suspend execution
of the script that started the subroutine until the subroutine executes the
Return. Once the Return is executed, the subroutine module is stopped
immediately and the calling script resumes. This enables the building of
modules that return a value that can be used for subsequent statements
in a script.

A module that has a Return statement in it is only considered a sub-
routine, and will only behave in the manner as described above, if it is

called inside of a script. Program execution will not be suspended if the
module containing the Return is called in steady state.

The other difference between subroutines and launched modules is how
they launch other modules. A module launched by a subroutine will not
take the subroutine as its parent or caller, but rather, will consider the
nearest non-subroutine caller as its own caller.

Note: WARNING: Great care must be taken in the use of subroutines,
since no other statements, I/O or alarms will be executed while a sub-
routine is running. This means that if a sub-routine launches a module
with the intention of waiting for the results of its execution, the applic-
ation will hang, since even child modules will be blocked by their call-
ing sub-routine. It is vital to ensure that a subroutine executes a
Return statement since all other modules will be suspended until this

Ooccurs.

Queued Module

To understand queued modules, it is necessary to recall that any number
of module calls can be created as statements in steady states. Normally,
the number of concurrent copies (instances) of a module that can be cre-
ated by module calls is limited by available RAM memory. Every module
call starts its own instance when it is active. Prefixing a module defin-
ition with the keyword "Queued" makes that module a queued module
and only a single instance of the module is allowed to run - all other
module calls will return invalid values and do nothing. All module calls
to that queued module that do not run will enter a queue for that mod-
ule, waiting for a chance to run. Each successive queued module may run
when the instance queued before it, stops.

Typically, the queued module will return a value to signal its calling mod-
ule that it has completed its work. The calling module will change to
another state, which will stop that instance of the module and make a
space available for the next queued module call to run an instance. The
next module to run will be the module which has been waiting the
longest in the queue (i.e. the one that entered the queue first or earliest).

Every instance of a queued module contains its own variables, and
behaves in every way like other modules, separate from other instances
of the same queued module.

Note that queuing will occur only with modules called from a steady
state; queued modules will not work on modules that are implicitly or
explicitly launched.

Programmers familiar with much earlier versions of VTScada might look
for "Fixed modules". "Fixed" is an obsolete term for what is now a
queued module.

Threaded Module

Threaded modules are very similar to launched modules, and within the
confines of their own thread behave much the same way. They may only
be destroyed by doing a Slay from within their own code, if an external
source has a copy of their object value upon which it may execute a Slay,
or if their caller stops.

Threading has the advantage that no one module may completely mono-
polize the processor, even if it has accidentally been created with an if 1
condition. You will notice this if you write an application with an infinite
loop in it and then attempt to debug the problem via the Debugger (see
"Debugging and Analysis: Debugger). The debugger will function nor-
mally because it is in its own thread, and therefore is not blocked. Any
other (non-threaded) statements in your application, however, such as
buttons that perform certain tasks, will be entirely crowded out from get-
ting access to the processor and will appear to be "locked up" or
"frozen". Different applications are likewise executed in their own indi-
vidual thread, so no one application will be able to block another from
executing.

Why then shouldn't you thread all of your modules? The answer is two-
fold - firstly, threaded modules will have no predictability as to when
they perform certain tasks relative to other statements being executed in
the system. The second and most important reason why threads should
be used sparingly is the overhead that each thread uses in terms of pro-
cessor time as well as its RAM requirements. Apart from the time that it

takes to create and destroy a thread, there is also the time it takes for
each switch between thread, as well as the time slice allotted to every
thread for execution. Although a thread will surrender its allocated time
slot with the processor if it has no tasks to perform, this in itself will

have used up a certain amount of time. This means that the more

threads that have been created, the more the application as a whole will
be slowed down, as the processor keeps cycling through all threads, giv-
ing each equal opportunity to execute, no matter how unimportant its
tasks may be relative to others in the application. Thus threaded mod-
ules performing trivial tasks could be taking away time from critical mod-
ules that may otherwise receive a larger portion of the processor's time.
As a general rule, the number of threads created by an application

should be fewer than six. They should strictly be reserved for crucial
modules whose execution would otherwise block the application, or
whose exclusion from executing would be detrimental to the proper func-
tioning of the application.

It should be noted that VTScada provides utilities to assist you in
troubleshooting threading in your applications. The Thread List utility
supplies a list of the separate threads of execution for which VTScada is
responsible within a local application (see Thread List Application).

Related Information:

...Declaring and Passing Parameters - The primary mechanism for hand-
ing information into modules.

...Parameter Metadata - Assign extra information when declaring para-
meters.

...Functions - A function is a module that returns a value.
Declaring and Passing Parameters

Modules often need to have information provided to them in order to
function. Parameters provide the primary mechanism for passing inform-
ation into (and sometimes out of) modules.

A parameter is declared by adding it to that module's parameter list,
which is a list of variable names, separated from each other by a comma
or a semi-colon, all of which are enclosed in a set of parenthesis and loc-
ated at the beginning of the module.

The parameters declared within a module are referred to as the "formal”
or "declared" parameters.

The parameters used when calling an instance of the module are referred
to as the "actual” parameters.

The order of the parameters is significant since the value of the first
actual parameter will be used for the first formal parameter, and so on.
There is however, no requirement that the lists contain the same number
of parameters.

If there are more formal parameters in the module than actual para-
meters in the module call, the extra formal parameters will have invalid
values. If there are more actual parameters in the module call than
formal parameters in the module definition, the extras will be ignored
(although a module can access these undeclared parameters using the
Parameter function).

Parameters act as placeholders for variables. The value within a variable
that is passed to a module can be used and altered by the module as if it
were a member variable of the module. If a constant, function, or expres-
sion is passed as a parameter, then that formal parameter’s value cannot
be altered.

In the case of parametrized modules, when the value of a variable passed
as a parameter is changed outside the module, its value is updated
inside the module. It is possible to reset the parameters to their original
values using the ResetParm function, but most applications do not need
this feature.

Parameters may be assigned default values in the module declaration.
For example:

Motor (398, 765 { X-Y coordinates },
13 { color 1},
MtrStat = 1 { Motor status },
MtrAmps = 30 { Motor current });

If the actual parameters for MtrStat and MtrAmpts do not have values, or
if these two actual parameters are missing when the module is called,
then these will be given the default values of 1 and 30, respectively.

Parameter Metadata

You can assign metadata to module parameters when declaring them.
This technique is used to ensure that extra information about the para-
meter is assigned when the module opens and before any of the state
code runs.

Parameter metadata is declared using the metadata assignment oper-
ators: <: >

For example, given the module X, with parameter A, a metadata value
could be assigned as follows:

A <: 5 :>;

The function of the assignment operators is similar to that of the
SetVarMetaData function. The values can be read using GetVarMetaData.
The most common use of parameter metadata is found in tag modules.
The SQL data type of each parameter is assigned in the parameter declar-
ation section:

¢ Name <:TagField("SQL_VARCHAR(255)", "Name", 0):>
}’Area <:TagField(""SQL_VARCHAR(255)", "Area", 1):>
}’Description <:TagField("SQL_VARCHAR(255)", "Description™, 2):>
%n

The SQL database conversion data for each parameter is recorded by
instantiating TagField structures and assigning them in the parameter
declaration section

See also: MetaData, SetVarMetaData and GetVarMetaData.

Module Scope

"Scope" refers to the ability of a variable or named module to be seen by
calling code. For example, two modules may both declare a variable
named "X". X will have a unique value in each module and will refer to a
different memory address. Each version of X is /ocal to the scope of the
module that it is declared within.

A module may declare and use submodules. Those submodules (child
modules) will also be able to see and use the variables of the main mod-
ule (parent module). The parent is within the scope of the child. Variables
declared in the child modules cannot be used by the parent unless dir-
ectly referenced with the backslash scope resolution operator "\"
(Child\Variable).

If one module needs to access variables or functions of another module,
it is possible to do this by fully describing the scope of the variable or
function being called. For example, many of the functions in the Func-
tion Reference will state the module they are a member of and provide
an example of how they can be called: \AlarmManager\Acknowledge
(AlarmName, EventTime, Operator);.

The following terms are used when describing scope:

Child

A submodule is a child of the module whose source file it is part of.
Another term for a child module is a "member module".

Parent

A parent is a module that contains submodules.

Descendant

Sub-modules may themselves contain their own submodules. A des-
cendant refers to any submodule of a parent.

Ancestor

Like "descendant”, but looking in the other direction. Starting with any
submodule, an ancestor is any parent module up the declaration chain.
The root module is an ancestor of every module and every module is a
descendant of the root module.

Member

Any named object - a variable, constant, module, etc.
Related Information:

...Scope Resolution Operators

...Module Inheritance

Related Functions:

... Scope

...LocalScope
Scope Resolution Operators

There are two scope resolution operators: the dot (.) and the backslash
(\). The dot operator was added with VTScada version 11.2 and should be
used when the intent is to reference a value within the reference scope. If
there is no variable with a matching name in the current scope, the back-
slash operator will find a variable with the matching name in a higher
scope, whereas the dot operator will return invalid.

The dot operator is the equivalent of Scope(, , TRUE). For example,
Obj.Value is equivalent of Scope(Obj, "Value", TRUE).

The scope resolution operator, a backslash (\), allows access to vari-
ables and modules outside the current scope. This scope resolution oper-
ator must be used with an object value, and a member name (either a
variable or module name).

The backslash scope resolution operator may also be used to accomplish
a feature called "late binding". A variable is a named storage location
where a value is stored. The process of "binding" is the means by which
the name and the storage location in memory are associated. Late bind-
ing (also referred to as "dynamic binding") links a variable or object at
run time. Early binding refers to the process of assigning types to vari-
ables and expressions at compilation time.

When a scope resolution operator is placed before a variable or module
name, such as in:

\VarName

it is considered the equivalent of writing:

Self\varName

but it uses less RAM than the second statement. Early binding is typically
more efficient than late binding as it reduces the amount of time
required to set or retrieve a value, whereas late binding consumes more
memory, and is slower than a direct variable reference; however, in some
instances it is useful to reference modules and variables that are not in
scope at compile time.

Related Functions:
... Scope

...LocalScope
Module Inheritance

When a member (a variable, constant or module) appears in a statement,
VTScada looks first in the current module where the statement appears.
If the member is found, it is used. If the member isn't found, VTScada
looks in the module's ancestors, starting with its parent, until the mem-
ber is found. If the member isn't found in the system module, VTScada
reports an error: no such member exists. An ancestor's members are
within the scope of all of its descendants.

Example:

A module called Motor is created as a member module of System. One of
its member variables is Amps. Within Motor a member module called Dis-
play is created. Display has no member variable Amps. If a statement
were entered in Display, which used the variable Amps, it will use its par-
ent's variable Amps (which is Motor's member variable Amps).

System Module

I

Motor Module

"Amps" Variahle

The Display Module
inherits the Amps variable.

Display Module

When searching for a member, VTScada always searches ancestors, not
descendants. So, in the example, if Display had the member Amps, and
Motor had no member Amps, and a statement was entered in Motor
which used Amps, VTScada would not find the Amps in Motor's child mod-
ule Display.

If both Display and Motor had members called Amps, each would use its
own member. This is because the current module is searched first. Note
also that each Amps could have different values, and different types.

To use a descendant's member, a scope resolution operator, the back-
slash character '\', and an object value are needed, as described in the
following topic.

Constructors

Constructors are subroutines that, if present in a module, are called auto-
matically when the module is created. Constructors are useful for ini-
tializing variables, opening files, streams and other I/O connections,
launching submodules or for registering the module with external ser-
vices before the module is fully ready for operation.

Constructors differ from initialization states (the first state to run when a
module is created) in that they will occur sooner. The constructor sub-
routine runs immediately as part of the launch, while there may be a
delay before the first state in the module runs. Since constructors were
introduced as part of VTS 10.1, you may see the use of a "Ready" flag in
older code. This was used as a work-around to ensure that the first state

in the module had a chance to run before other code that depended on
the completion of initialization tasks would begin.

Example:

Where MyModule is a launched module:

<
MyModule
(

InstanceName;

)

[

constructor Module;
CapsName;

]

Main [
]

<
constructor
Main [
If 1;
[
CapsName = ToUpper(InstanceName) ;
Return(Invalid);
]

]
{ End of MyModule\Constructor }

>
{ End of MyModule }
>

The script code that launches the module might look like:

MyObj = MyModule("MyInstance™);
InitCapsName = MyObj\CapsName;

In the above example, InitCapsName will be "MYINSTANCE", as the con-
structor subroutine is executed as part of the line of script that creates
the object and assigns it to MyObj. Remember that subroutines take con-
trol of executing code until they are finished, thus guaranteeing that
CapsName is set by the time the statement InitCapsName = MyOb-
j\CapsName runs.

Constructors execute inside a CriticalSection, so it is impossible for
external code to interact with a partially constructed module.

The parent object and caller object of a Constructor is the module being
constructed.

Destructors

Destructors are subroutines that, if present in a module, are called auto-
matically just before a module is slain or otherwise stopped. These
ensure that cleanup tasks such as closing files, freeing memory and de-
registering a module instance from external services are done even if the
module is interrupted unexpectedly. (For example, a user closes a dia-
log box rather than finishing its task.)

<
MyModule
(
UniqueName;

)
L

constructor Module;
Destructor Module;
]

Main [

]

<
constructor
Main [
If 1;
[

GlobalbDictionary[UniqueName] = cCaller(Self());
Return(Invalid);
]

]
{ End of MyModule\Constructor }
>

<
Destructor
Main [
If 1;
[{ uniqueName had been added to a global dictionary as part of
MyModule. }
DictionaryRemove(GlobalDictionary, UniqueName);
Return(Invalid);
]

]
{ End of MyModule\Destructor }

>
{ End of MyModule }
>

In the above example, GlobalDictionary is a dictionary of all instances of
MyModule, keyed by each module instance's UniqueName. The

Constructor makes sure that each instance of MyModule is presentin
that dictionary, and the Destructor removes the instance from the dic-
tionary when the instance is slain.

Destructors execute inside a CriticalSection, so it is impossible for
external code to interact with a partially destructed module.

The parent object and caller object of a Destructor is the module being
destroyed.

Reference Boxes in Graphic Modules

If the purpose of a module is to display a graphic object, it is useful to
define a reference box. This defines the rectangle to be occupied by all
graphics drawn by the module, possibly including a margin around those
objects. If a reference box is not defined, then VTS will automatically cal-
culate one based on the graphics being displayed. Leaving the reference
box to be calculated automatically can have a negative effect if the mod-
ule contains various states with different graphic statements. If VTS must
re-calculate the reference box as the module changes from state to
state, transformations applied to the display can be affected.

Commonly, graphic objects are displayed using a GUITransform that sets
the size, location, and other attributes. The module's reference box will
be mapped to the bounding box defined and transformed by the
GUITransform. So for example, if you had a module named PumpSymbol,
you might display it as follows:

GUITransform(0, 150, 100, 50 { Bounding box of object },
1, 1, 1, 1, 1 { No scaling },
0, 0 { No trajectory or rotation },
1, 0 { object is visible; reserved },
0, 0, 0 { Graphic cannot be focused },
flow = PumpSymbol(1, amps) { A sample module call });

When a GUITransform is applied, the module will be scaled such that its
reference box will exactly fill the reference box of the transform, and
that will be acted upon by the other transform parameters. There is a
clear advantage to having the graphic object's reference box remain con-
stant, regardless of the active state.

The reference box is defined using constants (numbers or defined con-
stants) that are enclosed in parentheses and placed immediately after the
module's name in its definition. The x and y coordinates of the reference
box corners are defined in the order LeftReference, BottomReference,
RightReference, TopReference. Variables and expressions may not be
used.

For example:

PumpSymbol
(0, 100, 100, 0) { reference box }
({ parameters }
State { current pump state 1},
Amps { Amperage to display }
)
[...
See also, SetModuleRefBox, but this is rarely used.
Related Information:
...Reference Boxes for Graphics Modules

...Use Scaling to Position Graphic Objects

Functions

A function is a named operation that may return a value, perform an
operation or both. For example, the square root of a number is returned
by a function named Sqrt. The Beep function will cause a tone to sound.
Function names are not case-sensitive in VTScada.

Some examples of functions are:

Sqrt(10);

Log(X);

Limit(x, 0, 100);
YLoc(Q);

YLoc;

Note the use of commas to separate parameters when more than one is
required. If a function does not require parameters, you may omit the
parenthesis without affecting operation, but this is discouraged as a mat-
ter of practice.

Functions may be used as parameters for other functions. These func-
tions may then be used in other expressions, etc. There is no limit on the
level to which functions and operators may be nested and combined, how-
ever you should strive for clarity by limiting the level of nesting.

You may define your own functions by creating subroutine modules

Related Information:
...Types of Module - A function is a module that returns a value.

...Function Parameters - Declaring pass-by-reference and pass-by-value
parameters.

...Latching and Resetting Functions - Some functions will stay set, and
some will reset after being called.

...Considerations for Graphics Functions - Preparation for and proper
use of.

Format Examples for Functions

The format example, provided for every function, also provides relevant
information about how to use the function and the library that the func-
tion is a part of. The indication of the library is especially important to
anyone writing a Script-layer based application.

Optional Parameters

For most function examples, some of the parameters will be shown
inside square brackets. These parameters are optional. If the default val-
ues, as described in the parameter descriptions, will serve for your pur-
pose, then you may leave the parameters out. If you want to specify some
of the optional parameters, then you must provide all the parameters
between the last one required and the optional parameter you want to
specify. Use Invalid for each of the intervening optional parameters that
you do not want to specify.

Examples:

\System\DropList(X1l, Y1, X2, Y2, Data, Title, Index, FocusID, Trig-
ger, NoEdit, Init, Variable [, DrawBevel, VertAlign, AlignTitle,
Style, BGColor, FGColor]);

All the parameters from DrawBevel onward are optional and may be left
out of the function call. Assuming that valid values have been defined for
the required parameters, this function will work if used as follows:

\System\DropList(X1l, Y1, X2, Y2, Data, Title, Index, FocusID, Trig-
ger, NoEdit, Init, Variable);

If you wanted to draw a drop list with an orange background, and did not
care about any of the other parameters, you could use:

\System\DropList(X1l, Y1, X2, Y2, Data, Title, Index, FocusID, Trig-
ger, NoEdit, Init, variable, Invalid, Invalid, Invalid, Invalid, 135)

Will this Function Work in a Script Application?
Most development work is done within standard applications (those
based on the VTScada layer), and the documentation is written from that
point of view. Script applications will not have access to function libraries
that were created explicitly for the VTScada layer. Do not assume that
any function will work in your script application until you have tested it.
It is possible to offer general guidelines for recognizing which functions
are likely to work in a script application, but again, you should always
test first. When testing the function in a script application, try first with
the format as shown. If the test fails, try using the function with the pre-
fix \Layer\.

« Functions that are part of the \System layer will work in script applications.

« Most, but not all, of the basic string handling, math, time and date functions

will work in a script application.

« If the format example begins with a backslash (\) and is not part of the \Sys-
tem layer, then itis likely that the function will not work in a script applic-
ation, but test to be sure.

Function Parameters

In most cases, a function will have a fixed number of parameters. The
order in which the parameters are listed is significant since VTScada
interprets the meaning of each parameter according to its position in the
list.

Some functions have optional parameters that may be entered or omitted
at the user's discretion. In the function listings, later in this guide,
optional parameters are shown enclosed in square brackets ([]). If using
a function that has several optional parameters, and you wish to specify
only the first and last, use INVALID for the intervening parameters that
you do not want to specify.

Pass-by-reference / pass-by-value
« When a function is called from steady-state, parameters are always passed
by reference.
« When a function is called from script, parameters are always passed by
value.
You can override this by using pointers for parameters in script code,
thereby achieving a pass-by-reference. In steady-state, you can effect-
ively pass-by-value by using a copy of a value rather than the original.

Note: for some data types, all assignments are made by reference, not
by value. This includes Dictionaries and Arrays.

If a function has no required parameters, the empty parentheses fol-
lowing the name may be omitted while retaining exactly the same oper-
ation. It is however, good programming practice to always include the
parenthesis as a matter of style.

Functions may be used as parameters for other functions. These func-
tions may then be used in other expressions, etc. There is no limit on the
level to which functions and operators may be nested and combined, how-
ever you should strive for clarity by limiting the level of nesting.

Examples of functions nested within functions :

sin(sqrt(xX) * 5);
Limit(Cos(X / 180), 0, Log(Sin(x / 180) + 2) + 1);

Latching and Resetting Functions

Most functions, called in steady-state, will change in value as their para-
meters change. For example, Y = SQRT(X). As X changes in value, so does
Y.

All functions and statements are reset when the state that contains them
is entered. They may also contain an enable parameter that enables them
to be reset. For example, the AbsTime() function will not start counting
time until its Enable parameter becomes TRUE.

VTS includes a class of functions referred to as the automatically-reset-
ting functions. These are designed such that their value will latch once
set, and will not change with future parameter changes. AbsTime() again
is an example - once the designated time has arrived and the function
becomes true, it will remain true until reset.

The automatically-resetting functions will reset when used as the action
trigger of an IF statement and the condition becomes true. For example,
in the case of MatchKeys, an action trigger might test for the operator
input of a specific single key. If the intent of such an action is to perform
a one-shot event, such as increasing a set point by a fixed amount, the
action trigger must be false the next time it is tested or else the script
will be executed innumerable times for just a single keystroke. Since the
MatchKeys function is automatically reset when the IF statement con-
taining it becomes true, the action script will execute only once when the
key is hit.

Note: Be aware that an IF statement will attempt to reset any subroutine
of yours that is used as the condition for the action trigger. See: Action
Triggers and Scripts

Some functions include the ability to reset themselves. For example
Latch(). The second parameter to this function is a 'reset’, which when
true, resets the function for the next go-around.
Examples:

Lighton = AbsTime(l, 10, 0)

After the given time has elapsed, the light goes on and stays on.

1f AbsTime(1l, 1, 0);
[

]

Lighton = !LightOn;

The light will switch on and off every second since the IF statement
resets the AbsTime function every time it becomes true. One second
later, it becomes true again.

Lighton = Latch(AbsTime(1l, 2, 0), AbsTime(l, 2, 1))
This is functionally equivalent to the previous example. The light flashes
on and off each second.

If Timeout(l, 1);
[

]

J will increment once per second, since the Timeout is reset each time it

J++;

becomes true.

Z = Timeout(l, 1);
If z;

J will increment continuously, as fast as your computer will allow.

When combining function calls and other operations in an action trigger,
use care to follow the rules of operator precedence to avoid unexpected
results.

Functions That Are Automatically Reset:
o AbsTime
« Change
« DeadBand
. Edge
o Intgr
o Latch
« MatchKeys
« Now
o Pick
o RTimeOut
o TimeOut

« Toggle

« Save
« Watch
« WatchArray

« WinMatchKeys
(*) Note: TimeArrived does not automatically reset.

Considerations for Graphics Functions

While it is generally the case that the order of statements within in state
is largely irrelevant, this is not the case for graphics functions. Each item
is added to the screen in turn (layered) according to its position within
the state.

Focus

Each graphic function that can receive keyboard focus has a parameter
called a FocusID. The input focus determines what graphic control
receives keyboard input. Like Microsoft Windows™, only one graphic con-
trol can receive keyboard input at a time. Each graphic item changes its
display to indicate it has the focus. For example, a button shows a
dashed line around its label. Pressing the return key while an item has
the focus is the equivalent of clicking the mouse on it with the correct
button combination (specified in its Button parameter).

The focus number is usually (but not necessarily) unique. The function,
NextFocuslID can be used to automatically set the focus to the next item
with a certain focus ID number; FocusID returns the focus ID number of
the item that has focus.

Note that the above refers to keyboard focus. If several objects, such as
buttons, can react to a mouse-click, and if those objects overlap on the
screen, then that click will be used by all the overlapping objects.

Window Coordinates

In VTScada, the screen is laid out in an x-y grid with the x-axis hori-
zontal and the y-axis vertical. When VTScada is first started, the upper
left corner of the screen is the origin (where both x and y are 0). X

represents the number of pixels (dots) from the left side of the window.
Similarly, y represents the number of pixels (dots) from the top side of
the window.

Note that there is both a function that can provide the current display res-
olution (VStatus), and a statement that can change the world coordinate
limits (Coordinates).

Additionally, the VTScada Coordinates utility enables you to precisely
determine the horizontal and vertical coordinates of the mouse pointer
within any VTScada window (page or dialog). For further information on
the Coordinates utility, please refer to Coordinates Application.

Threading

VTScada provides the ability to have multiple control threads that share a
single address space, but appear to behave as if they were separate pro-
cesses (i.e. the processing time is divided equally among threads of the
same priority). This means that those statements that are deemed to be
threaded, and any modules that are called in their own thread will not
block each other waiting for their turn to execute, but will instead share
the processor's time, giving the appearance of simultaneous execution.
The chapter "Function Usage in States, Scripts, and Threading" lists which
functions are threaded. In cases where two versions of the same function
exist, one being threaded and the other not, the threaded version will
generally have a "T" appended to its name, such as in the case of Get and
TGet.

Great care must be exercised in using threaded functions or in launching
a module in its own thread by using the Thread statement (this is dis-
cussed further in the section on modules). Since each thread executes
independently of the others, except for its shared memory space, no
assumptions may be made as to when the statement is finished exe-
cution and its resultant variable assigned a value. Any variables set by
threaded statements must be checked for validity before proceeding to

use them. If order of execution is important and the task to be per-
formed is not an overly long and arduous one, it may be better to use the
non-threaded version of a function. For example, if you wish to retrieve
ten thousand records from a file and don't want your entire application
to be suspended while the data retrieval is happening, using a TGet is
probably appropriate. If on the other hand you have only two records to
retrieve (assuming that they don't each contain a thousand fields) you
may find that Get is more appropriate, since any processing of the data
can be included in the same script that executes the Get and there will
not be any time wasted in creating and destroying the thread in which
the function operates.

It should be noted that VTScada provides utilities to assist you in
troubleshooting threading in your applications. The Thread List supplies
a list of the separate threads of execution for which VTScada is respons-
ible within a local application.

Operators in Statements

Operators are symbols used to perform an operation, comparison, or
mathematical function (such as addition or subtraction). Operands are
variable names or expressions that are being compared or that a math-
ematical function is being performed upon.

Some operators are used in expressions by placing the symbol for the
operator between two operands. For example:

A+ B

The operands A and B are variable names, but they could also have been
expressions. The + operator is placed between the two operands and
means that the expression A + B will return the value of the sum of the
values of the variables A and B.

Several operators follow a slightly different rule. The logical NOT (~ or !),
unary minus (=), preincrement (++), predecrement (--), pointer derefer-
ence (*), and address of (&) precede their operands.

Operators may be combined to form more complex expressions, such as

A+B*5/C<=11.5
Related Information:
...Operator Priority in Statements
...List of VTScada Operators
... Boolean Logic Operators

...Scope Resolution Operators

Operator Priority in Statements

The order in which the operators are executed is significant. Consider
the expression:

1+2*3

The value of this expression depends upon whether the addition or mul-
tiplication is done first. If the addition is done first, the result is 9; oth-
erwise, it is 7. To resolve this type of ambiguity, VTScada assigns
priorities to operators - operators with higher priority are done first. Mul-
tiplication has a higher priority than addition, so in the previous example
the correct result is 7. If the addition were intended to be done before
the multiplication, the expression could be written as:

@a+2 =3
Parentheses () force the expression within them to be done first. The fol-
lowing two expressions have the same value:

1+2 * 3
1+ (2 * 3)

Some operators have equivalent priorities, such as addition and sub-
traction. In these cases the evaluation is done starting with the left-most
operator. For example:

1-2+4%5
could be equally written :

@a-2)+ 4 *5)

A detailed list of all VTScada operators and their priority levels is given
in the List of VTScada Operators section. If there is any doubt as to
whether or not parentheses are required, you should include them. There
is no penalty to pay in terms of speed or memory requirements for pla-
cing redundant parentheses in an expression.

Note: When doing comparisons between two operands of different
types, the second operand is always cast to the type of the first. This
can cause differing comparison results depending on the order of the
operands.

List of VTScada Operators

The following is a list of all available operators and their order of exe-
cution in any statement (priority). Following the table of operators are
detailed descriptions of each operator, including their usage and
examples.

Note: When doing comparisons between two operands of different
types, the second operand is always cast to the type of the first. This
can cause differing comparison results depending on the order of the
operands.

Description Symbol | Priority

Parentheses () 1
Use to force operations to happen in a given order. Operations within
the parentheses will be done before operations outside.

X=2+3*4; { xwill be 14 }
X=0@2+3) *4; { xwill be 20 }
Scope Resolution: dot and backslash \ 2

The dot scope resolution operator (.) allows access only to variables and
modules within the current scope. If there is no match within the cur-
rent scope, Invalid will be returned.

The backslash scope resolution operator (\), allows access to variables
and modules outside the current scope. This scope resolution operator

must be used with an object value, and a member name (either a vari-

able or module name).

Array Index
Follows the array variable name, and specifies which element within the
array is to be used.

[]

Segment/Offset

This returns a number which is the real mode address with the segment
before the @ and the offset after the @. This value can be used in func-
tions such as Memin and MemOut.

Logical NOT, ~, !

This is the logical NOT operator. If the expression following the ~ is
true (non-0), then the function returns false (0). If the expression fol-
lowing the ~ is false, the function returns true (1).

~or!

Unary Minus

This operator returns the negative of the numeric expression to the
right of it. For example, -X takes the negative of the value of the X vari-
able. It uses the same symbol as the subtraction operator but does not
have an argument before it.

Pointer Dereference
This dereferences a pointer value (see Pointers; that is, it returns the
actual value pointed to by the pointer. For example, the following takes
the value in var, adds 1, and stores the result to x.

ptr = &var;

X = *ptr + 1;
The pointer dereference may also be used on the left side of an assign-
ment to change the value pointed at by the pointer, as follows:

*ptr = x + 1;

This takes the value in x, adds 1, and stores the result to the variable
pointed at by ptr.

This is a powerful tool. It enablesthe destination of an assignment to be
changed at runtime. For example, an application may need to set one of
500 variables, depending on some variable g. It would be impractical to
write 500 assignment statements inside of 500 separate actions. It
would be much simpler to create a 500 element array, with each ele-
ment pointing at a different variable. Then execute the statement:

*(ptrArray[ql]) = order;

This assigns the value in order to the variable pointed at by element g

of the array of pointers ptrArray.
Pointers to new values may be created with the New function.

Address &
This returns a pointer to the operand. For example,

y = 4;

ptr = &y;
This stores a pointer to y in variable ptr. If ptris used in any situation
requiring a value other than a pointer value (such as a numeric value),
the result will be invalid, because ptr is a pointer to a value, not a value
itself. For example:

w = ptr + 1;
This will cause w to be set invalid; what should have been written was:

w = *ptr + 1;
This will set w to 5. Pointers to new values may be created with the New
function.
Pre-increment and Post-increment ++

This operator adds one to a number before it is used (pre-increment:
++x) or after it is used (post-increment: x++). For example:

X = 3;
Yy = 4+4X;

Both x and y will receive the value 4 after these statements execute.

X = 3;
Y = X++;

Following these statements, y will have the value, 3 and x will have the
value, 4.

Pre-decrement and Post-decrement
This operator subtracts one from a number before it is used (pre-decre-

ment: —-x) or after it is used (post-decrement: x--). For example:

X = 3;
y = =°%;

Both x and y will receive the value 2 after these statements execute.

X = 3;

y = X--;
Y will have the value 3, and x will have the value 2 after these state-
ments execute.

Multiplication

This operator takes two arguments. The returned value is the result of
multiplying the numeric expression before the * by the numeric expres-
sion after it. If either expression is a valid 0, the result will be O regard-
less of whether or not the other expression is valid.

Division /
This operator takes two arguments. The returned value is the result of
dividing the numeric expression before the / by the numeric expression
after it. If the expression after the / has a value of 0, the result is
invalid. It should be stressed that the result of this operation is not
necessarily of type integer, even if both arguments were integers.
Modulus %
This operator takes two arguments. The returned value is the remainder
when the first argument is divided by the second. For example:

a=5%2;

b=7.4%1.2;
The values of a and b will be 1 and 0.2 respectively.
Addition/Concatenation +
This operator takes two arguments. If either argument is a number, Tag
or Normalize value, the return value will be the result of adding the two
arguments. Otherwise, the return value will be a string of the first argu-
ment concatenated with the second argument.

a = "Bob smith";

b = "Operator " + a + " has logged on";
In the preceding examples, b will be equal to the string "Operator Bob
Smith has logged on".
Subtraction -
This operator takes two arguments. The returned value is the result of
subtracting the numeric expression after the minus sign from the
numeric expression before it.
Right Shift >>

This operator works on numeric values only and shifts the bits in the
first operand right by the number specified by the second operand; the
appropriate number of zeroes go into the bits vacated to the left side of
the value. For example:

X = 0b01100111 >> 3;
The value of x will be 0b00001100.

Left Shift << 8
This operator works on numeric values only and shifts the bits in the
first operand left by the number specified by the second operand; the
appropriate number of zeroes go into the bits vacated to the right side
of the value. For example:
x = 0b1100111 << 3;

The value of x will be Ob1100111000. (note: the value is stored in a 32
bit integer - by convention, zeroes to the left of the highest value 1 are
not shown)
Less Than < 9
This operator returns true (1) if the first argument is strictly less than
the second, otherwise it returns false (0). If both arguments are text val-
ues, the operator returns true if the first argument is alphabetically
lower than the second.
Less Than or Equal To <=or |9
The same as Less Than, but will also return true (1) if the two operands | =<
are equivalent.
Greater Than > 9
This operator returns true (1) if the first argument is strictly greater
than the second, otherwise it returns false (0). If both arguments are
text values, the operator returns true if the first argument is alpha-
betically higher than the second.
Greater Than or Equal To >=or |9
The same as Greater Than, but will also return true (1) if the two oper- |=>
ands are equivalent.
Equal To _ 10
This operator returns true (1) if the two operands are equivalent.
Not Equal To <>or |10
This operator returns true (1) if the two operands are not equivalent. ><or

!_

A 11

Exclusive OR (XOR, A)

This returns the 32-bit, bitwise exclusive OR of the two operands. If
either operand (but not both) is true (non-0), the result is true(1); if
both are true or both false(0), the result is false.

0 A O

nw SO T
LI | | B
ROoOR
> > >
RROo

The values of p, g, r, and s are 0, 1, 1, O respectively.

Logical and Bitwise and operations: AND, &, && & or&&|12
Both the & and the && operators(*) take two arguments and perform the
logical AND function upon them. If both arguments are true (non-0),
the operator returns a true value; otherwise, a false value (0) is returned.
If either argument is a valid false, the function returns false regardless
of whether or not the other argument is valid.
The AND operator performs a bitwise comparison (32-bit).
VTScada does not use short-circuit evaluation. Both parts of the con-
dition will always be checked (and evaluated if required).
If a && b;
[c =d & Sgrt(e - 9);
]
In the above example, the script will be only be executed if both a and b
have non-zero values.
(*) In practice, the & operator is not used, avoiding confusion with the
C/C++ bitwise comparison operator.
Logical and bitwise or: OR, |/, || lorll |13
The | and || operators(*) take two arguments and perform the logical OR
function upon them. If either argument is true (hon-0), the operator
returns a true (1) value. If both arguments are false(0), the operator
returns a false value(0). If either argument is a valid true, the function
returns true regardless of whether or not the other argument is valid.
The OR operator performs a 32-bit, bitwise comparison.
VTScada does not use short-circuit evaluation. Both parts of the con-
dition will always be checked (and evaluated if required).
(*) In practice, the | operator is not used, avoiding confusion with the
C/C++ bitwise comparison operator.
If Else ?: 14

Inline If-Else.

This operator takes three arguments; if the first expression or condition
evaluates to true (1), the second argument's value is returned, otherwise
the third argument's value is returned. The second and third arguments
need not have return values, but can be statements with one or more
actions to perform. If no return value exists, invalid is returned.

zBar(10, 200, 60, 10, Sscope(\VTSDB, "ThePort\TheDriver-
\Readval")\value > 70 ? 12 { red } : 10 { green });

In this example, color of the bar drawn on the screen will be based on a
tag named ReadVal. (Child of "ThePort\TheDriver") When the value is
greater than 70, the bar will be red, when it is equal to or less than 70,
the bar will be green.

Note that the ? operator has a lower precedence than most other oper-
ators, and therefore expressions using it should be enclosed in par-
entheses when used in combination with other operators.

For example:

whileLoop(A < B || Subroutinecall() ? valid(x)
valid(y),

)

.. would evaluate as:

whileLoop((A < B || Subroutinecall()) ? valid(x)
valid(y),

)
...whereas:

whileLoop(A < B || (Subroutinecall() ? valid(x)
valid(y)),

)

...is probably what was intended.

Assignment

Assigns the value of the following constant, variable or operand to the
variable name that precedes the operator.
X = 3; assigns the value 3 to X.

Add Equals

Adds the value of the following operand to the preceding variable. X+=
Y is equivalent to X = X + Y.

Subtract Equals

Subtracts the value of the following operand from the preceding vari-
able. X-= Y is equivalentto X = X - Y.

Multiply Equal *= 15
Changes the value of the preceding variable by multiplying it by the fol-
lowing operand. X*= Y is equivalent to X = X * Y.

Divide Equals /= 15
Changes the value of the preceding variable by dividing it by the fol-
lowing operand. X/=Y is equivalentto X = X / Y.

Modulus Equals %= 15
Changes the value of the preceding variable by applying the following
operand as its modulus. X%= Y is equivalentto X = X% Y.

Boolean Logic Operators

With regards to state logic and the VTScada scripting language, any
expression that contains an Invalid, whether it be in combination with
the "+", "-", """/ "&&", or "||" operators (see List of VTScada Oper-
ators), is expected to return Invalid unless PickValid is used. There is one
exception to this rule; that is, if an expression contains an Invalid and a
"0", then the result will be a "0", as Boolean logic dictates that anything
anded with a "0" is always a "0". The underlying principle is to return a
valid result whenever possible.

For example:

Invalid && 0 = 0
Invalid & 1 = Invalid
Invalid || 1 =1

Following are some of the common operators and the result when they
used in Boolean expressions.

&& (AND)

Two or more items must agree (i.e. must be evaluated to the same result)
in order for the expression to be true.

1 & 1 = TRUE

0 & 1 = FALSE

1 & 0 = FALSE

0 & 0 = FALSE

1 &% 1 &% 1 = TRUE
1 &% 1 &% 0 = FALSE

|| (OR)
One, both, or more items must agree. If both inputs are false, the result

is false.
1 |] 1 = TRUE
0 || 1 = TRUE
0 || 0 = FALSE
I (NOT)

Reverses the input. If true is input, the result is false; if false is input, the
result is true.

11 would evaluate to FALSE
10 would evaluate to TRUE

A (XOR - eXclusive OR)
Only one input may be true; if both inputs are true, the entire result is

false.
1 A1l = FALSE
1 A0 = TRUE
0 A1 = TRUE
0 A 0 = FALSE

Value Types and Storage

VTScada uses many different types of value: integers, floats, text, dic-
tionaries, etc. VTScada is not a hard-typed language. All variables and
constants used in a module must be declared, but the intended value
type is not part of the declaration and different value types may be
assigned to a variable as the module runs.

Variables and constants are declared at the beginning of a module,
within one set of square brackets. This section will always be imme-
diately after the parameter list, which is within round parentheses.

CustomControl { module name }
(
parml { a parameter to the module };
)
[{ start of variable and constant declar-
ation }
TotalCount { variable declaration
bE

CurrentCount =0 { variable declared with an

initial value };
constant #warningMsg = "Danger" { constant declared
with a text value };

]

By convention, constants are declared with a leading "#", but this is only
for the sake of convention. The hash mark has no functional significance.

Default Values

Every instance of a variable starts with a value. This value may default to
invalid, or it may be declared to have a numeric or text value upon cre-
ation. Every time an instance of that variable is created, it will begin exist-
ence with its default value. A default value is specified by placing a =
after the variable name followed by the desired default value.

Persistent variables will only set their default value if there is no .VAL file
containing the persistent value.

The following table provides a list and short description of each of the
value types commonly used in code. Where more explanation is required,
there are links to relevant topics. From time to time, you may also need
to refer to the more technical, table of VTS Value Types.

Common Value Types for Coding

Num- Numbers are stored internally in the most efficient form for

bers the value provided. In all cases, VTScada is able to handle
double-precision, floating point numbers. All arithmetic is
done with the precision of 8-byte IEEE floating point num-
bers, regardless of the values provided. The legal value
range of values =10A307, and a precision of approximately
15 decimal places.
Use a minus sign to indicate negative numbers. A plus sign
may not be used in a number. The following formats may be
used as needed:

Format Example Description

Scientific nota-23.5e5 Place the letter "e" or "E" after the number,
tion followed by the number to use for the
power of 10. For example, 1.23E3 is the

Text /
String

Logical
Values
(also,
"status
value"
or
"Boolea-
n")

Pointers

same as 1230.0 and 1.23E-3 is the same
as 0.00123.

Binary nota- 0b1100 Binary integers may be specified using
tion the Ob or OB prefix and up to 32 digits.
Each digitis eitheraOorall.

Octal notation 014 Octal integers may be specified using a
zero prefix and up to 11 digits. Each digit
must be in the range 0 to 7.

Hexadecimal 0OxC Hexadecimal integers may be specified

format using the Ox prefix and up to 8 digits.
Each digit must be a number or a letter in
the range A to F (upper or lower case).

Text values (also called "text buffers" or "strings") are a

series of ASCII characters. Text values can hold up to approx-
imately 65,500 characters (just less than 64k characters).

A text value may not hold the ASCII 0 value. To store quo-
tation marks in a text variable or constant, use double-
quotes:

Quote = we lived for days on nothing but food and
water."" wW.C. Fields";

The term, "null string" refers to a text value having zero char-
acters.

A logical value is a "true" or "false" value. A false value is
indicated by the number "0" or the function, FALSE. A true
value is indicated by any valid number other than 0, (typically
a "1") or by the function, TRUE.

In general, it is better coding practice to use the functions
TRUE and FALSE than 1 and 0.

A pointer is a variable that holds a memory address. A

Streams

Object
Vari-
ables

pointer references or "points to" a value in a specific memory
location.

A variable that points to an address does not have the prop-
erties of the value type in that address and cannot be con-
verted to another value type.

A pointer is made to reference the memory address of a vari-
able by using the address operator "&". For example:

y = 4;
ptr = &y;

Before the data referenced by a pointer can be used, the
pointer must be dereferenced.

Stream values are a complex type, which refer to a
read/write stream. Streams are a very convenient way of per-
forming formatted input and output. Examples of streams
include buffer streams attached to text values, file streams
attached to disk files, and pipe streams attached to oper-
ating system pipes. There are a wide variety of functions
related to streams.

Most streams contain a position pointer that indicates where
in the stream the next read or write will take place. This
pointer is automatically positioned after a read or write to
the stream and may be positioned by the Seek function,
which also returns the current position in characters from
the beginning of the stream.

Streams also offer faster file access than FRead and FWrite,
which open and close the file after every access, because a
stream leaves a file open. The downside is that if the com-
puter is shut off or loses power before a CloseStream closes
the file stream, the opened file will be corrupted.

The object type is used to access public members of a module

instance. Each object variable references exactly one module
instance. Programmers experienced with high level languages may

Graphic
Vari-
ables

Array
Vari-
ables

Dic-
tion-
aries

Struc-
tures

identify the object type roughly with a pointer type from Pascal or C
(the pointer points to a particular copy of a module). Every active
module call creates a new separate copy, or instance, of that module
and its member variables. Each module instance operates inde-
pendently of the other instances.

VTScada uses a set of variable types for graphics that are
unique to VTScada. These value types are used by all layered
graphics functions, and by the functions which create them.
All of these values are valid only so long as the function that
created them is active.

This set of value types includes: Point, Vertex, Path, Normal-
ize, Rotate, and Trajectory Variables

Arrays are a special type that enables a group of values to be
kept under one variable name. The individual elements of
the array are sequentially numbered. Each of the elements of
the array can be used as a completely separate variable with
its own independent value that may have its own type.

There are two types of array: static and dynamic, which refer
to how the array is declared, not the values within it.

A dictionary is flexible data structure, providing functionality very
much like a database. It is a named structure, holding a flexible set
of name-value pairs , which may have a value itself. Dictionaries
may hold other dictionaries.

Structures allow you to organize information to increase the overall
clarity of your code. Much like a structure in C, these are collections
of variables and their values, placed under one name.

Related Information:

...ASCIl Constants

...Value Type Conversions

...Invalid Values

...Using Arrays

...Using Pointers

...Dictionaries

...Meta Data

...Structures

...Variable Storage, Retention, Access
...Variable Class Definitions

...VTScada Value Types - Numeric Reference

Value Type Conversions

Occasionally, data may be the wrong type. For example, an addition may
be performed on two variables, one containing a number, the other con-
taining a text value. VTScada handles this situation by performing a con-
version of the unexpected data to the type of data expectd.

5;

A + B;

A
B
C

In this example, two numbers are expected. One variable is already a
number; the other variable containing text is converted by VTScada to a
number. This is done by reading an ASCIl number from the text. If suc-
cessful, the converted number is used; if unsuccessful, an invalid value is
returned. This process is referred to as "type conversion".

Note: Note When two variables of different type are used in an expres-
sion, the second operand will always be cast to the type of the first.
This can cause radically differing results depending on the order of the
operands.

Table of VTS Value and Type Conversions

Convert Convert

Condition of Original Value Returned Value
From To
Code Pointer | Module Valid value Valid value
Module Valid value Valid value

State

Module State |Statement | Valid value Valid value
Object Valid value Valid value
Text Valid value Name of module
Double Long Valid value Valid value
Short Valid value Valid value
Status Valid value Valid value
Text Valid value String representing numeric
value
Edit Block Stream May only be used in SRead Valid value
with % option, or in StrLen
Long Double Valid value Valid value
Short Valid value Valid value
Status Valid value Valid value
Text Valid value String representing numeric
value
Module Text Valid value Name of module
Module State | Module Valid value Valid value
Text Valid value Name of module
Module State | Module Valid value Valid value
Statement
Module Valid value Valid value
State
Text Valid value Name of module
Normalize Double Valid value The scaled value
Long In the range of -2 147 483 | The value
648 to 2 147 483 647
Short In the range of -32 767 to The value
32 767
Outside of range Invalid
Status 0 0 (false)

Non-0 1 (true)
Text Valid value String representing scaled value
Object Module Valid value Module and state in which that
State object exists
Statement | Valid value Module state and statement
number that object is executing
Text Valid value Name of the module of which
that object is an instance
Short Double Valid value Valid value
Long Valid value Valid value
Status Valid value Valid value
Text Valid value String representing numeric
value
Status Double Unconnected socket 1
Connected socket Invalid
Long Unconnected socket 1
Connected socket Invalid
Short Unconnected socket 1
Connected socket Invalid
Status Unconnected socket 1
Connected socket Invalid
Text Unconnected socket "1t
Connected socket String of stream contents
Tag Double Valid value The scaled value
Long In the range of -2 147 483 | The value
648 to 2 147 483 647
Outside the range Invalid
Short In the range of -32 767 to The value
32767
Outside the range Invalid

Status 0 0 (false)
Non-0 1 (true)
Text Valid value String representing scaled value
Text Double Number string Number in string
Long Number string Number in string
Short Number string Number in string
Status Non-0 number string 0 (false)
0 number string 1 (true)
Variable Module Module variable The module in which the module
variable resides
Text Valid value Name of variable

Invalid Values

In addition to having normal valid values, variables can also be invalid.
An invalid value is an unknown value that is distinct from all other val-
ues; they guard the system from performing control action based upon
erroneous or bad information. Any variable may have an invalid value.
Any calculation that uses an invalid value produces an invalid result (with
a few exceptions). Invalid results are not written to output devices. In
addition, any graphic statements that contain invalid variables will not
produce any output on the screen. In general, any function that uses an
invalid value will have no effect and behave as if it did not exist.

Invalid values may result from variables that are not set to any given
value - this is true when VTScada is first starting up. To avoid this situ-
ation, programmers use the PickValid() function to provide a default
value to expressions until the variable has a valid value.

Invalid values can also result from setting a variable's value in two or
more different statements at the same time; in this situation it is uncer-
tain which value is correct, so the variable will be invalid even if both val-
ues are the same. This is known as a "double set". An array reference that
has one of its subscripts out of range will have an invalid value. Some
programmable controllers flag inputs when they are out of range - when

these values are read by VTScada, they are declared to be invalid. Divi-
sion by 0, taking the square root or logarithm of a negative number, and
other illegal mathematical operations result in invalid results. An invalid
value can even be purposely set as such by using the Invalid function.
Because calculations using invalid values produce invalid results, invalid
values can propagate through the system. The setting of a variable to
invalid will cause all other variables that depend upon its value either dir-
ectly or indirectly to become invalid.

Using Arrays

An array is a value type used to group a set of values under one variable
name. The individual elements of the array are sequentially numbered.
Each of the elements of the array can be used as a completely separate
variable with its own independent value that may have its own type.

Note: Arrays may be declared either as static or dynamic. If a function
specifies one type or the other as a parameter, it is essential that you
use only that type.

In all cases where a static array is not specifically required, use a
dynamic array. In practice, this means that the use of a static array is
uncommon.

A dynamic array is created by first, declaring the name:
[

NameArray { to be used as a one-dimensional array };
AddressArray { to be a two-dimensional array };

]

A script block is then used to define the array size, using the New() func-
tion.

Init

[.
IF 1 Main;
[

NameArray = New(10);
AddressArray = New(2, 10);
]
]

If you need to initialize the array after creating it, use an ArrayOp() func-

tion.
Static arrays are created, and optionally initialized when they are

declared:

[
astaticArray[10] = O;
Anotherstatic[2][10];

]

When referring to a particular element of an array, the number enclosed
in square brackets [] is called the "subscript". You may use a variable, an
expression or a function as the subscript in your code, in order to manip-
ulate an array or dynamically access different elements as operating con-
ditions change.

Related Information:

...Multidimensional Arrays

...Mismatched Array Dimensions

...Array Processing Functions
...Comparison of Static and Dynamic Arrays

...Array
Multidimensional Arrays

An array that contains arrays in its elements is defined as follows:
Data[5][10];

This declaration may be read as "Data is an array of 5 elements each of

which is an array of 10 values." This is a multi-dimensioned array. Each

dimension must appear as a number enclosed in square brackets [] that

follows the variable name, but you may also define starting and ending

elements. For example, the following declaration is for a two-dimen-

sional array whose valid elements range from Data[10][-1] to Data[20][6]:
Data[10, 20][-1, 6];

The left-most subscript is the "first" or "lowest" dimension of the array.
The right-most subscript is the "last” or "highest" dimension.

For functions and statements that take arrays as parameters, the second-
to-last subscript specifies the sub-array to use. For arrays with only one
dimension, there is no ambiguity. For example, consider the statement
that begins:

Plot(patax[2][3], 10, ...

The values in the array DataX[2][3] to DataX[2][12] will be plotted. The
last subscript is the only subscript that varies. Any preceding subscripts
remain fixed for the function or statement. This rule means that it is not
possible to directly plot the 10 values contained in DataX[0][0] to DataX
[9][0], however, it is possible to plot DataX[0][0] to DataX[0][9]. This prin-
cipal applies for all functions and statements that require arrays as para-
meters, but only when there is more than one array dimension.

For functions that return multidimensional arrays, data may not be
stored in the manner that you would expect if you are familiar with other
programming languages. If unsure, use the Source Debugger to examine
the array structure. Consider the following example, where the third
mode of ListKeys() is used to obtain an array of keys and values from a
dictionary The stored data might be represented in some languages as
the following array:

Given the code:

IF watch(1l);

[
X = Dictionary(0, 5);
X["A"] = 42;
X["B"] = 86;
X[IICII] — 99;

Buf = Listkeys(X, 1, 3);
]

Some programmers might expect the return array to contain 3 rows of 2
columns:

A 42

B 86

C 99

but in fact, Buff will contain two arrays of three values:

MName |‘u‘a|ue
== Buf Array [0.1][0..2]
==[0]
[0] A m|
1] B m|
(2] C jmi
=-[1]
[a] 42 -
1] 86 -
[2] 99]
\\I’alue

The reason for this behavior is efficiency. It is faster to build the return
array as shown than otherwise. If in doubt, always create a test case to
examine using the Source Debugger.

Related Information:
...Mismatched Array Dimensions
...Array Processing Functions

...Comparison of Static and Dynamic Arrays
Mismatched Array Dimensions

If the number of defined array dimensions does not match the number of
array dimensions specified in an array reference, the evaluation proceeds
anyway, following certain rules. Specified array dimensions are matched
to defined array dimensions starting from the right and working towards
the left. If more array dimensions were specified than were defined, that
array expression is called "over specified". If more array dimensions were
defined than were specified, that array expression is called "under spe-
cified".

Over-specified array expressions will return an invalid value with one
exception - if all leading over specified dimensions are zero, it will
return element O of the specified array. For example:

Data[2][3];
Q = 4 + 3 * pata[x][1][2];

This will work if X is zero. Otherwise, Q will be set invalid. For under-spe-
cified arrays, missing leading dimensions will default to zero. In the pre-
vious example, consider the statement:

V=4 + 3 * pata[l];

This expression would use Data[1][0].
Related Information:

...Multidimensional Arrays

...Array Processing Functions
...Comparison of Static and Dynamic Arrays

...Array Processing Functions
In data processing, the WhileLoop() and DoLoop() functions certainly
have their place; however, when faster performance is required, the
VTScada array processing functions are recommended (see "Array Func-
tions").
For example:

whileLoop(I < N;

Array[I] = 0;

I++

)
This can be replaced by the simpler:
Arrayopl(Array[0], N, 0, 0)

If used in code that executes often, the second version will run sig-
nificantly faster than the first.

Another example involves pre-formatting the data received from an 1/0O
device in order to read that data into arrays. Whenever possible,
BuffToArray (and its sister BuffToParm) should be used for this task. In
many situations, the data in these return messages is not in the correct
format to use directly in the BuffToArray function, and it would appear at
first glance that a loop must be used. The data can instead be pre-pro-
cessed using an array function, and then passed to BuffToArray (an array
processing function itself).

If, for example, you are reading four-byte HEX ASCIl numbers from a
device, but the bytes are received in high to low order (the opposite to
what the BuffToArray function expects). Further, all data bytes rep-
resenting 0 (0X30 HEX ASCII) have the highest order bit (b7) setto 1. The
following fragment of code will read these values into an array correctly
without requiring a loop.

{ Clear the high order bit of the 0 values element }

RcvBuff = Replace(RcvBuff, 0, N * 4, MakeBuff(l, 0x30 + 0x80),
MakeBuff(1l,0x30));

{ Swap the byte order }

RcvBuff = Bufforder(RcvBuff, 0, 1, 4, N);

{ Read the data values }

BuffToArray(Array[0], N, RcvBuff, 5, 5, 0);

Alternatively, to be even more compact:

BuffToArray(Array[0], N,
Bufforder(Replace(RcvBuff, 0, N * 4,
MakeBuff(l, 0x30 + 0x80),
MakeBuff(l, 0x30)), 0, 1, 4, N),
5, 5, 0);

As a third, even faster option, you can remove the MakeBuff functions
and replace them with text constants that are set only once.

Note: You should always consult the array functions section whenever
you have a coding task that will require extensive looping. In many
cases, one or more array processing functions will exist to help to solve
the problem. The array functions are listed in "Array Functions".

Related Information:

...Multidimensional Arrays

...Mismatched Array Dimensions
...Comparison of Static and Dynamic Arrays

...Array
Comparison of Static and Dynamic Arrays

A static array variable holds a value of type, array. A dynamic array vari-
able holds a pointer to an array value. Thanks to automatic pointer
dereferencing and automatic index padding, there is very little difference
in the code that you write to use either type of array. What differences do
exist can be found in the following technical points.

It is important to note that use of a static array where a function expects
a dynamic array, will result in that function failing to work properly. Use

dynamically allocated arrays for all code unless a function reference
explicitly states that a static array is expected for one of the parameters.
Static arrays are created in the variable declaration [StaticArray[50]],
whereas dynamic arrays are created using the New() function within a
script block.
Automatic Pointer Dereferencing
Since dynamic array variables are pointers, one might expect to do a lot
of pointer dereferencing when using dynamic arrays. For example, to
access the fourth element of a dynamic array pointed to by Dynam-
icArray, one might expect to write the following code:
(*DynamicArray) [4] = O;

While this syntax is correct, it is also redundant; whenever VTScada
encounters the [] index operator, it automatically dereferences the vari-
able being indexed. This makes the explicit dereferencing unnecessary,
so that the above code can simply be written as:

DynamicArray[4] = 0;

By automatically dereferencing an array pointer under these cir-

cumstances, VTScada makes accessing an element of a dynamic array

look and behave just like accessing an element of a static array.
StaticArray[4] = 0;

Note: VTScada only performs automatic dereferencing when an element
is accessed with the index operator. In no other cases is a dynamic array
automatically dereferenced.

Automatic Index Padding

Unlike its automatically dereferenced pointers, VTScada's automatically
padded indices makes for array-related code that looks the same, but
behaves differently, depending on whether a dynamic array or a static
array is used. This mismatch between appearance and workings can eas-
ily lead to developer confusion, and thus warrants special attention.
VTScada applies automatic index padding whenever an array reference is
under-specified. In turn, an array reference is considered under-spe-
cified if two criteria are met:

. The array reference must involve an array value, as opposed to a pointer to

an array value. This is almost the same as saying the array reference must
involve a static array variable, as opposed to a dynamic array variable, with
two exceptions:

a. Whenever a dynamic array variable is explicitly dereferenced
(*DynamicArray), the result is an array value.

b. Similarly, whenever a dynamic array is referenced with the
[] operator, VTScada automatically dereferences the array
pointer, and the result is an array value.

2. An array reference must include fewer [] operators than the referenced array

has dimensions.

Given a two-dimensional dynamic array variable named, DynamicArray,

and a two-dimensional static array variable named, StaticArray, the fol-

lowing code shows under-specification:

coNOoOuVvT AWNBR

*DynamicArray; { Under-specified }
. DyhamicArray; { Not under-specified, not an array value }
. DynamicArray[2]; { Under-specified, automatic dereferencing }
. DynamicArray[1][3]; { Not under-specified }
. StaticArray; { Under-specified }
. &StaticArray; { Not under-specified, not an array value }
. StaticArray[2]; { Under-specified }

. StaticArray[1]1[3]; { Not under-specified }

Lines 2 and 5 show the inconspicuous difference between dynamic and

static arrays: VTScada considers line 2 fully specified, but considers line

5 under-specified.
Whenever VTScada encounters an under-specified array reference, it

automatically pads the least significant, under-specified indices with

zero indices. Revisiting the example above, the array references are pad-

ded as described in the comments in the following code.

X X X X X X X X

*DynamicArray; { x = DynamicArray[0][0] }
DynamicArray; { x = DynamicArray. See Variable Assignment }
DynamicArray[2]; { x = DynamicArray[2][0] }

DynamicArray[1][3]; { x = DynamicArray[1][3] }

StaticArray; { x = StaticArray[0][0] }

&StaticArray; { x = StaticArray. See variable Assignment }
StaticArray[2]; { x StaticArray[2][0] }
StaticArray[1][3]; { x StaticArray[1][3] }

Value Assignment - Static versus Dynamic Arrays

It is not possible to assign a value directly to (or from) a static array vari-
able, and VTScada's automatic index padding ensures that this does not
happen. If it ever appears that a static array is participating in an assign-
ment, automatic index padding works to make sure that only an element
of the array is involved. The following code shows the automatic index
padding at work, with equivalent assignments in comments.

[
AStaticArray[3] = 1;
BStaticArray[5][10] = 2;

Simplevar;
]
Init [
If 1 Main;
[
Simplevar = AStaticArray; { Simplevar = AStaticArray[0] }
Simplevar = BStaticArray[4]; { Simplevar = BStaticArray[4]
(o] }
Simplevar = BStaticArray[3][1]; { Simplevar = BStaticArray[3]
[1] }
Simplevar = &AStaticArray; { Simplevar = &AStaticArray }
AStaticArray = "super"; { ASstaticArray[0] = "super" }
BStaticArray[4] = 3; { BStaticArray[4][0] = 3 }
BStaticArray[3][1] = 4; { BStaticArray[3][1] = 4 }
&AStaticArray = 0x00008000; { Error! Not an lvalue }
AStaticArray = BStaticArray; {AStaticArray[0] = BStaticArray
[0]1[0] }
]
]

Dynamic-array variables are declared no differently than any other
VTScada variable. This similarity carries over to assignment, where
assigning a value to (or from) a dynamic-array variable is no different
than assigning a value to (or from) any other VTScada variable. Dynamic-
array variables can be assigned any scalar value, including another
dynamic-array variable (a pointer to an array). The following code shows
these assignments.

If 1 Main;

[

5; a scalar assignment }
New(3, 2); a new dynamic array }

ADynamicArray {
{

ADynamicArray[1]; { under-specified. ADy-
{
{

ADynamicArray
BDynamicArray
hamicArray[1][0]
BDynamicArray
CDynamicArray

ol L |

is assigned instead }
“Super";
New(10);

another scalar assignment }
a new dynamic array }

DDynamicArray = CDynamicCArray; { one dynamic array to another

}
Simplevar = DDynamicArray; { a dynamic array to a simple
variable }

]

When a dynamic-array variable is assigned to another variable, as in the
last two assignments of the previous example, only the pointer is
assigned, and no arrays are copied: in the previous example, CDy-
namicArray, DDynamicArray, and SimpleVar all point to the same dynam-
ically allocated ten-element array.

Note than during these assignments, neither of VTScada's automatic
array-related features was invoked: no [] index operators were present
and none of the array references were under-specified.

Passing an Array to a Module

Arguments to a Launched Module (or subroutine) are passed by value
(i.e. the value of the argument is copied, or assigned, to the module's
parameter). For this reason, passing arguments to a launched module is
very similar to assigning a value to a variable. It should be no surprise,
then, that the rules that govern passing arguments to launched modules
are identical to those that govern variable assignment: VTScada uses
automatic index padding to ensure that only an element of a static array
is passed to a launched module, while passing dynamic arrays to
launched modules is less restricted.

When arguments are passed to a Called Module, they are passed by ref-
erence (i.e. a called module's parameter is made to refer the argument,
and no copy is made). This is the only case when a static-array reference
is not index padded by VTScada. When a static array is passed to a called
module, the called module's parameter is made to refer to the entire
static array, and not just to one particular array element. Consequently, a
called module can change the elements of a static-array argument, and
any changes will appear outside of the module.

Similarly, when a dynamic array is passed to a called module, the array
pointer is not copied to the module parameter, but rather the called mod-
ule's parameter is made to refer to the array pointer (think of a pointer

to a pointer). In this way, a called module can change not only the ele-
ments in, but also the size and dimensions of, a dynamic-array argu-
ment, and any changes will appear outside of the module.

Related Information:
...Multidimensional Arrays
...Mismatched Array Dimensions

...Array Processing Functions

Using Pointers

Many VTScada functions require or return pointers. A pointer variable is
created by using the & notation in front of an existing variable name.
For example

Y = 7; { "Y" is a the name of a variable, within which is stored
the number "7" }

X = &Y; { X is the name of a variable, within which is stored a
pointer to the memory address of Y }

Pointers must be dereferenced before the data they point to can be used.
Dereferencing means accessing the value stored in the assigned memory
location. A pointer can be dereferenced by placing an asterisk before it.
For example:

*ptr
The value stored in the location referenced by "ptr" is now available for
use.
If you were to use the variable "Ptr" in an expression, you would have to
dereference it within the expression. For example:

X = *ptr + 1;
A dereferenced pointer can be used to store a new value into the location
or object at which it is pointing. For example:

ptr = &y;
*Ptr = 7;

This is equivalent to the expression "y = 7;".

If the pointer "ptr" is used in any expression requiring a value other than
a pointer value (for example, a numeric value), the result is invalid, as
"ptr" is a pointer to a value, not a value itself. For example:

w=ptr + 1

In this example, w is set to invalid, as the pointer "ptr" was not derefer-
enced. VTS will not take this to mean the next memory address. What
should have been written is:

w = *ptr + 1

Pointers and Arrays
Certain VTScada functions, such as New(), return pointers. The New() func-
tion is typically used to allocate a dynamic array. For example:

ArrayPtr = New(1l { Number of dimensions },
0 { starting index },
10 { Number of elements });

Technically, in order to use an element from "ArrayPtr", you must derefer-
ence the element:

(*ArraypPtr) [0] = 5;
Fortunately, the array index operator [] automatically performs a pointer
dereference operation if the variable before the array index operator has
a pointer value. For example, the expression above can also be written
as follows to achieve the same result.

ArrayPtr[0] = 5;

The preferred method is to allow the array index operator to auto-
matically perform the dereferencing of the pointer, as it improves the
readability of the statement, requires less memory, and executes faster.

Dictionaries

A dictionary is flexible data structure, providing functionality very much
like a database. It is a named structure, holding a flexible set of name-
value pairs , which may have a value itself. Dictionaries may hold other

dictionaries.

In the following example, MyDictionary has a value of 43 and holds three

name-value pairs, one of which is a dictionary having the value, "Greet-

ings" and itself holding two name-value pairs.

MyDictionary = Dictionary(Q); { The dictionary is created }

RootValue(MyDictionary)

MyDictionary["VvalueA"]

43; { A root value is assigned }

5; { The first stored value is created }

MyDictionary["valueB"] = 10; { The second stored value }
MyDictionary["YourDictionary"] = Dictionary(); { The third stored
value }

{ Further definition of the third stored value }

RootValue(MyDictionary["YourDictionary"]) = "Greetings";
MyDictionary["YourDictionary"]["valueA"] = "Good";
MyDictionary["YourDictionary"]["valueB"] = "Morning";

Dictionaries have the following basic attributes:

Information is stored in the form of key / value pairs.

Information is automatically sorted by key, resulting in fast searching and
retrieval.

Key / value pairs can be added and removed efficiently and without limit.
Dictionaries can have root values: a value, tied to the dictionary itself rather
than to a key within the dictionary. This is optional, but it should be noted
that most operators and functions will treat dictionaries as if the dictionary
was simply its root value.

The key will be stored as text. A number may be used, but note that this will
be cast to a text value.

Any data type, including another dictionary, may be used in a value. You can
use this to build complex data structures.

Within a dictionary, all keys will always be unique by definition. Attempt-

ing to create a duplicate key by assigning a new value to a key with a

non-

unique name will simply result in the original key being assigned

the new data value. Dictionaries may be defined such that their keys are

case sensitive (in which case "a" will come after "Z") or they may be non

case sensitive. Unless otherwise specified, they will not be case sensitive.

Related Information:

...Creating a Dictionary

... Dictionary Operations
Creating a Dictionary

Dictionaries can be created by either of the 2 following methods:

Method 1: the Dictionary() function

X = Dictionary ([case], [root 1);
Both parameters are optional. The Case parameter will default to TRUE,
meaning that it is not case sensitive, and the Root parameter will default

to Invalid. The root can be any value, including another dictionary.
Examples:

X = Dictionary(Q);
X becomes a reference to a blank, empty dictionary that is not case sens-
itive

X = Dictionary(l, "rate");
X becomes a reference to a dictionary having a root value of "rate", that
IS not case sensitive.

X = Dictionary(0, 42);
X becomes a reference to a dictionary having a root value of 42, and that
is case sensitive.

Note: Whether or not a dictionary contains a root value has an impact
on the result that the ValueType() function will return from it.

If there is a root value then, in effect, the dictionary serves to attach
metadata to that existing variable and the ValueType() command will
return the value type of the root value.

If there is no root value, then the ValueType command will return type
47 from the dictionary.

Method 2: The MetaData command

The command MetaData can be used for two different purposes. If used
with a parameter that is not a dictionary, the result is to attach metadata
to that object (thereby turning it into a dictionary).

MetaData(Dictionary, Key, [case sensitive]);

Example:
MetaData(X, "width", 1) = 5;
X becomes a non-case sensitive dictionary, having no root value and pos-
sessing one key named "Width" that has the associated value, 5.
More commonly, you would use this to attach extended information to
an existing variable as shown in the following example:

Y = 10;
MetaData(Yy, "Area") = 20;

In this example, Y starts as an integer and then becomes a non-case
sensitive dictionary having a root value of 10 (the original value) and pos-
sessing one key named "Area" which initially has a value of 20.

You can even use this technique to turn an array into a dictionary - some-
thing that could not be done using method 2.

Z = New(5, 10);
MetaData(z, "Rate", 0) = 42.7;

Z becomes a case sensitive dictionary having a root value which is the
array [5, 10] and possessing one key named "Rate" which has a value of
42.7.

Related Information:

... Dictionary Operations
Related Functions:

.. Dictionary

.. DictionaryCopy

.. DictionaryRemove

.. MetaData
Dictionary Operations

Operations involving dictionaries and other variables:
The result of any operation that uses a dictionary as one of the operands
and a non-dictionary as the other will always take the root value of the

dictionary as the value to be used for the operation.
Thus, if you use the dictionary from the preceding examples, having a
root value of 5, the following would be true:

X = Dictionary(0,5); {X is a dictionary with a root value of 5 }
X["A"] = 42; {add a keyed value to the dictionary }

Y 2;

Z =X *Y; { the root value of X is used for the multiplication }

Z now holds the integer value, 10.

Accessing values in a dictionary:

Values within a dictionary can be accessed using an array-like syntax.
The root value is accessed using empty quotation marks.

Examples:

(Using the dictionary X from the preceding example)

X[""]1; { Y now holds the value 5 }

Y
Y X["A"]; { Y now holds the value 42 }

Retrieving an array of the keys from a dictionary:
The function, ListKeys will return a one dimensional array of the keys
stored in a dictionary

RVAL = ListKeys (dictionary);
Example:

X = Dictionary(Q);

X[IIAII] — 15;

X["B"] = 24;

RVAL = ListKeys (X);
RVAL will now contain a two element array, containing the values "A" and
"B".
Retrieving the root value from a dictionary:
The root value of a dictionary can be obtained by either of two methods:

Directly: Y = X[""]; { where X is a dictionary }
Via a function:Y = Rootvalue(X);

In general, the result will be identical, except for the case where the root
value is another dictionary. In such a case, RootValue will traverse the dic-
tionaries until it finds the first root value that is not another dictionary.
(See example 1)

In the case where all the root values are other dictionaries (a circle) then
RootValue will return a dictionary, selecting the first root value after the
one indicated in the command that points to an earlier value. (See
example 2)

Advanced Situation 1 - Dictionaries containing dictionaries:
Given three nested dictionaries
The root of dictionary X is dictionary Y
The root of dictionary Y is dictionary Z
The root of Z is the integer 42.
If you retrieve the root of x directly:

RVAL = X[""];

Then, RVAL is now dictionary Y
If you were to use the RootValue() function instead:

RVAL = Rootvalue(X);

RVAL is now the integer 42

Advanced Situation 2 - Dictionaries with circular links:
Given three dictionaries as follows:
The root of dictionary X is dictionary Y.
The root of Y is dictionary Z.
The root of dictionary Z is a link back to dictionary Y.
If you apply the RootValue() function to dictionary X...

RVAL = Rootvalue(X);

then RVAL is now dictionary Y, since that is the last root value found in
the chain before it looped back to an earlier dictionary.

Assignment operations involving dictionaries

When assigning a dictionary to a variable using the assignment operator
(=), the result is a pass-by-reference, effectively creating an alias for the
dictionary rather than a copy.

Example:

X = Dictionary(); { create an empty dictionary }

Y = X; { assign it to Y }

X["A"] = 42; { create a node in X with key "A" & value 42 }
Y["A"] == 42; { TRUE because Y is an alias for X }

A function exists to do a pass by value, allowing you to create a copy of a
dictionary:
RVAL = DictionaryCopy(dictionary, [deep]l, [acyclicl, [lockl]);

The three optional parameters, deep, acyclic and lock are each Boolean
values with a default of FALSE.

o Deep If true, all contained dictionaries are copied as well as the dictionary
referred to by name. Note that if Deep is set to FALSE, the copied dictionary
will not be missing the contained dictionaries - the difference is that in one
case, the contained dictionaries are copied as well as the base dictionary,
and in the other, the copy of the base dictionary will also include the original,
contained dictionaries.

o Acyclic If true, cyclic links are removed

« Lock If true, all values in the copy will be locked as constants.

Adding and Removing Keys
Keys and values can be added to a dictionary by simply referencing them
like so:

X = Dictionary(); { creates a new, empty dictionary }
X["A"] = 42; { adds a new key-value pair to dictionary X }

Keys and their associated values can be removed from a dictionary using
the DictionaryRemove() function as follows:

DictionaryRemove(dictionary, key);

The given key, specified in the second parameter, and its associated data
will be removed from the given dictionary specified in parameter 1.

DictionaryRemove has no return value and no optional parameters.

Testing whether an object is a dictionary

Most operators and functions will treat a dictionary as if it were simply
the variable stored as the root value. Attempting to use the ValueType()
command on a dictionary will not work as expected for this reason, since
if the dictionary has a root value, then only the value type of the root will

be returned.
The function HasMetaData() will determine whether or not an object is a
dictionary:

Rval = HasMetabata(variable);

This function will return TRUE if the variable is a dictionary and FALSE
otherwise.

Meta Data

The Metadata() function provides a means of attaching extended inform-
ation to variables. The concept is inspired by XML and is based on dic-
tionaries.

For example, in XML one might see the following structure, which

attaches two attributes (namel and name2 containing values "x" and "y"
respectively) to the object, 2.

<tag namel="x" name2="y">
2
</tag>

The equivalent in VTS is a dictionary with the root value, 2, and having
two name-value pairs, namel and name2:

X =2; { X starts as a simple numeric variable
with the value, 2 }

MetabData(X, "namel") = "x"; { X is now automatically made a dic-
tionary, with the root value of 2. }

Metabata(X, "name2") = "y"; { Each call to Metabata() adds another

hame-value pair to X }
Structures

Structures allow you to organize information to increase the overall clar-
ity of your code. Much like a structure in C, these are collections of vari-
ables and their values, placed under one name.
The use of a structure is illustrated by the following example:

Mod)

[

Dims STRUCT[
LENGTH;
WIDTH;
HEIGHT;

Main

[

]
An instance of the structure Dims can now be assigned to a variable as
follows:

A = DimsQ;
You can also assign values to the various nodes in the same statement:

A = Dims(15, 30, 45);
In either, the variable A will now contain an array that is 3 items long and
that can be indexed using the keywords Length, Width and Height as
defined in the structure. In effect, Length is taken to mean "index O of
the array stored in A", Width will mean "index 1 of the array stored in A",

etc.
The values can now be used as shown in the following examples:

Example 1:
Rval = A\width;

Rval now holds the value 30.

Example 2:
A\Length = 42;
42 is now the value stored in index position 0 of our structure.
You can also use array indexing notation to access the underlying data:

A[1] == 30;

Structures and Dictionaries

It is interesting to note that structures are based on the concepts of
VTScada dictionaries and metadata.

The example above will create a variable named Dims whose actual value
is INVALID and whose default is a locked dictionary. The underlying struc-
ture of Dims can be visualized as follows:

Dims = Invalid { dictionary with a root value of Invalid }
Length = 0, { meta data elements of the dictionary }

width

1,
Height 2

When Dims was instantiated as A in the examples above, A became a one
dimensional array containing within it a pointer to Dims. This enables us
to reference the contents of A using the keywords Length, Width and
Height and get the correct pointers into the array A.

Because of this, it is possible to store additional data of use to the struc-
ture within the defining dictionary. In particular, the name of the struc-
ture is stored in the dictionary’s root. Thus, to identify an unknown
structure, you can use the following expression:

RootvValue(Cast(<struct>, 47);

Extending Structures
Structures may be extended as shown in the following example:

Y STRUCT [
A;
B;
]; { structure 1, named Y }

X:Y STRUCT [
C;
D;
1; { structure 2, named X extends Y }

A = X(; { variable A now holds a 4 element array,
where the elements of the array will be in the order A,
B, C, D}

Structures can also be compound data structures, containing other struc-
tures as well as more basic data types:

Z STRUCT [

A STRUCT [
Q;
R;

Variable Storage, Retention, Access

Variable scope through modules and submodules is discussed in the
chapter, Module Scope.

Within a VTScada application, you may need to share values between
module instances. You may require values to remain in memory while an
application re-starts, or you may want to control how values are shared
across the servers running an application. These are the topics of this
chapter.

Related Information:

...Module Scope

...Variable Class Definitions

...VTScada Value Types - Numeric Reference
...Persisted Variables

...Retained Variables

...Shared Variables

...Saved Variables

...Network Values

...Temporary Variables

...Protected Variables
Persisted Variables

Normally, variable values are kept in RAM, which means that their value
will be lost whenever VTScada is stopped such as in the event of a power
failure. This is usually not a problem for most values since they will be
read in automatically from the plant I/O devices when the program is
restarted. However, certain values such as process set points must be
maintained, regardless of any interruption. The use of persistent vari-
ables solves this problem.

Persistent variables (formerly known as "static" variables in some early
versions of VTS) function identically with any variables except that a copy

of their value is kept on disk. All of the persistent variables in a module
will be stored in a file with the same name as the module and a .VAL
extension. When VTScada is restarted, the persistent values will be read
from the .VAL file(s). This means that the value will always be maintained
regardless of whether or not the program has been stopped.

Any variable may be defined as being a persistent variable by prefixing
its definition with the keyword "Persistent". For arrays, all elements of
the array become persistent values if the array itself is defined to be per-
sistent.

The penalty to pay for making a variable persistent is that it requires a
substantial amount of time to change its value. It requires a noticeable
fraction of a second compared to a fraction of a millisecond for other
variables. Therefore, persistent variables should not be used carelessly.
They should only be used for values which are only updated occasionally
such as operator-entered set points.

It does not require any additional time to reference or use the value in a
persistent variable since a copy of its value is also kept in RAM.
Persistent numeric variables are always kept to their full precision on
disk, but there is a limit on the number of characters kept on disk for per-
sistent variables which hold text values; the default is 5 characters. This
limit may be increased when the variable is defined (up to 65500 char-
acters):

Persistent 15 UserName;

This will cause up to 15 characters of the variable UserName to be saved
on disk. Any characters beyond the 15th will simply be discarded. The
limit should be kept as small as practical since the use of large limits will
increase the file space required as well as the update time for the vari-
ables. Persistent text values are always kept with no characters lost while
in RAM, so it is only when VTScada is stopped and restarted that the (Iim-
ited) persistent value is assigned to the variable.

The limit you specify on text values is rounded to the next largest space
that will hold that many characters. The space in the file is allocated in
chunks of five characters each. For example, if you chose a limit of 42

characters, space would be allowed for Ceil (42 /5)*5 =9 * 5 = 45 char-
acters.
Persistent variables are automatically considered to be shared as well.
This cannot be changed by the system designer.
Persistent variables values on disk are erased if the module where they
are defined is compiled, or any part of that module is compiled. For this
reason, persistent values are less useful for holding setup information.
This role is usually filled by a disk file, or by using default values.
With the integration of Retained variables (see Retained Variables), the
behavior of Persistent variables has changed as follows:
« Any data values supported by Pack may now be saved to disk (e.g. arrays,
streams, link lists, etc.).
« The persistent size used for text string limits is no longer necessary. Any text
string can be persisted, regardless as to its length.
« Recompiling a module does not delete the persistent variables.
Note: If you have an array (e.g. "A=New[10];"), and one element changes
(e.g. "A[0] = 1;"), the modified value will not be known until the module
has been stopped, as "A" itself did not change (its element did).

Retained Variables

Retained variables enable separate instances of a module to retain its
value on disk between instantiations and VTScada executions. This is an
enhancement on the existing persistent variables (see Persistent Vari-
ables). One application for Retained variables is for loading user settings;
if the username changes, load all of the user's customized settings (i.e.
set the instance name equal to username). In this way, you may use
Retained variables like a database.

Note: With Retained variables, any parent instance name is inherited
by all child modules. In the event that the parent's name is not defined,
the application name will be used. Further, by default, all tags are
launched with their name as the instance name, so you do not have to
declare them.

The values for retained variables are stored in a special directory named,
"Retained" that exists within your application directory. The files con-
taining the retained variable values have the extension ".VAL".

Declaring Retained Variables
To declare a retained variable, you must use the "Retained" keyword
before the variable definition. For example:

Retained My_Retained_var { Retained variable };

Assigning Names to Module Instances
Each module instance must be assigned a name. This can be done in one
of the following ways:

« SetlnstanceName() This function takes two parameters: Instance and Name.
Instance is the object value of the module to which the name is to be
assigned. Name is the text string name of the instance (please refer to Setln-
stanceName for detailed information on SetinstanceName()).

Note: With the inception of retained variables, all tags are launched
with the tag name being the instance name of the tag.

« The name parameter in the Thread function also sets the name of an
instance. (All applications are launched in a separate thread with the applic-
ation name being the thread/instance name.)

« If an instance name is not explicitly set, an instance name is inherited from
the nearest parent's name. If none of the parents have an explicit name, the
name "Default" is used.

Setting the instance name will cause all the Retained variables to be
reloaded with the values for that instance. Instance names may be
changed dynamically.

Retained Variable Value Storage

Retained values are written to disk whenever they change. They are writ-
ten using the Pack scheme, allowing complex arrays and linked lists to
be persisted. Any modified values that are indirectly pointed to from the
retained value will not trigger a rewrite of the retained variable to disk;

however, when the instance terminates, either through an instance name
change or a stopping instance, the retained values will be written.

This implies that crashes, power failures, etc., can result in the most
recent retained values not being on disk if these values contain pointers
to values. As a result, retained values are stored in files with one file per
instance, and one file per variable. These files are stored in a directory
named, "Retained" within the same directory where the ultimate root
module's .RUN file or the module containing the retained variable defin-
ition is stored. These files are uniquely named; the file name is made up
of the names of parent modules concatenated with a dash (-) separator
between module names, while the variable name is appended to this
string by a plus symbol (+). The final '+' and instance name is not
present if the variable is Shared. These files all contain the extension
".VAL".

Retained Variables and Statically Declared Arrays

Retained variables enable you to specify a default value for a statically
declared array. If specified, all the elements of the array will be set to
this value when the array is instantiated. For example, an array declar-

ation such as:

Data[10] = O;
]

will result in all 10 elements of the data array to have the initial value of
"0".

If the array with the initial value specified has a default value, the default
value will only be used if there is no suitable retained value .VAL file.
Recompiling to change the number or size of dimensions of a retained
variable will cause any retained .VAL files previously saved with the old
variable format to be ignored.

Note: Retained variables are similar in behavior to persistent variables
(see Persistent Variables); in fact, persistent variables are equivalent to
"Shared Retained".

Shared Variables

When running multiple copies of modules, each will keep a separate copy
of its own variables. Prefixing a variable definition with the keyword
"Shared" makes that variable a shared variable. Now when multiple cop-
ies of a module are running, and use this shared variable, all copies use
the same value. For example, if one module writes the value 4 to a
shared variable, X, all other copies of that module will see the value 4 in
X. X is global to the module instances and only one memory location will
be used for all instances of X. Shared variables are deleted only when the
application stops running.

Saved Variables

Saved variables act like persistent variables without being shared. Pre-
fixing a variable definition with the keyword "Saved" makes that variable
a saved variable. Information on persistent variables can be found in Per-
sistent Variables.

Network Values

The purpose of the Network Values service is to update changes on all
PCs for remote applications when a change to a Network Value variable
has occurred. Network Value variables cannot be used in a steady state.

Note: If your client is isolated from the server, and changes have
occurred to Network Value variables, the client's changes will be over-
written when a reconnection to the server has been made.

Network Value variables are defined within the NetworkValue class, and
are updated whenever the value for these variables changes on a client
or server workstation. Network Value variables can store any value that
you can Pack. (see note) Unlike Retained variables, Network Value vari-
ables recognize array element changes, and will update such changes as
needed. It should be noted however that Network Value variables won't
see multidimensional arrays; therefore, a subroutine called, "Update" can
be called if you have changed a complex data structure like a

multidimensional array. During startup, only the Network Value variables
whose value changed since the last synchronization are obtained.

Note: If using a multidimensional array with NetworkValues, you
should note that the array must be dynamically allocated, rather than
static. Also; you can store dictionaries, but you must use Net-
workValues\Update to update them.

The values for Network Value variables are stored in a subdirectory
named, "NetworkValues" within your application's directory. The name
and format of these files is identical to that of the Retained variables (see
Retained Variables); however, the extension for NetworkValues files is
".NV", whereas the extension for the Retained variable files is ".VAL".

Note: It is not recommended that you use the Network Values service
for tag values, or other constantly changing values (e.g. mouse pos-
ition), as the memory cost will be in the vicinity of .5 Kbytes to 1.5 Kb
per Network Value variable. A better use for the Network Values service
is for updates to other services.

Network Value Service Subroutines and Modules
In order to make use of the Network Values service, you must first start
the service, and then call Register(). An example follows.

If \Networkvalues\Started Main;
[\Networkvalues\Register(self, "MyModule");

]
NetworkValues |Register

Register(Owner, InstanceName)

Where, Owner is the owner of the variables, and InstanceName is the
name of the instance.

The purpose of the Register module is to allow any module with class Net-
workValue variables to retain these variables across instantiations of a
module and to have values automatically propagated around the net-
work. If two instances of the same module register with the same

instance name, then each of these modules will be affected by the other's
changes in values.

Register is a subroutine. After returning, the owner's variables will be set
to the current server's version of the values. The caller must wait for Net-
workValues\Started to become true before calling the Register module.

NetworkValues \Update

Update(owner, VarName)

Where, Owner is the owner instance of the variables and VarName is the
name of the variables, provided as a text string.

The Update subroutine should be called to force the value to be updated
by the configuration server of a remote application, and to set the value
in the NetworkValues file. This would be necessary if the value has
changed in a way that cannot be automatically detected, such as by chan-
ging elements in an array that has more than one dimension or whose
index does not start at "0".

NetworkValues \MonitorX

MonitorX(Owner, Ancestry, Head, varl [, var2, var3..])

Where...

« Owner is the owner instance of the variables.

« Ancestry is the list of parent modules, separated by a dash (-).

« Head is a pointer to the head of the list in the DBSystem.

« Varl is the name of the variables (Var1, Var2, Var3, etc.)
Monitor modules are launched modules that watch variables to see if
they change. If the value of the variables change, then the Monitor mod-
ule checks to see if they differ from the server's version as represented in
our database. If there is a difference, Monitor RPCs the updated value to
the server. (The "X" implies that monitor modules can be named "Mon-
itor1", "Monitor2", and so forth.)

NetworkValues \GetValue

Getvalue(Ancestry, InstanceName, VarName)

Where...

« Ancestry is a list of parent modules, separated by a dash (-).

« InstanceName is the module instance name.

« VarName is the name of the variables.
The GetValue subroutine returns the value for a given variable within a
given module specified with a specific instance name. The values are
stored in a directory named, "NetworkValues" within your application dir-
ectory. The name and format of the files is identical to that of the
Retained variables (see Retained Variables); however, the extension for
NetworkValues files is ".NV", whereas the extension for the Retained vari-
able files is ".VAL".
NetworkValues \SetValue

Setvalue(Ancestry, InstanceName, VarName, Value, Revision)

Where...

« Ancestry is a list of parent modules, separated by a dash (-).

« InstanceName is the name of the module instance.

« VarName is the name of the variables.

« Value is the new value to assign.

« Revision is the revision number.
The SetValue module sets the value for a given variable within a given
module specified with a specific instance name. The values are stored in
a directory called, "NetworkValues" within your application directory. The
name and format of the files is identical to that of the Retained variables
(see Retained Variables); however, the extension for NetworkValues files
is ".NV", whereas the extension for the Retained variable files is ".VAL".
SetValue is called via RPC.

NetworkValues |\ TestValue
Testvalue(Owner, Ancestry, VarName)
Where...
« Owner is the owner instance of the variables.
« Ancestry is the list of parent modules, separated by a dash (-).

« VarName is the name of the variables.

You may use the TestValue subroutine to return true if the value passed
in has a different value from the disk-based value.

Network Values Service Scheme

The Network Values service is designed to transfer values for any module
around the system, and retain those values between starts for the applic-
ation and instantiations of the module. The scheme used by the Network
Values service follows.

1. DBSystem is created, containing Registered names concatenated with vari-
able names, which are separated by a plus sign (+). The Registered names
are also stored in the same DBSystem. Their value is the head of the list of
Monitor modules. The values are saved in packed streams in files by the
same name as the concatenated name. The retained registered names array
also contains the version number for each value. The revision number is
always incremented, and is a retained value.

2. RPC Synchronization is done, and Started is set.
3. The host module must wait for NetworkValues\Started.

4. Register(Obj, Name) is a subroutine that launches Monitor. Register performs
a ListVars on Obj to get all class variables that will be distributed through
remote procedure calls. It then launches sufficient Monitor modules to
handle the number of variables. It also sets current values of variables from
DBSystem before returning.

5. Monitor links itself onto a list wherein the registered name is the name of a
variable in the RegisterNamesDB containing the object value of the head of
the list. The list is self-repairing, and not ordered.

6. Monitor watches for changes in simple values and 1 dimensional array of val-
ues for the variables and then checks if the current value is different from the
DBSystem value. If different, an RPC message to the server is sent to set the
new value.

7. The server sends the SetValues message to all clients and itself.

8. The persistent values are stored in a directory called NetworkValues. Each
value has its own file. Each file is a member of a linked list whose head is Net-
workHead, and is sorted by the Revision number. This enables the GetServer-
Changes to easily get the most recent values.

9. SetValues sets the value in the DBSystem, writes the value to the cor-
responding file for the name, walks through the list of Monitor modules for
the registered name, and sets the variable in each of the registering modules.

10. If a registering module stops, the Monitor automatically stops since it has
been called from the registering module.

Note: The RAM used for an actively monitored value ranges from about
550 bytes when 8 or more variables are in the module, to about 1500
when only one variable is in the module.

Temporary Variables

In cases where an application is being modified online, it may be useful
to create short-lived variables that will disappear when VTScada is shut-
down and restarted. These are known as temporary variables. Temporary
variables are kept in RAM while VTScada is running, so they will continue
to exist even though the application that uses them is stopped and restar-
ted. They are not written to the .RUN files of the application, though, so
once VTScada is stopped or the application is recompiled, they will cease
to exist. For the application to use them again, it must once more create
them using an AddVariable statement.
Temporary variables should not be referenced like other variables, but
should be accessed using one of the following functions to reduce poten-
tial problems in their use:

« FindVariable

» ListVars

« Scope

« VarAttributes

« Variable
Protected Variables

On occasion, it may be necessary to limit access to certain variables to
those objects lying within the variables' scope. This is done by prefacing
the variable declaration with the keyword "Protected".

Protected variables (and modules) are not accessible through scope res-

olution.

Variable Class Definitions

A variable may be of a defined class, if so designated by the user. Vari-
able classes are primarily used as a means of grouping associated vari-
ables together and may be defined as the user requires them. To set a
variable's class, the SetVariableClass function may be used, or the class
number may be added to the variable's declaration or to the declaration
of a group of variables of the same class:

[
FlowRate = 32 (0x0015);
PNum (0x0015);
X5
Y;
]

In this example, the first two variables have their class designated by the
hexadecimal number 15 (0x0015), although in the case of FlowRate, a
default value of 32 has also been set. Since these two variables have the
same class designation, they could have been grouped together as fol-

lows:
[
Constant PUMP 0x0015;
[(PumP)
FlowRate = 32;
PNum;
]
X5
Y;

Notice that in this case, the variable class for FlowRate and PNum is a
constant variable called PUMP whose value has been set at 0x0015 in a
previous declaration statement. No matter which method is used, the
class definition must be a constant or an expression that evaluates to a
constant, whose value is between 0 and 65 535.

Example:

Each tag type will have a class. This can be used to obtain a list of the
tags of a certain type. For example:

IF ! valid(MyClass); [
{ Get the Alarm Tag's class }
MyClass = VariableClass(Findvariable("AlarmPriority", \Code, 0,
0));
{ Find the array of variables that are members of that class }
PriorityObjs = Listvars(Parentobject(\Code), "*", MycClass,
MyClass, 0, 0, 1, 0, 0);
]

Related Information:
...Variable Storage, Retention, Access

...VTScada Value Types - Numeric Reference

VTScada Value Types - Numeric Reference

The following table lists the value types used in VTScada. When referring
to these in code, you should use the predefined constants rather than the
type numbers. The general usage is:

Cast(Val, \#VtypeText)

Type Constant Name Name Description
0 #VTypeStatus Boolean Logical data type, stores two
states: "true" (0) or "false" (non-
Zero).
1 #VTypeShort Short, 16-bit Integer data type storing values
signed from -32768 to 32767
2 #VTypelong Long, 32-bit Integer data type storing values
signed from -2147483648 to
2147483647
3 #VTypeDouble Double pre- Values range from about -
cision floating 10A308 through +10A308
point
4 #VTypeText Text Any string of bytes whose values

range from 0 to 255. Typically
used to hold text strings.

5

6

10

11

12

13

#VTypeVariable

#VTypeFunction

#VTypeObject

#VTypeStream

#VTypeModTree

#VTypeStateDgrm

#VTypeModule

#VTypeModState

#VTypeModStateStmnt

Variable

Function

Object value

Stream

Module tree

State diagram

Module

Code Value (a)
Module and
state

Code Value
(b)

Module, state,
and statement

A handle to the data represented
by a variable declaration, not to
any particular instantiation of
that declaration. Can be used to
access variable metadata (type
information, for example) or
default values.

A pointer to the code for a par-
ticular function within a VTScada
statement. Used by functions
such as GetOneParmText to
manipulate the code itself.

Used when compiling and edit-
ing script code, not for typical
VTScada programs.

An instance of a module

A handle to a stream (of which
there are several types). See
Streams.

A handle to the modules in a
state diagram

A graphical depiction of
VTScada code

The code and variables that
make up a unit of a VTScada pro-
gram. See Modules.

A handle to a state within a mod-
ule. See States.

A handle to a statement within a
state. Cannot refer to any arbit-
rary function, as type 6 can. See
Statements and Graphic Objects.

14

15

16

17

18

19

20

21

22

#VTypeRefParm

<undefined>

#VTypePath

#VTypeTraj

#VTypeRotate

#VTypeBrush

#VTypePen

#VTypeNormalize

#VTypePoint

Reference
parameter

Array

Path

Trajectory

Rotate

Brush

Pen

Normalize

Point

When a steady-state call is made
to a module, each of the actual
parameters in the call is "bound"
to its corresponding formal para-
meter.

Refers to an entire list of con-
secutive data values. Each data
value has a consecutively
numbered index address and
may be any VTScada value.
See Array Variables

A series of vertex values. See
Path Variables.

A combination of a Normalize
value and a Path value. See Tra-
jectory Variables.

Specifies a rotation amount,
measured in degrees, around a
point. See Rotate Variables

Brush values are used in layered
graphics statements that paint
areas of the screen with a uni-
form color or pattern. See the
Brush function.

Pen values are used in layered
graphics statements that draw
lines. Defines the color, style
and thickness of a line. See the
Pen function.

A graphical scaling value. See
Normalize.

A location, stored as an (X, Y)
pair. See Point.

23

24

25

26

27

28

29

30

#VTypeVertex

#VTypeTransform

#VTypeCodePtr

#VTypePtr

#VTypeEditor

#VTypeParseStack

#VTypeTag

#VTypeBitmap

Vertex

Transform

Code pointer

Pointer

Editor

Parser stack

Tag

Bitmap

A group of three Point values.
See Vertex.

A transformation matrix, used to
map coordinates from one area
of the screen to another.

Can only be obtained from the
GetTransform function. Used by
the GetPathBound function.

A handle to an active graphics
statement in a particular module
or state. Similar to type 13, but
with the additional information
of the module instance as rep-
resented by value type 7.

Stores data by reference instead
of by value, allowing, for
example, multiple values to ref-
erence the same piece of data as
opposed to multiple copies of
the data.

A handle to an editor object, as
created by MakekEditor.

Used by the compiler to allow
the compilation to be suspended
in the middle of a statement to
handle specific code sections
such as I/0O addresses.

(Unused) Intended to provide
engine-level support for scaled
variables that could be imple-
mented using a GUI.

A handle to an image object as
returned from MakeBitmap.

31

32

33

34

35

36

37

38

39

40

41

#VTypeFont

#VTypeVTSdb

#VTypeODBCHnNdI

#VTypeSAPIStrm

#VTypeComClient

#VTypeCryptoProv

#VTypeCryptoKey

#VTypeDLLhandle

#VTypeDeflateHandle

#VTypeThread

#VTypeBreakWatch

Font

VTScada data-
base

ODBC Handle

SAPI text-to-
speech stream

COM Client
Interface

Cryptographic
Provider

Cryptographic
Key

DLL Handle

ZLib Com-
pression
Handle

Thread
Handle

Source Debug-

ger Break-
point Handle

A handle to a font object, as
returned by the Font function.

A handle to the VTScada data-
base as returned by the DBSys-
tem function.

Provides a connection to an
ODBC database.

A type of stream for use with
Speech Application Pro-
gramming Interfaces

An object that provides an inter-
face to a COM client application

A handle to the particular cryp-
tographic service provider that
includes the key specification to
use.

May be either a Session Keys or
a Public/Private Key. See Cryp-
tographic Keys.

A pointer to a structure returned
from the LoadDLL function.
Used to call functions within the
DLL that was loaded. See DLL.

Used by the Deflate function

A script-level hook to the data
structure used to represent a
thread in a dump

References a set location in the
source debugger. See Working
with Breakpoints and Data Break-

42

43

44

45

46

#VTypeMiniDumpHandle Minidump

#VTypeTimeStamp

#VTypeXMLproc

#VTypeTypeDefinition

#VTypeTypelnstance

Data Handle

Timestamp

XML Pro-
cessor Handle

Dynamic Mod-
ule Definition

Dynamic Mod-
ule Instance

points

A pointer to a data structure that
holds information from a crash
dump

A numeric representation of
time, measured in seconds since
January 1, 1970

Serves as a conduit between an
XML document and an applic-
ation. See VTScada Engine XML
API

Deprecated. A handle to the
definition of a form of module
used as a data container.
Created by the MakeType func-
tion. This storage is used almost
exclusively for handling XML
and cannot contain script code
(unlike other forms of Module).

Deprecated. An instance of a
dynamic module, created using
the MakeTypelnstance function.
This is an object value (type 7)
that can only be used to store
data - it cannot contain or
execute script. Typically these
are used when generating mod-
ule trees for delivery via XML. It
is a form of data container, how-
ever in general structures
(defined by the Struct function)
and Dictionaries (type 47) are
more efficient and convenient
for this role.

47

48

49

#VTypeDictionary

#VTypeComProperty

<undefined>

Dictionary

A key-based data container of
flexible size, used either on its
own to hold volatile data col-
lections or in the definition of
structures (see Structures).
ValueType will not return this
value unless the dictionary is a
"pure" dictionary. A pure dic-
tionary is one for which the root
value has not been set. Other-
wise, it returns the ValueType of
the dictionary's root instead. See
Dictionaries

COM Property A value exposed by a COM Inter-

face "object". This may be
accessed similarly to a typical
VTScada value but is maintained
by the COM object, not the
VTScada engine.

Module in Con-Contains both a module value

text

and an instance of the context
module where scope should be
resolved.

Normally, scope will be the par-
ent module in which the Module
was declared. A Module in Con-
text is used for widgets and
plug-ins in VTScada where the
widget is declared in
AppRoot.SRC, but linked into a
tag type such that the widget
becomes a Module in Context in
the tag instance. References to
variables in the widget will then

50 #VTypeHistorianHandle Historian Con-
nection
Handle

51 #VTypeXMLNode Dictionary
Structure

52 #VTypePPPHandle PPP Con-
nection
Handle.

refer to variables in the tag
rather than to variables in
AppRoot where the widget was
declared.

If a Module In Context value is
called in steady-state, the parent
instance will provide the asso-
ciated context.

For the VTScada proprietary data
store, this will be invalidated on
an "out of disk space" error, or
on loss of access to the file stor-
age. For other databases, this
will be invalidated on any con-
nection loss.

A WEB_XML_ADDRESS that
points to a WEB_XML_NODE.
When ValueType() runs against a
value and finds a WEB_XML_
ADDRESS it treats it the same as
a WEB_VALUE_ADDRESS, which
sits in front of an array or struc-
ture. It then searches through
the *_ADDRESS to find what it
points to and returns the type of
that item, in this case an USER_
XML_NODE

May be passed into the function,
PPPStatus() to obtain an inform-
ation structure.

May be passed to the function,
CloseStream() to forcibly close
off a connection. Passing it into
CloseStream completely inval-

idates the handle and all data
associated with it.(see: PPPStatus
and CloseStream)

Style Guide for VTScada Code

Developers at Trihedral use this style guide in order to create consistent
and easy-to-read VTScada code. If you follow the recommendations in
this guide it easier for others to read your code and for you to read oth-
ers' code.

Comments

1. Start the VTScada file with a multi-line, 80 characters-per-line comment
describing the purpose of the module. The first line of the comment should
contain the name and ancestry of the module, centered between lines of
equal signs:

{====== PageManager\PageViewer ======}

Note that the number of equal signs varies - whatever is required to pad out
the comment to 80 characters. The last line of the comment should be
strictly equal signs, used to mark the end of the comment. A single space is
left between the equal signs and the text on either side.

2. Full line comments (on their own line) that are used to describe the action of
statements, etc. should have 5 asterisks after the opening curly brace and 5
before the closing curly brace of the comment:

{**%*%*% This statement blah blah blah #*#****}

3. Comments generally begin with a capital letter, however, single or few word
comments may or may not use capitalization, as appropriate.

4. Multi-line comments should use a single set of braces; if the commentis a
full line comment and will have asterisks, the text should be left aligned (i.e.
indented the width of the asterisks).

5. All variable and parameter comments should start in the same column
(preferably column 32) and end at the same column. This type of comment

is not a full line comment, so it should not use the asterisks described in item
2.

6. The closing angled brackets for a module should be preceded by a comment
indicating the end of the module. Although it is on its own line, it should not
have the asterisks mentioned in item 2:

{ End of PageManager\PageViewer }
>

7. Any code which is inserted for testing or for other temporary purposes must
have a comment which includes two consecutive question marks { ?? } which
can be rapidly located before code is shipped.

Variables and Parameters

1. Start parameters with an opening bracket in the leftmost column on the line
immediately following the module name.

Indent all variable and parameter definitions two spaces.
All variables and parameters must have some comment.
Use descriptive names for variables and parameters.

Variable and parameter names should begin with a capital letter.

o v A wWw N

Place the semi-colon for the variable or parameter declaration after the com-
ment on the same line - this makes it possible for the VTS application man-
ager to properly associate the comment with the correct variable.

7. Do not exceed column 132 so that it can be easily viewed in a DOS editor and
printed without loss of visible characters or wrapping.

8. For default values, align all = in the same column.

9. Blank lines may be placed between variable groups that have different pur-
poses. A comment identifying the purpose of the group should be provided.

10. Constants may be declared with all upper case names, as appropriate.

11. Constants used for indices should begin with the # character.

{ CustomTag
3
{ custom tag definition. }
{ 1
=======}
(
Name <:TagField('"SQL_VARCHAR(64)", "Name", 0):> { Name of

this tag };

Modules

1.

With module declarations, align all "Module" keywords in the same column.

2. Module declarations with file names should align the file names in the same
column.
States
1. State declarations should be preceded by a blank line.
2. State name declarations should be in the first column.
3. State names should begin with a capital letter.
4. The square bracket beginning the state declaration should be on the same

line as the state name, separated from the name by one space.

Statements, Functions and Operators

1.
2
3.
4

. Assignment statements which do not consist of functions with long para-

Statements in a state should be indented by two spaces.
No spaces should be on either side of the brackets for a function.

All commas should be followed by a space

meter lists which can be split on multiple lines can be split so that the text in
subsequent lines lines up with the first character after the =.

. Where multiple = statements are listed together, align the = in the same

column.

Place a space before and after all two-parameter operators such as + and =,
with the possible exception of those found inside the square brackets of an
index of an array element.

The prefix operators * and & should not have a space after them; the prefix
operator ! should have a space between it and its variable.

Semicolons terminating a statement or declaration should follow imme-

diately at the end of the line without any preceding spaces.

Indent script statements a total of four spaces.

. Write all functions with an upper case letter. Use a mixture of upper and

lower case where appropriate (CamelCase)

11.

All functions should have a set of brackets, regardless of whether or not they
require parameters; this makes it easy to differentiate between a function
and a variable.

WhileLoop
DolLoop
IfElse

1.

Place the conditions for the WhileLoop statement on the first line with the
body of the loop indented two spaces from the WhileLoop itself on the fol-
lowing lines. Terminate the WhileLoop with the) on a separate line aligning it
in the same column as the WhileLoop.

. IfThen statements have their condition on the first line with the body of the

code and the termination the same as for the WhileLoop.

. Start the DoLoop statement with no parameters on the first line. Indent the

body of the loop two spaces from the DoLoop. Terminate the loop with the
condition at the same column position as the DoLoop followed immediately
by the) on the same line without any spaces.

IfElse has its condition on the same line as the IfElse. If an Execute is required
for the TRUE case, it is placed on the first line as well, with its opening
bracket immediately following it (no space) and its closing bracket on its own
line in the same column as the IfElse. The "else" case is started with a com-
ment { Else }in the same column as the IfElse. If it requires and Execute, the
same guidelines are followed as described previously, except that the closing
brackets for the Execute and the IfElse are kept together on the last line with
no space in between.

IfElse (varl, Execute(

Else } Execute(

;o

Example
(Comments do not extend the full 80 character width here due to space

limitations. This is not functional code.)

{ CustomManager\RemotecConfig

{ Dialog displayed when () button pressed

3
{
=}
(
Trigger { Flag - TRUE when dlg is displayed
};
)
[
Dialog Module "RBDIg.SRC" { The dialog
window };

DefaultThings Module nDef.SRC" { An alternate dialog
window };

Persistent XPos { The x-position of dialog
window i

Persistent YPos { The y-position of dialog
window iE

constant HT = 532 { The height of the dialog
box b

Constant Wb = 480 { The width of the dialog
box };

Initvar { Initial value of var to be
changed };

MaxChars { Length in chars of longest
Tabel };

Reset = 0 { Flag - TRUE to reset
vars b

Showwindow = 0 { Flag - TRUE while window is
open I3

Title { Title of the window
I

GIZMO { Pointer to the GIZMO module
1
1
Init [

If 1 wait;

[

{#**%** Find the Tength of the longest Tabel #*#**%*%*}

MaxChars = Max(StrLen(\FileLabel), StrLen(\PagelLabel),
StrLen(\TagLabel)) + 1;

{*#**** pefine the title based on the user settings *#****}
IfElse (UseName, Execute(

GIZMO = Scope(caller(self()), "------ ")

Title = Concat(GIZMO\App, " - ", \RemoteConfigLabel);
)
{ Else }

Title = \RemoteConfigLabel;
DE

Basic Programming Tasks

While the range of what you can achieve with the VTS language is best
described by the word "anything," most projects will include several fun-
damental components such as opening a window and displaying graphic
elements, or gathering user input. Additionally, many people learn

VTS coding for similar ends, such as building a new type of report or cre-
ating a new type of tag.

This chapter is provided as a guide to these common and basic tasks. It
begins with instructions for creating a new script application, or adding a
new module to a VTScada application.

Related Information:

...Create a New Script Application

...Add a Module to a VTScada Application
...Working with Pages

...Create Windows & Use Graphics Functions
...Obtaining User Input

...Time and Date

...Build Custom Reports

...Working with Speech

...Interrupt the Shutdown Process

Create a New Script Application

A VTScada script application is one that is not based on the VTScada
layer, or on any other OEM layer, and therefore does not provide access
to the common VTScada development tools and services such as the Dis-
play Manager, ldea Studio, Alarm page, etc. A script application must be
programmed from start to finish.

Script applications are typically created for the purpose of analyzing data
or as utilities to perform custom tasks (such as converting databases).
To create a new script application:

1. Click the Add Application Wizard button (plus sign) that appears in the
VTScada Application Manager (VAM).
The wizard dialog opens.

2. Select the Advanced radio button, then click Next.

3. Select the Create new option, then click Next.

Enter a name for the application in the Name field and press Enter or Tab.
The Path field is automatically filled with the name of the application dir-
ectory for this new application based on the application name you've
entered minus the spaces. You have the option of changing the path if you
would like.

4. Choose Script Application from the Types drop-down list.

VT Add Application Wizard

Create new

Specify options for new application Vv I Scada

Mame
Mew Script App
Path
Ch\Development MewScriptipph,

Type
Script Application

< Back || Mext = | | Cancel

5. Click, Next.

6. Verify the options for the new application and click Finish.

VTScada generates the new script application, after which it will be listed in
the VAM.
A new application folder is added to your VTScada installation directory.
Within this new application directory, you will find the file, AppRoot.src.
This is the main application module file for your VTScada application, list-
ing all top-level variables and modules for the application.
For most script applications, AppRoot will have a single state containing
a single statement: a call to the Window() function, passing in the name
of a submodule (Graphics), which will run in the context of that window.
In most cases, you will add your code to the module, Graphics, or to sub-
modules of Graphics that you create.
Given the script application created using the preceding steps, you can
create a simple "Hello World" application as follows:
1. Using a text editor (Notepad or similar) open the file AppRoot.SRC in the new
application's directory.

2. Edit it to match the following example.

{ System
b
{ N
=========}
(
System { Provides access to system library
functions };
Layer { Provides access to the application
Tayer };
)
[
Graphics Module { Contains user graphics
iE
winTitle = "Greetings!" { window title
1
]
Main [
window(O, 0 { Upper left corner 1},
800, 600 { view area 1,
800, 600 { virtual area },
Graphics(Q) { Start user graphics },
{65432109876543210}

0b00010000000110011, winTitle, 0, 1);

System\Graphics

This module handles all of the graphics for the application

Sl A

Graphics
Main [
ZText (100, 100 { Lower left corner of text },
"HelTlo world" { Text to display },
15 { Text is white },
0 { use default font });
]
{ End of System\Graphics }
>

3. Inthe VAM, click the Import File Changes button for the application.
4. Provide a comment and click OK.

5. Run the application.
T Greetings! = R 5

-

m

Troubleshooting:
AppRoot.SRC looks nothing like the example here. There is no Graphics
submodule

« The application was not created as type, Script Application. You will need to
go back to the VAM and create a new application.

The window is blank.

« There are three possible reasons: 1) The coordinates given to ZText are out-
side the window area. 2) The text color provided matches the background
rather than being white (15) on black. 3) You skipped step 3 - import file
changes.

An error message is displayed when you click Import File Changes.

« There is a typographic error in your code. Check for spelling, commas,
semi-colons after every statement and a closing quotation mark and bracket
for every opening one. The message will give you a starting point to look for
the error, but you may need to scan up or down in the file to find the actual

source of the trouble.

Example:

...The Bonus Program

The Bonus Program

"Bonus" - a reward, usually financial, distributed to employees at the end
of a year.
The bonus program is a script application that is used in every
VTS programming course, to teach the basic concepts of the language.
Longer than a "Hello World!" program, it shows the workings of modules,
states, showing how to change graphics pages and how to interact with
an operator by monitoring the position of the mouse pointer. By studying
this example, line by line, you can learn a great deal about how VTScada
programs work. For example, why do the contents of screen 1 vanish
when screen 2 only contains code to add graphic elements, not remove
any? (* answer at bottom of page.)
The code for the bonus application is provided here for you to use in a
new application of your own. Once you have the application working, you
may wish to enhance it by adding new pages, graphic elements or user-
input elements.
1. Create a new script application, and name it "Bonus".
Follow the steps in the preceding topic, Create a New Script Application.
2. Using a text editor, open the file "AppRoot.SRC " found in your new applic-
ation's folder.
3. Replace the contents of AppRoot.SRC with the code following these steps.
4. Save the file. (It is recommended that you leave the editor open, so that you
can easily fix errors, or move on to experiment with new code.)
5. In the VAM, click the application's Import File Changes button. Provide a com-
ment when prompted.
6. Run the application. You can reset it to the first screen by pressing the "Esc"
key.

{ Bonus

[{ Primary module }
Graphics Module { Sub-module declaration. Contains user graphics

iE
winTitle = "The Bonus Program" { window title };
System { Provides access to system library functions};

Main [{ the only state contained in this module }
{ function call to create a window }
window(0, 0 { upper left corner },
800, 600 { view area 1},
800, 600 { virtual area 1},
Graphics() { Start user graphics submodule, which provides
the window contents},
{65432109876543210}
0b00010000000110011, winTitle, 0, 1); { bit-wise control
the window appearance }
] { end of the state code }

< { Sub-module }
{ System\Graphics

{ This module handles all of the graphics for the application }

Graphics { module name }

{ Parameter section. Empty in this example. }
)
[{ Local variable declarations }
X = 360 { X Position of Button };
Y = 280 { Y Position of Button };
Fontvalue { variable for Font value };
]
{ first of two states in this submodule }
Screenl [
ZText (230, 150, "Click here for an Important Announcement", 14,
0);
If zButton(340, 175, 420, 225, "Notice", 1) Screen2;

]
{ second of two states in this submodule }
Screen2 [
Fontvalue = Font("ARIAL", O, 30, O, 5, 0, 0);
ZText (150, 150, "well, It's Bonus Time Again!"™, 14, Fontvalue);
ZText (270, 230, "Click here for this Year's Bonus", 14, 0);
ZBox (360, 280, 440, 330, 224);
ZButton(X, Y, X + 80, Y + 50, "Bonus", 1);
If Target(X, Y, X + 80, Y + 50);
[
X = cond(XLoc() < X + 40, X - 120, X + 120);
Y = cond(YLoc() <Y + 25, Y - 90, Y + 90);
]
If MatchKeys(l, Makebuff(l, Ox1B {Esc})) Screenl;
[{ reset the x and y positions }
X = 360 { X Position of Button };
Y = 280 { Y Position of Button };
]
]

{ End of System\Graphics }
>

Troubleshooting:

« The application won't compile.
There is a typographic error in your code. Note the line number given in the
error dialog. This gives you a starting point for locating the error.
(*) Screen 1 vanishes because, upon leaving a state, all the code that was
running in that state stops running.

Related Functions:
.. Cond

.. Font

.. MatchKeys

.. Target

.. Window

.. ZBox

.. ZButton

.. LText

Add a Module to a VTScada Application

In smaller script-based applications, you will write your code directly in
the AppRoot.SRC file, as shown in the bonus application example. (The
Bonus Program)
This will not be the case with a VTScada application. There,
AppRoot.SRC will contain only declarations of constants and submodaules;
not module code. If your goal is to enhance a VTScada application by
adding a new tag, driver, report, data-entry wizard, etc. then follow
these steps:
1. Using a text editor, create a new file in the application folder.
The new file should be given a name that matches what you intend to call
your module, and must have the extension, ".SRC".
2. Write your VTS code in that new file.
3. Using a text editor, open AppRoot.SRC in the application's folder.

4. Add aline to declare your new module and give it a name.
This line must be in a section of AppRoot.SRC that is appropriate for the type
of module you are adding. For example, new tags must go into the (POINTS)
section. New reports are declared in the (PLUGINS) section.

Examples:
...A 15-Minute Snapshot Report
...Hide the VAM from Operators, but not Managers

Related Information:

...Working with Pages - code can be changed in or added to pages and
user widgets within an application

A 15-Minute Snapshot Report

This example shows how to create a new type of report, and how to add
a new module to an existing VTS program. The result will be a snapshot
report that works on a fifteen-minute basis rather than hourly or daily.

1. Select an existing application, or create a new one.
Do not select or create a script application.
Do not risk disaster by experimenting within a running production applic-
ation.

Using a text editor, create a new file in that application's folder.
Name the file "15MinSnap.SRC".

Copy the code following step 10 into that file and save it.

Using a text editor, open the application's AppRoot.SRC file.

o v > w N

Declare the module within the (PLUGINS) section.
The result should appear as follows. Note that the filename is case sensitive

- you must enter upper and lower case letters in the declaration, exactly as
you named the file.
[(PLUGINS) {===== Modules added to other base system modules =====}

15MinSnap Module "15MinSnap.SRC";
1

(There will already be a (PLUGINS) section - do not add a second one.

7. Save the file and click the application's Import File Changes button.

e "

T Import Mew Files: BedfordScada @

Choose the files to add to your application

Check the files you would like te add, Unchecked files will be ignored,

| File Mame £ Extension
15MinSnap.SRC _SEC

1 files selected, 1 files total

QK | | Cancel

Click OK to import the new module.

9. Start the application if it is not already running. (It was not necessary to stop
it to do the preceding steps.)

10. Open the Reports page. Your new report should be available in the list of
report types.

{ 15MinReport

3

{ This plugin modifies the hourly snapshot report to be every 15
minutes }

{ Groups : Loggers

{ Areas : All

}

{ N
=========}
(

Reporter { object value for call-backs };

Start { Starting time };

End { Ending time };

Tags { List of tag names to report on };

vars { List of vars within tags };
)
[

{ Set up this module to become a plug-in for the reports }

[(POINTS)

Shared Report;

]

constant TypeFilter = "Loggers" {type of tags to use in the
report};

Constant ReportName = "15 Minute Snap" {title for the report };
TimeStamp { Time of last value returned };

obj { Instance of report };

Init [
If 1 wait;
[{ 15 minutes = 900
seconds }
Obj = \SnapshotReport(Reporter, Start, End, Tags, Vvars, 900,
ReportName, 4);

1
wait [

TimeStamp = Obj\TimeStamp; {ensures that the report object was cre-
ated before this module ends }

If !valid(obj);

[

Slay(self, 0);
]

Troubleshooting:

« The application won't compile.
There is a typographic error in your code. Note the line number given in the
error dialog. This gives you a starting point for locating the error.

« The reportis not available.
Ensure that you typed the code exactly as shown.
Ensure that the declaration was placed in the existing (PLUGINS) section of
AppRoot.SRC, and was placed before the closing square bracket of that sec-
tion.
Ensure that the Load File Changes button was pressed and no error dialogs
opened as a result.

Related Information:

...Build Custom Reports - Discussion and instructions for creating cus-
tom reports

Hide the VAM from Operators, but not Managers

The HideVAM application property can be set true to hide the VTScada
Application Manager (VAM) from view. While useful, this is not especially
convenient since it depends on having an application set to auto-start,
and at least one user account in that application granted the privilege of
seeing the VAM.

You can create a service module for any application that, while the applic-
ation is running, will control the value of HideVAM on a workstation
based on privilege or other property of a logged-in user.

The complete text of the module is as follows. It uses the SecurityCheck
function to inquire as to whether the logged-in user possesses the Man-
ager privilege (PrivBitManager). HideVAM is then set to the opposite of
the test for this privilege (thus the VAM is not hidden if the privilege is
set).

Note: You must use HideVAM rather than the older version, HideWAM.
HideWAM is now checked only on startup, and is only used to set the ini-
tial value of HideVAM.

{ HidevAM }
{ Hides the vTScada Application Manager based on security Tlevel }
{ }
[

CancConfigure { Set if we can view VAM };
1
Run [

CanConfigure = Pickvalid(\SecurityManager\SecurityCheck(
\SecurityManager\PrivBitManager, 1), 1);

If watch(l, cancConfigure);
[
{ set the wWAM's visibility based on security manager check }
\SysLib\HidevAM = !cCancConfigure;

{ End of Hidevam }

You may choose any security privilege you wish - see: System Privilege
Reference for the complete list.

The module should be declared in the [Services] section of the applic-
ation's AppRoot.SRC file.

Related Information:
See: "Hide the VAM" in the VTScada Developer's Guide

Working with Pages

You can change the appearance and behavior of the pages in your applic-
ation. There are two levels of access to the characteristics of pages: at
the developer's level, page characteristics are set using the Idea Studio
and its associated tools. At the programmer's level, page characteristics
can be set within a page's source file. Developer tools are described else-
where in this guide.

Note: The code for user-created widgets is very similar to that of page
modules, and therefore much the following information also applies to
them.

Caution: In general, it is not recommended that custom code be layered
on top of existing page object code. For example, by attempting to make
a Page Close button perform extra tasks before executing its own page-
closing code. This may easily result in a race condition. Create dedicated
code for each task instead.

Where to find the code for your pages:
For each page, there are three resource files,stored within your applic-
ation in a folder named, "Pages". These are user-editable copies - any
change must be imported into the application by an authorized user
before it will become part of the running application.

o PageName.SRC The .SRC file contains the source code for the page.

o PageName.RUN The .RUN file is the last compiled version of the page.

o PageName.BAK The .BAK file is a backup of the source code for the page.

The code of a page is a standard VTScada modulel, following all the
rules of the VTScada language. It may begin with an optional set of para-
meters

(

parmName <:"description text":> data_type;

Following the parameters (if any) will be the variable declarations.

L
Title

color

"overview";
89;

]

Most pages will have one state, named "Main" by default when the page
is created within the VTS development tools. This is a subroutine, and
therefore will contain the statement, Return(Self);

All graphic entities added to a page within the development environment
will use the GUI- functions (GUIPipe, GUITransform, etc.), but you are
free to use Z- functions if you are adding objects using code.

The order of the graphical statements within the page's state determines
their display order (later statements have a higher z-order than earlier
statements) and also the tab-order for user-input elements.

Tags are drawn using drawing-method code, placed within GUITrans-
forms. The drawing-method code controls the appearance (meter, top-
bar, slider, etc.). The GUITransform controls the scaling and location.
Within the page code, each tag is referred to by its unique ID. This
enables developers to rename tags at will without losing the associated
graphic. If you copy the graphic, then paste it into an editor, VTS will
automatically look up the current name of the tag, and use that instead.

1A collection of states, scripts, variables, parameters, comments and pos-
sibly other modules, all of which make up a VTS program. Modules are
separate tasks that run simultaneously in an application. Behind every
page is a module and behind every tag on that page is an instance of
another module (usually with submodules controlling separate tasks).

(The absolute name will be used, rather than the relative name, as indic-

ated by the angle brackets.)
Copy

,ﬁ_E

Paste

[<Welll\Depth>]\Meterd (4, 3, 1, O, 100

l;l,,\,,,, 0, T 20 A A 5, B
GUITransform(415, 323, 589, 149,
i, 1, 1, 1, 1 { S5caling .
0, O { Movement .
1, O { Vigibility, Reserved },
a, 0, O { Selectability ¥
r

a)h:

Variables within a Page’s Source File
All of the page elements that are accessible from the page editing dia-

logs are stored in the page's source code file and can be modified there.

Home Page Properties

58T o & 6 > i
[jBarItems m :)

Color Image Title Size
Background Display
DrawlLabel

Security Parameter Manage View Thumbnail Tag Delete

=~ Values Parameters Source B ypes Page

Advanced

The DrawlLabel variable enables you to specify a
title for the page. When used within a page's
source code, the DrawlLabel variable identifies
not the text to use, but the name of a con-
figuration variable whose value specifies the
text to be used as the page's title. For example,
when DrawlLabel is declared in the page's source
code file as follows:

CONSTANT DrawLabel = "MyPageTitle"

VTScada will search the application's con-
figuration for a variable named "MyPageTitle"
and will use that variable's setting.

MyPageTitle = Master Control Page
; entry in Settings.Dynamic

Title

PageToolTipLabel

Bitmap

NoStretch

By using DrawLabel, you can modify the title of
the page through the configuration variables
without needing to access the application's
code. This is particularly useful in situations
where standard page names must be translated
into another language, or otherwise customized
for a particular application. Note that many of
VTScada's labels are configured in the same
way; a variable in the code points to a con-
figuration variable that in turn provides the text
for the label.

If the DrawlLabel variable is absent from the
page's source code file, or if DrawlLabel is
declared in the page's source code file, but the
corresponding configuration variable is absent
from the application, the value of the Title vari-
able is used as the default. In the event that the
Title variable is absent from the page's source
code, then the module name is used as the text
for the page's title.

The display title for the page.
May also be set as an expression within the
body of the page's main state.

Text to display as a tool-tip when the page has been
added to the navigation bar.

Name of the image to use for the page background.

The NoStretch variable is associated with the
ScaleDisplayContent configuration variable,

both of which enable you to control scaling for
the pages comprising your application. When set
to a non-zero value, ScaleDisplayContent causes

PageWinOpt

PageX

PageY

PageHeight

the graphics on all system pages to scale to fit
the dimensions of each page. ScaleDis-
playContent affects all pages in an application;
however, there may be selected pages to which
you do not wish the scaling to apply. The
NoStretch variable enables you to inhibit scaling
for such pages. If NoStretch has a non-zero
value, then the page will not be scaled regard-
less of the setting of the ScaleDisplayContent
configuration variable.

Note: Automated display scaling works reas-
onably well when enlarging the page. It cannot
do as good a job when shrinking a display for
a smaller screen. In particular, labels embed-
ded within buttons or widgets are more likely
to be truncated than scaled down.

Always design for the smallest screen that the
application will be displayed upon.

The PageWinOpt variable overrides the normal options
used for windowed pages (see the Window function for
details). The default value for PageWinOpt is
0b1010000100110011.

The PageX variable enables you to set the X coordinate
for the top left corner of a windowed page. If PageX is
not set for a windowed page, a default value is used.

The PageY variable enables you to set the Y coordinate
for the top left corner of a windowed page. If PageY is
not set for a windowed page, a default value is used.

The PageHeight variable overrides the normal
PageHeight calculation for a windowed page (see the
Window function for details). If not specified, the
height is calculated from the page components.

PageWidth As above, but for width.

PageMinHeight Minimum number of pixels to use for the height when
the page is displayed in its own window

PageMinWidth Minimum number of pixels to use for the width when
the page is displayed in its own window

PageVWidth Maximum width, in pixels, of a windowed page

PageVHeigh Maximum height, in pixels, of a windowed page

PageBMPMarginsWin A Boolean value (1 or 0) controlling whether a
margin should be used when a windowed page
displays an image.

PageBMPMarginLeft Left margin to use when PageBMPMarginsWin is
enabled.

PageBMPMarginBottom Bottom margin to use when PageBMPMarginsWin is
enabled.

PageBMPMarginRight Right margin to use when PageBMPMarginsWin is
enabled.

PageBMPMarginTop Top margin to use when PageBMPMarginsWin is
enabled.

Display Manager Bit Flags for Page Display

In addition to the modifiable variables within a page’s source file, the Dis-
play Manager defines and uses a set of bit flags that determine how a
VTScada page is displayed.

Constant PSTTB = 0x0001 { Page Style - Show Title Bar };

Constant PSBMP = 0x0002 { Page Style - Show Title Bar Bitmap };
Constant PSLGN = 0x0004 { Page Style - Show Title Bar Logon Button };
Constant PSCFG = 0x0008 { Page Style - Show Title Bar Configure But-
ton };

Constant PSDTE = 0x0010 { Page Style - Show Title Bar Date & Time };
Constant PSIND = 0x0020 { Page Style - Show Title Bar Alarm indic-
ators };

constant PSTTT = Ox00FF { Page Style - Show all Title Bar decorations
iE

Constant PSMBR = 0x0100 { Page Style - Show Task Bar };

Cconstant PSMNU = 0x0200 { Page Style - Show Menu Button and Menu };

Cconstant PSMPB
constant PSMFB
tons};
constant PSMPM
tons};
Constant PSMHD
i

Constant PSMMM
i

There is a public variable, PageStyle, defined in the Graphics module in

0x0400 { page Style - Show Task bar Page buttons };
0x0800 { Page Style - Show Task bar "<" and ">" but-

0x1000 { page Style - Show Task bar "+" and "-" but-

0x2000 { Page Style - Hold page btn changes target

OxFFO0 { Page Style - Show all Menu Bar decorations

each session, which is an OR of the style bits that apply to a page. The ini-
tial setting is PSMMM + PSTTT, which is all decorations.
The address of the PageStyle variable is passed as a parameter to the
MenuBar and TitleBar plug-ins.
Although PageStyle is public (because the MenuBar and TitleBar plug-ins
need to see it) setting its value directly is ineffective because it is reset
with each page change.
Whenever a new page is displayed, PageStyle is set as follows (in priority
order)...
Normal page:

1. Default value of a PageStyle variable in the page.

2. The value of DefaultPageStyle.
Windowed page:

1. Default value of a PageWStyle variable in the page.

2. The values supplied in parameter 4 of the Display Manager method,

ShowStyledPage.

3. The value of DefaultPageStyle.
DefaultPageStyle defaults to the value that shows all decorations. This
can be overridden by the configuration settings \DispMgrWPageStyle and
\DispMgrPageStyle, or by parameter three of the DisplayManager method
ShowsStyledPage.
For example, to disable in all pages, the feature whereby a navigation
bar button changes if you hold it down for more than 1.5 seconds, you
have to set the configuration variable \DispMgrPageStyle to the value
OxFDFF (you cannot use the constant values defined in DisplayManager).
Application properties for pages

« DispMgrPageStyle - For all normal pages

« DispMgrWPageStyle - For windowed pages
(Please refer to Application Properties for the Display Manager " for fur-
ther information on these and other modifiable variables.)
For Custom pages you can use code similar to the following example to
offset the top and bottom of the page in the Display Manager:

Topoffset = Pickvalid(And(Caller(self())\Pagestyle, \Dis-
playManager\PSTTB), 0) ? \DisplayManager\Task_Height : 0;

Bottomoffset = Pickvalid(And(Caller(self())\PageStyle, \Dis-
playManager\PSMBR), 0) ? \DisplayManager\Menu_Height : 0;

Related Functions:
...Window
...Graphics

...Display Manager Properties - Refer to the VTScada Developer's Guide

Create Windows & Use Graphics Functions

You can create user-interface windows using the Window function. An
example of a call to the window function can be found in the AppRoot.src
file of every new script application.

window(O, 0 { Upper left corner 1},

800, 600 { view area 1,

800, 600 { virtual area 1,

Graphics(Q) { start user graphics },
{65432109876543210}

0b00010000000110011, winTitle, 0, 1);

The Window() function specifies the size, location, and attributes of the
window when it is created. The seventh parameter (Graphics() in this
example) is a call to start another module. Any graphic statements that
appear in the called module or in any of its child modules are drawn on
the screen created by the Window function.

If the close icon is enabled on the window (via the Style parameter - 8th
parameter), care must be taken to ensure that when the user selects it,
the action you desire occurs, as by default, clicking the close button

stops your application; you may prefer to close the window but keep the
application running. To help you specify the action you wish to occur
when the close button is clicked, the WindowClose() function is provided.
For example, you may wish to define a "Cancel" button that will close the
window, as well as having the close button enabled:

If zButton(10, 220, 110, 200, "cancel”, 2) || windowClose(Self())
Done;

L

winopen = 0 { Assuming winOpen was used as the 11lth parameter of
wWindow function };

]

When either this cancel button or the close button is selected, the script
above will execute, causing the variable that is in the Window function's
Enable parameter to become "0", thereby closing the window. Notice that
the WindowClose function (as used above), does not actually close the
window; rather it checks to see if the user is trying to close the window
with the window close button. It returns a true value when this is the
case, and the resulting execution of the script closes the window.

Related Information:

...Owned Windows versus Child Windows
...Native Windows Tooltip Support
...Working with Pages

...Focus ID

...Placing Focus on an Object vs. Selecting an Object
...Reference Boxes for Graphics Modules
...Use Scaling to Position Graphic Objects
Related Functions:

... Window

... WindowClose

... WindowOptions

Best Practices for Graphics

When writing a module that will be used to display graphics, there are
several things you should be aware of:

The Focus ID

Every function for drawing graphics includes a FocusID parameter.
VTScada does not force you to set a unique value for each ID since there
are situations where it is desirable to use one value for several objects.
(For example, disabling several AddressEntry fields by setting their
FocusID values to 0.)

Aside from a few special cases, it is strongly advised that you do set a
unique FocusID value for each graphic object in a window. Doing so will
help ensure that user interface controls function smoothly.

Note: Tab order between user input controls follows their z-order (that
is, the order of the statements within the state), rather than their Focus
ID value.

The Reference Box

If a particular module is to be used to draw graphics, and this module
will be used inside of a transform at any point, it may be helpful to fix
the module's reference box size. In doing so, all scaling done by the
transform will be predictable. This can be done by using the SetMod-
uleRefBox statement, or (more commonly) by following the module's
name in its definition with a group of constants that define the reference
box for the module. For example:

<
{ System\MyModuTle }
MyModule
(10, 160, 210, 10)
(
parml;
parm2;
)
MainState[

]

{ End of System\MyModule }
>

The constants define the left, bottom, right, and top coordinates of the
module's reference box respectively.
Reference Boxes in Graphic Modules

Switching Pages Within a Window

Most applications have multiple graphics. A common example is the mul-
tiple tabs of a configuration dialog.

If you want one window to contain several images, the Graphics module
should have multiple states, each containing the graphic statements for a
given display set. Action-triggers are used to switch from one state to
another. This is how tag configuration panels are built.

Another option is to open a separate window for individual pages or dia-
logs. This can be done by launching a module for each new window using
the Launch() function.

Use Scaling to Position GUI Objects

You may want to position an object such as a GUIButton, based on the
value of some variable or parameter.

Since the first four parameters of all GUI functions (Left, Bottom, Right,
Top) must be constants, the scaling parameters must be used to dynam-
ically change the position and size. This is easier to achieve if the first
four parameters define a unit box, and the side-scaling parameters (five
through eight) are used to position and size the object being drawn.
Since the scaling parameters do not have to be constants, variables may
be used to set the object's position.

The first four parameters are always in the order Left, Bottom, Right,
Top. The unit bounding box must therefore be defined as 0, 1, 1, 0. Do
not change the order.

The scaling parameters are also in the order of Left, Bottom, Right and
Top. The scale values to apply will always follow the formula, (1 - Left),
Bottom, Right, (1 - Top).

For example, to position a GUIRectangle using the side scaling para-
meters:

Teft = 10
bottom =
right = 1
top = 10;

éO;
00;

GUIRectangle(0, 1, 1, 0 { unit bounding box },
1 - (left) { Left scaling },
bottom { Bottom 1},
right { Right scaling },
1 - (top) { Top scaling },
1 { No scaling as a whole },
0, 0 { No movement },
1, 0, 0, 0, O { visible, not selectable },
14, 12 { vYellow interior, red outline });

/ Window border

S0 GUIRectangle(50, 50, 60, 50,
1,1,1,1,1

% is the same as,
10
+ GUIRectangle(0, 1, 1, 0,
- - %
< 0 | |1+:»‘ (1 -50), 60, 60, {1 -50), 1

This rectangle will be identical to one drawn using the following con-

stants for the initial bounding box.

GUIRectangle(10, 80, 100, 10 { unit bounding box },
1, 1, 1, 1, 1 { No scaling },
0, 0 { No movement },
1, 0, 0, 0, O { visible, not selectable },
14, 12 { Yellow interior, red outline });

As a final example, suppose that you have created the rectangle depicted
in the first case above, and that you now want to draw another rectangle,
smaller by 3 pixels in all directions, and perfectly centered within the
first rectangle

GUIRectangle(0, 1, 1, 0 { unit bounding box },
1 - (Teft + 3) { Left scaling },
bottom - 3 { Bottom },
right - 3 { Right scaling },

1 - (top + 3) { Top scaling },

{N
, 0
) 0’
0, 0

1 o scaling as a whole },

0 { No movement },

1 0, 0, 0 { visible, not selectable },

1 { Green interior, black outline });

Again, simply substitute the appropriate scaling coordinates into the for-
mula in the positions held by left, bottom, right and top.

Transparent and Alpha-blended Windows
VTScada supports transparent windows and alpha-blended (also referred
to as translucent) windows.

Transparent Windows

A transparent window is one that has a transparent or invisible frame
and background. The intended use for this feature is to allow the display
of non-rectangular windows by rendering the background as trans-
parent, while allowing mouse messages, such as movement and clicks, to
"drill-through" the transparent area to the window below. Objects (such
as graphics) placed on the transparent window remain opaque and
mouse messages do not drill-through these opaque objects.

The simplest way to create a transparent window is to specify a back-
ground color less than zero (e.g. -1). The underlying implementation,
however, requires that a specific color be used as the "key" color. All
pixels of that color in the otherwise rectangular screen area that the win-
dow occupies are rendered as transparent. Using a background color of
<0 results in the key color being black (i.e. RGB(0,0,0)), and the window
background being set to that color. It may well be that you wish to have
black as a color in your window, however. Therefore, setting bit 18 in the
Window statement also announces that this window is to be rendered as
transparent, with whatever color is specified as the background color
being the transparent color.

Alpha-blended or Translucent Windows

An alpha-blended or translucent window is one that has an alpha chan-
nel set up in the final renderer, resulting in a translucent effect to the
window (i.e. it behaves like a normal window, except that you can see

through the window to some degree). The degree of translucency ranges
from O (invisible) to 255 (completely opaque, like a normal window). Set-
ting bit 17 on your Window statement invokes "automatic" alpha blend-
ing, where the window is set to be 50% translucent when inactive, and
opaque when active. This is useful for dialogs that are non-modal and
always on-top, so that when another window is active, you can see
through the underlying windows. If you need a finer degree of control,

do not set bit 17; rather use a new value for the Option parameter of Win-
dowOptions (9) and set the WindowOptions "OptValue" parameter to the
degree of alpha-blending that you wish (0 to 255).

Note: Neither the transparent nor the alpha-blended/translucent
effects work with child windows. These effects are not designed for
animation purposes, and are not sufficiently efficient for this purpose.
The amount of processing power required to redraw one of these win-
dows depends on the rating of the graphics card in your machine - the
newer and faster the better.

Owned Windows versus Child Windows

Child windows (those with bit 9 set in their Window call) are not recog-
nized as separate entities. Clicking on a child window returns the object
value of the root module in its parent window.

A child window is embedded in a parent window and cannot leave that
draw area. It is automatically moved when the parent is moved. The child
window's X,Y position is relative to the parent's, rather than to the
screen. Typically a child window has no frame or title (ie; caption) bar,
although you can configure them.

This is not true for owned windows (those with bit 15 set in their Window
call), which return the object value of the root module instance in the win-
dow.

An owned window is similar to a full, resizable, normal window, however
it is owned by another window. Owned windows have no icon on the MS
Taskbar. An example of an owned window is the Add Application Wizard.

Owned, caption-less windows are a common way to create pop-up
(right-click) menus.

Note that, the mouse-wheel system will treat owned windows the same
as child windows only if the former are caption-less.

Native Windows Tooltip Support

The statement, WinTooltipCtrl, supports Windows tooltips.

A Windows tooltip is a pop-up text window that provides an operational
hint to a user based on the object on which the mouse pointer is
focused. As a VTScada developer, you may choose to present the text
box-style tooltips to users, or use the balloon-style tooltips (default).
The default behavior is to display balloon-style tooltips for "drawn"
objects (for example, an analog input represented as a number on a
page), and to display rectangular tooltips for other objects, such as but-
tons in a tool bar (rectangular tooltips appear for each of the buttons in
the tool bar on the Historical Data Viewer page). This behavior can be
changed to always display rectangular tooltips by setting the application
property "NoBalloonTips" to a non-zero value.

Tooltips in a VTScada application will use a font tag named TipFont if
you have defined one (you may select any font when defining TipFont). If
not defined, the default system font will be used.

The names of the related application properties start with "Tip" (e.g.
TipOn & TipFont). The default (Invalid) for all of these settings results in
the default operating system settings being used. Please refer to "Applic-
ation Properties for Tooltips".

The WindowOptions statement allows for setting the text color, back-
ground color, and timings associated with all tooltips for a given win-
dow. These settings are inheritable, so that Windows that are children of
a window that already has these settings modified uses the parent win-
dow's settings, unless explicitly overridden by subsequent Win-
dowOptions statements.

Related functions:

... WinTooltipCtrl

... WindowOptions

Working with Pages

Every page in an application will have a matching source file in the Pages
sub-folder.

Note: Developers may choose to remove all source code files before dis-
tributing an application to a client.

A page file is a modulel. Using the information in this reference, you can
change the appearance and behavior of the pages in your application.
There are two levels of access to the characteristics of pages. At the
developer's level, page characteristics are set using the Pages library and
its associated Add Page and Page Properties dialogs. At the pro-
grammer's level, page characteristics can be set within a page's source
file.

Note: Use care if layering custom code on top of existing page

objects. (For example, taking a Page Close button and adding your own
extra tasks before it executes its own page-closing code.) This may eas-
ily result in a race condition. It is better practice to create dedicated
code for each task instead.

Page Module / File Characteristics

Page Resources
When a page is created, its resource files are stored within your applic-

ation directory in a directory named, "Pages". There are three resource
files for a page, each with a different extension:

1A collection of states, scripts, variables, parameters, comments and pos-
sibly other modules, all of which make up a VTS program. Modules are
separate tasks that run simultaneously in an application. Behind every
page is a module and behind every tag on that page is an instance of
another module (usually with submodules controlling separate tasks).

« .SRC The source code for the page.
« .RUN The last compiled version of the page.
« .BAK The backup of the source code for the page, after the last editing.

Variables within a Page’s Source File
The following variables can be used to modify the attributes and beha-
vior of a page.

« DrawlLabel When used within a page's source code, the DrawLabel variable
identifies the name of a configuration variable whose value provides the text
to be used as the page's title. For example, when DrawLabel is declared in the
page's source code file as follows:

CONSTANT DrawLabel = "PageTitle";

Then VTScada will search the application's configuration for a property
named "MyPageTitle" and will use that property's value. This can be useful if
the title is to be translated since only a configuration file need be changed
rather than the page source code. Many of VTScada's labels are configured
in the same way; a variable in the code points to a configuration variable
that in turn provides the text for the label.

« Title If the DrawLabel variable is absent from the page's source code file, or
if DrawLabel is declared in the page's source code file, but the corresponding
configuration variable is absent from the application, the value of the Title
variable is used as the default. In the event that the Title variable is absent
from the page's source code, then the module name is used as the text for
the page's title.

« NoStretch The NoStretch variable is associated with the ScaleDisplayContent
configuration variable, both of which enable you to control scaling for the
pages comprising your application. When set to a non-zero value, ScaleDis-
playContent causes the graphics on all system pages to scale to fit the dimen-
sions of each page. ScaleDisplayContent affects all pages in an application;
however, there may be selected pages to which you do not wish the scaling
to apply. The NoStretch variable enables you to inhibit scaling for such
pages. If NoStretch has a non-zero value, then the page will not be scaled
regardless of the setting of the ScaleDisplayContent configuration variable.

Note: Automated display scaling works reasonably well when enlar-
ging the page. It cannot do as good a job when shrinking a display
for a smaller screen. In particular, labels embedded within buttons
or widgets are more likely to be truncated than scaled down.
Always design for the smallest screen that the application will be
displayed upon.

PageX Used to set the X coordinate for the top left corner of a windowed
page. If PageX is not set for a windowed page, a default value is used.

PageY Used to set the Y coordinate for the top left corner of a windowed
page. If PageY is not set for a windowed page, a default value is used.

PageWinOpt Overrides the normal options used for windowed pages (see the
Window() function for details). The default value for PageWinOpt is
0b1010000100110011.

PageHeight Overrides the normal PageHeight calculation for a windowed
page (see the Window() function for details). If not specified, the height is cal-
culated from the page components.

Display Manager Bit Flags for Page Display
In addition to the modifiable variables within a page’s source file, the Dis-

play Manager defines and uses a set of bit flags that determine how a

VTScada page is displayed.

Constant PSTTB = 0x0001 { Page Style - Show Title Bar };

Constant PSBMP = 0x0002 { Page Style - Show Title Bar Bitmap };

Constant PSLGN = 0x0004 { Page Style - Show Title Bar Logon Button };
Constant PSCFG = 0x0008 { Page Style — Show Title Bar Configure Button };
Constant PSDTE = 0x0010 { Page Style - Show Title Bar Date & Time };
Constant PSIND = 0x0020 { Page Style - Show Title Bar Alarm indicators };
Constant PSTTT = OxO0OFF { Page Style - Show all Title Bar decorations };
Constant PSMBR = 0x0100 { Page Style - Show Task Bar };

Constant PSMNU = 0x0200 { Page Style - Show Menu Button and Menu };
Constant PSMPB = 0x0400 { Page Style - Show Task bar Page buttons };
Constant PSMFB = 0x0800 { Page Style - Show Task bar "<" and ">" buttons};
Constant PSMPM = 0x1000 { Page Style - Show Task bar "+" and "-" buttons};

« Constant PSMHD = 0x2000 { Page Style - Hold page btn changes target };

« Constant PSMMM = 0xFF0O { Page Style - Show all Menu Bar decorations };
There is a public variable, PageStyle, defined in the Graphics module in
each session, which is an OR of the style bits that apply to a page. The ini-
tial setting is PSMMM + PSTTT, which is all decorations.

The address of the PageStyle variable is passed as a parameter to the
MenuBar and TitleBar plug-ins.
Although PageStyle is public (because the MenuBar and TitleBar plug-ins
need to see it) setting its value directly is ineffective because it is reset
with each page change.
Whenever a new page is displayed, PageStyle is set as follows (in priority
order)...
Normal page:

1. Default value of a PageStyle variable in the page.

2. The value of DefaultPageStyle.
Windowed page:

1. Default value of a PageWStyle variable in the page.

2. The values supplied in parameter 4 of the Display Manager method,

ShowStyledPage.

3. The value of DefaultPageStyle.
DefaultPageStyle defaults to the value that shows all decorations. This
can be overridden by the configuration settings \DispMgrWPageStyle and
\DispMgrPageStyle, or by parameter three of the DisplayManager method
ShowsStyledPage.
For example, to disable in all pages, the feature whereby a taskbar but-
ton changes if you hold it down for more than 1.5 seconds you have to
set the configuration variable \DispMgrPageStyle to the value OxFDFF
(you cannot use the constant values defined in DisplayManager).

Note: You can incorporate the setting of these flags into the Dis-
playSession AppSessionVars plug-in module. Using this technique
enables the presentation to vary under different conditions. For
example, you may wish to present a welcome page which features no
taskbar and no alarm indicator in the title bar to users who are not

logged in. Once the users log in, you can then present the page with
menu/page navigation and alarm indicators enabled.

Application properties for pages

- DispMgrPageStyle - For all normal pages

- DispMgrWPageStyle - For windowed pages

(Please refer to Application Properties for the Display Manager " for fur-
ther information on these and other modifiable variables.)

For Custom pages you can use code similar to the following example to
offset the top and bottom of the page in the Display Manager:

Topoffset = Pickvalid(And(caller(self())\PageStyle, \Dis-
playManager\PSTTB), 0) ? \DisplayManager\Task_Height : 0;
Bottomoffset = Pickvalid(And(caller(self())\Pagestyle, \Dis-
playManager\PSMBR), 0) ? \DisplayManager\Menu_Height : 0;

Focus ID

Every function for drawing graphics includes a FocusID parameter.
VTScada does not force you to set a unique value for each ID since there
are situations where it is desirable to use one value for several objects.
(For example, you may want to disable several AddressEntry fields by set-
ting their FocusID values to 0.)

Aside from a few special cases, it is strongly advised that you do set a
unique FocusID value for each graphic object in a window. Doing so will
help ensure that user interface controls function smoothly.

Note: Tab order between user input controls follows their z-order (that
is, the order of the statements within the state), rather than their Focus
ID value.

Related functions:
... FocusID
... NextFocusID

...Graphics

Switching Graphics Pages

Most applications have multiple graphics. If you want one window to con-
tain several images, the Graphics module should have multiple states,
each containing the graphic statements for a given display set. Action-
triggers are used to switch from one state to another. This technique is
used by tag configuration panels.

Switching Tabs...

ID M& 1) The user clicks on a tab
2) VTScada puts the tab number into the variable
// “Current" and calls the state "Switch".
Currrent = 2; 3) Switch looks for a matching value of Current

and calls the appropriate state to show that
tab's input fields.

Switch
" IF Current == 0 ID;
IF Current == 1 I0;
IF Current == 2 Scaling;

]

The second alternative is to open a separate window for individual pages
or dialogs. This can be done by launching a module for each new window
using the Launch function.

Related functions:

... Launch

Placing Focus on an Object vs. Selecting an Object

There is a difference between an object being selected, and an object
that has the focus on a system page. It is very important to note that an
object that has the focus is not necessarily selected.

An object that has the focus is ready for input from the user. If the object
is an edit field for example, the cursor will blink within the field, indic-
ating that it is ready for input. If the object with the focus is a button, it
is highlighted when selected. In order for an object that has the focus to
be selected, it must be clicked by the mouse, or the <TAB> key, or the
<RETURN> or <ENTER> key must be pressed.

It is possible to force the input focus to a certain graphic object by
means of a NextFocusID statement. When dealing with statements that

combine an If function and a GUIButton function, it is important to keep
in mind that you may focus the button, but the script paired with the If
function will not be executed until the button is actually selected (either
by the keyboard or the mouse).

Focus movement (on a tab key) or reverse tab (i.e. Shift + Tab keys)) is
based on the order that statements appear in the source code. This
applies recursively to calling sequences in steady state. For example:

ZButton(...1...);
Childmod O ;
ZButton(...2...);

In this example, ZButton(...1...) would be first in the focus order, fol-
lowed by any focusable statements in ChildMod, followed by ZButton
(...2...).
Launched modules will appear in the focus order after steady state focus-
able statements and steady-state calling sequences.
For example:

%f watch(1);

LaunchedMod() ;

]
ZButton(...1l...);

childmod(Q);
zButton(...2...);

In the above sequence, the focus order will be the same as that of the pre-
vious example above, with the addition of any focusable statements in
LaunchedMod, after ZButton(...2...).

Reference Boxes for Graphics Modules

If a particular module is to be used to draw graphics, and this module
will be used inside of a transform at any point, it may be helpful to fix
the module's reference box size. In doing so, all scaling done by the
transform will be predictable. This can be done by using the SetMod-
uleRefBox statement, or (more commonly) by following the module's
name with a group of constants that define the reference box for the
module.

Example:

<

{ System\MyModuTle }
MyModule

0, 1, 1, 0

(

parml;

parm2;
)
MainState[

j..
{ End of System\MyModule }
>

The constants define the left, bottom, right, and top coordinates of the
module's reference box respectively. The one-unit values shown in the
example are commonly used when the intention is to allow the transform
code to control the final size. By using unit values, you greatly simplify
calculations of scale.

The same technique is also used by all of the GUI... functions.

Note that these values must be constants; the use of variables for the
four values is not allowed by the compiler.

Related information that you may need:
...Use Scaling to Position Graphic Objects
...Reference Boxes in Graphic Modules
Related functions:

.. GUIArc

.. GUIBitmap

.. GUIButton

.. GUIChord

.. GUIEllipse

.. GUIPie

.. GUIPipe

.. GUIPolygon

.. GUIRectangle

.. GUIText

... GUITransform

Use Scaling to Position Graphic Objects

It is sometimes desirable to position an object, such as a GUIButton,
based on the value of some variable or parameter.

Since the first four parameters of all GUI functions must be constants,
the scaling parameters must be used to dynamically change the position
and size. This is easier to achieve if the first four parameters are used to
define a unit box, and the side-scaling parameters (five through eight)
are used to position and size the object being drawn. Since the scaling
parameters do not have to be constants, variables may be used to set the
object's position.

The first four parameters are always in the order Left, Bottom, Right,
Top. The unit bounding box must be defined as 0, 1, 1, 0. Do not change
the order.

The scaling parameters are also in the order of Left, Bottom, Right and
Top. The scale values to apply will always follow the formula, (1 - Left),
Bottom, Right, (1 - Top).

For example, to position a GUIRectangle using the side scaling para-
meters:

Teft = 10;
bottom = 80;
right = 100;
top = 10;

GUIRectangle(0, 1, 1, 0 { uUnit bounding box },
1 - (left) { Left scaling },
bottom { Bottom },
right { Right scaling },
1 - (top) { Top scaling },
1 { No scaling as a whole },
0, 0 { No movement },
1, 0, 0, 0, O { visible, not selectable },
14, 12 { Yellow interior, red outline });

This rectangle will be identical to one drawn using the following con-
stants for the initial bounding box.

GUIRectangle(10, 80, 100, 10 { unit bounding box },
1, 1, 1, 1, 1 { No scaling },
0, 0 { No movement },

1, 0, 0, 0, 0 { visible, not selectable 1},
14, 12 { Yellow interior, red outline });

f Window border

50 GUIRectangle(50, 60, 60, 50,
1,1,1,1,1

% is the same as,
10
* GUIRectangle(0, 1, 1, 0,

o 50 >~<—1D+‘ (1-50), 60, 60, (1-50),1

As a second example, suppose that you have created the rectangle depic-
ted in the first case above, and that you now want to draw another rect-
angle, smaller by 3 pixels in all directions, and perfectly centered within
the first rectangle

GUIRectangle(0, 1, 1, 0 { uUnit bounding box 1},
1 - (left + 3) { Left scaling },
bottom - 3 { Bottom },
right - 3 { Right scaling },
1 - (top + 3) { Top scaling },
1 { No scaling as a whole },
0, 0 { No movement },
1, 0, 0, 0, 0 { visible, not selectable },
10, 0 { Green interior, black outline });

Again, simply substitute the appropriate scaling coordinates into the for-
mula in the positions held by left, bottom, right and top.

Related Information:

...Reference Boxes for Graphics Modules - General overview
...Reference Boxes in Graphic Modules - Specific details
Related functions:

.. GUIArc

.. GUIBitmap

.. GUIButton

.. GUIChord

.. GUIEllipse

.. GUIPie

.. GUIPipe

.. GUIPolygon
.. GUIRectangle
.. GUIText

.. GUITransform

Drag & Drop to a Window

Any window can be used as a drag and drop target. An example can be
seen in the Idea Studio, where you can drag an image from any Windows
folder directly to your editing canvas to both import the image and draw
it on the canvas.

Not all object types can be imported.

To add this functionality, you must include two call-back modules in the
module that controls the window. These are OLEDrag and OLEDrop.
OLEDrag is not strictly necessary, but without it users will have no visual
reference that a drag and drop operation is under way.

In the following example, the parameters shown are required to make
the call-backs work. The content of the modules is entirely up to you.

It is a requirement that these modules operate as subroutines.

Example:
{ System
}
{ -
(system { Provides access to system library func-
tions };
Layer { Provides access to the application layer
i
)
[
Graphics Module { Contains user graphics
} .

winTitle = "IDropTarget Test" { window title
};
]

Main [
window(O, 0 { Upper Tleft corner },
800, 600 { View area },
1600, 1200 { virtual area },
Graphics() { Start user graphics },
{65432109876543210}
0b00010000000110011, winTitle, 0, 1);

{ System\Graphics
}

{ This module handles all of the graphics for the application

Graphics
[
OLEDrag MODULE { called when a droppable object passes
over };
OLEDrop MODULE { called when a droppable object is dropped
here};
PlaceImage MODULE { Draws an image in the position it was
dropped };
PROTECTED PlacedImages { Dictionary of dropped image objects
s
PROTECTED CurrentDragItem { Storage for current droppable obj if
any };
PROTECTED CurrentDragImage { Image being dragged if applicable
};

PROTECTED DragX { Current drag X position
b

PROTECTED Dragy { Current drag Y position
};

PROTECTED ImgSzX { Current image width
i

PROTECTED ImgSzY { Current image height
i

PROTECTED Base { This object
b

CONSTANT #CF_TEXT =1 { Text clipboard format
};

CONSTANT #CF_HDROP = 15 { File drop clipboard format
i

]
Init [

If 1 Main;

[
PlacedImages = Dictionary();
Base = selfQ);

]

]

Main [
ZText (10, 30,
"Click and drag MSDN_Butterfly.jpg from the app folder", 0,
0);

ZText (10, 45,
"onto this window.", 0, 0);
ZText (10, 60,
"Does the image appear and track to the cursor (roughly)",
0, 0);
ZText (10, 75,
"when the mouse 1is over this window?", 0, 0);
ZText (10, 90,
"Release the mouse button, dropping the image.", 0, 0);
ZText (10, 105,
"Does a copy of the image appear in the dropped position?",
0, 0);
ZText (10, 120,
"If the answer to both questions above is yes then this",
0, 0);
ZText (10, 135,
"test is a success, otherwise it fails. Feel free to try",
0, 0);
ZText (10, 150,
"other files. only images should be processed by this
test.", 0, 0);
{ The following code draws a copy of the image on the page posi-
tioned
to match the Tlast reported drag position. The image is drawn

extending
up and Teft from the position.
3
ImgSzX BitmapInfo(CurrentbragImage, 0);

ImgSzY = BitmapInfo(CurrentDragImage, 1);
GUIBitmap(0, 1, 1, O,
1 - (Dragx - ImgSzXx),
Dragy,
DragX,
1 - (bragYy - Imgszy),
1, 0, 0 { No overall scaling, trajectory, or rotation

3,
1, 0 { visibility, reserved },
0, 0, 0 { No activation or focus 1},
CurrentDragImage) ;

]

<

{ OLEDrag

}

{ called in response to an IDropTarget drag notification.

OLEDrag

(
Type { The clipboard format of the data partameter

i

Data { The data passed, data type varies (see
above) };
KeyState { Keyboard key press enumeration
x’ { X-coordinate of the cursor
};
Y { Y-coordinate of the cursor
b
Mode { Oop code: O=drop, l=enter, 2=over, 3=exit
b5
)
Main [
If 1;
[

{ When a drag enters a window it reports the data, but does not
during drag over or exit operations. Grab a copy of the image dur-
ing the enter and

remove it upon exit.

IfElse(Mode == 1 && Type == #CF_HDROP, Execute({ only try to
make a bitmap if given a file name }
CurrentDragItem = Data;
CurrentDragImage = MakeBitmap(CurrentDragItem);
)5
{ Else } IfThen(Mode == 3,
CurrentDragItem = CurrentDragImage = Invalid;
));
{ Update the drag position, technically this is only necessary
because
XLoc etc. don't report mouse position during a drag.

}

DragX = X;
DragY = Y;
Return(Invalid);

]
]
{ End of System\Graphics\OLEDrag }
>

OLEDrop
3

<
{
{ called in response to an IDropTarget drop notification.
{

OLEDrop
(

Type { The clipboard format of the data par-
tameter };

Data { The data passed, data type varies (see
above) };

KeyState { Keyboard key press enumeration

X { X-coordinate of the cursor
};
Y { Y-coordinate of the cursor
%
Mode { op code: O=drop, l=enter, 2=over, 3=exit
};
)
[
PROTECTED Image { Image Toaded from the file
b
]
Main [
If 1;

[{ The imae is being dropped, cease to draw the drag-tracking
image }
CurrentDragItem = CurrentDragImage = Invalid;
{ Add a copy of the image to the window at the current coordin-
ates. }
IfThen(Type == #CF_HDROP { Only do this if we were passed a
file name 1},
Image = MakeBitmap(Data);
IfThen(valid(Image),
PlacedImages[GetGUID(1)] = Launch(\PlaceImage, Base, Base,
Image, X, Y);

)

)

Return(Invalid;);

]

]
{ End of System\Graphics\OLEDrop }
>
<
{ PlaceImage

{ Draws an image on the window at with a Tower right corner at the
given pos. }

.{ —
=====}
PlaceImage
(
Image { Image to be placed
};
X { Right side of the placement
i
Y { Left side of the placement
i
)
[
PROTECTED ImgSzX { Current image width
};
PROTECTED ImgSzY { Current image height
i

Main [
{ Draw an image extending up and left from the given position. This
just
makes things easy given the way that the image is being traced
during the
drag.
}

ImgSzX = BitmapInfo(Image, 0);
ImgSzY = BitmapInfo(Image, 1);
GUIBitmap(O, 1, 1, O,
1 - (X - ImgszX),
Y,
X,
1 - (Y - Imgszy),
1, 0, 0 { No overall scaling, trajectory, or rotation

by
1, 0 { visibility, reserved },
0, 0, 0 { No activation or focus },
Image) ;

]

{ End of System\Graphics\PlaceImage }

>

{ End of System\Graphics }

>

TreeControl Module

The tree control is a system-level tool in VTScada. The TreeControl mod-
ule implements a tree control similar to that used by the Microsoft Win-
dows Explorer folder panel.

The format for the TreeControl module is:

TreeControl (&Tree)

where &Tree is a reference to the tree to be displayed.
TreeControl makes the following constants available to any module that
calls the ImportAPI function:

{#*%*** Tndices into the Tree array nodes #**%*%**}
[(API)

constant #TI_KEY = 0 { "Key" value...see heading comment };
Constant #TI_TEXT = 1 { Text value to be displayed };
constant #TI_SUBTREE = 2 { Subordinate tree below this node };
constant #TI_MAPARRAYIDX = 3 { MapArray entry index };
Constant #TI_FLAGS = 4 { various flags...see definitions };
constant #TI_ICON = 5 { ICON graphic for node..folder is
default };
constant #TI_TOOLTIP 6 { In-place tooltip text - #TI_TEXT
default };
Constant #TREE_MINNODESIZE = 7 { Minimum compulsory node size };
Constant #TIF_EXPANDED = 1 { Flag - true if expanded };
constant #TIF_CANEXPAND = 2 { Flag - true if able to expand };

Constant #TIF_NOFOLDER

4 { Flag - true if not display folder
bmp };

constant #TIF_GREYTEXT = 8 { Flag - true if grey this option };

Constant #TIF_HIDDENROOT = 16 { Flag - true if root is a hidden
root };

constant #TIF_TITLEDTIP = 32 { Flag true to use titled tooltips };

constant #TIF_POPUPTIP = 64 { Flag - true to NOT use in-place

tooltips };
]

The caller (not the parent) can provide the following subroutine modules
that will be called by TreeControl in response to specific events:

onLeftclick(Node, X, Y)

Called when the left mouse button is released over a tree node. Node is
the tree node, while X and Y are the coordinates of the mouse.

onRightClick(Node, X, Y)

Called when the right mouse button is released over a tree node. Node is
the tree node, while X and Y are the coordinates of the mouse.

onbDoubleClick(Node, X, Y)

Called when the left mouse button is double-clicked over a tree node.
Node is the tree node, while X and Y are the coordinates of the mouse.
This callback is always proceeded by OnLeftClick() and any node expan-
sion is done prior to calling OnDoubleClick(), but after OnLeftClick().

CreateSubtree(Node)

Called when a tree node has its #TIF_CANEXPAND flag set, but the #TI_
SUBTREE member of the node has not yet been constructed. The callee is
expected to construct an array of nodes and store them in the node sup-
plied to CreateSubtree.

ExpandTreeToNode (Key)

A sort of superset of CreateSubtree. It is called in response to a call to
SetSelected() to command the caller of TreeControl to make all the tree
nodes necessary to allow the node containing the Key to be expanded.
The caller of TreeControl should call ExpandNode as needed for each
node. When this callback returns, the tree will be positioned at the node
that contains Key.

The (rough) logic of ExpandTreeToNode is:

Recursively walk up the tree by recursing this subroutine until you get to
the tree root. The reverse recursion path is the shortest route from the
root back to the node. Unwind the recursion, creating sub-trees as neces-
sary and calling ExpandNode() for any that are not expanded.

Clicking on the junction is handled internally, and no callback is made.
The array that is passed in describes the tree structure. The array must

be a 2-dimensional array, with each row (first subscript) describing a
node at the same level in the tree. Each field in the row describes the
node further:

[n] [#TI_KEY]
The Key value is user-defined, and must be a value for which the ==

operator is meaningful. The Key value is used to identify which node the
caller is talking about when calling helper subroutines.

[n] [#TI_TEXT]
This is the text value displayed. It can be any VTScada value that has a
valid textual representation.

[n] [#TI_SUBTREE]
This is a reference to an array of subordinate nodes that are of the same
format as this node.

[n][#TI_FLAGS]

Flag values are used internally.

[n] [#TI_ICON]

ICON graphic for the node (a folder graphic by default).

[n][#TI_TOOLTIP]

Additional tooltip for the node (none by default).

You can have each row with as many elements as you wish, but the above
indices are reserved and must be present in all nodes. The "structured"
Tree array provided can be modified at any time, and the TreeControl
will faithfully follow it. You can call Refresh at any time to invoke a full
rebuild of the tree.

Related Functions:

... GridList
... ImportAPI

Time and Date

Within VTScada, the time and date are kept as two separate numbers.
The time of day is represented as the number of seconds since midnight,
while the date is represented as the number of days since January 1,
1970.

Units for Time:

The Seconds function returns the time, the Today function returns the
date, and the CurrentTime function returns a combination of the two in
the form of the number of seconds since January 1, 1970.

Seconds returns a double value slightly more accurate than 1 micro-
second; however, when that value is assigned to a float type variable, it is
rounded to about 7 significant digits. This can reduce the accuracy, espe-
cially later in the day when the seconds count becomes large. To obtain a
reasonably accurate time stamp, the expression Seconds % 1 can be used
to return fractions of a second since the last second mark.

These date and time numbers may be manipulated to determine elapsed
time between two events simply by taking the difference between the
time and date of the two events. One of the more effective ways to accom-
plish this is by using the CurrentTime function. You can use the single
date and time number that is returned by this function to easily calculate
the elapsed time between events or to calculate the date and time at a
fixed offset.

The date and time numbers can be converted into text values for display
purposes using the Date and Time functions. The values returned from
these functions may have a variety of formats and may be displayed on
the screen using a GUIText statement. The Now function can be used in a

statement to give the time suitable for a Time function, or to display a
simple clock.

Numeric values of the day, month, and year may be extracted from a
VTScada date value (number of days since January 1, 1970) using the
Day, Month, and Year functions. The reverse process of combining the
day, month, and year may be done using DateNum.

Related information you may need:
...VTScada Time Zones

...Timers and Timing

Related Functions:

...Time And Date

VTScada Time Zones

VTScada provides three time zone functions:
o TimeZonelList(): The TimeZoneList() function provides a list of time zones.
« ConvertTimestamp(): The ConvertTimestamp() function converts a
timestamp between different time zones.
o TimeZone(): The TimeZone() function returns information on the current
time zone, such as the time zone name.
Unfortunately, TimeZoneList() and ConvertTimestamp() use information
in the registry that is not localized on non-English versions of Windows
operating systems; however, TimeZone() does. This causes problems
when you need to convert a timestamp to or from the local time zone, as
the result of TimeZone(2) is not suitable as a parameter to Con-
vertTimestamp() on non-English systems.
To overcome this issue, a time zone of "0" (local time zone) may be spe-
cified to ConvertTimestamp() as either the source or destination time
zone.

Timers and Timing

There are three timer functions that can be used to indicate when a spe-
cified time period has elapsed.

« AbsTime is used to check when a certain time occurs (relative to the real
time clock). For example, AbsTime can test when the next time a shift
change will occur. Since this function is tied into the real time clock, it is not
subject to drift as is the TimeOut function. It is useful when you want to tie an
event to a particular time of day rather than to a fixed time delay. If the abso-
lute time of the event is important, AbsTime should be used; however, if the
time of the event is meant to be relative to a randomly occurring event,
TimeOut would be the most appropriate function to use.

o RTimeOut s similar to TimeOut, except that it remembers the elapsed time
accumulated so far, even when the enable parameter is false. For example, it
can be used to test when a certain piece of equipment reaches a specific total
cumulative running time.

« TimeArrived indicates whether a given time, provided as a timestamp, has
occurred.

« TimeOut returns a value of "true" only after a fixed period of time has
elapsed. This function is often used in action triggers to cause an event to
occur after a time delay.

Related Functions:
...AbsTime

... RTimeOut

... TimeArrived

... TimeOut

Build Custom Reports

You can build your own custom report-types that integrate into the
VTScada report page or report tag, and therefore make use of the
VTScada Report Page's features (selection of tags, start and end dates,
output formats). Your module can then control the data retrieval process,
defining what is retrieved and what further calculations are done on the
returned values.

Related information you may need:

...How Reports Collect Data

...Report Formatting

...Common Features of a Report Module

...Type Filters - Limiting the List of Available Tags

...Parameters in a Custom Report

How Reports Collect Data

All reports make use of the GetTagHistory(!) function to query logged
data. This function returns an array of values from each tag, according to
the query parameters. These values are then formatted for display in the
report.
The features that make one report differ from another include:

o The title.

« The selection of tags.
Each report provides its own filter to the report page to limit the type of
tags available for selection.

« The data to return from a tag.
In almost all cases, this is "Value" - the logged values from a tag. But, cus-
tom tags can contain fields other than Value that can be logged and
therefore reported on.

o The start and end dates.

« The time range per data point retrieved.
For example, you might query the set of maximum daily values during a
month. The start and end dates mark the beginning and end of the
month, while the time range per retrieved data point will be one day.

« A function to be applied to the data in each time range.
Eleven functions are available including time-weighted average, min-
imum in range, maximum in range, sum of zero to non-zero transitions
during the range, etc.

Tag selection
Start date & time
End date & time

Report Page or
Report Tag

No. of iterations

Output format /
T —,

(GetTagHistory replaces the older function GetLog. GetLog is still sup-

Custom Report Module VTS Reporter

Generate titles Accepts the titles &

Query tag log files data arrays.

Optional processing of data Generates the report in

the selected output format.

ported. Legacy applications that made use of GetLog can continue to do
SO.

Report Formatting

VTScada reports are designed so that they can be sent to a range of out-
put formats including a text document, the system printer, an email or
an Excel spreadsheet. For this reason, they are designed with a minimum
of complicated formatting. Each report will contain a title (usually includ-
ing the date range), rows and columns of data, and very little else.
Writing VTScada code for more complex formatting is not recommended.
If a fancier report appearance is required, you can copy the default out-
put into a document or spreadsheet and apply fonts, colors, cell borders,
sub-total breaks, and other features there. Macros in programs such as
Excel can help automate this process if it needs to be done on a repeat-
ing basis.

By following this approach, you ensure that your reports remain flexible
for use with a variety of output formats.

Common Features of a Report Module

All report modules must contain the following features:
« Module structure follows VTScada coding rules.

« Parameter list enables the Report Page to pass user selections in.
Shared reference to Report so that the module becomes a plug-in of the
Report Page.

« Variables include:
« TypeFilter - limits tag selection in the Report Page
« ReportName - displayed Report Type in the Report Page
« The initialization state sets the query parameters and calls GetLog for each
user-selected tag.
« A second state processes the data, sending the rows to the VTScada report
generator, then slays the module when finished.
These features can be seen in the following example. This module cre-
ates a snap-shot type report. Instead of collecting an hourly or daily
snapshot, it retrieves the value at the start of each 15-minute data
range.
You can add this report to any VTScada application by copying the code
into a text file and declaring it in the AppRoot.SRC of the application. For
example, if you named the file containing this module, "QuarterHour.src"
declare it in the (PLUGINS) section of the AppRoot.SRC file as follows:

[(PLUGINS)
QuarterHour Module "QuarterHour.src";
]

Remember that file changes must always be imported before they come
into effect.
The code for the example follows:

{ QuarterHour
}

{ This generates a snapshort report given the time interval
3
{ N
=====}
(

Reporter { object value for call-backs
};

Start { starting time (local, not UTC!)
¥

End { Ending time
};

Tags { List of tag names to report on
};
)
L. .

Titles { Array of ODBC database field names
b

Types { Array of ODBC column type names

};
Data

1
Format
used

};
TitleStrm

TagData

1 _
TZBias
};

Constant NUMFMT
Constant COLFMT

{ Set up this

[(POINTS)

Shared Report;

]

Constant TypeFilter

report };

Cconstant ReportName

report
};

TPP };

Constant TPP

constant Mode

a

]

Init [

If 1 Loop;

L

hE

"Loggers™

{ Actual data for the body of the report
{ Array of format strings which will be
in successive SwWrites to write Data
Stream to build title Tine 1in

Loop counter

Loop counter

Number of tags

Number of periods (rows) in the report

Array of tag data

N T e e e T e T)

only valid if called from Report Page

"%13.2f";
"%13s";

module to become a plug-in for the reports }

{ type of tags to use in the

"Quarter Hour Snapshot" { title for the

900

4

{ 900 sec = 15 minutes
{ Mode 4 == value at start of
{ The mode value of 4 is what makes this

Snapshot-type report. }

{ Initialize the arrays for the tags }

TZBias
NTags
TagData

\IsTimeZoneAware ? Timezone(0)

Invalid;

ArraySize(Tags, 0);
New(NTags) ;

{ Remaining arrays include Date and Time as well as NTags }

Titles
Types
Data
Format

New(NTags
New(NTags
New(NTags
New(NTags

++ + +

2);
2);
2);
2);

{ Build the title lines }
Titlestrm = BuffsStream(0);
swrite(Titlestrm, "%s from %s %s to %s %s\r\n\r\n",
ReportName { Title for the report },
Date(Start / 86400, 4), Time(Start % 86400, 2),
Date((End - TPP) / 86400, 4),
Time((End - TPP) % 86400, 2));

{ Sset the value, type and format of the first two title columns

}
Titles[0] = "Date";
Titles[1] = "Time";
Types [0] = "TEXT";
Types [1] = "TEXT";
Format[0] = "%-13s";
Format[1l] = "%-9s";

{ write the first 2 columns of the title line }
Swrite(Titlestrm, Format[0], Titles[0]);
Swrite(Titlestrm, Format[1l], Titles[1]);

{ Reset the Toop counter }
i=0;
{ For each selected tag... }
whileLoop(i < NTags;
{ Add the tag name to the title line }
Titles[i + 2] = Pickvalid(Scope(\Code, Tags[i])\Name,
"Unknown") ;
Types [i + 2] "TEXT";
Format[i + 2] COLFMT;
SWrite(TitleStrm, COLFMT, Titles[i + 2]);

{ and, query data for the tag }

\GetLog(&Tagbatal[i],
Scope(\Code, Tags[i]) { Point object value 1,
"value" { Read data 1,
Start { Start time 1,
End { End time 1,
TPP { Time per point },
Invalid { No max number of points },
Mode { calculation mode },
Invalid { N/A 1,
Invalid { stale time 1,
TZBias { Time Zone Bias B;

i++;

);

{ Add CR, LF to title line and reset the stream }
swrite(Titlestrm, "\r\n");
Seek(Titlestrm, 0, 0);

{ Let the vTScada Reporter module set up the ODBC columns }
Reporter\ODBCColumns(Titles, Types);

{ And, the title line }
Reporter\TitleLine(TitleStrm) ;

]

Loop [
{ ensure that GetLog has finished }
If Avalid(Tagbata[0], NTags) == NTags;

{ calculate the correct number of rows to avoid off-by-one
errors }
NRows = Ceil((End - Start) / TPP);

{ Reset the row counter }
j =0;
{ Loop through retrieved data, creating each report row }
whileLoop(j < NRows;
{ First two columns of the row will be date and time }
Data[0] = Date((Start + j * TPP) / 86400, 7); { Date at start
of TPP }
Data[l] = Time((Start + j * TPP) % 86400, 2); { Time at start
of TPP }
{ Loop through Tagbata array to get the data }
i=0;
whileLoop(i < NTags;
{ Fi1l in data array }
Data[i + 2] = valid(cast(Tagbatal[il[jl, 3)) ?
Tagbata[i][j] : Invalid;
{ Fill in format array }
Format[i + 2] = NUMFMT;
{ Increment loop counter }
i++;
); { End WwhileLoop }

{ Pass the report Tine to the VvTScada Reporter module }
Reporter\DataLine(Format, Data);
{ Increment the data time index }
J++3
); { End WwhileLoop }
Slay(self, 0);
]
]

In this example, each call to GetLog returned a 1-dimensional array. If
you had passed it an array of modes, or an array of fields to return (per-
haps TimeStamp and Value), then the result from each call would be an

array of corresponding dimensions.
Type Filters - Limiting the List of Available Tags

By declaring a constant named "TypeFilter" you can limit the range of

tags available to the user for selection in the VTScada Reports Page. Poss-
ible values include any tag name or group. Since only logged data is avail-
able to be reported on, it is common to set this to "Loggers" but for your

report it may be appropriate to limit the selection to "Pump Status" or

"Digitals".

Example:

Constant TypeFilter = "Loggers";
Parameters in a Custom Report

Five parameters should be declared in your module. In addition to the
VTScada Reporter object, these allow user-selected parameters from the
VTScada Report Page to be passed to your custom report. The standard
parameters are as follows:
o Reporter
Object value for call-backs.
o Start
User-selected starting time.
« End

User-selected ending time.

o Tags
User-selected list of tag names to report on
In addition to these, you may decide to create a generic report that can
be used for a number of variations. The VTScada Snapshot report is an
example: That report module takes several extra parameters, which may
be overridden by a calling module, thereby creating different types of
Snapshot report. As a suggestion, extra parameters may include:
o Vars
List of logged variables within tags. This will always be "Value" when report-
ing on VTScada tags, but if your application contains custom tags with other
logged variables, you may override this parameter to provide the variable
name, or an array of logged variable names.
« TimeRange
Time range in seconds for each data point retrieved by the query. Passed to
the GetLog function as the TPP parameter. Appropriate choices for this value
will depend on the selected mode.

« ReportName

For customized report naming.

o Mode
The Mode to run GetLog in, thereby changing how data is queried. Please
see the following topic, Query Modes and Time Ranges.

« StaleTime
Optional: used in Mode 11 (Rollover Totals). See GetLog in the function ref-
erence for more details.

Query Modes and Time Ranges

When combined, these two parameters determine what report will be gen-
erated from a given set of tags. The choice of Mode determines how the
raw data will be retrieved. The choice of time range selects the amount

of data included in each of Mode's calculations. Each works with the

other.

The VTScada Function Reference has the following to say about GetLog's
Mode parameter:

Mode: Required. Indicates the mode of data collection.

Note that the mode is useful only when the TPP(*) parameter is valid and
greater than 0. Mode may be one of:

Mode Data Collection
0 Time-weighted average

1 Minimum in range

2 Maximum in range

3 Change in value over the range

4 Value at start of range

Time of minimum in range
Time of maximum in range
Sum of zero to non-zero transitions

Sum of non-zero time

O 00 N O wvn

Totalizer

10 Interpolated

11 Difference between the start and end values of a range (see com-
ments in GetLog)

It is possible to retrieve more than one mode in a single GetLog state-
ment. To do this, pass an array of values in as the Mode parameter.

(*) "TPP" in the above description, is the TimeRange parameter. In the
QuarterHour Snapshot example, this was set to 900 seconds (15 minutes)
and used with a mode of 4 (value at start of range).

By adjusting these two parameters, and using the example code shown in
the topic "Common Features of a Report Module," you can create a wide
variety of reports. The following table provides a few suggestions:

Time Range
Mode Report
(TPP)

7 3600 (1 hour) Pump starts per hour
8 86400 (1 day) Daily total running time
9 3600 Hourly totals
1&2inan 900 Minimum and Maximum values each
array qguarter hour

Related Functions:

... GetLog

A 15-Minute Snapshot Report

This example shows how to create a new type of report, and how to add
a new module to an existing VTS program. The result will be a snapshot
report that works on a fifteen-minute basis rather than hourly or daily.
1. Select an existing application, or create a new one.
Do not select or create a script application.
Do not risk disaster by experimenting within a running production applic-
ation.
2. Using a text editor, create a new file in that application's folder.
3. Name the file "15MinSnap.SRC".

4. Copy the code following step 10 into that file and save it.
Using a text editor, open the application's AppRoot.SRC file.
6. Declare the module within the (PLUGINS) section.

The result should appear as follows. Note that the filename is case sensitive

- you must enter upper and lower case letters in the declaration, exactly as
you named the file.
[(PLUGINS) {===== Modules added to other base system modules =====}
15MinSnap Module "15MinSnap.SRC";
]

(There will already be a (PLUGINS) section - do not add a second one.

7. Save the file and click the application's Import File Changes button.

T Import New Files: BedfordScada @

Choose the files to add to your application

Check the files you would like to add. Unchecked files will be ignored.

| File Mame / Extension
15MinSnzp.SRC _SEC

... 1 files selected, 1 files total

QK | | Cancel

8. Click OK to import the new module.

9. Start the application if it is not already running. (It was not necessary to stop
it to do the preceding steps.)

10. Open the Reports page. Your new report should be available in the list of
report types.

{ 15MinReport

¥

{ This plugin modifies the hourly snapshot report to be every 15
minutes }

{ Groups : Loggers

{ Areas : All

Reporter { object value for call-backs };
Start { Starting time };
End { Ending time };
Tags { List of tag names to report on };
vars { List of vars within tags };

)

[

{ set up this module to become a plug-in for the reports }
[(POINTS)
Shared Report;
]

Constant TypeFilter
report};

Constant ReportName "15 Minute Snap" {title for the report };

TimeStamp { Time of last value returned };

obj { Instance of report };

"Loggers"™ {type of tags to use in the

]

Init [
If 1 wait;
[{ 15 minutes = 900

seconds }
0Obj = \SnapshotReport(Reporter, Start, End, Tags, Vvars, 900,
ReportName, 4);

]
wait [

TimeStamp = Obj\TimeStamp; {ensures that the report object was cre-
ated before this module ends }

If !valid(obj);

[

Slay(self, 0);
]
]

Troubleshooting:

« The application won't compile.
There is a typographic error in your code. Note the line number given in the
error dialog. This gives you a starting point for locating the error.

« The reportis not available.
Ensure that you typed the code exactly as shown.
Ensure that the declaration was placed in the existing (PLUGINS) section of
AppRoot.SRC, and was placed before the closing square bracket of that sec-

tion.
Ensure that the Load File Changes button was pressed and no error dialogs

opened as a result.

Related Information:

...Build Custom Reports - Discussion and instructions for creating cus-

tom reports

Diagnostic Files

In some VTScada applications, you may decided that there is a require-
ment for diagnostic files (as an example, a SQL data logger diagnostic
file in which all queries to the SQL server are written for later analysis).
The following list contains guidelines and tips on diagnostic files and
their storage.

« Do not create diagnostic files in your application directories. The size lim-
itation for synchronization of files by the RPC Manager is 32 MB. If a dia-
gnostic file should grow beyond 32 MB in size (which can easily occur) your
application will hang as it attempts to synchronize it. Additionally, once a dia-
gnostic file has been locked by VTScada (when an "Update All" remote con-
figuration action is performed), it can no longer be written to by VTScada.

« The file synchronization dialog shows the name of the file that it has just com-
pleted, rather than the name of the file that it is attempting to transfer.

« When file synchronization locks up for an apparently unknown reason, look
at the files in your application directory and sort them by size. Any files
greater than 32 MB are likely the culprit.

« As a minimum, always add a "\" character to the names of the files created
for diagnostics (or for any other purpose) to prevent them from being cre-
ated in your application directory. A better way to do this is to define a dia-
gnostics directory somewhere to dump these files. (The configuration
variables is a good place for creating path variables for this purpose.)
Another way is to create the diagnostics file with a .LOG or .DAT extension
(rather than with a .txt extension), as VTScada will not automatically add
these files to the application during synchronization.

Related information that you may need:
...File 1/0

...RPC Manager Functions

Working with Speech

The following VTScada modules allow you to provide speech features in

your applications:

Configure: Enables you to define how a speech stream will sound, and
where it will be heard.

GetDevices: Runs in the VoiceTalk thread and returns a list of devices avail-
able on a SAPI text-to-speech stream.

GetVoices: Runs in the VoiceTalk thread and returns a list of voices avail-
able on a SAPI text-to-speech stream.

Reset: Stops a speech stream and cancels any buffered speech.
ShowLexicon: Displays a SAPI text-to-speech engine lexicon dialog to permit
modification of pronunciation.

Speak: Executes on the speech thread to speak supplied text through
a specified SAPI text-to-speech stream.

VoiceTalk: Opens and returns a handle to a SAPI text-to-speech stream.

Note that the following modules have been obsolete for some time, but

are still provided for backward compatibility:
SpeechStream, SpeechEnum, SpeechLexiconDlg, SpeechReset,

SpeechSpeak, and SpeechSelect.

Related Functions:

.. Configure

.. GetDevices

.. GetVoices

.. Reset

.. ShowLexicon

.. Speak
.. VoiceTalk

Interrupt the Shutdown Process

There are two methods to interrupt the shutdown process. Note that
neither can be used to delay a shutdown caused by time-limited trial
license by more than ten minutes.

Method 1:

Any module declared in AppRoot.SRC as a member of the class
(SHUTDOWN_HOOK) will run automatically during the shutdown process.
Such a module may be used to write extra information to disk or perform
any other task before the shutdown process completes.

Method 2:

If you add a module named "VAMStopAppCheck" to your application, you
can interrupt the shutdown process to prompt for confirmation or to give
the operator time to perform some task before proceeding with the shut-
down. For example, when the TraceViewer is shut down, it will check
whether logging is still enabled and if so, ask the operator whether to
continue logging.

Note: This does not apply to shutdowns initiated by a low UPS. Those
are considered to be both time-sensitive and critical and therefore will
not be delayed by a VAMStopAppCheck module.

If adding this module to a script application, define it in the AppRoot.src
file of the application. If adding it to a VTScada application, the module
must be in it's own file, which is declared in the AppRoot.SRC file. (Note -
it should be declared on its own, not within any of the module classes.)
It is sufficient that the module be declared in the AppRoot.SRC file in
order for the VAM to call it upon shut-down. This will happen when the
user tries to stop the application by using the stop button in the VAM or
by stopping the VAM itself. The VAM will not automatically call
VAMStopAppCheck when the user closes the application by clicking the X
in the corner of the title bar. Script applications are able to trap for this
method of closing the application, but VTScada applications are not.

VAMStopAppCheck should be declared with two parameters:
« OKStopPtr - a pointer to be set. When *OKStopPtr is set to 1, the application
may stop.
o VTSExit - a Boolean. If TRUE, VTScada is being shutdown. If FALSE, only the
application is being stopped.
The general structure of the module will display a dialog to the operator,
and wait for a response before continuing.
Example:

VAMStopAppCheck

<
{
}

{ Module called by VAM when Stop button is pressed. Setting OKStopPtr
}

{ to 0 tells the VAM not to stop the app. Setting it to 1 allows it
to }

{ stop. }
{ A
VAMStopAppCheck
OKStopPtr { Pointer to set: 1 if ok to stop, 0 if not
ok };
VTSEXit { Flag - TRUE if VTScada wants to exit; false
if app
is just being stopped. Default is false. };
)
[
Close { TRUE if user chooses to stop the app
I
CloseDialog Module { Presents dialog to user getting con-
firmation
for app stop. };
]
Check [
If 1 wait;
[
{ User has attempted to stop the application. Show the close dia-
log. }
CloseDialog(&Close);
]
]
wait [
If valid(Close);
IfElse(Close,
*0okStopPtr = 1;
{ Else }

*0kStopPtr = 0;
i

Slay(Q); { 1In either case, this module is finished. }

1
>
<
{ CloseDialog
}

{ Launched module presents a dialog to the user when the application
}
{ is stopped
}
{
CloseDialog
(

AskExitResultPtr { Pointer to set the result
};
)
[

AskExitResult { The user's choice
It
1

CloseDialog [
AskExitResult = \System\4BtnDialog(\System\Question_Icon,
"Yes", "No", Invalid, Invalid,
"Continue shutdown?", Invalid,
Invalid,
1, 0, 1, "continue with shut-
down?",
Invalid, Invalid, Invalid, 2,
Invalid, Invalid);
If valid(AskExitResult);

*AskExitResultPtr = AskExitResult == 1 ? 1 : 0;
slayQ;
]

| N—

Alarm Manager

The Alarm Manager maintains a record of alarm activity, and keeps track
of the current status of all alarms in the system, whether they are active,
acknowledged, shelved, etc. This information is stored as records in an
alarm database.

To record and store information, the Alarm Manager uses a VTScada His-
torian. By default, the System Alarm Historian is used, but others may be
created and selected as part of application development.

Note: Alarm data and process |1/0 data should always be stored with sep-
arate Historians.

Alarms are linked to Historians via Alarm Database tags. Two Alarm DB
tags are standard with every VTScada installation: System Alarm DB is the
default for all user-created alarms and events. System Event DB is used
for all built-in VTScada events including security logs and operator-con-
trol actions. If you create new Alarm Database tags, only (and all) those
alarms that are children of a database tag will be stored in that database.
In all other cases, the default is the System Alarm DB.

Note that the alarm files, Alarms.DB and Alarms.LOG are obsolete as of
VTScada version 11.2. For legacy applications that are upgraded to 11.2
or later, all alarm history will be transferred to Historians as a one-time
process. In the event that you intend to add extra Alarm Database tags to
your application and store certain alarm information with those custom
databases, do so before transferring the alarm history.

Programmers can use the Alarm Manager API described in this chapter
for the following tasks.

« Add alarm features to tags that they code from scratch.

o Customize the columns and other display characteristics of alarm lists.

« Query alarm status information for use in modules such as custom reports.

« Query or modify alarm properties to view or change the Alarm Manager con-
figuration.

Related Information:

...Adding Alarms to Custom Tags

...Alarm Functions

...Alarm API Structure Definitions

...Alarm Manager Function Constants

...VTScada Event Logging

...Alarm Message Templates
See the VTScada Admin Guide for:

...Application Properties for Alarms

...Properties for the Alarm Notification System

Alarm API Structure Definitions

The alarm manager defines several data structures.

The configuration structure is obtained and populated when commissioning
an alarm. Alarm Configuration Structure

The status structure may be obtained and monitored to watch for changes to
an alarm'’s state. Alarm Status Structure

The transaction structure contains information about an alarm event that is
stored to from the database including what changed (active state on or
off...), the logged-on user, which workstation, etc. Alarm Transaction Struc-
ture

The record structure is the complete set of information for each entry in the

alarm database. This includes both configuration and transaction inform-
ation. Alarm Record Structure

Alarm Configuration Structure

Every alarm can be described using a known configuration structure.

When configuring a new alarm, this structure should be created via a call

to \AlarmManager\GetAlarmConfiguration, then populated with the

appropriate values before a call is made to \AlarmManager\Commission.

ConfigurationStruct { All Boolean flags default to FALSE }

Name

Unique name for the alarm

FriendlyName

Display name of the alarm's source

Area Area

Description Description. Was "Message" prior to 11.2

Priority Priority. Must be valid to be commissioned. Must be an integer cor-
responding to the Alarm Priority tag values.

Reserved

Disable TRUE to disable the alarm

DisableParmName

Name of the tag's disable parm. Allows us to get the operator name
who made the config change.

OnDelay Seconds to delay before activating

OffDelay Seconds to delay before clearing

RearmDelay Seconds to delay before rearming after ack

Setpoint Setpoint of alarm evaluation

Valuelabels Array of labels to display instead of Value or Setpoint. Rarely used by
tags other than digitals.

Units Setpoint units

Function Enumerated function for alarm evaluation (1)

AlarmType String identifying the type of alarm

Trip TRUE if alarm only becomes unacked not active

NormalTrip TRUE if alarm becomes unacked when it clears

OffNormal TRUE if alarm only becomes active not unacked

Deadband Setpoint deadband

PopupEnable

TRUE to enable popup display of active alarm

SoundFile Filename relative to app path of custom sound
Custom Array/Dictionary/Structure of custom fields
AdHoc TRUE if alarm is ad hoc

GetAlarmConfiguration returns only a copy of the alarm's structure, not
a reference. To update any property within the structure:

1. Obtain a copy using GetAlarmConfiguration.

2. Change values within that copy as required.

3. Include the copy in a new call to the Commission function.

Related Functions:

...GetAlarmConfiguration

...Commission

Alarm Status Structure

AlarmStatus Struct

IsActive TRUE if alarm is on the Active list };
IsUnacked TRUE if alarm is on the Unacked list };
IsShelved TRUE if alarm is on the Shelved list };
IsDisabled TRUE if alarm is on the Disabled list };

This structure should be used in all new code, replacing the older func-
tions IsActive, IsUnacked, IsShelved and IsDisabled.

Related Functions:
...GetAlarmStatus

Alarm Transaction Structure
[

TransactionlInfo Struct

Name Alarm name

Cfg

Alarm's configuration. Only required to bypass the alarm's commissioned
configuration.

Action Alarm Action code

Transaction Alarm transaction string

Timestamp Alarm timestamp (UTC)

TransactionlInfo Struct

Value Tag value

Custom Custom fields; overrides Cfg\Custom
Reserved

MachinelD Workstation's MachinelD. Defaults to local.
AccountID AccountlID of operator

Device Name of client device

ExpiryTime Time the record is to be removed (UTC)

RemovalGUID |Reference GUID for targeted removals

Notelnfo Structure containing information about a note that has been attached to

this transaction. It provides the Timestamp and GUID of this transaction.

The transaction string takes the form, "ListName+" or "ListName-".
Several transactions can be combined in one string. The following
example sets both the unacknowledged status and the active status off:
“Unacked-Active-".

List names include the following: Active, Unacked, Shelved, Disabled, Con-
figured.

Alarm Record Structure

AlarmRecord Struct

TimeStamp UTC time for the event

GenTimestamp UTC time when the record was written
GUID 16 byte unique ID for the event
ReferenceGUID GUID of original event that this cancels
ReferenceTime Time when original canceled event occurred
Name Alarm name, typically the tag name
Area Alarm area

Transaction List additions and deletions

Action Alarm action to display for history event
Priority Alarm priority (integer)

AlarmRecord Struct

IsShelved TRUE if this alarm is shelved
Database UniquelD of the alarm database tag
Custom Field to be used by OEM & app code
MachinelD Workstation where record originated
Device Name of originating client computer
UserlD User associated with the event
Description Alarm description/message

Reserved

ExpiryTime Time shelved record is to be removed
OnDelay Time to wait (seconds) before activating
OffDelay Time to wait (seconds) before clearing
Value Tag value at time of alarm event
Setpoint Alarm setpoint

Units Setpoint units

Function Setpoint function

AlarmType Type of alarm

SetpointLabel

Label to display instead of Setpoint

ValuelLabel Label to display instead of Value
RearmDelay Rearm delay (seconds)

Deadband Analog deadband

SegNum Sequence Number (for history sort)

Trip TRUE if alarm was tripped

AdHoc TRUE if alarm was ad hoc

NoteAttached TRUE if one of more notes attached to record
IsConfig TRUE if the alarm configuration is changed

Alarm Manager Function Constants

The Alarm Manager defines the following constants. Use these in custom

code that enables the user to choose the trigger for an alarm condition.

ALM_FUNC_ON_CHANGE

upon change of value

ALM_FUNC_EQUAL

ALM_FUNC_NOT_EQUAL

ALM_FUNC_LESS_THAN <
ALM_FUNC_LESS_EQUAL <=
ALM_FUNC_GREATER_THAN >
ALM_FUNC_GREATER_EQUAL >=
ALM_FUNC_AND_WITH &&
ALM_FUNC_OR_WITH I
ALM_FUNC_XOR_WITH A
ALM_FUNC_NOT_AND_WITH 1(&&)

ALM_FUNC_NOT_OR_WITH

i1

VTScada Event Logging

An alarm may be described as "A situation to which an operator must

respond”, while an event is "an action that is recorded, but requires no

response." Events differ from alarms only in purpose and notification.

For both, a triggering action occurs, and a transaction is recorded of that

occurrence.

Many events are built into VTScada. Each change to security con-

figuration is logged as an event recording who, what, when and where

(workstation). Operator logons and log-outs are similarly recorded. Each

operator-control action is recorded as is each VTScada action such as

sending an alarm notification, generating a scheduled report from a

Report tag, and more. All of these VTScada-generated events are logged
in the Alarm Event DB tag.
All events can be viewed in the History page of any Alarm List.

Logging of Operator Control Actions

Each time an operator performs a control action in an application, such
as starting a pump, that action is logged. The record includes the oper-
ator name, the workstation used, a timestamp, the name of the output
tag, the area of the output tag, the current value, and the value written. If
no tag area property is defined or available, then the value defined in the
property, OperatorLogArea will be used.

The content of the logged message is controlled by the application prop-
erty OperatorLogTemplate. Prior to version 11.2, messages longer than
80 characters were trimmed, but this is no longer the case. Other prop-
erties (see list of related information) control whether operator logging
is enabled and provide default values to be used when none are oth-
erwise available.

Logging of Security Events
Each time a user logs on or logs off, or a manager performs a security-
related action such as adding a new user account, details about that
action are added to the alarm log.
For each security entry in the History list, the following information is dis-
played:

« The name of the workstation on which the security event occurred,

« The account name of the person who performed the action

« Atime and date stamp,

« Details about the action performed
Related Information:
Refer to the VTScada Admin Guide for:

...OperatorLogArea

...0OperatorLogging

...OperatorLogName

...OperatorLogTemplate

Query the Alarm History

The History tab of the Alarm Page (or any Alarm List) offers the easiest
way to query alarm history with its various filters. Note that you can use
the keyboard combination CTRL+C to copy the information from a report
(or any alarm list), then paste it into a spreadsheet for further pro-
cessing.

In custom code, you can build your own alarm lists by using the function
GetAlarmList. This is the function used by the Alarm Page and every
Alarm List widget.

You can also query historical alarm data using code via the SQL Interface
command, "SQLQuery". You may use this function to build SQL state-
ments that can select data directly from the list of active alarms or the
alarm history.

Two tables are available for you to query. :Alarms for current alarms and
:AlarmHistory for past events. Note the leading colon in both table
names.

For example, to query the names and priorities of all active alarms:

SQL_Query = "SELECT Name, Priority FROM :Alarms WHERE Active = 1";
\VTSSQLInterface\SQLQuery(SQL_Query, &Result, &FieldNames,
&FieldTypes,

&RetCode, &ErrorMessage);

Upon success, the resulting two-dimensional array will be stored in the
variable Result. The size of the first dimension is controlled by the num-
ber of fields you query for. The size of the second dimension matches
the number of rows returned.

In the event of an unsuccessful query, Invalids will be returned in the
SQLQuery parameters.

To retrieve all events associated with the operator Bob on April 10, 2008

SQL_Query = Concat("SELECT Timestamp, Name, SubName, Event ",
"FROM :AlarmHistory ",
"WHERE Timestamp >= '2008-04-10 0:00:00' ",
"AND Timestamp < '2008-04-11 0:00:00" ",
"AND Operator = 'Bob'");
\VTSSQLInterface\sQLQuery(SQL_Query, &Result, &FieldNames,
&FieldTypes,
&RetCode, &ErrorMessage);

To know when the query has finished, watch for RetCode becoming valid.
Available column names to use in your query include:

Timestamp Name SubName
Event Message Priority
Type HookPointValue Area
HookPointUnits Operator

Related Information:

...Alarm Reports - Using the built-in alarm reports
...GetAlarmList - VTScada function reference
...5SQLQuery - VTScada function reference

...SQL Queries of VTScada Data: The ODBC Server - VTScada Developer's
Guide - Configuration and examples.

Alarm Message Templates

Templates can be used to define the alarm that is delivered via the Alarm
Notification System (voice, email or pager) or via the text-to-speech fea-
ture. These templates can use a combination of words and replaceable
symbols to define the content of the alarm message. Templates may be
up to 128 characters in length.

Related Information:

Referring to the VTScada Admin Guide, separate templates are available
for each of:
« Spoken alarms
« AlarmSpeechTemplate
« Dialed voice messages
« AlarmDialerTemplate
« AlarmDialerStatusTemplate
« Emailed alarms
« AlarmEmailTemplate
o AlarmEmailAckSubjectTemplate
o AlarmEmailAckTemplate
o AlarmEmailStatusTemplate
o AlarmEmailSubjectTemplate
« Paged alarm messages
« AlarmPagerTemplate
« AlarmPagerStatusTemplate
o SMS messages
o AlarmSMSTemplate
« AlarmSMSStatusTemplate
o AlarmSMSAckTemplate
There are also two template configuration options that set the format
used for the date and time if these parameters are used as part of the
template.
« Date Format see: AlarmTemplateDateFmt

o Time Format see: AlarmTemplateTimeFmt

The complete list of replaceable parameters:

Parameter Meaning
%A Area of the Alarm tag.
%D Date of the alarm

%F Full tag name

%H Short tag name

%M Alarm description

%N New sentence for email and pager messages.

%0 Name of the operator logged on at the time the alarm was triggered.

%P Priority of the alarm.

%S Status of the alarm

%T Time of the alarm

%U Units of the Triggering tag.

%V Alarm value (this is the value of the alarm trigger at the time that it triggered
the alarm)

%W Pause for ¥4 second. Has no effect on email or pager messages.

Custom Alarm Hook API

In versions of VTScada prior to release 11.2, developers who wanted to
add custom functionality to an alarm event would override a module of
the Alarm Manager to add their code. That technique is now obsolete.
Many existing overrides will continue to work, but should be tested
before being put into production use with version 11.2 or later.

To add extra functionality to an alarm transaction, create an alarm hook
module. A set of hook names has been defined within the Alarm Man-
ager. If your application contains a module with a matching name, it will
be called just before the transaction is logged, allowing you to perform
extra work.

An alarm hook should return TRUE or Invalid to allow the transaction to
proceed and be logged. Alarm hooks that return FALSE will stop the
transaction from proceeding.

The module may be defined with one parameter, which VTScada will use
to pass in the fully-populated transaction structure.

Defined alarm hooks:

o AlarmAckHook

« AlarmActiveHook

« AlarmCommissionHook
« AlarmDecommissionHook
« AlarmDisableHook

« AlarmEnableHook

« AlarmEventHook

« AlarmModifyHook

« AlarmNormalHook

« AlarmNormalTripHook
« AlarmOffNormalHook

o AlarmPurgeHook

« AlarmRearmHook

« AlarmShelveHook

« AlarmTripHook

« AlarmUnshelveHook

Example 1 Do something extra when the alarm closes:

<
AlarmNormalHook
(
{ parameter not required }
)
[
{ ... local variables ... }

]

Main
If 1;

[
{ Do something like write out a value to a PLC }
DoSomething();
{ Returning Invalid or TRUE allows the AlarmManager to log the
Transaction when we’re done }
Return(TRUE) ;
]
]

>

Example 2: Clear the alarm when it is acknowledged:

<
AlarmAckHook

(
)

Main
[
If 1;
[
{ Acknowledge and Clear the alarm }
TransactionStruct\Transaction = Concat(Trans-
actionStruct\Transaction, "Active-");
{ The additional transaction text is added to any that already
exist. }
Return(TRUE) ;
]

TransactionStruct { transaction structure };

]

>
Related Information:

...Alarm API Structure Definitions - Includes the transaction structure.

Customize Columns in Alarm Displays

The structure of lists in the Alarm Page and in Alarm List Widgets is con-
trolled by the XML file, C:\VTScada\VTS\AlarmListFormats.XML. You may
decide to customize the structure for any of the following reasons:

« Add or remove columns in a list.

« Set the default width of columns.

o Add customized columns to a list.

« Add a customized list format.

Note: Do not edit C:\VTScada\VTS\AlarmListFormats.XML. Your
changes will be lost with your next VTScada update.

Do not copy this file to your application folder. Local definitions of
column formats and list formats that you have not customized will pre-
vent updates from taking effect.

To make the customizations described in this topic, create a file named
AlarmListFormats.XML in your application folder. The structure must be
as described in this topic. You may copy sections of

\VTScada\VTS\AlarmListFormats.XML to use as a template, but do not
save any definition that you do not intend to customize. Your custom
definitions will override or be added to those from the VTScada file.
The structure of the file is as follows:

<?xml version="1.0" encoding="IS0-8859-1"7>
<AlarmList>
<ColumnFormats>
<Format name="SingleSetl">
<Column width="160">AlarmcCellTimestamp</Column>
. more column definitions ...
</Format>
. more format definitions ...
</ColumnFormats>

<ListFormats>
<Format name="AlarmStandard" Tlabel="AL_StandardFormatLabel">
<Tist name="History" Tabel="AL_HistoryListLabel">
<Single>SingleSetl</Single>
<Double>DoubleSetl</Double>
</Tist>
. more list definitions...
</Format>
. more format definitions...
</ListFormats>
</AlarmList>

XML Format Hierarchy:

« ListFormat definitions are linked to user-interface tools, and are selected
according to rules coded into that tool. Examples follow.

« Within each ListFormat will be one or more lists such as Active, Current, etc.

« Each list definition within each ListFormat will contain two versions, Single

and Double. This selection is controlled by the operator by toggling the Row

Height option.
« The single version and the double version each specify a ColumnFormat.

« Two ListsFormats may each contain a list with the same name such as "His-

tory", but these are separate definitions. Different column formats can be spe-

cified for History (and any other list) in different ListFormats.

o ColumnFormats specify the display modules to be shown in the column cells,

the order of the columns from left to right and the default width of each
column.
For example, an alarm popup uses the "PopupStandard"” list format,

which contains only one list: "Unacked". In the Alarm Page, the default is

to show the AlarmStandard format, containing History, Active, Unacked,
etc, but if an operator chooses to view only the System Event DB, then the
"EventStandard" list format will be selected automatically limiting the
selection to just the History list.

Application properties are used to set the text used for the labels of lists
and columns in the user interface. For example:

AL_HistoryListLabel = History

Column Format Definitions:

The set of lists shown in the Alarm Page is predefined, but you may alter

the appearance of any list.

For each list, History, Active, etc. two sets of column formats are defined.
Two are required so that the operator may use the Row Height button to

switch between a list with one item per column and a list with (in some

cases) two.
[|

Wiew
Row Height
selection tool

Standard display

Time Ack Status Area Mame Description Value Setpoint Units
Columns stacked after using the Row Height button
Date Status Area MName Value Setpoint

Time Ack Description

Ack

Ack

In the ColumnFormats section of the XML file, these are given generic
names. The display name is set in the second section of the file. An
example of the format follows:

<?xml version="1.0" encoding="1S0-8859-1"7>
<AlarmList>
<ColumnFormats>
<Format name="SingleSetl">
<Column width="160">AlarmcellX</Column>

<Column width="26">AlarmCellY</Column>
</Format>
<Format name="DoubleSetl">

<Column width="26">Alarmcel1X</Column>

Each "<Format" section sets the columns to be included. Columns are dis-
played in the list from left to right in the order found in the Format sec-
tion.
The width sets the default size to be used by that column. Changes to
column widths by the operator are stored on a per-operator, per-session
basis, overriding your defaults. There are three ways to specify the width
of a column:

o Column width = "30". Sets the specific number of pixels to be used by the

column.

o Column width = 30%. This column will occupy 30% of the area remaining
after the columns with specific width settings have been accounted for. The
total of percentages should be 100 or less. See next option.

« No width specification. All columns with no width specification will share
equally the space remaining after columns with a specific or percentage
width have been accounted for.

The example text, "AlarmCellX", "AlarmCellY", etc. must be replaced,

either by one of the VTScada modules provided to format and display the
contents of each cell in an alarm list, or by a module of your own cre-
ation. See link under Related Information.

Example:

For the standard alarm page display of unacknowledged alarms, move
the name and description to the first column.

This will require a change of the ColumnFormat ordering, but the first
step is to discover which ColumnFormat is used by the Unacked list in a
standard display. Fortunately, the names in the XML file make this easy
to find:

Under <ListFormats> find <Format name="AlarmStandard" ...> You can
safely assume that this is the standard format. Within that section, find
the list named "Unacked":

<Tist name="Unacked" Tabel="AL_UnackedListLabel">
<Single>SingleSet2</Single>
<Double>DoubleSet2</Double>

</list>

From the above, it is clear that ColumnFormats SingleSet2 and

DoubleSet2 are used. These can be copied from the original file,

together with enclosing XML specifiers and reordered. The file you save

to your application as "AlarmListFormats.XML" should look like the fol-

lowing. Only the two column formats are being overridden in your applic-

ation; all others will continue to use the default XML file. Don't forget to

import file changes to add your version of the XML file to the application.

<?xml version="1.0" encoding="1S0-8859-1"7>

<AlarmList>

<ColumnFormats>
<Format name="SingleSet2">
<Column>ATarmcCel1Name</CoTlumn>
<Column>AlarmCellDescription</Column>

<Column
<Column
<Column
<Column
<Column
<Column
<Column
<Column
<Column
<Column
</Format>

width="26">AlarmCel1Priority</Column>
width="160">AlarmcCel1Timestamp</Column>
width="50">AlarmcellAck</Column>
width="18">AlarmcCellIcon</Column>
width="80">AlarmcCellAction</Column>
width="140">AlarmCelTArea</Column>

width="90" extra="1">AlarmCellvalue</Column>
width="90" extra="1">AlarmCellSetpoint</Column>
width="70" extra="1">AlarmCellunits</Column>
width="18">AlarmcelINote</Column>

<Format name="DoubleSet2">
<Column>AlarmCellDoubleNameDescription</Column>

<Column
<Column
<Column
<Column
<Column
<Column
<Column
<Column
</Format>

width="26">AlarmCelIDoublePriority</Column>
width="83">ATarmCellDoubleTimestamp</Column>
width="18">AlarmcCellIcon</Column>
width="80">AlarmcCell1DoubleActionAck</Column>
width="140">ATlarmCellArea</Column>

width="90" extra="1">AlarmCellDoublevalue</Column>
width="90" extra="1">AlarmCellDoubleSetpoint</Column>
width="18">AlarmCel1Note</Column>

</ColumnFormats>

</AlarmList>

The "extra" attribute, when present and set to 1, enables the visibility of

the column to be toggled by the Show/Hide Extra Columns tool.
There is also an “alwaysShowShelved” attribute. For example:

<1list name="Shelved" Tabel="AL_ShelvedListLabel" alwaysShowShelved-

d=l|1ll>

This attribute, when true, enables records that are marked as “shelved”
to appear in the list even when the “Show Shelved Alarms” tool is not
toggled.

Related Information:
Alarm Column Graphics Modules

Alarm Column Graphics Modules

The following are the names of graphics modules provided by VTScada to
display information in Alarm Lists. The file, AlarmListFormats.XML con-
trols which module is used by each column of each alarm display list.
"Double" in a module name signifies that it is designed for use when
operators click the Row Height button to switch columns from a single
item to doubled items.

AlarmCellAck

AlarmCellAction

AlarmCellAlarmType

AlarmCellArea

AlarmCellDeadband

AlarmCellDescription

AlarmCellDevice

AlarmCellDisabledlcon

AlarmCellDoubleActionAck

AlarmCellDoubleDeadband

AlarmCellDoubleDescription

AlarmCellDoubleExpiryTime

AlarmCellDoublelconPriority

AlarmCellDoubleNameDescription

AlarmCellDoublePriority

AlarmCellDoubleSetpoint

AlarmCellDoubleTimestamp

AlarmCellDoubleValue

AlarmCellDoubleWorkstationDevice

AlarmCellExpiryTime

AlarmCelllcon

AlarmCellName
AlarmCellNote
AlarmCellOffDelay
AlarmCellOnDelay
AlarmCellOperator
AlarmCellPriority
AlarmCellPriorityColor
AlarmCellPriorityText
AlarmCellRearmDelay
AlarmCellSetpoint
AlarmCellShelvedlcon
AlarmCellTimestamp
AlarmCellUnits
AlarmCellValue
AlarmCellWorkstation

You can override any of these modules with your own versions. The over-
all structure should be similar to the following example. The content is
up to you.

AlarmcCelTlArea(Parms)

[
Title = "AL_AreacCcolumnLabel";

Sortkey = "Area";

]

Main [
GUIText(.., Parms\TextColor, Parms\Font, Parms\Area);
winTooltipCtrl(.);

]

The Parms parameter is a VTSCada-supplied structure containing the ele-
ments shown in the following table. Information about each alarm that is
displayed in the cell, and the defaults for how it is to be displayed are
both passed to the module using this structure.

Ackedlcon

Ackedlconwd

Activelcon

ActivelconWd

Action

AlarmType
Area
Configuredicon
ConfigurediconWd
Custom
Deadband
Description
Device
Disabledlcon
DisabledlconWd
DrawAlarmList
ExpiryTime
Font
FriendlyName
Function
GreyTextColor
GUID

HasNote
Historylcon
Historylconwd
IsActive
IsDisabled
IsHistory
IsShelved
IsUnacked
MessagelD
Name
Notelcon
Notelconwd
OffDelay
OnDelay
Popup
PriorityColor
PriorityEvent

Priority
PriorityText
PriorityTextColor
RearmDelay
Record
RecNum
RelativeName
Root

RowColor
Session
Setpoint
SetpointLabel
Shelvedicon
Shelvediconwd
SmallFont
TagDescription
TextColor
Timestamp
Units

UserID
UserName
ValuelLabel
Value
Workstation

Configuration Management

Configuration Management is a term that describes VTScada features
related to all configuration changes.
This includes ChangeSet files, the ability to read and write configuration
files, the ability to make inquiries about the current Layer object (applic-
ation) and the Version Control system.
Features of the Configuration Management System:

« Does not depend on a configuration server.

« Collaboration not limited by file locking.

« Not bound to the RPC network

« Provides a complete audit trail.

« Easy to detect off-line changes since these must be merged into the system

by an authorized user.

For any application, you can discover who has the working copy lock by
selecting that application in the VAM and pressing the keyboard com-
bination, "Ctrl-L".

Related Information:

...Configuration Management API - Reference for functions that make up
the Configuration Management system.

Configuration Management API

The functions that make up the Configuration Management API are as fol-

lows.

Note: These functions should be used only by advanced VTScada pro-
grammers. Errors in the use of these functions can cause irreparable

damage to your application.

Related Functions:

Most of the following functions are called against a Layer object(e.g. Lay-
erRoot\Function()). The Layer object can be acquired using GetAp-
plnstance, GetLoadedApplnstance or GetOEMLayer.

...AcquireLock - Subroutine to acquire an exclusive lock on read-
ing/writing working copy files across all applications.

...ApplsRunning - Reports whether the application has been started and
the start-up process is complete.

...ApplsStarted - Returns TRUE if the application has been started.

...ApplsStarting - Returns TRUE if the application is in the process of
starting.

...ApplyChangeSetFile - Apply a named ChangeSet to an application
layer.

...CaptureSettings - Gathers a single property value or an accumulated
section and returns the result in a tabular format.

...Combine - Performs a Merge2 operation with automated conflict res-
olution and change priority.
...CommitEditedFiles - This function compiles and commits edited files if

the compile succeeds.

...DirectApply - Applies a set of changes directly to the repository,
without disturbing existing (non-conflicting) changes already on either
branch.

...EditFile - Informs the configuration management system that a file has
been modified in the working copy, typically before making a call to Com-
mitEditedFiles.

...GetApplnstance - Asynchronously, retrieves the Layer object (Lay-
erRoot) for a particular application specified by its GUID.

...GetCodeObj - Retrieves the "Code" object associated with the layer.

... GetINIProperty — Given an array of INIProperty structures, returns the
value of a given property from that array.

...GetLoadedApplnstance - Synchronously, retrieves the Layer object (Lay-
erRoot) for a particular application specified by its GUID.

...GetOEMLayer - Retrieves the layer root module of the OEM layer
(should one exist) of the layer this is called against.

...GetPlatformlInfo - Gathers information about the current application
and the workstation it is running on.

...GetWCPath- Returns the full working copy path for an application.

...GetWCRevision - Returns the revision structure for the repository revi-
sion in use by the working copy.

...HasCompilationErrors - Reports if the working copy presently has unre-
solved compilation errors

...HasUndeployedChanges - Finds whether the local machine is main-
taining changes that have not been deployed, including changes that
have been recorded by EditFile but have yet to be committed.

...IsAppEditable - Returns TRUE if the application can accept changes
without being re-started.

...IsOnLocalBranch - Returns TRUE if the local machine is maintaining
changes that have not been deployed within the repository.

...IsRunOnly - Returns TRUE if the application is a run-file-only app,
according to the WC contents.

...LayerInUse - Returns true if the application is running, or if there are
any applications that depend on this layer, running or not.

...Merge - Applies a set of changes (the output of a Diff operation) to a
buffer.

...Merge2 - Attempts to apply two different Diff buffers to a single origin
buffer.

...ReleaselLock - Releases a working copy semaphore that was acquired
by AcquirelLock.

...ReadINIProperties - Gathers the sum of all of the properties files in
this layer and all of its parents including the local workstation files.

... ReadPropertiesFile - Reads a single Settings file and returns an INIFile
Structure.

...RecordProperty - Helper function used to record settings without need-
ing to explicitly interact with the settings files.

...RepoSubscribe - Enables the caller to specify a callback which will be
triggered whenever the application’s repository changes.

... SetINIProperty - Given an INIFiles structure, this function sets the prop-
erty with the specified name and section to the specified value

...Start - Start an application.
...LayerRoot\Stop - Stop an application.

...WriteINIProperties - Writes properties to the local layer's various set-
tings files in one operation.

... WritePropertiesFile - Write a single Settings file according to the prop-
erties in an INIFile structure.

Communication Drivers

Communication drivers tend to become large blocks of code. This is due

to the complexity of the protocols developed for many hardware devices.

The VTScada side of the equation is usually quite straight-forward, but it

often happens that a large number of subroutines will be required to

handle all the details of a driver’s protocol.
This chapter describes the software design process as it applies to the

creation of communication drivers in VTScada. It is organized as follows:

The fundamental concepts of how VTScada implements a communication
driver are covered in the first few topics. If you have not written a driver
before, start with Communication Driver Fundamentals.

The information you should gather before beginning to write code is listed in
the topic, Communication Driver Design.

A step-by-step description of how to create a communication driver is
provided, followed by detailed information on the mandatory and optional
components of a driver. See: Writing a Communication Driver.

A template for a simple driver is presented as an example. All hardware-spe-
cific code has been removed from this example, leaving only the VTScada
components. See: Communication Driver Template.

A reference section is provided, starting at The VTSDriver API, and including:

The API of the built-in module, VTSDriver.

Details on how driver information is distributed through a networked applic-
ation.

Rules for writing a driver.

Information about tools for driver diagnostics and statistics gathering. See:
Driver Diagnostic Tools.

Instructions for installing and using a driver are given at the end of this
chapter. If you have been given the code for a new driver, and are simply
looking for the steps to add it to your application, you can skip ahead to the
section: Install a New Driver (Example: GE 9030 SNP Driver).

Related Information:

...Communication Driver Fundamentals
...Communication Driver Design
...Communication Driver Template

...The VTSDriver API

...Driver Diagnostic tools

... Rules for Writing a Communications Driver
...Add a New Driver to Your Application

...You may also be interested in: Programming Other Modes of Com-
munication

Communication Driver Fundamentals

Summary:
« Communication drivers are tags. All the rules of tag structure must be fol-
lowed when creating a driver.
« VTScada includes a standardized driver module, VTSDriver that provides a
consistent interface to all I/O tags.
« VTSDriver relies on the communication driver tag to handle read/write
requests according to the hardware’s protocol.
VTScada collects information from industrial equipment through hard-
ware input devices, displays the information graphically on a computer,
and sends control signals back to hardware output devices to control the
operation of the equipment. Computers and hardware input/output
devices do not use the same protocol to communicate; therefore a data
translator is required to provide communication between the devices.
This is the role of a communication driver.
In VTScada, communication drivers are in the form of a specialized tag
type. Because each type, make, and model of I/O device uses a different
communication protocol, many different communication driver tag types
are required to provide the interface from these different I/O devices to
the VTScada software.

VTScada ships with communication drivers for the following /O devices:
Allen-Bradley, CalAmp, CIP, Data Flow RTUs
DNP3, MDS Diagnostic, Modicon, Omron Host Link
OPC Client and Server, Siemens S7, SNMP
... and more.
Tag types can have unlimited instances, therefore many copies of the
same or different drivers may run at the same time, providing com-
munication between your PC and multiple 1/0 device drivers.

Related Information:
...Data Exchange between VTScada and a Driver
...What Happens Within the VTScada Code?

...Communication Driver Tags - See the VTScada Developer's Guide

Data Exchange between VTScada and a Driver

VTScada uses I/0 tags that are assigned to read from or write to specific
address in the PLC or RTU. These include analog input and output tags,
digital input and output tags, status tags, control tags, etc.
All 1/0 tags have the following two properties in common:
o |/O Device: The "I/O Device" property tells the tag which driver tag it should
use in order to communicate with the correct PLC or RTU.
« Address: The "Address" property tells the tag which memory location at the
PLC or RTU to read from or write to.
All communication drivers have a common property:
o Port: The "Port" property indicates to the device driver tag the correct serial

port or TCP/IP socket that it should use to transmit and receive data from the
PLC or RTU.

Port

Address in
1/Q Device

E E E I I H H Connecbicn to
computer port

PLC

In summary, port tags provide communication over a physical connection
between remote equipment and the PC. Communication drivers read and
write data over that connection using the protocol required by the

remote device. I/0 tags within VTScada read data from or send data to
the communication drivers in order to complete the link between the spe-
cific addresses in the remote equipment and the widgets on the screen of

a VTScada application.

What Happens Within the VTScada Code?

The VTScada software module, "VTSDriver" (the source code for which is
stored in a file named, "VTSDrvr.web"), provides the link between the
communication driver and the VTScada application. A unique instance of
VTSDriver is automatically created for every instance of every driver
within an application.

Hardware device

Your Custom Code
A complete 4 L1

WTS Driver 'y 7
WTSDriver Instance

VTS I/O tags
Briefly, the role of VTSDriver is to:
« Distribute data to I/O tags
« Trigger polling

« Distribute data to client workstations via RPC.

« Synchronize data on startup.

Reading Data
VTSDriver contains a module called, "AddRead" that is called by an input
tag to create a request to read a specific range of memory. AddRead
expects the following parameters:

o The address from the input tag.

« The number of elements (size of the block) to read.

« A pointer to a place to put the retrieved values.

o The rate at which to perform the read.
AddRead calls VTSGetAddr and VTSMaxBlock in the communication
driver to get the information it needs to coalesce the addresses into
appropriate blocks. A ReadBlock module is then launched, which determ-
ines the best organization of blocks and launches a separate VTSRead
module for each actual block of data to be read.
VTSRead, VTSGetAddr and VTSMaxBlock all reside in the communication
driver, not in the VTSDriver module. This is an important detail to note if
you are planning to write your own communication driver.

Hardware device —

Acquires data
I
Your \ ¥ d
Custom Code ||VTSGetAddr VTSHea
WTSMaxBlock T
Handling a I REEEEJDCL:

read reguest ! T T

from an I/O tag. (!
WTSDriver

Instance Add*Read

Read
Request
VTS I/0 tags

Writing Data
Whenever a value is changed in an output tag, a Write module in VTSDr-
vr.web is called. This module expects the following parameters:

o The address from the 1/0 tag.

o The number of elements to write.

« A pointer to the source of the written data.

« The data type.

« The name of the I/0 tag that called this module to request a write.
The Write module launches WriteData, which in turn calls VTSGetAddr in
order to obtain the information it needs to call VTSWrite. VTSWrite, a
module in the communication driver, is then launched.

Hardware device
Writes Data

Your]'
Y - !
Custom Code [/-’TSGEtAdd YTSWrite]
Handling a }‘ /
write reguest 7 f
i
from an 170 tag. K ‘/ WriteData
WTSDriver A

Wi
Instance v ‘;'te

Write
Regquest
VTS I/O tags

To emphasize, note that VTSWrite is a module that you create in the com-
munication driver, not in VTSDrvr.web.

Rewriting Data

VTSDriver provides the ability to store and rewrite the last set of output
values if requested or required. This feature is controlled by the fol-
lowing code that you may add to your custom driver:

Data Storage

Your custom driver must contain a variable named, StoreOutputs. When
set to TRUE (1), VTSDrvr stores the last output value sent to each
address. If later changed to FALSE (0), the stored values are erased so
that they cannot be written accidentally.

Each VTScada Driver instance stores its own information on what value
was written to what address in a retained dictionary. The dictionary is
keyed on address and stores both the value and the tag name.

The information is populated only after a successful write has been car-
ried out. It is stored via the module RememberOutputs().

Data Rewrite
A rewrite may be triggered either automatically, or manually.

A module in VTSDrvr named ForceRewrites carries out the rewrite. This
module is launched by MonitorRewrites, which determines when the
rewrite should execute.

ForceRewrites may be triggered by a user pressing the widget button,
Rewrite Outputs. It may also be triggered automatically as follows:

Your custom driver must contain a module named CheckCommLossErr().
An example is provided later in this chapter. This module is called
whenever SaveCommStats in VTSDrvr detects an error. Check-
CommLossErr() returns a true or false to indicate whether that error qual-
ifies as a loss of communications.

Your custom driver must also contain a Boolean variable named AutoRe-
write. If set to TRUE, and if CheckCommLossErr() returns a TRUE value,
the trigger is armed.

Upon restoration of communications, as indicated by CheckCommLossErr
() returning a FALSE, MonitorRewrites will then execute as follows:
MonitorRewrites monitors the state of the trigger variable, verifies that
the server machine's 10 instance is in a position to do the writes and veri-
fies that it is the server. Because of the server clause, there will only ever
be one instance of this MonitorRewrites through all machines.

The trigger will not be disarmed until ForceRewrite has completed at
least one good write.

Read Block Value Coalescing
VTScada combines individual PLC/RTU addresses into a single group or
block that is intended to be executed as a single communication mes-
sage. This is known as "coalescing" and is an attempt to increase through-
put by allowing the reading and writing of large blocks of data, where
possible.
There are a number of VTScada modules and variables that control how
coalescing will be performed:
o VTSGetAddr: Gets the addresses for the blocks of data and parses them. The
Infol, Info2, and Info3 parameters provided to this module must be either
invalid or the same type in order for coalescing to occur.

o VTSMaxBlock: The value of the VTSMaxBlock variable sets the maximum
number of values that can be coalesced into a single read. As an alternative,
there may be a VTSMaxBlock subroutine defined, which returns the size of
the maximum block for a given address.

The result of coalescing depends on the data type of the MemAddr para-
meter in VTSGetAddr:

o If MemAddr is numeric, VTScada will coalesce the message blocks into a con-
tinuous address range, even if that range includes addresses that are not
identified or needed. For example, if the system is configured to read
addresses 15 and 50, and the VTSMaxBlock variable is set to 100, then
VTSRead is called such that addresses 15 to 50 will be read as a single read
message, even though address 16 to 49 inclusive are not needed.

« If the data type of MemAddr is a string, then the result of the coalescing
algorithm includes the configured addresses. Using the same example as
above, VTSRead is passed an array of strings (in the MemAddr parameter)
with two elements 15 and 50.

Communication Driver Design

VTScada was created using an object-oriented, layered approach to soft-
ware design, and it is highly recommended that VTScada communication
drivers follow suit. One advantage to this approach is modularity; com-
ponents may easily be added or removed without affecting critical com-
ponents. Layers are designed to build on the functions and services of
the lower layers. The communication driver software should be self-con-
tained, and have only a few well-defined entry points. This makes it less
reliant on other code so that changes to one part will have a limited
effect on other parts of VTScada.

The error state of Communication drivers can be represented on a page
by a Status Color Indicator Widget. For the widget to use the error colors
defined in an associated Style Settings tag, the driver must contain a flag
named ValuelsErrorStatus, set to TRUE. If this flag does not exist, or is

not set TRUE, then the widget will use the colors defined for state 0 and
state 1 in the Style Settings tag.

By default, zero is defined as "no error" and all other values as "error".
You can expand the range of "no error" values by using the following two
parameters:

ValuelsErrorAbove as a numeric. This is the value above which the tag
will be treated as being in error. Defaults to O.

ValuelsErrorBelow as a numeric. This is the value below which the tag will
be treated as being in error. Defaults to 0.

Related Information:

...Steps to Write a Communication Driver
...Researching a Communication Driver Protocol
...Designing an Addressing Scheme

...Providing an AddressAssist Module
...Controlling Access to Shared Resources
...Modem Support

...Writing a Communication Driver

...Mandatory Communication Driver Components
...0Optional Communication Driver Components
...Data Propagation

Related Functions:

...VTSGetAddr

...VTSRead

...VTSWrite

...VTSMaxBlock

Steps to Write a Communication Driver

1. Gather the details of the hardware protocol.

2. Create a new source file using a text editor (such as UltraEdit). Ensure that
this source file is named logically, and is given the extension ".src" (e.g.

"MyDriver.src"). Save this source file on your hard drive where you can easily
locate it when it is time to move it to your application directory.

3. Structure your source file according to the rules for a tag template.

4. Referring to the topic, Mandatory Communication Driver Components, add
the modules and variables required for a driver. The code you write in the
mandatory modules will depend on the driver protocol.

5. According to the details of the driver protocol and your interest in logging
statistics, add Optional Communication Driver Components.

Researching a Communication Driver Protocol

A communication driver cannot be written without a full understanding
of the protocol that the |/O device uses to communicate. A document
that completely describes the protocol must be located, or the device
must be reverse-engineered by monitoring communications and exper-
imenting with the inputs and outputs. At a minimum, you will need to
know:

« The structure of the messages the I/O device sends and receives.

« The valid values for each component of the message.

« The format that the device expects the data to be in.

« Error detection and correction procedures, if used.

« If a checksum or cyclic redundancy check (CRC) is included in the message,

the algorithm that is used to calculate it must be known.

Also, some protocols will define an "end of message" character to indic-
ate the end of the packet. In other protocols, the messages are fixed
length, and the length of the packet is either a constant or is indicated as
part of the header. You cannot proceed without knowing this structure.

Designing an Addressing Scheme

An addressing scheme is a logical means of organization whereby
memory locations in the I/O device are labeled (often, according to the
data type stored) for access by external devices. Some protocols specify
an addressing structure, and it usually makes sense to use this address-
ing scheme instead of redesigning it.

Whatever addressing scheme is used, it must be broken down into
information that is stored in a series of 3 parameters (Infol, Info2, and
Info3) by a module in the communication driver named, "VTSGetAddr".
This information may be the type of data, byte number, record or file
number, or something else that is protocol specific. These parameters
should contain whatever information is necessary to build and decode
the packet that is sent to and received from the correct location in the
/O device.

This information is also used to coalesce the addresses into blocks so
that a single communication message can send or receive a large amount
of data. Although single address reads and writes are permitted, block
reads and writes increase the throughput and overall performance of the
software. Addresses are combined into blocks that are as efficient as pos-
sible. For example, if the file number is one of the info parameters, the
VTSDriver module waits for a series of read or write requests, looks at
the file numbers for each request, and then attempts to combine as
many sequential file numbers as possible into a single block.

It may be that an address structure is not defined in the device protocol.
In such cases, one will have to be designed. An addressing scheme may
divide common addresses into groups, but each address must be unique.

Providing an AddressAssist Module

A driver may provide a custom AddressAssist module to assist the user in
building addresses when configuring I/0 tags. An example may be seen
in any /0 tag that is using an SNMP or OPC Client driver.

T Analog Status (Port 1\OPC 1\Level 1) Properties
ID | O | Scaling | Alarm External Alarms Quality | Display
/O Device

[*Driver] E]l

Address Scan Interval

1

History Address History Scan Interval

The module is commonly stored in its own file, with a unique name
matching the driver it is meant for, but within the driver itself it must be
declared using the name "AddressAssist". The PAddressEntry function
(used in the I/0 tag's configuration) will check for the existence of an
AddressAssist module and (if found) display your code instead of the
usual edit field.
The AddressAssist must provide the code for the user interface elements
that will be displayed in the 1/0 tag's configuration panel as well as
whatever user-interface tools will be provided to help the developer to
select the address. For the configuration panel element, you may:

« draw an edit field with a browse button (as shown in the preceding example),

« create a drop-list or drop-tree with possible addresses,

« create any other address selector that fits within the space of the usual edit-

field for address entry.

A simplified example of an AddressAssist module follows.

{ AddressAssist
{ A custom address selection module for a driver. It consists of
}
{ the usual edit field, along with a button that launches an }
{ address browser.
3
{ .
=====}
(.

Left { The left coordinate of the address
assist };

Bottom { The bottom coordinate of the address
assist };

Right { The right coordinate of the address
assist };

Top { The top coordinate of the address assist
};

var { The variable that we're going to set
i

Supportedbata { Digital, Analog, or Text
};

FunctionType { Read/write
iE

ID { Focus ID of the editfield
1

Trigger { set when var changed

BGColor { Background colour to use in the edit
field };

FGColor { Foreground colour to use in the edit

field };
)

Main [
{ Display the edit field with a Browse button }
\System\Edit(Left, Top, Right - smlBtnwd - Space,
Bottom + EditHt { Coordinates },
Invalid, var, ID, Trigger, Invalid, 4 {Text},
0 { no bevel }, Invalid, Invalid, Invalid, Invalid,
Invalid, Invalid, Invalid, BGColor, FGColor);

If GUIButton(O, 1, 1, O { Unit box 1,
1 - (Right - smiBtnwd) { 1 - Left 1,
Top + BtnHt { Bottom },
Right { Right 1,
1 - (Top) {1- Top iE
1 { Scaling 1,
0, O { Movement },
1, 0 { visibility, Reserved },
Pickvalid(zp, 1) !=0 ? 68 : 0, Pickvalid(ID, 1),

0 { selectability 1},

ButtonFace,

ButtonShadow,

ButtonHighlight,

ButtonTextColor { Colors },

0, 0 { Sides, Reserved 1,

caa Mo { UpLabel, DownLabel },
_DialogFont, 0, 1, 2 { Font, Downvalue, Upvalue, Vvari-
able},

[

{ Implement custom code here to display your address browser }

]

Return(TRUE) ;

]

SmallButtonImgs);

Controlling Access to Shared Resources

In many cases, an application must communicate with multiple pieces of
equipment over a common medium, such as a serial port. In order to pre-
vent multiple driver tags from accessing the same communications
medium simultaneously, semaphores (Queued modules) are used. The
driver tag is responsible for calling the Sem() module within the VTScada
port tag. This module will return true indicating the port is ready to be
accessed. It is recommended that driver tags be created with separate
read and write semaphore modules. This ensures that queued write
requests (such as emergency shut-down instructions) will be processed

in a timely fashion by alternating between read and write requests.

Modem Support

Communication drivers are responsible for triggering outgoing modem
connections if required. Regardless of whether the driver will be con-
necting to the device using a modem or not, this mechanism should be
implemented as it is required in order to support TCP/IP connections.
Also, regardless of whether the hardware supports a TCP connection or
not, TCP support should be implemented so that devices such as Lan-
tronix, which provide TCP/IP to serial conversion, can be used.

In order to connect to hardware using a modem, the driver must call the
port tag’s Port\Connect() module. Before calling the connect module, the
driver should check the Port\Modem variable to make sure a connection
must be established before communications can begin. The variable
Port\IsConnected() can be checked to determine if the connection has
been made.

In order for the driver to accept an incoming modem connection (“hard-
ware dialed in"), a discriminator must be written. This module will inform
the modem manager which calls should be handed to the driver. This is
required since many different units and types of hardware may be dialing
in. Details on creating discriminators and registering them with the
modem manager are covered in the Modem Manager Service document.

Writing a Communication Driver

Writing a VTScada communication driver involves developing all com-
ponents that are essential to the software including common driver wid-
gets, error checking, and collection of statistics.

Since VTScada communication drivers are tags, their code must meet all
of VTScada's requirements for a tag, as well as the requirements for a
driver. The rules for all custom tag types are included elsewhere in the
Programmer’s Guide. See: Creating Custom Tag Types.

Older drivers often used two module files: one for the high level tasks
that interfaced between the 1/0 tag and the VTSDriver module and one
for the lower level tasks that were specific to the driver protocol. This

model is obsolete. It is recommended that communication drivers be cre-
ated within a single file.

Mandatory Communication Driver Components

Within your driver source file, you will need to create the following mod-
ules. These modules are well-defined entry points that are called by
VTSDriver in VTSDrvr.web.

« VTSRead - reads VTScada variables from an input device.

o VTSWrite - writes VTScada variables to an output device.

o VTSGetAddr - gets the VTScada addresses and parses them.
You must also define the following variables:

« Driver - This is used internally by the VTScada engine and should not be set
by the driver tag code being created. It will automatically be linked to the
instance of VTSDriver that will be created for this driver instance.

« Ready - This variable should be set to 1 by the driver tag code when it is safe
to start reading or writing /0.

« Value - This typically defines the error state of the driver where "0" indicates
"no error". Value should be set to the Error from VTSRead/VTSWrite, and
must be set on the current primary 1/O server.

« Root - Setto some object value, usually Self().
Related Information:

...0Optional Communication Driver Components

Optional Communication Driver Components

The following variables and modules, while often found in com-
munication drivers, are defined as optional. Of particular note in this list
is VTSMaxBlock. While used by nearly every communication driver, it is
defined as an optional component.
« Hold -Setto 1 to hold data on error. Otherwise, all data is invalidated when
an error occurs.

« VTSMaxBlock - defines the maximum size for block reads and writes

« ByteOrder - reverse byte order if data is not being provided in the Intel,
litttle—endian format. By default, VTScada assumes that the 15t byte is the
low-order byte.

« RPCService - necessary for networked applications. Set to a string that is the
name of the RPC service that will handle the driver. Usually, the service name
will be the same as the tag name. There is also a configuration setting for this
value.

« GetClientRevision - RPC service
« GetClientChanges - RPC service

o CommStatsUpdateRate - For this and the next two items, see: Driver Dia-
gnostic Tools.

« CommStatsQualityFactor - see: Driver Diagnostic Tools.
« DisableCommStats - see: Driver Diagnostic Tools.

o StoreOutputs - A variable used to indicate that the driver should store the
last set of values written to each output address.
« AutoRewrite - A variable used to indicate that this driver should automatically

rewrite stored values upon recovery from a communications error.

o CheckCommsLossErr - A module that determines if the current ErrorVal
value indicates a loss of communications. Used if providing AutoRewrite cab-
abilities.

Related Information:
...Mandatory Communication Driver Components

...Driver Diagnostic tools

VTSGetAddr

The purpose of the VTSGetAddr module is to convert the Address para-
meter (specified in the "Address" field for tags such as analog and digital
inputs and outputs) to a value that uniquely classifies the address into a
block that can be coalesced by VTScada.

The VTSGetAddr module must be a subroutine. If the given address is
invalid, the return value should be an error code.

Format:

VTSGetAddr(Address, MemAddr, BitNum, Infol, Info2, Info3, DataType,
Read, Rate);
Parameters:

Address

The raw address from the I/O tag's Address field. This
is often a text string, but may be a numeric value. The

contents of this parameter are driver-specific. It is the

job of this module to interpret the address.

The data type to read from or write to is usually

Suffix

Meaning

/ABFloat

/AB5Float

/BCD?2

/BCD3

/BCD4

/Bit
/Double

/Float

/SByte
/SDWord
/Sword
/UByte
/UDWord

Allen-Bradley PLC/3 Floating Point
(4 bytes) (Used for Allen-Bradley
exclusively)

Allen-Bradley PLC/5 Floating Point
(4 bytes) (Used for Allen-Bradley
exclusively)

2-digit (1 byte) Binary Coded
Decimal

3-digit (2 bytes - lowest 12 bits) Bin-
ary Coded Decimal

4-digit (2 bytes) Binary Coded
Decimal

A bit number

IEEE Double Precision Floating Point
(8 bytes)

IEEE Single Precision Floating Point
(4 bytes)

Signed Byte

Signed 32-bit Integer
Signed 16-bit Integer
Unsigned Byte

Unsigned 32-bit Integer

If you intend the address to be numeric, you should
ensure this by casting it to a numeric value.

Suffix Meaning

/ABFloat Allen-Bradley PLC/3 Floating Point
(4 bytes) (Used for Allen-Bradley
exclusively)

/AB5Float Allen-Bradley PLC/5 Floating Point
(4 bytes) (Used for Allen-Bradley
exclusively)

/BCD2 2-digit (1 byte) Binary Coded
Decimal

/BCD3 3-digit (2 bytes - lowest 12 bits) Bin-
ary Coded Decimal

/BCD4 4-digit (2 bytes) Binary Coded

Decimal

/Bit A bit number

/Double IEEE Double Precision Floating Point
(8 bytes)

/Float IEEE Single Precision Floating Point
(4 bytes)

/SByte Signed Byte

/SDWord Signed 32-bit Integer
/Sword Signed 16-bit Integer
/UByte Unsigned Byte

/UDWord Unsigned 32-bit Integer
/UWord Unsigned 16-bit Integer

MemAddr

Assists the VTScada code in creating efficient

driver read and write calls. PLC 1/0O locations
with different MemAddr values and the same val-
ues for the Infol, Info2, and Info3 parameters
are coalesced into the same read block,
provided they are within VTSMaxBlock, or the
return of VTSMaxBlock(Info1, Info2, Info3,
DataType) values of each other.

It is the responsibility of the VTSGetAddr mod-
ule to set this variable to the correct data type
and value.

The MemAddr variable should be one of two
data types:

« A pointer to an integer value. If so, it must be set
by dereferencing (using a * before the variable
name) before being assigned a value.

« A pointer to a string.

VTScada driver code behaves differently, depend-
ing on the data type of the variable's contents.
This variable is usually a pointer to an integer. If
the value is to be a number, make sure a text
string is not returned if the value was extracted
from the Address string.

If a driver does not use integers to denote an
address, return the text string in the MemAddr
parameter. The VISRead module and the
VTSWrite module are passed an array of strings
rather than a memory starting address. This
means, if you set MemAddr to a text value, such
as "100" the VTScada code interprets this as a
text address rather than a numeric one. This
means that the coalescing will not pay any heed
to the actual value of the address, but will
simply pass an array of text strings to the

VTSRead or VTSWrite in the MemAddr para-
meter.

BitNumber

A pointer to the integer bit number within the memory
address specified by MemAddr. This value may be set
to invalid if there is no bit value.

Infol, Info2, Info3

Pointers to values that are used by the VTScada code
to determine which addresses can be coalesced into a
larger read block. These parameters are also passed to
the VTSRead and VTSWrite subroutines. Any values
that are not required should be set to "0" (i.e. they
must be a valid value). These values are typically set to
such things as file type or data area. Any differences
between the values of the three Info parameters and
those of another Address will prevent those addresses
from being coalesced (i.e. grouped into the same read
request).

Note: Infol must be a number; a string value
will not work. If your code sets Infol to a
string value, the SetData module in VTSDr-
vr.web will not work correctly, and client com-
puters will not display the results of the driver
server computer's read commands. For
example, an analog input that is drawn on the
screen will always have invalid contents if the
Info parameters are set to strings (such as
"abc"), rather than a number.

DataType

A pointer to a list of values that holds the data types
preferred for the specified address. This data type may
be left invalid if the VTSRead and VTSWrite subroutines

ignore it. If left invalid the default data type will be 2
(16-bit unsigned integer). This value will be overridden
by the explicit data type specified as an appended
string to the address. The DataType is what is passed
to the VTSRead and VTSWrite subroutines. The appen-
ded data type (refer to the table in the Address para-
meter section above) specifies how the data is to be
interpreted after it is read from the |/ O device if this is
to be different from the DataType returned by
VTSGetAddr. The VTSRead and VTSWrite modules do
not see the value of the appended data type string.

Note: The MemAddr, BitNum, Infol, Info2,
Info3, and DataType parameters are pointer
values, and must be set by dereferencing them
before assigning the values (i.e. using an aster-
isk "*" before the variable name (please refer

to "Pointers" for further details on pointers

and dereferencing).

Read

Specifies whether the address will be used for a Read
or a Write command. If true, the address is used for
reading data, otherwise it is used for writing data. Most
drivers ignore this parameter since there is usually no
difference in the returned values for reads and writes.

Rate

A pointer to the scan rate of the I/O device. This may
be an Invalid pointer.

Comments:

The VTSGetAddr subroutine must return an error code. If the return
value is not 0, the VTScada code assumes that there is an error in the
address and it will not include that tag when coalescing the block.

VTSRead

The VTSRead module is run continuously to read data from the 1/0
device. It is called from the VTSDriver code.
A VTSRead should return data for one or more addresses as contained in
the array parameter, MemAddress. Data is returned by calling CallBack-
Obj\RefreshData as described in the topic, Data Propagation. An example
is provided at the end of the parameter description.
Format:
VTSRead(Trigger, Data, N, MemAddr, BitNumber, Info1, Info2, Info3,
DataType[, CallBackObj]);
Parameters:
Trigger
A logical value that, when true, requests that the
VTSRead module scan the I/O device for data.

Data

An array into which the read data is to be placed.
N

The number of values to read from the I/ O device. If
MemAddr is an array of strings, then N is set to the
size of the array.

MemAddr

Assists VTScada in creating more efficient driver read
and write calls. PLC /O locations with different
MemAddr values and the same values for the Infol,
Info2, and Info3 parameters are coalesced into the
same read block, provided they are within VTSMaxB-
lock, or the return of VTSMaxBlock(Infol, Info2, Info3,
DataType) values of each other.

It is the responsibility of the VTSGetAddr module to set
this variable to the correct data type and value. Note
that the data type of the MemAddr parameter in
VTSGetAddr affects the data type of this parameter. If

the data type is a string in VTSGetAddr, then this para-
meter will be an array of strings.

BitNumber

A pointer to the integer bit number within the memory
address specified by MemAddr. This value may be set
to invalid if there is no bit value.

Infol, Info2, Info3

Are variables (not pointers), that are used by the
VTScada code to determine which addresses can be
coalesced into a larger read block. These parameters
are also passed to the VTSGetAddr and VTSWrite sub-
routines. Any values that are not required should be
set to "0" (i.e. they must be a valid value). These values
are typically set to such things as file type or data area.
Any differences between the values of the three Info
parameters and those of another Address will prevent
those addresses from being coalesced (i.e. grouped
into the same read request).

Note that Infol must be a number: a string value will
not work. If your code sets Info1 to a string value then
the SetData module in VTSDrvr.WEB will not work cor-
rectly and client computers will not display the results
of the driver server computer's read commands. For
example, an analog input that is drawn on the screen
will always have invalid contents if the Info parameters
are set to strings rather than a number.

DataType

A pointer to a value that holds the data type preferred
for the specified address. This data type may be left
invalid if the VTSRead and VTSWrite subroutines ignore
it. If left invalid the default data type will be 2 (16-bit
unsigned integer).

This value will be overridden by the explicit data type

specified as an appended string to the address. The
DataType is what is passed to the VTSRead and
VTSWrite subroutines from VTSGetAddr. The appen-
ded data type (refer to the table in the "Address" para-
meter section above) specifies how the data is to be
interpreted after it is read from the |/ O device if this is
to be different from the DataType returned by
VTSGetAddr. The VTSRead and VTSWrite modules do
not see the value of the appended data type string.

CallBackObj

Optional, but recommended. An object value whose
scope is used to call RefreshData. (see: Data Propaga-
tion) RefreshData is the recommended method for
propagating data.

If using RefreshData to propagate data, then VTSRead
should not also update the Data Array parameter on its
own.

VTSRead must return an object (usually Self()) that
includes the three mandatory variables: Counts,
ErrorCounts and Error.

Note: VTSRead must increment either Counts or Error Counts before

processing new data.

A typical example of the code for the VTSRead subroutine:

<

VTSRead

(
Trigger{ will do read on positive edge };
Data{ Array to put the result into };
N{ The number of values to read };
MemAddress{ Address to read };
BitNum{ Bit to read / not used here };
Infol{ Infol };
Info2{ Info2 };
Info3{ Info3 };
DType{ Data type used for read };
callBackobj{ object value where RefreshbData is located };

)

[
Error = 0;
counts = 0;
ErrorCounts = 0;

StartTime { Request start time };
ElapsedTime { Request elapsed time };
Tries =0 { Number of attempts on modem };
]
Main [
If Trigger;

ResetParm(Sself(), 1) { Reset the trigger since does not feed back
from the driver };

{ Process data according to the protocol }

{ error in data, increment ErrorcCounts },
IfElse((Avalid(TimeArray[0], ArraySize(TimeArray, 0) != ArraySize
(TimeArray, 0)) ||
(Avalid(bpataArray[0], ArraySize(valueArray, 0) != ArrayS-
ize(valueArray, 0)),
++Errorcounts,
{Else - no errors in data, increment Counts and send data}
Execute(
++Counts,
{ Send data and timestamps }
callBackobj\Refreshbata(TimeArray,VvalueArray,Invalid,Invalid)
) {End Execute},
) {End IfElse};

Return(self);

]
]

>

Data Propagation

The VTSRead module is responsible for delivering the data it read from
the I/O device. This is best done by using the RefreshData module within
the scope of the CallBackObj parameter of the VTSRead module.

The data type and structure can vary for the three parameters, NewData,
TimeStamp and Attribute. Read the following notes carefully. If the driver
will read blocks of history data, please refer to the discussion of Block
History in the Comments section of this topic.

RefreshData is provided for you as part of the VTSDriver module.
Format:CallBackObj\RefreshData(TimeStamp, NewData, Attribute,
QueueObj, PropagateOnlyOnDataChange)

Parameters:

TimeStamp Optional. If invalid, the system uses current time in UTC to
timestamp the data. Otherwise, may be either of the following:

« Asingle timestamp value, expressed in number of seconds since January 1st
1970 UTC. This value will be applied to each element of NewDta.
« An array, having the same structure as NewData. Each data point will be
assigned its corresponding timestamp from the timestamp array.

For event driven reads, you may wish to process only the data from a
single address, rather than from a full read block. You can achieve this
by setting all the TimeStamp array elements to invalid except for the one
matching the element of NewData which you want to process.
Note that invalid timestamps in a timestamp array have special meaning.
An invalid timestamp element indicates that the corresponding data has
not changed. This enables drivers to pass back partial updates. This fea-
ture is independent of the PropagateOnlyOnDataChange option.
NewData This is the value read from the 1/0O device. It may be either a
simple array, or an array of arrays having the same size as the MemAd-
dress array used in the VTSRead function.
If a simple array, there will be one element for each address. The array of
arrays option is generally used for returning historical data for a given
address.
Calling Refresh data with the NewData parameter specified as an array of
arrays will work only with Analog Status, Digital Status and Pump Status.
It will not work with Analog Input, Digital Input, and any tag not spe-
cifically coded to handle an array of results being passed into newData().
Attribute Optional. No default. May be a single value, which will be
applied to all elements of NewData if that is an array, or may be an array
of attributes that gets assigned to the corresponding array of data.
If an array, the size and arrangement of the array must be the same as
NewData.
QueueObj Obsolete. Should be set to Invalid.
PropagateOnlyOnDataChange Flag that when set true, will prevent data
from being propagated through RPC or to tag\NewData() unless the value
of NewData or Attributes has changed since the last time RefreshData
was called. Defaults to TRUE.

Historical reads, whether by array or array-of-array, are expected to set
PropagateOnlyOnDataChange to FALSE in order to disable the automatic
filtering. One can interpret this option as 'automatically detect and
ignore data which has not changed'.

Comments:

Invalid data is accompanied by a valid timestamp:

TimeStamp[i] = Some Vvalid Time;
Datali] = Invalid;

Missing Data is indicated by an invalid timestamp:

TimeStamp[i] = 1Invalid;

Block history

When reading historical data, an array of arrays may optionally be used,
where each element of the NewData array will contain another array
which must be sized for the number of data points that are being
returned for the matching MemAddress. This holds true even if there is
only one value to return for each 1/0 address.

This a special mode used only for input tags that can support the dif-
ferent read result. These are, the AnalogStatus, DigitalStatus and the
PumpStatus, all of which have a 'History Address' parameter. The reading
of block history has little to do with VTSDriver itself since VTSDriver
simply passes through whatever the driver provides. The contract that
standard status tags expect is that a block of history will be passed to
NewData() as an array, and that the Timestamp parameter will be a match-
ing array with corresponding timestamps. If Attributes are present, then
attributes for block history should be in an array corresponding to the
Data/Timestamp arrays. It is important that drivers pass block history
data in the form that VTScada status tags support.

If the block of history records is being passed in an array, then the oldest
timestamp must be at index 0. The restriction that the block history be in
a certain order is due to the Historian, which logs exactly what it is given
without modification (by design). Having timestamps reversed means
that out-of-order history is written, which will slow performance. If the

driver’s protocol requires block history with the newest item first, then
that driver should swap the order before passing it along.

Example 1:
Given MemAddress with two addresses, "Addr1" and "Addr2" and data for
Addr1 = 1.23 and data for Addr2 = 2.34, you might do something like:

{ Make a data array }
Data = New(2);

{ Add first element }
Data[0] = New(1l);
Data[0][0] = 1.23;

{ Add second element }
Data[l] = New(1l);
Data[1l][0] = 2.234;

{ Make it So }
callBackobj\Refreshbata(Invalid, Data, Invalid);

Example 2:

Multiple Data/Timestamp Value Pairs for each item in MemAddress, no
Attributes

Given MemAddress with two addresses, "Addr1" and "Addr2" and data/-
timestamps for

Addr1 = 1.23/2009-08-01 11:23, 1.24/2009-08-01 11:24 and data for
Addr2 = 2.34/2009-08-01 11:21, 2.35/2009-08-01 11:22

you might do something like:

{ Make a data array }
Data New(2);
TimeStamp New(2);

{ Add first element}
TimeStamp[0] = New(2);
Datal[0] = New(2);
TimeStamp[0] [0] = ConvertTimestamp(
\ODBCManager\convertToVTSTimeStamp (
"2009-08-01 11:23"),
"US Eastern Standard Time", O,
"GMT Standard Time");
1.24;
ConvertTimestamp (
\ODBCManager\convertToVTSTimeStamp (
"2009-08-01 11:24"),
"US Eastern Standard Time," O,
"GMT Standard Time");

Data[0] [1]
TimeStamp[0] [1]

{ Add second element}

Data[1] = New(2);
TimeStamp[1l] = New(2);
Data[1][0] = 2.34;
TimeStamp[1][0] = ConvertTimestamp(

\ODBCManager\cConvertToVTSTimeStamp (
"2009-08-01 11:21™),
"US Eastern Standard Time," 0,
"GMT Standard Time");
Data[1][1]
TimeStamp[1] [1]

2.35;
ConvertTimestamp(
\ODBCManager\convertToVTSTimeStamp (
"2009-08-01 11:22"),
"US Eastern Standard Time," O,
"GMT Standard Time");

{ mMake it So }
callBackobj\Refreshbata(TimeStamp, Data, Invalid);

VTSWrite

The VTSWrite module is launched by the VTSDriver code to write a block
of values to the I/O device. Its code is very similar to that of the VTSRead
module with the same number of parameters.

The VTSWrite module will usually be slain immediately after the write is
completed.

Format:

VTSWrite(Trigger, Data, N, MemAddr, BitNumber, Info1, Info2, Info3,
DataType);

Parameters:
Trigger

A logical value that, when true, will request that the
VTSWrite module send the data to the 1/0 device.

Data
An array where the written data will be read.
N

The number of values to write to the 1/0O device. If
MemAddr is an array of strings, then N indicates the
size of the array.

MemAddr

Assists VTScada in creating more efficient driver read
and write calls. PLC I/O locations with different
MemAddr values and the same values for the Infol,
Info2, and Info3 parameters are coalesced into the
same write block, provided that they are within
VTSMaxBlock, or the return of VTSMaxBlock(Info1,
Info2, Info3, DataType) values of each other.

It is the responsibility of the VTSGetAddr module to set
this variable to the correct data type and value. The
data type of the MemAddr parameter in VTSGetAddr
affects the data type of this MemAddr parameter. If the
DataType is a string in VTSGetAddr, then this para-
meter will be an array of strings.

BitNumber

A pointer to the integer bit number within the memory
address specified by MemAddr. This value may be set
to invalid if there is no bit value.

Infol, Info2, Info3

Are variables (not pointers) that are used by the
VTScada code to determine which addresses can be
coalesced into a larger read block. These parameters
are also passed to the VTSRead and VTSWrite sub-
routines. Any values that are not required should be
set to "0" (i.e. they must be a valid value). These values
are typically set to such things as file type or data area.
Any differences between the values of the three Info
parameters and those of another Address will prevent
those addresses from being coalesced (i.e. grouped
into the same read request).

Note that Infol must be a number: a string value will
not work. If your code sets Info1l to a string value, the
SetData module in VTSDrvr.WEB will not work cor-
rectly, and client computers will not display the results

of the driver server computer's read commands. For
example, an analog input that is drawn on the screen
will always have invalid contents if the Info parameters
are set to strings rather than a number.

DataType

A pointer to a value that holds the data type preferred
for the specified address. This data type may be left
invalid if the VTSRead and VTSWrite subroutines ignore
it. If left invalid the default data type will be 2 (16-bit
unsigned integer). This value will be overridden by the
explicit data type specified as an appended string to
the address. The DataType is what is passed to the
VTSRead and VTSWrite subroutines from VTSGetAddr.
The appended data type (refer to the table in the
Address parameter section above) specifies how the
data is to be interpreted after it is read from the I/O
device if this is to be different from the DataType
returned by VTSGetAddr. The VTSRead and VTSWrite
modules do not see the value of the appended data
type string.

VTSWrite must increment one of two mandatory internal variables each

time it is called. Either "Counts" if the write was successful or

"ErrorCounts” otherwise.

The code for VTSWrite might look like:

<

VTSWrite

(
TriggerParm{ Will do read on positive edge };
Array{ Array to put the result into };
N{ The number of values to read };
MemAddress{ Address to read };
BitNum{ Bit to read bE
Infol{ Infol - not used };
Info2{ Info2 - not used };
Info3{ Info3 - not used };
DataType{ Data type used for read - uses standard types };

)

[

{ Trigger is PUBLIC and is referenced by VvTSDriver }
Trigger= 1{ TRUE when initial trigger set };
Error = 0;

Counts = 0;
ErrorCounts = 0;
StartTime { Request start time };
ElapsedTime { Request elapsed time };
Tries =0 { Number of attempts on modem };
wWriteActive = 0 { TRUE when the write has been triggered };
]
Main [

If Trigger || TriggerParm;
[

{ Process the data according to the protocol }

{ Reset the triggers }
ResetParm(self(), 1);
Trigger = 0;

]

VTSMaxBlock

VTSMaxBlock determines the maximum block size that is coalesced into
a VTScada read or write. This can be either a subroutine or a variable.
« If the maximum block size is a constant, regardless of the data type or

address, then VTSMaxBlock can be declared as a variable and set to a
numeric value.

« If supplied as a subroutine then, based on the address and data type inform-
ation, this module should return the maximum amount of data that can be
handled in a single read or write. It is your job to write this subroutine as part
of your driver, using the following format:

Format:
VTSMaxBlock(Info1, Info2, Info3, DataType);
Parameters:

Infol, Info2, Info3

are pointers to values that are used by the
VTScada code to determine which addresses can
be coalesced into a larger read block. These
parameters are also passed to the VTSRead and
VTSWrite subroutines. Valid values must be sup-
plied for all three, therefore any values that are

not required should be set to "0".

These values are typically set to such things as
file type or data area. Any differences between
the values of the three Info parameters and
those of another Address will prevent those
addresses from being coalesced into the same
read request.

Note: The value of Infol must be numeric. If
your code sets Infol to a string value, the
SetData module in VTSDrvr.WEB will not work
correctly and client computers will not display
the results of the read commands.

DataType

A pointer to a value that holds the data type preferred
for the specified address. This data type may be left
invalid if the VTSRead and VTSWrite subroutines ignore
it. If left invalid the default data type will be 2 (16-bit
unsigned integer). This value will be overridden by the
explicit data type specified as an appended string to
the address. The DataType is what is passed to the
VTSRead and VTSWrite subroutines from VTSGetAddr.
The appended data type (refer to the table in the
Address parameter section above) specifies how the
data is to be interpreted after it is read from the /O
device if this is to be different from the DataType
returned by VTSGetAddr. The VTSRead and VTSWrite
modules do not see the value of the appended data
type string.

Communication Driver Template

A sample communication driver is displayed in part here. Code that is
useful only for the particular hardware this driver was designed to com-
municate with is not included. This particular driver was designed to be
read-only. It does not contain a VISWrite module. The tag’s con-
figuration and common modules are not shown here.

The driver starts with standard tag definitions:

{ ks
(
Name <:TagField("SQL_VARCHAR(64)", '"Name"):>;
Area <:TagField("SQL_VARCHAR(255)", "Area"):>;
Description <:TagField("SQL_VARCHAR(255)", "Description"):>;
RespTimeout <:TagField("SQL_VARCHAR(255)", "RespTimeout"):>;
SitelD <:TagField("SQL_VARCHAR(255)", "SiteID"):>;
UTCoffset <:TagField("SQL_VARCHAR(255)", "uTcoffset"):>;
HelpKey <:TagField("SQL_VARCHAR(255)", "Helpkey"):>;
StoreOutputs <:TagField("SQL_VARCHAR(255)"):>
{ when TRUE permits storing of output values };
AutoRewrite <:TagField("SQL_VARCHAR(255)"):>
{ when TRUE permits the automatic Rewriting of oOutputs };
)
[{variables}
version control Information }
{ v 0.0.01 - original issue - 9 December, 2008 }
{ b
Constant Driverversion = "0.10.0 6 January, 2009";
Constant DrawLabel = "USGSDriver";
Constant #Name = 0;
Constant #Area = 1;
Constant #Description = 2;
Constant #ResponseTimeOut = 3;

In the variable declaration modules and error constants are also defined:

{ Module Numbers }

constant #VTSGetAddr = 0;
Constant #VTSRead = 1;
{ Error Constants }

Constant #NOError = 0;
constant #ConnectionError =1;

As well as the required modules and variables (plus a few extra shown
here):

{##*%* Required for all VTScada drivers #*#*¥%*}
DriverNamelLabel = "DemoDriver";

Driver { The generic driver module instance };
Ready { Indicates to VTScada driver the module is
ready };
RPCService { Name of the RPC service for this tag };
value { Driver status ;
{ Modules }

ShowComm Module "DemoShowComm.SRC" { Show communication };
ShowStats Module "DemoShowStats.SRC" { Show comm statistics };
VTSMaxBlock Module { Returns Maximum record size };
VTSRead Module { The Read module };
VTSGetAddr Module { Subroutine to parse address };
Refresh Module { Refresh module };
ErrMessage Module { Converts error codes to test strings };
ReportTraffic Module { Translator for the traffic monitor };
SetStats Module { Updates driver statistics };
TransmitReceiveData Module { Transmit/Receive Module };
ProcessReturnedbata Module { Processes ret data into arrays };
SiteTime_2_UTCTS Module { Converts Site time to VTScada time };
HistPoll Module { Sets the history poll values };
ReadLineStatus Module { Reads a 1line and returns status };
CheckcommsLossErr Module { Checks the comms fail errors };

{ variables }

Root { Root object value };
Driverobj { object value of driver };
CommPortobj { Communication port tag object };
ErrorMessages { Array of Error Messages };
counts =0 { # of successful transactions };
TimeStamp { Time of last successful transaction };
Error = 0 { Global Error code };
Errorcounts = 0 { # of errors since starting };
consecErrcount = 0 { Consecutive time out error counts };
ErrorMemAddr { Memory address of last error };
ErrorTime { Time of last error };
LastError { Error code for last error };
Shared Message[100] { List of error messages };
CommDisplay { Object communications display module };
ErrorModule { Module number generating error };
ErrorDate { Date of Tast unsuccessful com attempt};
Errorowner { Object value of module Tast error };
dt { Time since last transaction };
DateStamp { Date of last successful comm. };

LastURL { Last URL generated };
ResponseTO { Response Time Out variable };
DataFilePath { Path for data file to write/read };
Status { status of file directory creation };

Finally, the standard groups memberships are defined:

{ Parameter Constants }

[(GROUPS)

Shared Numeric;

Shared Drivers { This is a driver point };

]

[(GRAPHICS)
Shared commIndicator;

Shared CommStatistics;
Shared CommMessages;
Shared RewriteoutputsBtn; { Used if implementing Rewrite Outputs }

]

[(PLUGINS)
Shared cConfigFolder
Shared Common

]

The module opens with an initialization state:

"DemoDriverconfig";
"DemoDrivercommon" ;

DemoDriverInit [

If \Networkvalues\Started waitServer;
[
{ Set the RPC service for this instance depending on the }
{ configuration parameter }
RPCService = Pickvalid(\UsGSSharedrRPC, 0) ? "usGSDriver" : Name;
{ Return object value }
Root = Self();
DriverObj = Root;
Refresh();

IfThen(!valid(Message[#NoError]);
{ Set up of driver statistics display labels }
CountsLabel = Pickvalid(\CountsLabel, "Counts");
{ .. etc .. }

{ Driver internal errors }
Message[#NoOError] = "No Error";
{ .. etc .. }

) { IfThen };

{ Register with the network values service }
\Networkvalues\Register(self(), Name);

]
]

Rather than one main state, the driver has three: Wait, Client and Server.
Most of the time it will be in the Wait state, waiting to send or receive
data.

wait [
{ If this PC is a data server for this PLC, }
{ go to the Server state }
If Pickvalid(briver\Started, 1) &&
Pickvalid(*(Driver\RPCStatus), \#RPCServer { Server }) ==
\#RPCServer Server;
{ 1f this PC is a client for this PLC, go to the Client state }
If Pickvalid(Driver\Started, 1) &&
*(Driver\RPCStatus) == \#RPCClient Client;

Server [
{ If no longer server go to wait state }
If *(Driver\RPCStatus) != \#RPCServer wait;
{ Get object values in steady state }
CommPo r‘tObj = USGSTCPIPPoOrt;

Ready = 1;
{ Reset if there is a switch from a server to a client }
If *(Driver\RPCStatus) != \#RPCServer Wwait;
]
Client [
{ Get object values in steady state }
Ready = 1;
If Pickvalid(*(Driver\RPCStatus),\#RPCServer) != \#RPCClient wait;
]

The last tag-specific part of the driver is the Refresh module. If imple-
menting Auto-Rewrites, include code to ensure that the StoreOutputs
value is always true if AutoRewrite is true.

<
{ Refresh 3
{ Refresh subroutine. }
{ h
Refresh
(
Parm { Array parameters prior to their change }
)
Refresh [
If watch(l);
[
RPCService = Name { Set RPCService };
uTcoffset = Pickvalid(cast(uTcoffset, 2) , Timezone(0));
ResponseTO = Pickvalid(ResponseTimeout, 10);
StoreOutputs Pickvalid(Cast(Storeoutputs, \#vTypeShort), 0);

AutoRewrite Pickvalid(Cast(AutoRewrite, \#VTypeShort), 0);
{ Sort the parms, when AutoRewrite is true, StoreOutputs must be true

IfThen(AutoRewrite && !StoreOutputs,
StoreOutputs = 1;

);

IfThen(!Storeoutputs &&
Pickvalid(*(Driver\RPCStatus) == \#RPCServer, 0),
Driver\ResetoutputDict();

);

Return(0);
]

]
{ Refresh }
>

Refresh is followed by the standard modules of a communication driver:
VTSGetAddr, VTSMaxBlock, VTSRead and VTSWrite. In the following
examples, any code that is not general in purpose has been removed.

<
{ USGSDriver\VTSGetAddr }
{ }
{ 3
VTSGetAddr
(
Address { Raw address specified by point parameters};
RetAddress { Returned address };
BitNum { Pointer to bit number variable to set };
TableName { Table name };
Info2 { };
Info3 { };
DType { Pointer to data type to return };
Read { TRUE if a READ address, otherwise write };
Rate { Rate for read coalescing };
)
[
NRead { Number of values not read };
SiteNumber { station Number Field };
ParameterField { Parameter Field };
AddressError { set on error };
]
Main [
If watch(1);
[
AddressError = 0;
{ Need an valid non-null value address }
IfElse(valid(Address) && StrLen(Address) > 0;
{ Set to incoming address -
{ sends array of addresses to VTSRead }
*RetAddress = Address;
*AddressError = 1;
); { IfElse }
{ Return error }
Return(AddressError) ;
]
]
{ End of VTSGetAddr }
>
<
{ vTsMaxBlock 3
{ Returns the Maximum size for block reads and writes. In 1
{ example, vTSMaxBlock will simply return a constant. }
{ ks
VTSMaxBlock
(
Infol { Not used };
Info2 { Not used };
Info3 { Not used };

DType { Pointer to data type };

)

[

constant #vTSMaxBlock = 100;
]

VvTSMaxBlock [
Return(#vTSMaxBlock) ;

]
{ vrsmaxBlock }
>

Here comes the VTSRead module. Again - only the most general purpose
of statements have been included.

<

{ USGSDriver\VTSRead }

{ This module performs the I/O reads. }

{ ks

VTSRead

(
Trigger { will do read on positive edge };
Array { Array to put the result into };
N { The number of values to read };
MemAddr { Field Name Parameter };
BitNum { Pointer to bit number variable (not used)};
Infol { Site Number to read };
Info2 { };
Info3 { };
DType { Data type };
RefreshcContext { Where to call the Refreshbata() module };

)

[
Name = "VTSRead" { Module name for stats };
LocErr { Local Error };
counts =0 { # of successful transactions };
TimeStamp { Time of last successful transaction };
Error =0 { Global Error code };
ErrorCounts = 0 { # of errors since starting };
ErrorMemAddr { Memory address of last error };
ErrorTime { Time of last error };
LastError { Error code for last error };
ModNumber { Module number for VTScada read };
SiteData { Data array to pass to refresh context};
SiteTimeStamp { Timestamp array to pass to refresh context};

]

Init [
If 1 VvTSwaitTrigger;
[

Return(self);

]

]

VTSwaitTrigger [

If Trigger GetSiteData;

ResetParm(self(), 1) { Reset the trigger };
LocErr = Invalid(Q);

SiteData = New(N);

SiteTimeStamp = New(N);

{ Type of poll - default to data since last poll }
Poll1Type = Pickvalid(HistPollType, #HistPollSinceLast);

]
]

GetSiteData [
LOoCErr = TransmitReceiveData(SiteID, MemAddr, StartDateTsS,

EndDateTS) ;
If |LocErr ProcessData;
[
LocErr = Invalid(Q);
]

If LocErr SetStats;
]

ProcessbData [
LocErr = ProcessReturnedbata(&SiteData, &SiteTimeStamp,
LastTSRead) ;
If |LocErr SetStats;

{ Send the new data and timestamps }
RefreshContext\RefreshbData(SiteTimeStamp, SiteData);
{ Update the network variable }
LastReadingTS = Max(Pickvalid(LastReadingTS, 0), LastTSRead);
]
If LocErr SetStats;

]

SetStats [
If 1 vTSwaitTrigger;

[
SetStats(Error = LocErr, Self(), ModNumber, 0, 0)

{ set driver stats };
IfElse(LoCErr;
++Errorcounts;
{ Else no error }
++Counts { Increment counts };
) { IfElse };
]
]
{ USGSDriver\VTSRead }
>

If implementing automatic rewrites of saved data, you must have Check-
CommsLossErr() module similar to the following. The specific error
codes will depend on your driver - those used in the example are for the
Allen Bradley driver only.

<
{ ABDriver\CheckCommsLoSSErr }
{ h
CheckCcommsLosSErr
(
Errorval;
)
Main [
If 1;
[
{#*%%% Comms Loss errors noted for the AB driver #*¥*#**%}
IfThen(Errorval == 4 |]
Errorval == 32 || Errorval == 48 |
Errorval == 64 || Errorval == 0x200 ||
Errorval == 0x202 || Errorval == 0x213 ||
(Errorval >= 0x300 && Errorval <= 0x309),
Return(l);
E
Return(0);
]
]
{ End of ABDriver\CheckCommsLoSssErr }
>

In the code for your driver's configuration panel, if you are implementing
output rewrites, you must also provide a check box for AutoRewrite and
StoreQutputs. Include the following code to ensure that if AutoRewrite is
true, StoreOutputs can't be false:

If watch(0, Parms[\#Storeoutputs]);

IfThen(!Parms[\#Storeoutputs],
{ Ensures 1if Storeoutputs is false then AutoRewrite can't be true }
Parms [\#AutoRewrite] = 0;
5
]

If watch(0, Parms[\#AutoRewrite]);

IfThen(Parms [\#AutoRewrite],
{ Ensures if AutoRewrite is true then Storeoutputs can't be false }
Parms [\#Storeoutputs] = 1;
DE
]

The VTSDriver API

The VTSDriver module is supplied with VTScada. It includes the generic
driver interface for VTScada and is used in combination with each

device-specific communication driver.

Several of the functions in VTSDriver are called directly from I/0 tags.
For example, AddRead is called by an input or status tag to request that
data be sent from the driver. AddRead will call VTSRead in the device-spe-
cific communication driver to do the actual work according to the par-
ticular device’s requirements.

Note that you cannot call VTSDriver\PollAll() directly after calling
AddReads(). AddReads takes a non-zero time to start, but PollAll syn-
chronously triggers all current reads. The solution is to wait for
VTSDriver\RefreshReady to become TRUE after calling AddRead.
VTSDriver\RefreshReady is FALSE when read modules are being changed
(in flux), and TRUE once they have stabilized on their new state. AddRead
and DelRead set it FALSE, and it is then set TRUE again once the Read
modules are up and running.

Started A flag to let you know that RPC is ready.

RPCSta-Provides the client/server state.

tus

AddRe-A subroutine called by I/O tags to request a read from the com-
ad munication driver. Does not force a read to occur immediately.
Parameters:

Address

The address from which to get the data.
N

The number of elements to get
Value

Either a pointer to the destination for the
data or an object value if VTSDriver will call
Value\NewData when data changes.

Rate

The data update period, measured in
seconds.

NewD- Typically called from within an I/O tag when RefreshData is called and

ata before the data is returned. NewData will only be called when there is

new data available - including invalids.
Parameters:

DelRead

Read

Write

AddWrite

PollAll

CoalesceRPC

Related Information:

Address

From the original AddRead
Time

Stampln seconds, UTC
Data

The new data - either a single value or an
array of values.

Attribute

Data attributes. Single value or array, match-
ing Data.

A module that must be called when the address changes.

A module that performs a one-shot read, the data from
which will be sent only to the calling server.

The main subroutine used to request a write to the com-
munication driver.

Obsolete. Was once used to request a write to the com-
munication driver.

Forces all pending reads to occur immediately. This sub-
routine, which includes feedback, is especially useful with
radio links where reads must occur when the link is estab-
lished.

Obsolete. Do not use in new code. Remove from
code being upgraded to the current version of
VTScada.

...VTSDriver and Remote Applications
Related Functions:

...VTSGetAddr

...VTSRead

...VTSWrite

...VTSMaxBlock

VTSDriver and Remote Applications

If you are running a remote application, you should be aware of the fol-
lowing details:
e The subroutines VTSRead and Write will not run on client workstations.

« |/O addresses that are configured only on a client workstation will not be
read. They must be committed to the server before they will be used.

« Data blocks are synchronized on startup.

« Switching can occur on RecommendAlternate in order to provide for soft
fail-overs.

« Drivers sharing the same serial port must be in the same RPC service. The
RPCService variable sets the service name for a driver instance.

Driver Diagnostic tools

The VTScada driver module contains a traffic monitor API, ReportTraffic,
allowing the driver communications stream to be viewed or logged by
viewer applications. The interface is accessed through the TMObj variable
within the scope of the "Driver" Object value. Traffic must be manually
reported by the driver tag using:
Format: Driver\TMObj\ReportTraffic(PortName, Direction, TrafficData);
Parameters:

PortName

This should be set to a text string identifying the port
tag used by the driver.

Direction

Specifies the direction of the traffic (0 = Receive, 1 =
Transmit).

Traffic

Data Text string used to display the actual contents of
the communications data. This string will be displayed
as is and should be formatted into a legible string
before being passed to the ReportTraffic Module.
The "Active" flag located within the scope of TMObj indicates whether any
listener applications are monitoring the driver. ReportTraffic should only
be executed if the "Active" flag is set.

IfThen(Driver\TMObj\Active,
Driver\TMObj\ReportTraffic(ExternalPort\Name, Direction, Data);
DI

Related Information:
...Statistics Logging
...Error Checking

...Debugging and Testing Communications Drivers

Statistics Logging

The VTScada driver module contains an API that is used to log statistics
regarding the status of the communications driver. The SaveCommStats
subroutine is located in the scope of the "Driver" variable. The com-
munications driver is responsible for calling this subroutine whenever a
successful or a failed communications attempt has been detected. In
other words, anytime the error value of the driver is set.
Format:
Driver\SaveCommStats(ErrorValueParm, ErrorAddressParm, ErrorAfter-
RetryParm, ResponseTimeParm, CommStatsCallerInfoParm);
Parameters:

ErrorValueParm

This parameter should be set to the current numerical
error value of the communications driver. A value of 0

indicates success.
ErrorAddressParm

This should be set to the memory address which
caused the error to occur.

ErrorAfterRetryParm

This is a flag indicating whether or not the error, or the
success, occurred on a retry. A value of 1 indicates
this was a retry attempt, a value of 0 indicates this was
the initial attempt.

ResponseTimeParm

Expressed in seconds, this parameter specifies the
amount of time it took the /0 device to receive a com-
mand, process it, and send a response. This should
only be valid if the ErrorValueParm is 0, meaning a suc-
cessful communication.

CommStatsCallerlnfoParm

An optional parameters allowing the 1/O driver to pass
a string which can be displayed in a real time Statistics
viewer. This value is not logged, and will fault to the
module name of the SaveCommStats caller.
The ResponseTime is defined as the time it took the I/O device to
receiver a command, process it, and return a response. The 1/O driver is
responsible for calculating the response time. It should be calculated
using the following formula:

ResponseTime = EndTime - StartTime - XmitTime - RcvTime

Where XmitTime is the time it took to transmit any data and RcvTime is
the time it took to receive the data based on the number of bytes sent,
the baud rate, parity, stop bits, whether there is an echo expected and
whether RTS key delays are used. It is the responsibility of the com-
munications driver to calculate the ResponseTime.

Communications driver (driver tag) statistics variables are automatically
synchronized between clients and servers of the 1/0 Driver service by the

VTScada driver module. The communications driver is not responsible
for this task.

Rules for Writing a Communications Driver

« Communication drivers are tags and must follow the rules for such.

o For communication driver tags, a variable named "Driver" must be present.
This variable must not be set in the module. The VTScada loader sets it
before the module starts.

« Communication driver tags must include a variable named "Ready".

The driver tag code must set this to true when the driver tag is ready to
be used.
This variable must not be set to true before:

« The variable Root is set to some object value (usually Self())

o The variable RPCService is set.

« Before Driver\Started becomes true.

« Before Driver\RPCStatus is 2 (server) or 1 (client)

This could be summarized by:

Ready = valid(Root) && Valid(RPCService) && Driver\Started && (Driver-
\RPCStatus == 2 || Driver\RPCStatus == 1)

If the driver tag being developed has other constraints they must also be
added.

« For tags that do I/O using a communication driver, the driver tag passed in
as a parameter must first be converted to an object value.
This object value must be used to launch a copy of any read requests
required. This is done with the script code like:

If watch(l, IODevice, Address, ScanRate) &&
(valueType(I0Device) == 4 { Text } ||
valid(zobevice\Driver) { Driver has started });

IfThen (valueType(IODevice) == 4 { Text string },
{ Convert text driver name to the object value of }
{ that driver }
IoDevice = Scope(\Code, IODevice)
)

{ Ssave a copy of the driver instance for next change }
Driver = IODevice\Driver;

{ Delete any previous read requests }
Driver\DelRead(&Rawvalue) ;
{ Start new request for the data }
Driver\AddrRead (Address,
1 { # of Elements/Bytes },
&Rawvalue,
ScanRate) ;

]

The Address and ScanRate are typically parameters to the tag template
module. The Driver variable must be defined in the module.
« Writes to the I/O Device are done by executing a call to the Write module in
the driver within a script. The code might look like:
Driver\Write(Address, Length { # of elements/bytes }, Data);
o A Value variable is common for most tags. For drivers, this value is an error

code where 0 indicates no error. Value should be set to the Error from
VTSRead/VTSWrite, and must be set on the current primary 1/O server.
« All driver tag points must have a variable called Drivers with a class of
GROUPS. (not to be confused with "Driver" in point 1).
This should also be a shared variable to conserve RAM. This makes the
tag a part of the Drivers group and is necessary to permit the tag to
show up in driver tag selection lists and to allow it to set its "Driver" vari-
able before the tags use it.
« Any driver tag that should share the same RPC service for all instances,

should define a constant named "RPCService" with the default value being the
name of the service.

This name should typically be the name of the driver tag. This will force
all instances of the driver tag to share the same server. It will dra-
matically improve the startup performance of systems that have a large
number of instances of the same driver tag type, such as SCADA systems
with a large number of RTU’s.

An alternative option is possible if the RPCService variable does not have
a default value. The driver tag may elect to set this variable based upon
some run-time condition (such as a configuration file setting). If the vari-
able exists, it must be set prior to the Driver\Started variable being set

in the VTSDriver code.

« If the driver tag uses a serial port, it is a good idea to flush the input buffer
before any data is sent. The mechanism that VTScada uses to add and delete
read/write commands is such that a read or write that is in progress could be
removed from the "queue" in the middle of processing. This means that it is
possible that a read or write command could send its data but then be
removed from the communications loop before the response comes back.
The next read or write command would then pick up the data, if the serial
buffer was not emptied. (Refer to the function, SerRcv, for one mechanism to
empty the input buffer).

« Do not create a separate module to serve as a low level driver
« Don’t declare the variables that are added by diagnostics.

« Add the driver tag to the groups: Trenders, Loggers and Numeric, Drivers.
Related Information:
..Driver Module Instance Object Value
..Error Checking
..Maintaining Statistics
...Common Driver Widgets

..Debugging and Testing Communications Drivers

Driver Module Instance Object Value

The object value of a driver module instance can be used to provide
information about how that particular driver is running. This is done by
accessing the public variables described in the following table.

Counts The number of successful communications since starting. Counts is a Long
variable.

ErrorCounts | The number of errors encountered since starting. ErrorCounts is a Long
variable.

SilentEr- Used only on reads and only by drivers that can have managed sessions or
rorCounts poll for exception, unsolicited data, etc. Indicates that the read could not
happen, but this is not necessarily an error. Used to suppress VTSDriver

from changing the driver's Value parameter.

| — e

Error The error code number of the current communication attempt. Error is

EEEEEEEEEE———————————————————————————————
reset to "0" when the error clears. Error codes follow:

Error Description

0 No error

1 Not executable in RUN mode

2 Not executable in MONITOR mode

3 Not executable with PROM mounted
4 Address over (data overflow)

B Not executable in PROGRAM mode
C Not executable with PROM mounted
D Not executable in LOCAL mode

10 Parity error

11 Framing error

12 Overrun

13 FCS error (checksum)

14 Format error (parameter length error)
15 Entry number data error (parameter error, data

code error, data length error)

16 Instruction not found
18 Frame length error
19 Not executable (due to unexecutable error clear,

non-registration of 1/0 table, etc.)

20 I/0 table generation impossible (unrecognized
Remote |/O unit, word over, duplication of
Optical Transmitting I/O unit)

80 Incomplete response to WRITE
81 Bad serial port parameters

82 Serial port already used

83 FCS error (checksum)

84 No response from PLC (timed-out)

e

[255]

85 Wrong PLC station address responded
86 TYPE parameter out-of-range
87 Garbled/incomplete message
A0 Aborted due to parity error in transmit data
Al Aborted due to framing error in transmit data
A2 Aborted due to overrun in transmit data
A4 Aborted due to format error in transmit data
A5 Aborted due to entry number data error in trans-
mit data
A8 Aborted due to frame length error in transmit
data
BO Not executable because the program area is not
16K
LastError The error code number of the last error encountered by any com-
munications attempt. LastError is not reset to zero when the error clears.
TimeStamp | The time (in seconds) of the last successful communication since mid-
night. TimeStamp is a floating-point variable.
DateStamp | The date of the last successful communication since January 1, 1970.
DateStamp is a long variable.
ErrorTime The time of the last error encountered in any communication attempt in
seconds since midnight. ErrorTime is a floating-point variable.
ErrorDate The date of the last error encountered in any communication attempt in
days since January 1, 1970. ErrorDate is a Long variable.
ErrorOwner | An object variable that holds the object value of the read or write statement
that encountered the most recent error.
SCounts An array of Counts values, one for each Omron PLC.
[255]
SDateStamp | An array of DateStamp values, one for each Omron PLC.
[255]
SError[255] | An array of Error values, one for each Omron PLC.
SErrorCount | An array of ErrorCounts values, one for each Omron PLC.

SErrorDate An array of ErrorDate values, one for each Omron PLC.
[255]

SErrorTime | An array of ErrorTime values, one for each Omron PLC.
[255]

STimeStamp | An array of TimeStamp values, one for each Omron PLC.
[255]

Version A text variable that is set to the version number of the driver when the
driver is started.

For example, if the object value of the driver module was assigned to an
object variable called, "Driver" then to display any errors generated by
any reads or writes using this driver, use an expression similar to the fol-
lowing example:

Output(0,0,1,0,0, Driver\Error,15,0,0,0,0) { Show the current error
code }

Error Checking

Error checking is an important part of the programming process, as are
the testing and debugging processes. There are many possible error situ-
ations that must be considered. Error statistics should be examined, and
errors recovered from, if possible.

Communication failures are an important issue. They may occur as a res-
ult of human error (such as an unplugged cable) or hardware error (such
as a power failure or noise in the communication channel). A com-
munication link may not occur on the first attempt, but if the problem is
something like distortion in the channel, perhaps after a few retries, a
connection may be established. On the other hand, if the problem is a dis-
connected cable, no number retries will fix the problem. In cases like
this, the error should be reported so that the operator can fix it.

When reliable communications are being used, it will be necessary to
wait for some type of acknowledgment from the receiver to ensure the
message sent was received. In RS-232 serial communications, an echo of
data that was received may be sent back, or in Ethernet communications,
an acknowledgment (ACK) or a negative acknowledgment (NACK) packet

may be sent to indicate whether or not the packet was received. Similarly,
when receiving a packet, it may be necessary to let the transmitter know
a message has been received.

The protocol for the packet may use built-in error checking, such as a
checksum. If this is the case, the validity of the message can be verified
upon receipt, and the message discarded if an error occurred on the com-
munication channel distorting the data.

Another potential issue exists if the driver uses a serial port. The mech-
anism that VTScada uses to add and delete read/write commands is such
that a read or write that is in progress could be removed from the queue
in the middle of processing. This means that it is possible that a read or
write command could send its data, but then be removed from the com-
munications loop before the response is received. The next read or write
command would then pick up the data if the serial buffer was not emp-
tied. Therefore, it is a good idea to flush the input buffer before any data
is sent.

Maintaining Statistics

VTScada communication drivers keep at least the following statistics:

LastError The error code number of the last error encountered by a
communications attempt. Unlike the Value variable, LastEr-
ror is not reset to zero when the error clears.

TimeStamp The time of the last successful communication, measured
in the number of seconds since midnight.

DateStamp The date of the last successful communication measured
in days since January 1, 1970.

ErrorTime The time the last error occurred, measured in seconds
since midnight.

ErrorDate The date of the last error, measured in days since January
1, 1970.
ErrorOwner An object variable that holds the object value of the read

or write statement that encountered the most recent error.

SCounts, Are arrays of 255 elements, with one element for each pos-
SDateStamp, sible driver instance. The elements contained in the array
SError, correspond to the name of the array.

SErrorCounts,

SErrorDate,

SErrorTime,

STimeStamp

Version A text variable that is set to the version number of the
driver when the driver is started.

In addition to the statistics that the driver maintains, the VTSRead mod-
ule maintains statistics for each read attempt that is returned to the
VTSDriver module (in VTSDrvr.web). The three statistics that must be
returned when VTSRead is finished are:
« Counts: The number of successful communications since the driver started.
« ErrorCounts: The number of errors since the driver started.

o Error: The error code number of the current communication attempt. Error is
set to zero when the error clears.

Common Driver Widgets

In order for operators with little or no programming knowledge to see if
problems may be occurring with a driver, and acquire some insight into
what the problems are, graphics are required for VTScada com-
munication drivers. These graphics can be drawn anywhere on the pages
of the VTScada application.

The ShowStats, ShowComm, Commlindicator, SetStats, and ErrorMsg mod-
ules are used for graphical display. ShowStats, ShowComm, and Com-
mlndicator are actual graphics modules, while SetStats and ErrorMsg are
support modules that provide the statistics and error messages that are
displayed. All of these modules can be customized to suit each individual
type of 1/0 device. For example, additional statistics and information can
be included in the ShowStats and ShowComm windows; however, the
standard displays are generally sufficient.

The ShowStats and ShowComm graphics are buttons labeled with
whatever text labels the user specifies, or the defaults: "Show Stats" and
"Show Comm". The Commlindicator is a box whose color indicates the
status of the communications. The normal color and error color may be
chosen when the box is drawn. These buttons can be drawn anywhere on
the screen in the VTScada application. All three graphic objects are
described in: Drawing Tags).

Debugging and Testing Communications Drivers

There are several tools that may be used for debugging and testing a
communication driver, including snooping software, the VTScada Source
Debugger (see "Source Debugger"), and simulators. These tools are
described briefly here.

Snooping Software

One useful tool for debugging is serial port or TCP/IP port snooping soft-
ware, such as Stream Team or Ethereal. This software enables the pro-
grammer to view all traffic across the computer's serial or TCP/IP port.
The programmer may then verify if the information being sent and
received meets expectations.

VTScada Source Debugger

VTScada comes with a Source Debugger that is very useful in debugging
VTScada code. It enables programmers to watch variables for value
changes, insert breakpoints, and view module content and code. Inform-
ation on the VTScada Source Debugger is provided in "Source Debugger".

/O Device Simulators

Sometimes the actual 1/0 device hardware is not available to test with the
communication software. On such occasions, it is helpful to write a sim-

ulator to emulate the 1/0 device with which communication is desired. A

script application written to use the 1/0 device's protocol and imitate the
I/O device's actions can be run in VTScada at the same time as the driver

tag. This enables testing of the communication driver without having the
I/O device prior to installation on site.

Add a New Driver to Your Application

I/O drivers are supplied as separate items in script applications. The
drivers for VTScada script applications are delivered as a series of .src
files that contain the source code for each driver (see Communication
Driver Template for details on driver source files). To use an I/O driver in
your script application, you must perform the following steps:
1. Copy the source file (with the .src extension) containing your driver into your
application's directory.

2. Modify the application's AppRoot.src file by adding a line of text in the
POINTS section similar to the following, where "AmazingDrive" is a fictional
device driver:

[(POINTS) { Modules that are point templates
AmazingDrive Module "AmazeDrv.src" { driver for all existent
PLCS};
]

3. Declare the Config and Common modules in the Plugins section of the
AppRoot.src file as follows:

[(PLUGINS) {===== Modules added to other base system modules =====}
AmazecConfig Module "AmazecCnf.src" { Config };
AmazeCommon Module "AmazeCmn.src" { Common };

]

4. Recompile your application by clicking the Compile button in the VAM.
The driver will now be available for use in the application's tag browser.

Cryptography in VTS

This section provides architectural, programming, and other information
on the implementation and use of cryptography in VTScada. It is aimed at
both VTScada programmers and advanced engineers performing system
configuration, and assumes knowledge of cryptography concepts.

Related Information:

...Cryptography Terms and Abbreviations
...Cryptography Architecture
...Cryptographic Service Providers
...Cryptographic Keys

...Data Encryption and Decryption
...Cryptography Example

Related Functions:

Decrypt DeriveKey Encrypt
ExportKey GetCryptoProvider GenerateKey
GetKeyParam ImportKey SetKeyParam

Cryptography Terms and Abbreviations

BLOB A generic sequence of bits that contain one or more
fixed-length header structures plus context-specific data.

Ciphertext A message that has been encrypted.

CryptoAPI An application programming interface that provides ser-
vices that enable application developers to add cryp-
tography-based security to applications.

Cryptographic key The session (symmetric) key used during the encryption
and decryption processes, and the public and private keys
used during the authentication process. Of these three

Cryptography

CSP Cryptographic
Service Provider

Decryption

Encryption

Key BLOB

Key container

Plaintext

Public/private key
pair

Public-key
algorithm

keys, the session key and private key must always remain
secret.

The art and science of information security. It includes
information confidentiality, data integrity, entity authen-
tication, and data origin authentication.

An independent software module that actually performs
cryptography algorithms for authentication, encoding,
and encryption.

The process in which ciphertext is converted to plaintext.

The process in which data (plaintext) is translated into
something that appears to be random and meaningless
(ciphertext). Ciphertext is difficult to unscramble without
a secret key.

BLOB containing an encrypted private key. Key BLOBs
provide a way to store keys outside the CSP.

A part of the key database that contains all the key pairs
(exchange and signature key pairs) belonging to a specific
user.

Each container has a unique name that is used when call-
ing GetCryptoProvider to get a handle to the container.

A message that is not encrypted. Plaintext messages are
also referred to as cleartext messages.

A set of cryptographic keys used for public-key cryp-
tography.

An asymmetric cipher that uses two keys, one for encryp-
tion, the public key, and the other for decryption, the
private key.

As implied by the key names, the public key used to
encode plaintext can be made available to anyone.
However, the private key must remain secret. Only the
private key can decrypt the ciphertext.

The public-key algorithm used in this process is slow (on

Session key

Symmetric encryp-
tion

Symmetric key

Block cipher

Stream cipher

Initialization
vector (IV)

the order of 1,000 times slower than symmetric
algorithms), and is typically used to encrypt session keys
or digitally sign a message.

A key used primarily for data encryption and decryption.
Session keys are typically used with symmetric encryption
algorithms where the same key is used for both encryp-
tion and decryption. For this reason, session and sym-
metric keys usually refer to the same type of key.

A session key consists of a random number of approx-
imately 40 to 2000 bits.

Encryption that uses a single key for both encryption and
decryption. Symmetric encryption is preferred when
encrypting large amounts of data. Some of the more com-
mon symmetric encryption algorithms are RC2, RC4, and
Data Encryption Standard (DES).

A single key, typically a session key, used for both encryp-
tion and decryption.

A cipher algorithm that encrypts data in discrete units
(called blocks), rather than as a continuous stream of bits.
The most common block size is 64 bits. For example, DES
is a block cipher.

Block ciphers are considered more secure than stream
ciphers; however, block ciphers tend to execute much
slower.

A cipher that serially encrypts data, one bit at a time.

A sequence of random bytes appended to the front of the
plaintext before encryption by a block cipher. Adding the
initialization vector to the beginning of the plaintext
avoids the chance of having the initial ciphertext block
the same for any two messages.

For example, if messages always start with a common
header (a letterhead or "From" line) their initial ciphertext
would always be the same, assuming that the same cryp-

tographic algorithm and symmetric key was used. Adding
a random initialization vector keeps this from happening.

Related Information:

...Cryptography Terms and Abbreviations
...Cryptography Architecture
...Cryptographic Service Providers
...Cryptographic Keys

...Data Encryption and Decryption
...Cryptography Example

Related Functions:

Decrypt DeriveKey Encrypt
ExportKey GetCryptoProvider GenerateKey
GetKeyParam ImportKey SetKeyParam

Cryptography Architecture

VTScada supports cryptography by means of the Microsoft CryptoAPI (fur-
ther details on the CryptoAPlI may be found with MSDN).

At present VTScada only provides access to a limited portion of the
CryptoAPI, but this is sufficient to generate keys to encrypt and decrypt
data.

Application developers can use the VTScada cryptography functions
without knowing details of the underlying implementation, in much the
same way as they can use a graphics library without knowing anything
about the particular graphics hardware configuration. The MS CryptoAPI
works with a number of cryptographic service providers (CSP) that per-
form the actual cryptographic functions.

Data encryption transforms a message written in plain text (called "plain-
text" in the cryptography community) so that it appears as random gib-
berish. A good data encryption system makes it difficult to transform

encrypted data back to plaintext without a secret key. The data to be
encrypted can be ASCII text, a database file, or any other data you want
to store or transmit securely. In this documentation, the term "message”
is used to refer to any piece of data; "plaintext" refers to data that has
not been encrypted; and, "ciphertext" refers to data that has been encryp-
ted.

Encrypted data can be stored on non-secure media or transmitted over a
non-secure network and still remain private. Later, the data can be
decrypted into its original form.

Data encryption and decryption are simple processes. When data is
encrypted, an encryption key is used. This key is comparable to a phys-
ical key that is used to lock a padlock. To decrypt the data, a decryption
key is be used. The decryption key is comparable to using a key to unlock
a padlock. Encryption and decryption are often done using the same key,
but unlike working with physical keys, sometimes encryption and decryp-
tion can use different keys from a public/private key pair.

Encryption keys must be kept secret and safe, and must be transmitted
securely to other users. This is discussed further in Data Encryption and
Decryption. The main challenge is properly restricting access to the
decryption key because anyone who possesses it will be able to decrypt
all messages that were encrypted with its corresponding encryption key.

Related Information:
...Cryptographic Service Providers
...Cryptographic Keys
...Cryptography Example

Cryptographic Service Providers

The first CryptoAPI function called by an application that uses any cryp-
tographic APIs is the GetCryptoProvider function. This function returns a
handle to a particular cryptographic service provider (CSP) that includes

the specification of a particular key container within the CSP. This key
container is either a specifically requested key container or it is the
default key container for the logged-on user. GetCryptoProvider can also
create a new key container.

A cryptographic service provider (CSP) has both a name and a type. For
example, the name of one of the CSPs shipped with the operating system
is Microsoft Base Cryptographic Provider. It is a PROV_RSA_FULL type pro-
vider. The name of each provider is unique; the provider type is not.
When an application calls GetCryptoProvider to obtain a CSP handle, it
specifies a provider type and, optionally, a provider name. If both a type
and a name are specified, the function loads the CSP with the matching
provider type and provider name. The function returns the CSP's handle
that provides access to both the CSP and to a key container within the
CSP.

When an application calls GetCryptoProvider and specifies a provider
type but no provider name, the function looks for a named provider, first
checking a list of default named providers associated with the logged-on
user and, if that fails, from a list of default named providers associated
with the computer. After the provider name has been determined, the
GetCryptoProvider function searches for the CSP for that provider, loads
it, and returns its handle.

Related Information:
...Cryptography Example
Related Functions:

... GetCryptoProvider

Cryptographic Keys

Cryptographic keys are central to cryptographic operations. They must
be kept secret because whoever possesses a given key has access to any

data with which the key is associated. For example, if a key is used to
encrypt a file, anyone with a copy of that key can decrypt the file.

There are two types of cryptographic keys: Session Keys and Public/Priv-
ate Key Pairs.

Session Keys

Session keys, also called symmetric keys, are used with symmetric encryp-
tion algorithms. Symmetric algorithms are the most common type of
encryption algorithm. They are called symmetric because they use the
same key for both encryption and decryption. Session keys are often
changed, usually using a different session key for each message encryp-
ted.

Symmetric algorithms are faster than public-key algorithms. Thus, they
are preferred when encrypting large amounts of data. Some of the more
common symmetric algorithms are RC2, RC4, and the Data Encryption
Standard (DES).

Session keys are created by applications using the GenerateKey function.
Since a good deal of the activity involving session keys relates to keeping
them secret, it is important to keep the number of people who possess a
particular session key as small as possible (one or two people is recom-
mended.) These keys are kept internal to the CSP for safekeeping.

Unlike public/private key pairs, session keys are volatile. Applications
can save these keys for later use or for transmission to other users by
using the ExportKey function to export them from the CSP into applic-
ation space in the form of an encrypted "key BLOB". The key BLOB may
then be imported by another application using the ImportKey function.

Public/Private Key Pairs

Public/private key pairs are used for a more secure method of encryption
called asymmetric encryption. Asymmetric encryption is used mainly to
encrypt and decrypt session keys and digital signatures. Asymmetric
encryption uses public-key encryption algorithms.

Public-key algorithms use two different keys: a public key and a private
key. The private key member of the pair must be kept private and secure.
The public key, however, can be distributed to anyone who requests it.
When one key of a key pair is used to encrypt a message, the other key
from that pair is required to decrypt the message. Thus if user A's public
key is used to encrypt data, only user A (or someone who has access to
user A's private key) can decrypt the data. If user A's private key is used
to encrypt a piece of data, only user A's public key will decrypt the data,
thus indicating that user A (or someone with access to user A's private
key) did the encryption.

Unfortunately, public-key algorithms are very slow, — roughly 1,000
times slower than symmetric algorithms. It is impractical to use them to
encrypt large amounts of data. In practice, public-key algorithms are
used to encrypt session keys. Symmetric algorithms are used for encryp-
tion/decryption of most data.

All keys in CryptoAPI are stored within CSPs. CSPs are also responsible
for creating the keys, destroying them, and using them to perform a vari-
ety of cryptographic operations.

Related Information:

...Storage and Exchange of Cryptographic Keys

Storage and Exchange of Cryptographic Keys

There are situations where keys must be exported from the secure envir-
onment of the cryptographic service provider (CSP) into an application's
data space. Keys that have been exported are stored in encrypted key
BLOB structures.
There are two specific situations where it is necessary to export keys:
« To save a session key for later use by an application, if, for example, an
application has just encrypted a database file to be decrypted at a later time.
The application is responsible for storing the encryption key. This is neces-
sary because CSPs do not preserve symmetric keys from session to session.
« To send a key to someone else. This would be easier if the respective CSPs
could communicate directly, but they cannot. Because CSPs can't

communicate, the key has to be exported from one CSP, transmitted to the
destination application, and then imported into the destination CSP. This pro-
cess can become more complicated if the communication path is not trus-
ted.

Data Encryption and Decryption

Encryption is the process of translating plain text data (plaintext) into
something that appears to be random and meaningless (ciphertext).
Decryption is the process of converting ciphertext back to plaintext.

To encrypt more than a small amount of data, symmetric encryption is
used. The symmetric key or session key is used during both the encryp-
tion and decryption processes. To decrypt a particular piece of cipher-
text, the key that was used to encrypt the data must be used. Essentially,
a session key consists of a random number, from 40 to 2,000 bits in
length. The longer the key, the more difficult it is to decrypt a piece of
ciphertext without possessing the key.

The goal of every encryption algorithm is to make it as difficult as pos-
sible to decrypt the generated ciphertext without using the key. If a really
good encryption algorithm is used, there is no technique significantly bet-
ter than methodically trying every possible key. Even a key size of just 40
bits works out to just over one trillion possible keys.

It is difficult to determine the quality of an encryption algorithm.
Algorithms that look promising sometimes turn out to be very easy to
break, given the proper attack. When selecting an encryption algorithm,
it is often a good idea to choose one that has been around for a while,
and has successfully resisted all attacks.

Data is encrypted using the Encrypt function and decrypted using the
Decrypt function. If the data is too big to fit into memory, and can be pro-
cessed using multiple calls to Encrypt and Decrypt.

Related Information:

...Cryptography Example

Related Functions:
... Encrypt
... Decrypt

Cryptography Example

A handle to a cryptographic service provider (CSP) is obtained using the
GetCryptoProvider function. This returns a variable that contains a small
wrapper for the CSP handle. The wrapper is necessary to ensure the CSP
handle is correctly released when it is no longer referenced.

Calling the GenerateKey function creates a variable that contains a
handle to a key. The variable may be copied which generates a duplicate
of the key.

Properties of the key may be read and set using the GetKeyParam and
SetKeyParam functions respectively.

To transfer secret session keys, the ExportKey and ImportKey functions
are used.

Data is encrypted and decrypted using the Encrypt and Decrypt functions.
Example:

[
{ variables and Constants for CSP }
CSP;
CSPFail;
Cconstant CRYPT_EXPORTABLE = 0x00000001;
Container = "VTS";
Constant PROV_DSS_DH = 13;
Constant CRYPT_NEWKEYSET = §;
Constant NTE_BAD_KEYSET = 0x80090016;
{ Items for key generation }
Keyl;
Key?2;
Cconstant CALG_DH_EPHEM = 0xAA02;
Constant KEY_SIZE = 512;
Constant CRYPT_PREGEN = 0x00000040;
{ Items for key parameter set }
Constant KP_PERMISSIONS = 6;
{ Items for key parameter get/set }
KeyP;
KeyG;
constant KP_P

Constant KP_G

11 { pss/Diffie-Hellman P value };
12 { pss/Diffie-Hellman G value };

Constant KP_Q 13 { DSS Q value };
constant KP_X 14 { Diffie-Hellman X value };
constant KP_Y 15 { Y value };

{ Items for export/import }

Pubkeyl;

PubKkey?2;

Constant PUBLICKEYBLOB = 0x6;
Key3;

Key4;

{ Algorithm conversion }
constant KP_ALGID = 7;

Constant CALG_RC4 = 0x6801;

{ variables for encryption / decryption }
PlainTextl = "abcdefghijkImnopgrstuvwxyz0123456789";
CipherTextl;

PlainText2;

]
Init [
If 1 Main;

{ Get the CSP }

CSP = GetCryptoProvider(PROV_DSS_DH, Invalid, Container,
Invalid, CSPFail);

IfThen(CSPFai] == NTE_BAD_KEYSET,

{ Not used this container before, make a new one }

CSP = GetCryptoProvider (PROV_DSS_DH, Invalid, Container,

CRYPT_NEWKEYSET, CSPFail);

)

{ mMake a key }
Keyl = GenerateKey(CSP, CALG_DH_EPHEM, KEY_SIZE << 16 || CRYPT_
EXPORTABLE) ;

{ Get the key parameters }
KeyG GetKeyParam(Keyl, KP_G);
KeyP = GetKeyParam(Keyl, KP_P);

{ Make another key using the parameters }

Key2 = GenerateKey(CSP, CALG_DH_EPHEM, (KEY_SIZE << 16) ||
CRYPT_PREGEN) ;

SetKeyParam(Key2, KP_G, KeyG);

SetKeyParam(Key2, KP_P, KeyP);

SetKeyParam(Key2, KP_X);

{ Export the public keys from both keys, and import to each
other }

PubKeyl ExportkKey(Keyl, PUBLICKEYBLOB) ;

PubKey?2 ExportKey(Key2, PUBLICKEYBLOB);

Key3 = ImportKey(CSP, PUBLICKEYBLOB, PubKeyl, Key2);

Key4 = ImportKey(CSP, PUBLICKEYBLOB, PubKey2, Keyl);

{ Now convert the shared secret key to the bulk encryption key

SetKeyParam(Key3, KP_ALGID, CALG_RC4);
SetKeyParam(Key4, KP_ALGID, CALG_RC4);

{ Now use the keys to encrypt and decrypt some data }

]

CipherTextl = Encrypt(Key3, PlainTextl, 1, 0, 0);
PlainText2 = Decrypt(Key4, CipherTextl, 1, 0, 0);

The sample code demonstrates instantiating a CSP, generating two pub-

lic / private key pairs, exporting the public parts of the keys, importing

the public keys to create two new keys that have a shared secret, con-

verting the resulting keys to a symmetric key and encrypting and decrypt-

ing data. For the sake of clarity, error handling is not shown.
Some points to note are:

Many parameters to the Cryptography functions and statements are con-
stants that are defined in WinCrypt. The functions and statements do not
interpret these values, but pass them directly to the CryptoAPI. This enables
all the current and any new features of the CryptoAPI to be used without hav-
ing to modify engine code if the parameters were directly interpreted.

The GetCryptoProvider function returns a value that represents a handle to
the required CSP.

As the CSP isn't named, the actual CSP returned will depend on the OS and
version of Internet Explorer. For this reason it's recommended that key sizes
and other variable parameters are explicitly set.

GenerateKey is a function that returns a value holds a handle to the gen-
erated Key.

GetKeyParam and SetKeyParam are used to read and write to parameters of a
Key.

The public part of Key1 is exported to a text variable that is returned by
ExportKey, which is then imported into Key2 producing Key3 using
ImportKey. A similar operation is performed to produce Key4. Key3 and
Key4 now contain a shared secret.

The keys containing the shared secret are converted to a symmetric key
using SetKeyParam.

Encrypt returns a text string that is the ciphertext of the plaintext string
passed as a parameter. Decrypt returns a text string that is the plaintext of
the ciphertext string passed as a parameter.

A variable containing a CSP handle has a type of 36 and if printed will display
the textual name of the CSP.

« Avariable containing a Key handle has a type of 37 and if printed will display
the hexadecimal value of the algorithm ID of the key.

Related Information:

...Cryptography Terms and Abbreviations

...Cryptography Architecture

...Cryptographic Service Providers

...Cryptographic Keys

...Data Encryption and Decryption

Related Functions:
Decrypt DeriveKey Encrypt
ExportKey GetCryptoProvider GenerateKey

GetKeyParam ImportKey SetKeyParam

Custom Tag Types

The cornerstone of every VTScada application is a group of components
called "tags" (sometimes referred to as "points"). These represent the vari-
ous equipment processes that make up your system, and enable you to
create a chain of communications from VTScada to your physical equip-
ment. A typical application based on the VTScada layer will include a set
of tag types, with which you can create as many tag instances as your
license allows.
You can extend VTScada's feature set by creating new kinds of tag. Some
examples include:
« Atag that collects data from several inputs, generating a combined value.
« Adriver tag for a new I/ O device.
« A controller that starts each motor in a group several seconds apart, thereby
avoiding load spikes.
There are three ways to create new types of tag:
« Create a Context type, adding properties and child tags that fully describe a
machine, a site, an object or process.
« Write a new type entirely from scratch using the information within this
chapter.
« Do both of the above, starting with a Context tag to define the fundamental
structure, then extending its source code to add completely new features.
It is rare for anyone to write a new type entirely from scratch. If a Con-
text-based structure does not fulfill the need, then it makes an excellent
starting point for further development using custom code.
This chapter focuses only on standard tags. If your intent is to create a
Communication Driver, you should first learn the material here before
attempting to extend the tag with the features required for a driver.

Note: Every tag has three names: "Shortname" is the name of just that
tag, alone. "Name" is the full name including all parents in the hier-
archy. "UniquelD" is the guaranteed unique identifier, belonging to that
one tag instance alone.

For any purpose that requires a lasting connection to a tag, such as

alarm state & history, network values, communication with other
machines, you should always use the unique ID rather than the name.
TagObj.UniquelD (or just UniquelD from within a tag module) can be
used to get the UniquelD for a tag.

Guide to This Chapter

The first topics of this chapter introduce the most basic possible tag
structure. Enhancements such as data logging, alarms, etc. will be
described and added to the sample code individually.

At the end of each main topic, a list of rules is provided. These will sum-
marize the information presented in that topic and may be used as a
checklist when creating your tags.

The topics are as follows:

« Tag Basics

o Module structure including parameters, required and common variables.
« Standard submodule declarations.

« State code for tags.

« The Refresh module.

« Tag Configuration Folders

« Declaring the module.

« State code for configuration modules.

« How to switch tabs.

« How to display the data input fields.

« Adding expression support for parameters.

« Drawing Tags

« Selecting the VTScada widgets that will be available to your tag.

« Creating your own widgets.

« Detecting run mode versus edit mode and responding accordingly.

« Creating a properties dialog panel for configuring your drawing object.

« Indicating questionable and manual data.

« Responding to user actions

« The Common module.

« Display a tool tip.

« Display a right-click context menu.

« Display a trend window.

« Linking to driver1/0

« Reading from an I/O driver.

« Writing to an 1/O driver.

« Logging tag data

« Configuring so that a logger can be attached.

« Build logging into your tag.

o Alarms

« Configuring so that an alarm tag can be attached.
« Build alarm features into your tag.

« Containers and Contributors

« Contribute information from your tag to a container.

« Collect information from contributors.

Terms for Tag Types

The following terms and abbreviations are used throughout this chapter.

Tag Tem- | A module that defines the structure of a tag. An example of a typical tag mod-
plate Mod-{ ule is "Analoglnput". The tag module has formal parameters that correspond
ule one-for-one with the fields in the tag properties database.

Tag For the purposes of this section, a tag is defined as a named instance of a Tag
Template Module. For example, an instance of the Digitallnput template is a
digital input tag.

Another definition to describe a tag is, "A software component that can com-
municate with objects in the outside world. A tag can be used to accept input
or generate output.

Database |The Database module is at the highest scope in a VTScada application, and is

the location where all instances of the tags for the application are defined.

Library

The Library module is the location in a VTScada application where most of the
modules and non-tag related variables are defined. The Library module is at
the scope level just under the Database module. This module's instance goes
by the name of "\VTSDB" when referenced within a VTScada application.

Point An older term for what is now called a "tag".

Tag Prop- | Also referred to as a "tag configuration folder" or a "config folder". A dialog
erties with a series of tabs, each of which contains a set of tag properties of a spe-
Folder cific category and is appropriately labeled according to the property fields it

contains (e.g. the ID tab contains properties that identify the tag.) The tag
properties folder is a convenient tool that enables users to enter data into the
Tag Properties Database.

Tag Template Modules

Tag template modules contain the code that defines the tag types avail-

able to your application. Tag template modules define not only what data
types are available, but also how those data types can be displayed, their

logic, their control actions, their alarm behavior, and all other char-

acteristics native to tags of that tag type.

The modules for a tag template will typically be stored in three separate

files. This makes it easier to maintain and update the tag's code and

makes it easier to find the various parts of the complete tag template. In

the following example "Cnf" (appended to the tag name) indicates "Con-

figuration modules" and "Cmn" indicates "Common modules"

TagMame.src

TagNameCnf.src TaghNameCmn.src

L

[Rpe— S =

A LN v LN o

The tag's structure and
the code that makes it

work.

Displays the tag's
configuration folder and
displays & accepts
configuration information

Displays and provides

the functionality for the

tag's right-click menu.

Every tag drawing method

will call this module for the
associated tag type in response
to a right-click.

All of the custom tags that you add to an application must be declared in
the [POINTS] class of the application’s AppRoot.SRC file. The con-
figuration module and common module may be submodules in the tag's
source file, but it is better to keep them as separate files and declare
these in the [PLUGINS] class of AppRoot.SRC.

The Basic Tag - TagName.SRC

A tag is built using VTScada module! and state? code, just like any other
piece of VTScada code. If you are not familiar with the VTScada language,
please study the chapter, The VTScada API, before continuing in this
chapter.

Like all modules, the tag template will include:

A parameter section

Declaration of variables and submodules used by the tag template module.

An initialization state, where start-up tasks are performed and the tag's

Refresh module is launched.

The tag's main state.

Related information that you may need:
...Tag Configuration Parameters

...The Tag Variables Section

...Rules for Tag Variables, Constants and Modules

1A collection of states, scripts, variables, parameters, comments and pos-
sibly other modules, all of which make up a VTS program. Modules are
separate tasks that run simultaneously in an application. Behind every
page is a module and behind every tag on that page is an instance of
another module (usually with submodules controlling separate tasks).

2A collection of statements, grouped together within square brackets

and given a name. A state is the part of the module that performs a task.
Modules can have many states, but only one may be active at a time.

Tag Configuration Parameters

A tag template module must be configured with a set of formal para-
meters that will correspond one-for-one to the fields of a table in the
tag properties database. Each tag module begins by defining the tag's
parameters, within round parenthesis. For example, the Analog Status
tag begins as follows:

{ AnalogStatus
3
(
Name <:TagField("SQL_VARCHAR(255)", "Name", 0):>
{ Point Name
iE
Area <:TagField("SQL_VARCHAR(255)", "Area", 1):>
{ Point area
i
Description <:TagField("SQL_VARCHAR(255)", "Description", 2):>
{ Point Description
i

Many more parameters follow those shown here.

For each parameter, a parameter constant definition must also be
assigned. This will be discussed in The Tag Variables Section.

The first three parameters, Name, Area and Description are mandatory
and must be as shown in this example. The parameter, Name, must be
the first parameter in the list. The others may be entered in either order,
but it is recommended that the standard order of Name, Area and
Description be maintained.

You may define more parameters as needed, using the following format:

DeviceTag <:TagField("SQL_VARCHAR(255)", "I/O Device Name", 3, FALSE
{ Encrypt }, "SitePoint", "IODeviceLabel"):>

where
"DeviceTag" is a parameter definition.
<: > is the MetaData operator (This marks the mandatory Tag Para-
meter Metadata section)
TagField is a structure with the following data:
« The SQL data type in the database. The data type should match a list of stand-
ard names (see list in the following topic). The configuration settings contain
a block translating the standard data type names to the actual data type

Note

names used by your ODBC compliant database program. This field is man-
datory.

Note that the data type can be defaulted to SQL_VARCHAR(255). This type
must be used for the 'Name' parameter. All other fields can use SQL_
VARCHAR(255) or SQL_LONGVARCHAR. SQL_LONGVARCHAR is preferred
since all other fields can be expressions

The name of the field to be created in the database. This is required only if
the field name will differ from the parameter name. If not provided, then the
field name in the database will be the same as the parameter definition.

The column number of the field if required for a legacy application. This para-
meter is only required if the application is to be used in versions of VTS prior
to 8.0. Defaults to the first unused index number, starting from 0.

(Optional) A Boolean that if TRUE, specifies that any value stored in this para-
meter should be encrypted.

(Optional) Avatar. If the parameter resolves to an object, this names the vari-
able where that object is stored.

In practice, this is used only in I/O tags for the I/O device parameter, and
then only if that type will be used to trigger alarms. In this specific case, the
avatar should be set to "SitePoint".

(Optional) Moniker. Label for the Avatar parameter, used for the graphical
user interface. Typically, "IODevicelLabel", when the avatar is "SitePoint".

that Field Names may have spaces, but Parameter Names cannot.

You may also assign a default value for any parameter by adding " =

SomeValue" after the closing angle bracket. For example, the declar-

ations for the Analog Status tag's Unscaled Max and the Units para-
meters are declared as follows:
UnscaledMax <:TagField("SQL_DOUBLE", "Unscaled Max", 7):> =
4095;
units <:TagField("SQL_VARCHAR(50)", "Units", 10):> =
Il%ll;
In some cases, the default value should be a particular type of parent tag

or a defined VTScada tag. For example:

Devi

ceTag <:TagField("SQL_VARCHAR(255)", "I/0 Device Name", 3,

FALSE, "SitePoint", "IODeviceLabel"):> = "*Driver";
HistorianName <:TagField("SQL_VARCHAR(255)"):> = #SYSTEM_HISTORIAN

Related information that you may need:

...SQL Data Types for Tag Parameters

...Adding New Parameters to Existing Tags
...Example - The Analog Status Tag's Parameters

...Rules for Tag Variables, Constants and Modules
SQL Data Types for Tag Parameters

In practice, only a few SQL data types are used. The most common are:
SQL_VARCHAR(255) - for most text. In this example, 255 characters are
being allocated. Must be used for the Name parameter. May be used for
all other parameters, although SQL_LONGVARCHAR is preferred.
SQL_LONGVARCHAR - Preferred for all fields other than Name, since this
allows space for expressions.
The full list of available SQL data types. Note that SQL_LONGVARCHAR is
preferred in all cases except the Name parameter.

e SQL_BIT

o SQL_TINYINT

o SQL_BIGINT

« SQL_LONGVARBINARY

o SQL_VARBINARY

o SQL_BINARY

o SQL_LONGVARCHAR

o« SQL_UNKNOWN_TYPE

o SQL_CHAR

e SQL_NUMERIC

o SQL_DECIMAL

e SQL_INTEGER

e SQL_SMALLINT

o SQL_FLOAT

o SQL_REAL

o SQL_DOUBLE

« SQL_DATE

« SQL_TIME
o SQL_TIMESTAMP
« SQL_VARCHAR

Adding New Parameters to Existing Tags

You may add a new parameter to an existing tag by adding it to the end
of the parameters section. Upon compiling the application and creating
instances of the tag type, the new field will be added to the database.
Note that, to use the new parameter you must also assign a parameter
constant definition, as described in The Tag Variables Section.

Rules for Parameters
Summarizing the information in the preceding topics:

o The names of the first three parameters for all tag template modules must

always be: "Name," "Area," and "Description".

« An unlimited number of tag parameters may be defined. It should be noted

that child tags have a 256 parameter limit.

« Do not use the period character (.) in the names of any of the fields in the
table corresponding to your tag type template (in the tag properties data-
base). Periods are converted to a number hatch, and will prevent data from
being written to the database.

« Do not use SQL reserved words as parameter names.
Encrypted Parameters

You may designate that the value of a parameter, as stored in the tag
file, shall be encrypted. This does not encrypt the parameter in any
VTScada user interface element. The purpose is to block unauthorized
inquiries on the part of persons who do not have access to the applic-
ation, but do have access to your server.

Encrypted parameters can only be defined for your custom tags. They are
not used in any VTScada tag. Note that encryption is not applied ret-
roactively if you modify your tag template file. Only tags created after the
encryption flag has been set will have encrypted parameters.

In the parameter definition, the encryption flag is set as a Boolean in the
TagField definition. In the following example, the parameter, "lllegible,"
is set to be encrypted:

(
Name <:TagField("SQL_VARCHAR(255)"):>;
Area <:TagField("SQL_LONGVARCHAR") :>;
Description <:TagField("SQL_LONGVARCHAR") :>;
ITlegible <:TagField("SQL_LONGVARCHAR", "", Invalid, TRUE):>;
HelpKey <:TagField("SQL_LONGVARCHAR") :>;
)

Within VTS, the value of "lllegible" will be completely visible. But, in the
tag file, the it will not. For example, the value, "The quick brown fox...,"
will be stored as ":07V2;j¢ xE)(Tut".
The three parameters following the data type are:
« " -the name to create in the database. Blank as this does not differ from the
first field.
« The column number of the field. Invalid as this is not required.
« The Boolean designating that any value stored in this parameter should be
encrypted.

Example - The Analog Status Tag's Parameters

As an example, the complete list of parameters for the Analog Status tag
is provided. If your tags will include similar parameters, it is recom-
mended that you use similar names and SQL data types. Note the lack of
column numbers for parameters added since the release of VTS 8.0.

Since older applications will not have these parameters, the column num-
ber was not required for backward compatibility.

(
Name <:TagField("SQL_VARCHAR(255)", "Name", 0):>
{ Point Name };
Area <:TagField("SQL_VARCHAR(255)", "Area", 1
):i>
{ Point area };
Description <:TagField("SQL_VARCHAR(255)", "Description™, 2
):i>
{ Point Description };
DeviceTag <:TagField("SQL_VARCHAR(255)", "I/O Device Name",

3 , FALSE { Encrypt }, "IODevice" IODevicelLabel"):> = "*Driver"
{ Ssite Point driver };
Address <:TagField("SQL_VARCHAR(255)", "Address", 4

):i>
{ Address for this input };

ScanRate <:TagField("SQL_DOUBLE", "Scan Rate",
)i> =1
{ Rate at which to scan (fastscan only) };
Unscaled™min <:TagField("SQL_DOUBLE", "Unscaled Min",
):i> =0
{ Minimum Unscaling counts };
Unscaledmax <:TagField("SQL_DOUBLE", "uUnscaled Max",
):> = 4095
{ Maximum Unscaling counts };
ScaledMin <:TagField("SQL_DOUBLE", "Scaled Min",
):i>=0
{ Minimum scaling value };
Scaledmax <:TagField("SQL_DOUBLE", "Scaled max",
):> = 100
{ Maximum scaling value };
Units <:TagField("SQL_VARCHAR(50)", "units",
10):> = "%"
{ Engineering units };
AlarmLo <:TagField("SQL_LONGVARCHAR", "Alarm Lo",
11):> =0
{ Low Alarm Setpoint };
AlarmHi <:TagField(""SQL_LONGVARCHAR", "Alarm Hi",
12):> = 100
{ High Alarm Setpoint };
PriorityLo <:TagField("SQL_DOUBLE", "Priority Lo",
13):>
{ Low Alarm priority };
PriorityHi <:TagField("SQL_DOUBLE", "Priority Hi",
14) :>
{ High Alarm priority };
InhibitLo <:TagF1' eld("SQL_LONGVARCHAR", "Inhibit Lo",
15):> =1
{ Sset to inhibit the Tow alarm };
InhibitHi <:TagF1' eld("SQL_LONGVARCHAR", "Inhibit Hi",
16):> =1
{ Set to inhibit the High alarm };
AlarmSound <:TagField("SQL_VARCHAR(255)", "Sound",
17) :>
{ Name of a .wAv file to play when alarm set };
Manhualvalue <:TagField("SQL_VARCHAR(255)", "Manual value",
18) :>
{ Manual value for Point };
Threshold <:TagField("SQL_DOUBLE", "Deadband",
19):>
{ Deadband value for logging changes };
Questionable <:TagField("SQL_DOUBLE", "Questionable Data",
200:> =1
{ Set to true when data is questionable };
Quality <:TagField("SQL_VARCHAR(255)", "Data Quality",
21) :>
{ Point/value to determine quality of this point };
Displayorder <:TagField("SQL_DOUBLE", "Displayorder",
22):> =0

{ order to Display this point };
HelpKey <:TagField("SQL_VARCHAR(255)", "Help Key",

23):>
{ Index into help system };

PopupLo <:TagField("SQL_DOUBLE", "Popup Lo"
):i> =0
{ Set to enable a popup for the Tow alarm };
PopupHi <:TagField("SQL_DOUBLE", "Popup Hi"
):i>=0

{ set to enable a popup for the high alarm };
AlarmLoDeadband <:TagField("SQL_LONGVARCHAR"
)i>=0

{ Deadband for Lo Alarm };
AlarmHiDeadband <:TagField("SQL_LONGVARCHAR"

):i>=0
{ Deadband for Hi Alarm };
AlarmLoDelay <:TagField("SQL_LONGVARCHAR"
):i> =0
{ Delay for Lo Alarm };
AlarmHiDelay <:TagField("SQL_LONGVARCHAR"
):i>=0
{ Delay for Hi Alarm };
AlarmLoRearmTime <:TagField("SQL_LONGVARCHAR", "Lo Rearm Time"
):> = 3600

{ Time in seconds before acked alarm rearms };
AlarmHiRearmTime <:TagField("SQL_LONGVARCHAR", "High Rearm Time"
):> = 3600

{ Time in seconds before acked alarm rearms };
AlarmLoRearmEnable <:TagField("SQL_DOUBLE", "Lo Rearm Enable"
):i>=0

{ Flag, TRUE if acked alarms to be rearmed };
AlarmHiRearmEnable <:TagField("SQL_DOUBLE", "High Rearm Enable"
):i> =0

{ Flag, TRUE if acked alarms to be rearmed };
HistorianName <:TagField("SQL_VARCHAR(255)"
):> = #SYSTEM_HISTORIAN

{ Historian Tag name };
Enableoutput <:TagField("SQL_BIT"):> =0

{ Set to enable data to be written to the IODevice as well as
read from the IO0. };

SecurityBit <:TagField(""SQL_VARCHAR(255)", "Security Bit",
s { The bit number in the security manager which enables control.
}éty1ﬁTag <:TagField("SQL_VARCHAR(255)"):> = "*Style Set-
t1ng? Style settings for drawing methods};

EnableLogging <:TagField("SQL_LONGVARCHAR"):> = TRUE

{ Enables logging, default is TRUE, can be a constant, tag value
or expression };

RangeMin <:TagField("SQL_DOUBLE"):>
{ Minimum range value };
RangeMax <:TagField("SQL_DOUBLE"):>

{ Maximum range value };

)

The Tag Variables Section

The tag variables section follows the parameters and is enclosed in
square brackets [].
This section declares (and in some cases, initializes) local variables, con-
stants, and modules related to the tag. The following is a list of some of
the items that may be found here:

« Required variables, such as Root and Value

« Other local variables such as RawValue, RawTS, DisplayAddress, and
SitePoint

« Module declarations such as Refresh, NewData and Alarms

« Plugin declarations such as the ConfigFolder and Common modules

« Graphics declarations for VTScada widgets that will be available to this tag.
« Group membership declarations such as "Numeric" and "Loggers".

« Constant declarations including parameter constant definitions, HelpID val-
ues, and NumTagFiles.
These items will be described in later topics of this chapter.

Related information that you may need:

...Rules for Tag Variables, Constants and Modules
...Required Variables

...Constant Definitions

...Other Constants

...Submodule Declarations
Required Variables

If instances of your tag are to have value, whether for use in widgets or
logging, there must be a variable named "Value". The class type (indic-
ating the data type) of Value must also be declared. Note that this is a
type declaration, not a value initialization.

{ variables }

value (5) { Scaled value for this point. };
]

The possible classes for Value are:
o Class 1 - Bit
« Class 2 - Unsigned byte
o Class 3 - 16-bitinteger
o Class 4 - 32-bit integer
« Class 5 - Double precision floating point
« Class 6 - Text

Note: The value of this variable must be set in a script, not in steady-
state.

If the tag template module provides for a manual value or an external
value then care must be taken to use that value whenever it is set. An
example of code showing a manual value being used can be seen in the
topic, The Refresh Module.

Another variable that must be part of every tag template is "Root". Root
will be used to identify the individual instances of the module. This is
required to allow the parameter editing tools to access the parameters of
the tag. It is not assigned a class type.

{ variables }

value (5) { Sscaled value for this point. };
Root { Set to individual instance of this module
iE
]

Optional Variables

In addition to the required variables, there are several others that will be
found in many tags. These include the Raw Value as read from 1/0, a
local object value for the 1/0 device driver, etc.

Of note is "DisplayAddress". If present, the Tag Browser is able to display
the tag's configured I/O address. Since new types of tags have added to
VTScada over many years, there is some variation in the name used for
the I/O address field. By creating a variable with the name, Dis-
playAddress, and ensuring that it is always holds the current value of the
I/0 address, from whatever parameter stores that value for your tag, you

can ensure that instances of your tag type display their 1/O address in the
Tag Browser.

As an example, a partial list of variables from the Analog Status tag is
provided:

{ variables }

RawvValue { Data value read from the IO
}’RawTS { UTC Timestamp from NewbData

’Va1ue (5 { Scaled value for this point.
}’SitePoint { Oobject value of DeviceTag
}’01dsitePoint { Previous value of SitePoint
}’Sty1e { Object value of the StyleSettings tag
};Started =0 { Let drawing methods know that Value has been
restored. };

DisplayAddress { Address for display in the Tag Browser
}’Qua1ityIssue { TRUE if there is a data quality issue

The SitePoint variable is required only if an Avatar property was defined
in the DeviceTag parameter. If so, then in the Main state of the tag, this
property must be set to the object value of the device:

SitePoint = Scope(Root, DeviceTag);

More variables will be required for local calculations, logging, built-in
alarms, and other purposes.

Constant Definitions

A numbered constant must be assigned for each of the declared para-
meters. These will be in the same order that the parameters were
declared. For example, some of the parameter constants for the Analog
Status tag are as follows:

{ Parameter constant definitions }

Constant #Name = 0;
Constant #Area = 1;
Constant #Description = 2;
constant #SitePoint = 3; { 1ink to the 1I/0 device }
constant #Address = 4; { the I/0 address }
Constant #ScanRate =5;
constant #UnscaledMin = 6;
Constant #UnscaledMax = 7;

Constant #ScaledMin = 8;
Constant #Scaledmax = 9;
Constant #Units = 10;
constant #AlarmLo = 11;
constant #AlarmHi = 12;

Other Constants

NumTagFiles: In addition to the constant definitions for the parameters,
you should also include one for NumTagFiles.

Constant NumTagFiles = 256;

This value determines the number of tag files that are used to store all of
the instances of this particular type. For example, the tag instances for
the Analog Status tag type are randomly distributed between 256 files.
There is a trade-off between application start-up performance (faster
with fewer tag files) and online tag editing performance (faster with
fewer tags per file, hence faster with more tag files). In general, you will
get good online-editing performance with up to 1000 tags/file. There-
fore, since NumTagFiles in the Analog Status tag is set at 256 files, an
application should have good online editing performance with up to
256,000 of these tags.

Note: After the first instance of a tag has been created, any and all
changes to NumTagFiles will be ignored.

The default if NumTagFiles is not defined for a tag, is 64. This will be
provide good performance for up to 64,000 instances of that tag type in
an application.

PriorityLoad: Tags may be given a constant named "PriorityLoad". Tags
that contain this constant, set to a value of 1, will be started before other
tag types.

PriorityReady: If a tag module has a PriorityLoad variable, it may option-
ally have a variable named PriorityReady as well. If PriorityReady is used,
the tag loading code will wait until its value is set TRUE (non-zero)
before starting any non-priority tag types.

Note: Use PriorityReady with caution. Failure to ensure that its value is
set TRUE will cause tag-loading to stop.

ContextType: Of particular note is the constant, ContextType. While not
required, this is extremely useful when your tag definition is used as part
of a parent-child tag structure. The context type declaration informs
child tags of what type this is. For example, Alarm tags will auto-
matically connect to the first *“Numeric parent, Analog Input tags look for
a parent of context type *Driver.

By specifying the context type of your tag, you make it possible to link
your tag to the parent-child hierarchy, automatically. If your tag does
not specify its ContextType explicitly, one will be created automatically,
using the name of the tag.

Child tags are told what ContextType to use for a parameter by providing
that value in the parameter definition. For example, in the Deadband
tag's parameter list, you will find the following parameter declaration:

Monitoredvalue <:TagField("SQL_LONGVARCHAR", "Monitoredvalue",
3):> = "*Numeric";

In the list of constants for an Analog Status, Calculation, Digital Input, or
other tag, you will find:

LAY
=

Constant ContextType = "*Numeric";

BuiltinAlarm: Include and set true if the tag browser is to inform
developers that this tag includes one or more built-in alarms.

Constant BuiltInAlarm = TRUE { Flag - TRUE if this tag has a built in
alarm };

Assigning Tag Groups

Tag groups are collections of tag types that share some logical rela-
tionship. One example of a tag group is the Drivers group, which lists all
of the I/O drivers in the system.

A tag may be a member of multiple tag groups. For example, the analog
input tag type belongs both to the Analogs group (as it has an analog
value), as well as to the Numeric group (as it has a numeric value).
Groups declaration of the Analog Input tag:

[(GROUPS)
Shared Numeric;
Shared Analogs;

Shared Trenders;

]

Groups declaration of the Context tag:

[(GROuPS)
Shared Container { We are a container tag };
1

One purpose of tag groups is to allow the PSelectObject module to dis-
play a drop-down list of all the tags that belong to a group, rather than
all of the tags of a particular tag type. Again, drivers are an excellent
example: the ConfigFolder module requires a list of all driver tags con-
figured for the application so that it can display them in the I/O device
drop-down list on the 1/0 tab for the end user to choose from.

1. Report Type
Standard Report ~
2. Tag List
Types
Load Group Trenders i
Analogs
o Containers
2dve raup Digitals
Tags Available: (5) Drivers
Inputs
Operator Notes LiftstationDrivers
oo T ————
Systern Alarm DB\Note:
System Event DB\Notes g;;i"'ti
Systern Notes Stations
Trenders b

Duplicate Tag Groups

You may create your own tag group module within an OEM layer, or
within an application directory. If doing so, be careful not to provide the
same name as an existing group module. If you do, then the tags belong-
ing to the existing group are merged with the tags belonging to the new
group, creating a combined list, rather than overwriting either list.

AppRoot.src GROUPS Section

To create a tag group, you must use the (GROUPS) section within the
application's AppRoot.src file (see AppRoot.src Root File for a Standard
Application). Any identified modules within this section will be searched

for any variables that are of class POINTS. These variable names are used
as the names of the tag modules to include in the group.

Additionally, the tag module itself can define a GROUPS class variable
that should be the name of the group in which this tag should be
included. If the group doesn't already exist, the VTScada code creates it
at load time. These variables should be declared as Shared to conserve
RAM (see "Shared Variables").

DrawLabel Variable

There should be a class 0 variable called "DrawLabel” in the tag group
module. The default value of this variable is used as the name of the vari-
able in the application's configuration that contains the text descriptor
for the group. This description is placed in the configuration variables so
it can easily be translated into different languages, or otherwise mod-
ified without requiring you to directly modify the application's code. If
the "DrawLabel" variable is not present, the tag group module's name is
used as its description. This description appears in the Tag Browser.

Submodule Declarations

Modules that the tag will use must be declared in the variables section.
This includes submodules of the tag and external modules that the tag
will call, such as the widgets, alarm methods, logging, etc. Two of par-
ticular note are "Refresh" and "Common" - modules that must be imple-
mented in every tag template.

The Refresh subroutine will be launched by the tag's initialization state
and will be called every time that the tag's data changes. The declaration
will appear as follows:

Refresh Module { called when point changes
}

Referring to the following diagram, you may expect to see declarations
for TagNameCmn and TagNameCnf. In the Analog Status tag, these are
declared in the [Plugins] class as follows:

[(PLUGINS)
Shared cConfigFolder = "AnalogStatuscConfig";

Shared Common = "AnalogStatusCommon";

]

(While it is common to declare these modules as Plugins, other tech-
niques are possible. In a smaller tag, it may make sense for these to be
submodules within the tag's source file.)

You might notice in this example, that the name "AnalogStatusConfig"
does not match "AnalogStatusCnf" and also that the source file for the
module is not provided. How then does the tag find the correct module?
The answer is that, in addition to the tag itself, both the Config and the
Common modules are declared in AppRoot.src. For your custom tags,
you will add the declarations to AppRoot.src in your application or OEM
layer. For example (taken from VTScada layer's AppRoot.src):

[(POINTS) {===== Modules which are point templates =====}
AnalogStatus Module "AnalogStatus.SRC";
1

[(PLUGINS)
AnalogStatuscConfig Module "AnalogStatusCnf.SRC";
AnalogStatusCommon Module "AnalogStatusCmn.SRC";

]

AppRoot.src

-
[(Points)
MyTag Module MyTag.src;
]

[(Plugins)
MyTagCommon Module MyTagCmn.src;
MyTagCanfig Module MyTagCnf.src;

]

L A

MyTag.src / MyTangn.src\ \MyTagCnf.src

Related Information:
The Refresh Module

Rules for Tag Variables, Constants and Modules

« Avariable named, "Value" is required for most tags. It is usually declared to
be of Class 1 through Class 6.

« Any tag template that has a value (such as an input tag) must name this vari-
able "Value". This variable must be set in a script. The setting of the value
might use code similar to that shown here, as taken from a digital input tag:

If watch(0, Bitl, Bit2) & & ! Externalvalue;
[

]

value = 2 * Bitl + BitO;

« The "ExternalValue" variable must be defined in a tag template module with a
default value of O for tags that have a value. The ExternalValue variable must
be used to prevent setting of the Value variable when true. This exists for spe-
cialized applications that might provide a value for the ExternalValue vari-
able.

« Avariable named, "Root" must be defined in the tag template module, and
must be set to the instance of the module. The following displays the correct
syntax.

Root = Self();

The Root variable enables access to the instance value of the tag by the tag's
configuration modules.

Tag States

As with all VTScada modules, the work is done with state code. The first
state in a module will always run automatically. In the case of a tag, this
state has three tasks: Set the variable Root to "Self", launch the Refresh
module, and transfer control to the main module.

While it is common practice to name a module's initialization state, "Init"
and the main state "Main", you should instead use distinctive names for
these states in your tags. It will be easier to for you to debug your code if
the state names reflect the tag modules they are a part of.

Reducing the Analog Status tag's initialization state to its bare essentials,
it would look like the following:

AnalogInit [
If 1 AnalogInMain;
[

CriticalSection(

Root = Self { This value must be set to self for all
points. It is used by the parameter editing
code. };
{ Set up initial values }
Refresh();
)
]
]

Note that the declaration of Root = Self; and the call to Refresh(), must
be enclosed in a CriticalSection.

In the simple example, no checking is done to ensure that the expression
manager or the alarm manager has started. If you plan to allow expres-
sions for tag parameters (as is commonly done) then you must wait for
the Expression Manager. If you plan to include a built-in alarm then you
must wait for the Alarm Manager.

The actual initialization state for the Analog Status tag, which includes
both of those features, is as follows:

AnalogInit [

If \AlarmManager\Started && \ExpressionManager\Started Ana-
TogInMain;

[

Criticalsection(
Root = Self { This value must be set to self for all
points. It is used by the parameter editing
code. };
{ Set up initial values. The refresh sub-module takes care of

I/0, updating the tag's value. }

Refresh();
)
Started = 1; { Public variable, may be checked by other mod-
ules that depend on this one having started. }

]
]

A tag's Main state will be more complex, depending on the tag's func-
tion. Common tasks include updating the tag's value and other variables.
The following partial example is taken from the Analog Status tag.

AnalogInMain [

SitePoint = Scope(Root, DeviceTag);
Style = Pickvalid(Scope(Root, StyleTag), Variable(\#SYSTEM_
STYLE));

LowScalevalue = Pickvalid(RangeMin, ScaledMmin);
HighScalevalue = Pickvalid(RangeMax, ScaledMmax);

]

Other tasks include monitoring the tag's link to the 1/0 device driver, cal-
culating scale, updating the value in an OPC server, etc. In later topics
within this chapter, you will see code to develop this state further.

Related functions:

... CriticalSection

ValueSyncService

The role of the value synchronization service (i.e. ValueSyncService) is to
allow a tag to register a list of named variables to be kept in synch. The
following VTScada tags use this service:

« Totalizer

« Counter

« Selector Switch

« Historian

« History Statistics

« Rate of Change
This service is meaningful only for tags. ValueSyncService is an altern-
ative to the NetworkValues service, which at times can be undesirable for
speed, memory or synchronization reasons. For example, NetworkValues
do not allow you to control the RPC frequency or when to write to disk
but ValueSyncService does.
The service provides startup synchronization of all registered variables.
It also provides synchronization on new tag creation while the applic-
ation is running (online tag creation). In the case of online tags, the val-
ues are always synchronized with the primary server for the service. The
service supports clients of clients.
Note the following tasks:

« You must explicitly RPC (Remote Procedure Call) the value, unlike Net-
workValues.

« You must explicitly persist the value, again unlike NetworkValues.
There are two synchronization situations:

1) Start-up Synchronization:
When a Client comes online or re-syncs with a Server, it will
get the Primary server’s version of the variables.

2) Online Tag Synchronization:

A new tag is created on a machine, and an EditLockoutManager
update is performed. The convention for this is that all
machines will sync from the primary server's values, regardless
of who actually created the tag first. Thus, whatever happens
to be the value of the variable when the tag comes alive on the
primary server; that is what is synchronized.

API

\ValueSyncService\Register

Description: Called by a tag in order to create a list of variables
which are to be kept in sync.

Returns: Nothing (sets PtrRegisterDone when complete)
Usage: @ Script Only.
Format: @ \ValueSyncService\Register(TagObj, PtrRe-

gisterDone, TagVars)
Parameters:
TagObj
Required. The object value of the tag.
PtrRegisterDone

Required. A pointer to a variable. Used to return the
result of the operation. The value will be setto 1 to
indicate that the variables have been synchronized.

TagVars

Required. An array of the variable names to be syn-
chronized.

Example:
As used in the initialization state of the Selector Switch:

If \valueSyncService\Started waitRegister;

Root = Self;
{ Register with the valueSyncService - save processing by regis-
tering for the first instance only }
IfThen(!valid(Syncedvars),
{ Syncedvars is a SHARED array, we must be the first instance }
Syncedvars = New(2);
Syncedvars[0] = "Savevalue";
Syncedvars[1l] = "Requestedvalue";
I

\ValueSyncService\Register(Root, &Registerbone, Syncedvars);

{ Set up initial values }
Refresh();
{.}

]

waitRegister [
If RegisterDone Main;

]

The Refresh Module

Your tag's Refresh module is called by VTScada when the tag starts and
whenever any of the tag's parameters change. It is responsible for ensur-
ing that new values are of the correct type for each parameter. In the
case of tags that perform |/0, the Refresh module does not read from
equipment, but does send an AddRead() call to the driver. See Linking to
a Driver for more information on 1/0.

It is extremely important that the Refresh module contain a Return state-
ment. The module will be called as a subroutine and must therefore have
a return statement, even if it does not actually return any value.

An example of the code used to update one of a tag's parameters fol-
lows. Here, the Analog Status tag's scan rate is being refreshed:

ScanRate = Pickvalid(Cast(ScanRate, 3), GetDefaultValue(&ScanRate));

If the parameter is set using a PTypeToggle in the user interface (Con-
stant / Expression / Tag), then it should be evaluated using the Expres-
sionManager's SafeRefresh method:

\ExpressionManager\SafeRefresh(&AlarmLo, Parms[#AlarmLo]) ;
\ExpressionManager\SafeRefresh(&EnablelLogging, Parms[#En-
ableLogging]);

The module will always have one parameter, "Parms," which is a pointer
to an array of the tag's parameter values prior to being modified by the
user. The tag's actual parameters will have already changed by the time
"Refresh" is called. The "Parms" array can be used to test for changes in
the values, and take appropriate action based upon the changes

A portion of the Analog Status tag's refresh module is shown here as an
example. Note that, the portion of a Refresh module that relates to read-
ing or writing data to/from a PLC is covered in the topic, Linking to a
Driver.

<
{ AnalogStatus\Refresh

{ This subroutine called at startup and whenever the point's para-
meters }

{ change

3

{ .

Refresh
(

Parms { Array for parameters prior to their
change };

[
NeedvalueUpdate = FALSE;

]

Refresh [
If 1;

[
ScanRate = Pickvalid(Cast(ScanRate, 3), GetDefaultvalue

(&ScanRate));

{ B A A R S A R N SR RN S SRR S RN R SRR SR A RK K S AR S ACORR S RO S SO K R R S ARCORR S S AR K S AORR S O K S ORR S ORR N }
ER e e e e o A T A e o A T A i e T A e T i e Tl A e T e e T A T A e e Lo A R T i e Lol A T e e L L e Tl 1

{ Scaling

}

{ O R A A R S O R A RO S ORI RO OR C CRR K SFCORRNK N SRR S SRCORR SR S ASCORR S SRR K SRR S ORI S AR N R ORR)
PR e e T e ol e T A e T i A T A A T e A T A A Tk e ek T A e 1 5

Pickvalid(cast(unscaledMin, 3 { Float }),
GetDefaultvalue(&UnscaledMin));
Pickvalid(cast(unscaledmax, 3 { Float }),
GetDefaultvalue(&UnscaledMax));
Pickvalid(cast(ScaledMin, 3 { Float }),
GetDefaultvalue(&Scaledmin));
Pickvalid(Cast(Scaledmax, 3 { Float }),
GetDefaultvalue(&Scaledmax)) ;

RO R ORI }
LR e T A e Tl

UnscaledMmin

Unscaledmax

ScaledMin

Scaledmax

IsText = UnscaledMin == UnscaledMmax;

1. l_.I_J_~l_~l_~l_~l_~l_~'_J_J_J4J4J4J4J4J4J4J4J4J4.L.LJ4.I4.I4J4J4J4J4.L.L.L.L.L-L-L-L-L-'_.l_.l_}
P e o A A o A A A A A e e A A T A o i e L A e T o T A A T A A b T A3

EA e i L L i T T g T

J_J_J_J_J_J_J_J_J_J_J_J_J_J_J_J_J_J..L}
PR e o A e i e e A e i A i A e o e T A e i 2 i e e T i e i e T i e i A T i e Lol A T e e L i e Tl 1

{ Provide default units (%) for new points

R N =

Units = HookPointUnits = Cast(Units, 4 { Text });

FOR O N R ORI RORON ORI ORI RORORC R SCORR N RCRK N SORR N RCRR SICRORK A SFORCRK SRR N RIORCORK R RORK A R ORCRK N ORI AORCONK RO
pR A e A A b T A e T PR e e T A e T e A T A A T i e T e e T e e T A e T i A T A T A A T A T e A b T A

{ Manualvalue

}

Manualvalue = Cast(Manualvalue, 3 { Float });
IfThen(Manualvalue != Parm[#Manualvalue] ||
valid(Manualvalue) != valid(Parm[#Manualvalue]),
NeedvalueUpdate = TRUE;
DE

{J..L.L.u,.u,.u,.u,.u,.u,.L.LJ,J,J,J,J,J,J,J,J,J,J,J,.L.L.L.L.L.L.L.L}
Eia i e e Al e i e e A e i e ol A e i e i e e i 2 ol e e e i e i e e Tl i e i A T i e Ll e T i e i e Tl 1

{ Questionable

Yo s e e oo oo oo v e e oo e T Yo e e oo o v Yo e oo e T vo Yo e oo e T Yo Yo e oo e To Yo e e e o e Yo e e
Tedededef e dedede el dede NNl de e hddedefhhdde e hddde ek n}

Questionable = Pickvalid(Cast(Questionable, 0 { Boolean }),
GetDefaultvalue(&Questionable));

Return(0);
]

]
{ End of AnalogStatus\Refresh }
>

Refresh is called prior to the tag's data being written to the tag prop-
erties database and is passed an array of the previous parameter values
for the tag. The current parameter values for the tag have already been
changed by the time the Refresh module has been called. Refresh

provides a way to reduce the memory requirements of the tag by redu-
cing the number of active variable references and code required in the
tag's main module, and thereby reduces the amount of memory required
for each instance of the tag.

TagShutdown Module

If you need certain tasks to run whenever the tag stops, whatever the
reason, then you may add the module, TagShutdown.

When any event causes a tag to stop, VTScada will look for a module
named TagShutdown in that tag and execute the code found there. No
parameters should be defined. This module must be used as a sub-
routine.

Examples:

{ TagShutdown

{ called when the tag is s1a1n}— due to either tag stop or app shut-
?Oxgkis note of the time when the shutdown occurred. This must be a
% subroutine. }

TagShutdown
Main [

If 1;

[{ save the time of shutdown }
SavedTime = CurrentTime();
Return(Invalid);

]

]
{ End of TagShutdown }
>

Related Information:

... The Refresh Module - Called by VTScada when the tag starts and
whenever any of the tag's parameters change

Tag Configuration Folders

Every tag instance will require a user-configured name, area and descrip-
tion at a minimum. 1/O connection details and other configuration
details will usually be required as well, depending on your tag's purpose.

T New Analog Status Properties @
ID | /O | Scaling | Alarm External Alarms Quality | Display | Historian

Name
Area
Description

Help Search Key

OK Cancel

Configuration is done through a set of configuration folders as shown in
the image. VTScada provides the basic folder structure - you need only
program the data input fields for each tab and ensure that those are
linked to your tag. You will not call the configuration folder directly with
your tag code since VTScada handles that task when you click on the Prop-
erties button of the Tag Browser.

For most parameter-entry fields and selection-lists, there are helper
functions. These are collectively known as the "p-functions".

Related information that you may need:
...Declaring the Configuration Folder Module
...Switching Tabs

...Configuration Tab Contents

...Adding Expression Support for Parameters

...Rules for Config Folders

Declaring the Configuration Folder Module

The code for the configuration folder is typically stored in a TagNameCn-
f.src file. This is commonly declared by adding a line to the [PLUGINS]
class of your AppRoot.src file, assigning a variable name to the source
file.

For example, given a tag named "MyTag" stored in the file "MyTag.src"
and having a configuration folder in "MyTagCnf.src".

In the AppRoot.src file of the application, add the following to the
[PLUGINS] class:

[(PLUGINS)
MyTagConfig Module "MyTagCnf.SRC";

In the file MyTag.src, add the following to the Variables declaration sec-
tion of the module. Note that the assigned name must be "ConfigFolder".

[(PLUGINS)
shared configFolder = "MyTagcConfig";

These two declarations provide VTScada with everything it needs to find
your tag's configuration folder. In the next few topics, you will see the
code for a sample configuration folder.

The Configuration Folder Module

The configuration folder module is responsible for drawing the contents
of the tabbed dialog box used to edit a tag instance's properties. It must
perform three tasks:

o Define the tab labels

« Respond to users requests to change from one tab to another

« Display the correct fields in each tab
Additionally, each configuration module must contain the following
states:

« An initialization state. Used to initialize variables and pass control to the

Switch state.

« A Switch state. Used to switch from one tab's state to another, thereby allow-
ing the user to switch tabs in the panel.

« One state for each tab. These states contain the GUI functions to display the
parameter fields.

The Parameters Section
Every configuration module will have the same parameters section:

(

Parms { Pointer to array of parameters
}’Current { Currently selected tab (starts at 0)
}’PtrWaitC1ose { Pointer to FLAG - TRUE when wait to close
}’OKPressed { OK Pressed from Properties Dialog
},Cance1Pressed { cancel Pressed from the properties Dialog
}’ParmsData { Parameter data

’01dParms { old parameters
}’01dParmsData { 0ld parameter data
},ParmsReady { Pointer to the array of
garameter ready flags };

« The parameters array is used by VTScada to link your tag parameters to this
module.

« VTScada sets the value of Current when a user clicks on a tab in the con-
figuration panel. You will need to watch Current to know when to switch tabs.

« PtrWaitClose is used by the VTScada code that handles the dialog box's Close
button. It enables the code to finish all work before the dialog closes.

o OKPressed is similar, but ensures that the values are written to the parameter
array.

« CancelPressed is set if the user cancels the configuration session. This allows
you the chance to reset any values that may have been changed before can-
cel was pressed.

« OldParms stores the original values of the parameter fields, prior to the user
editing them in the configuration panel.

« ParmsReady is used in types derived from Context tags and tracks if each
parameter is ready (TRUE) or in the process of being edited (FALSE).

The Variables Declaration Section
The following are standard declared variables in a configuration folder:

« Width - Normally declared as a constant, VTScada programmers set this
value for their convenience when placing objects on the dialog. The height is
set automatically by VTScada to accommodate all of the fields in the tallest
tab of the dialog.

« Trigger - Used by VTScada. Will be required in the code for each input field.

o EditOK - Should be set according to whether the current user has tag modi-
fication privileges, then used in the FocusID field of every input control. (A
value of 0 for FocusID disables a p-control.)

« Tab Label Names - The text to display at the top of each tab.
The tab labels are declared in a Class 1 block. The text you provide for
each label name will be used as the default if not otherwise specified in
the application's Settings.Dynamic file. This system enables easy trans-
lation to other languages by changing application properties rather than
code.
The order in which the labels are provided will match the order of the
tabs from left to right. For example, here is the tab labels declaration
from the Analog Status tag:

[(1){ class declaration }

IDTabLabel = "ID";

IOTabLabel = "I/0";
ScalingTabLabel = "Scaling";
AlarmTabLabel = "Alarms";
ExtAlmTabLabel = "External Alarms";
QualityTablLabel = "Quality";
OorderTabLabel = "order";
HistorianTabLabel = "Historian";

]

For each tab, you must provide a state containing the graphics state-
ments to be shown in that tab. See, Configuration Tab Contents.

Note: The first tab in every dialog box must be the ID tab.

Configuration Module Initialization
The initial state of the configuration module (commonly named, "Init")
will set initial values for variables where required and pass control to the

Switch state. If no initialization is required, the state will always be writ-
ten as follows:

Init [
If 1 Switch;
L
{¥**** Initialize the wait close flag to not wait **¥***}
*PtrwaitClose = 0;
]
]

Switching Tabs

A switching state must always be part of your configuration module. Com-
monly named "Switch" this state examines the value of "Current” (set by
the user clicking on a tab) and passes control to the appropriate tab's
state. The names that you assign to the states need not match the labels,
but should be close enough to make sense to anyone reading your code.

Switching Tabs...

ID M& 1) The user clicks on a tab

2) VTScada puts the tab number into the variable
"Current" and calls the state "Switch".

Currrent = 2; 3) Switch looks for a matching value of Current
‘{_/ and calls the appropriate state to show that
switch tab's input fields.
" IF Current == 0 ID;
IF Current == 1 I0;
IF Current == 2 Scaling;

]

For example, here is the Switch state code from the Analog Status tag:

Switch [
If Current == 0 ID;
If Current == 1 IO;
If Current == 2 Scaling;
If Current == 3 Alarms;
If Ccurrent == 4 ExternalAlarms;
If Current == 5 Quality;
If Current == 6 Order;
If Current == 7 Historian;
]

Tabs are numbered by VTScada starting at the left with O.

Configuration Tab Contents

The contents of each tab are provided by a state that will run when the
user clicks on the matching tab. Each tab's state code must include a
transfer to the Switch state when the value of Current changes.

The state should also update the value of PtrWaitClose based on the Trig-
ger variable. Both are required by the VTScada code that controls the
overall dialog box.

The general appearance of a tab state is as follows:

TabName [
If Current != 0 & !*PtrwaitClose Switch;

*PtrwaitClose = Pickvalid(Trigger, 1) == 0;

{#=®*%% GUITransforms for each field in the tab. #**%**}
GUITransform(..

]
A variety of parameter-setting functions have been created to simplify
the task of creating the data-entry fields for the parameters. By using
these functions in your GUITransforms, you will also standardize the

appearance of your tabbed dialog boxes.
As an example, ID tab of nearly every VTScada tag's configuration panel

will be similar to the following:

D [
{ User selected a different tab to display }
If Current != 0 && ! *PtrwaitClose Switch

{ Let the caller know when its ok to close }
*PtrwaitClose = Pickvalid(Trigger, 1) ==

{ Help topic to display when user presses F1 }
SetHelp(self(), \DevHelpFile, 00000 { HelpID 00000 })

{ Name of the tag }
GUITransform(30, 90, width - 30, 45 { Boundaries of transform },

1, 1, 1, 1, 1 { No scaling },

0, 0, 1, O { No movement; visible;
reserved },

0, 0, 0 { Not selectable 1},

\DialogLibrary\PEditName(Trigger));

{ Tag area }
GUITransform(30, 300, width - 30, 100 { Boundaries of transform

e
1, 1, 1, 1, 1 { No scaling

e
0, 0, 1, O { No movement; visible;
reserved },

e
\DialogLibrary\PAreaSelect(l { can edit }, 2 { ID },
Parms[1] { Init },

0, 0, 0 { Not selectable

1 { Bevel }, 0 { vertAlign

b

1 { AlignTitle }, 1 {
ParmNum },

Trigger { Trigger },
OKPressed))

{ Tag Description }
GUITransform(30, 200, width - 30, 155 { Boundaries of transform
iE

1, 1, 1, 1, 1 { No scaling
e

0, 0, 1, O { No movement; visible;
reserved },

0, 0, 0 { Not selectable
1,

\DialogLibrary\PEditField(2, \DescriptionLabel, 4 {
text }, 3 { ID }, Trigger { trigger }));

{ Help key }
GUITransform(30, 255, width - 30, 210 { Boundaries of transform

b,

1, 1, 1, 1, 1 { No scaling
1,

0, 0, 1, O { No movement; visible;
reserved },

0, 0, 0 { Not selectable
e

\DialogLibrary\PEditField(\#HelpKey, \HelpSearchKeyLa-
bel, 4 { text }, 4 { ID }, Trigger { trigger }))
]

Related functions:
For further information about the various parameter-setting functions,

see:
PAddressEntry PAImPriority PAreaSelect PCheckBox
PColorSelect PColorEdit PContributor PDroplist
PEditfield PEditName PHSliderBar PHueSelect
PIPAddressList PMultiCheckBox POverride PPageSelect
PRadioButtons PSecBit PSelectObject PSpinbox

PTypeToggle

Alarm Tab Notes

If you intend to allow developers to set the comparison function used
when triggering the alarm (>, =, <=, etc) then you should create a dic-
tionary of the function codes. Declare it as a shared variable in the tag
module:

SHARED FunctionCodes { Function code strings };
Then populate the dictionary in the Init state, again in the tag module:
MyTagInit [
If \AlarmManager\Started && \ExpressionManager\Started MyTagMain;

{ If (and only if !) you are allowing the developer to choose
the comparison function, create list of function codes }

IfThen(!valid(FunctionCodes),
FunctionCodes = Dictionary();
FunctionCodes["<"] = \AlarmManager\ALM_FUNC_LESS_THAN;
FunctionCodes["<="] \AlarmManager\ALM_FUNC_LESS_EQUAL ;
FunctionCodes[">=" \AlarmManager\ALM_FUNC_GREATER_EQUAL ;
FunctionCodes[">"] \AlarmManager\ALM_FUNC_GREATER_THAN;
FunctionCodes["="1] \AlarmManager\ALM_FUNC_EQUAL ;
FunctionCodes["== \AlarmManager\ALM_FUNC_EQUAL ;
FunctionCodes["!= \AlarmManager\ALM_FUNC_NOT_EQUAL ;
FunctionCodes["<>" \AlarmManager\ALM_FUNC_NOT_EQUAL ;
FunctionCodes["&"] \AlarmManager\ALM_FUNC_AND_WITH;
FunctionCodes["&&"] \AlarmManager\ALM_FUNC_AND_WITH;
FunctionCodes["|"] \AlarmManager\ALM_FUNC_OR_WITH;
FunctionCodes["||"] \AlarmManager\ALM_FUNC_OR_WITH;
FunctionCodes["A"] \AlarmManager\ALM_FUNC_XOR_WITH;
FunctionCodes["NAND"] \AlarmManager\ALM_FUNC_NOT_AND_WITH;
FunctionCodes["NOR"] = \AlarmManager\ALM_FUNC_NOT_OR_WITH;

);

Criticalsection(
Root = Self(Q);
Refresh();

DE

Started = 1;

]

"]
"]

]
In the module for the configuration panel, create the following variables:

FindFunction Module "FindFunc.WEB" { Finds function in FuncList };
FuncList { List of valid functions };

FuncIndex { Index into the FuncList array };

Funcvalues { values of the function descriptions };

FuncType { The long text string version of Function };

Then in the panel's Init state, initialize the arrays:

Init [
If 1 Switch;
[
{7'»‘7'»‘7'»‘7'»‘7'»‘ Set up the -Function 11‘5-‘: 7'»‘7'»‘7'»‘7'»‘7'»‘}
FuncList = New(12);

FuncList[0] = \NoFunctionLabel;

FuncList[1] = concat(\LessThanLabel, " <");

FuncList[2] = Concat(\LessThanEqualLabel, " <=");

FuncList[3] = Concat(\GreaterThanLabel, " >");

FuncList[4] = Concat(\GreaterThanEqualLabel, " >=");
FuncList[5] = Concat(\EqualToLabel, " = ", \OrLabel, " ==");
FuncList[6] = Concat(\NotEqualToLabel, " != ", \OrLabel, " <>");
FuncList[7] = concat(\ANDedwithLabel, " & ", \OrLabel, " &&");
FuncList[8] = concat(\ORedwithLabel, " | ", \OrLabel, " |[|");
FuncList[9] = concat(\XORedwithLabel, " A");

FuncList[10] = Concat(\NotANDedwithLabel, " ! (&&)");
FuncList[11] = cConcat(\NotORedwithLabel, " ! C ||)");
Funcvalues = New(12);

Funcvalues[0] = "";

Funcvalues[1l] = "<";

Funcvalues[2] = "<=";

Funcvalues[3] = ">";

Funcvalues[4] = ">=";

Funcvalues[5] = "=";

Funcvalues[6] = "!=";

Funcvalues[7] = "&";

Funcvalues[8] = "|";

Funcvalues[9] = "A";

Funcvalues[10] = "NAnd";

Funcvalues[11] = "NOr";

{#**%* Find the current function type ¥*¥%*%}
FuncType = FindFunction(Parms[\#Function]);
FuncIndex = LookUp(FuncList[0], 12, FuncType);
{ ...}

Finally, in the state for the tab where the alarm function is to be selected,
display the list:

{***** Function ¥#%%¥%%*
GUITransform(30, 155, 470, 110,
1,1, 1, 1, 1,
0, 0, 1, O,
0, 0, O,
\DialogLibrary\PDropList(\#Function, \FunctionLabel,
FuncList, 0, FuncIndex {
Labels, CanEdit, Index 1},
HasPriv ? 11 : 0, 0 { FocusID,
No Trigger },
FuncIndex, 1, 0, 1 { Init,
DrawBevel, VertAlign, AlignTitle },
Funcvalues { Return values }));

Related Information:

...Adding Alarms to Custom Tags

...Alarm Manager Function Constants

Adding Expression Support for Parameters

Support for the Expression Manager is what makes the difference

between this configuration field:
Cn Delay (s)

0

And the following:
Low Alarm Delay (s}
0

* Constant Expression () Tag
If your tag includes support for expressions, you must ensure that the
ExpressionManager is started in the tag's initialization state before any
other actions take place. This is commonly done as follows (example
taken from the Analog Status tag).

AnalogInit [
If \AlarmManager\Started && \ExpressionManager\Started Ana-
TogInMain;

[
Criticalsection(

Root = Self { This value must be set to self() for all
points. It is used by the parameter editing
code. };

{ Set up initial values }

Refresh();

)
]

]

This example shows a check for the Alarm Manager being started as well
as the Expression Manager. The process of adding custom alarms to your
tag is discussed later in this chapter.

In the tag's Refresh module, the \ExpressionManager\SafeRefresh func-
tion is used to handle changes to any parameters that may use a tag or
expression for their value.

\ExpressionManager\SaferRefresh(&AlarmLoDelay, Parm[#AlarmLobelay]) ;

(see: Expressions as Tag Parameters for more details.)

Finally, in the configuration folder, the PTypeToggle statement is used to
display the input field with radio selection buttons.

{***** Low De1ay *****}
GUITransform(30, 294, wWIDTH/2 - 5, 236,

1, 1, 1, 1, 1 { No scaling
P
0, 0, 1, O { No movement; visible;
reserved },
0, 0, 0 { Not selectable
P
\DialogLibrary\PTypeToggle(\#AlarmLobelay, "Numeric"
{ point type },
\LowATarmbelaylLabel,
EnableLo ? 15 : 0 { to 17 -
iDp },
0 { top align }, 1 { align
title },
0, Invalid { T1imits }, Trig-
ger,

1 { Allow Expression }));
Rules for Config Folders

« A module must be defined to handle the drawing of the contents of the
tabbed tag properties folder that enables users to configure the properties of
tags belonging to this tag type while the application is running.

« The ConfigFolder module is configured with one state per tab on the tag prop-
erties dialog. The tabs contain sets of the tag type's parameters organized
into logically consistent groups. When the user clicks on a tab, the value of
the "Current" parameter (see above) changes to reflect the index of the selec-
ted tab, and the ConfigFolder module changes states to draw new data entry
fields on the active tab of the tag properties folder

« A "Switch" state must be provided to transfer control to the appropriate state
when the value of Current changes.

« The data entry fields on each tab of the tag properties folder are drawn
primarily with a set of tools that are contained in a module named, "Dia-
logLibrary". These tools enable you to draw text and numeric entry fields,
drop-down lists, and radio buttons.

« When defining the labels to appear on the tabs of the tag properties folder for
your custom tag type, first define a list of class 1 variables that refer to a set
of tab name variables to be found in the application's configuration. The
order of these variables should be the order in which the tabs are displayed

in the tag properties folder. Each class 1 variable should be provided with a
default value; therefore, if there is no corresponding value set in the applic-
ation's configuration, this default value can be used for the tab label. Note:
The class 1 variables do not directly represent the text label to be displayed
on each tab; rather, the configuration variables they reference contain the
text labels for the tabs. This organization enables you to later translate the
labels into another language, or otherwise modify their text without having
to change the application's code.

Create or Assign Tag Widgets

VTScada provides an extensive selection of widgets that you may use

with your tags. You can also write a custom widget for a tag if none of

the built-in methods meet your needs.
To use the tag widgets provided by VTScada, you need only declare the

ones you wish to use in the [(GRAPHICS)] class of your tag module's vari-

ables declaration section. A complete list of the available widgets can be

found in the chapter, Drawing Tags.
The following example is taken from the Analog Status tag: (list reduced

here to save space)

1

[(GRAPHICS)

]

Draw Module { standard Draw Module for this point

Shared TopBar;
Shared RightBar;
Shared LeftBar;
Shared BottomBar;
Shared Number;
Shared DrawText;
Shared Meterl;
Shared Meter2;
Shared Meter3;
Shared Meter4;
Shared Compassl;
Shared AnimatedBitmap;
Shared TwoColorBar;
Shared colorFill;

The top line in the list is a call to a local module that supplies a custom

widget (hamed Draw) for this tag.

Note for Style-Tag Aware Widgets

The Status Color Indicator widgets and Indicator Light widgets are typ-
ically used to display a tag's value using the colors defined in the Digitals
tab of the associated Style Settings tag. But, for tags in the ports group,
drivers group, the Modem tag and the SMS Appliance tag, these widgets
take the tag's value to represent an error state, and use the colors
defined in the Errors tab of the style tag.

To inform the widget that your tag's value should be interpreted as an
error indicator rather than a status value, you should add the following
three parameters to the tag.

o ValuelsErrorStatus as a Boolean. Set TRUE to treat the tag's value as an error
status condition and to use the No Error and Error colors of the Style Settings
tag.

o ValuelsErrorAbove as a numeric. This is the value above which the tag will be
treated as being in error. Defaults to 0.

o ValuelsErrorBelow as a numeric. This is the value below which the tag will be
treated as being in error. Defaults to 0.

Related information that you may need:

...Create a Custom Tag Widget

...Widget Parameters

...Example - Parameters for the Analog Status's Draw Widget
...Edit Mode versus Run Mode

...The Properties Panel

...Widget States

...Indicating Questionable and Manual Data

...Rules for Tag Widgets

Create a Custom Tag Widget

It is often the case that a custom tag will have one or more custom wid-
gets. You can build these using the information that follows.

To begin, declare the drawing module in the [(GRAPHICS) section of the
tag, as described in the preceding topic. (see: Create or Assign Tag Wid-
gets)

Each widget must have its own module, where there is one widget per
module. The name of the module will be taken as the name of the widget
unless you specify otherwise with a constant declaration named "DrawlLa-
bel".

Constant DrawLabel = "MyDrawMethodName";

The following are common elements of a custom widget. Required ele-
ments are noted.

« Optional parameters for configuring the object.
« An optional initialization state that sets default values if required (colors,
fonts, sizes, etc.) and call's the module's main state.

« The main state should include the steady state graphics command that
define the drawing object.

o The main state must also launch a call to the tag's Common module.

« A submodule named "Panel" should be included if the widget has parameters.
This is used by the VTScada Graphics Editor when the drawing object is in
editing mode. If a Panel method is not supplied, VTScada will generate a
basic configuration box for the parameters when the object is placed on the
screen.

« Panel must be declared with one parameter, Parms. This will be a pointer to
an array that contains the initial values of the tag's parameters and that will
be modified to contain the values entered by the user while editing.

Each of these elements will be described in the following topics.

Note: You will need to create a Menultem tag for your widget if you
want to see it in any of the Idea Studio palettes.

Related information that you may need:
...Widget Parameters
...Edit Mode versus Run Mode

...The Properties Panel

...Widget States
Refer to the VTScada Developer's Guide for:

...Right-Click - Editing the Palette Menultem Tags - Create an entry for
your custom widget

...Menuitem Tag - Menu Item details and reference
Widget Parameters

The parameters for a drawing object are structured much like those of a
tag. They must be declared in a parameters section and they must be
assigned constants in the variables declaration section. The main dif-
ference is that widget parameters are not stored in a database and need
not be assigned

Three common parameters that you may want to include are Dis-
ableTrend, DisableNavigation and DisableTooltip. As their names imply,
these are used to disable user interface features of the Common module
when required.

Example - Parameters for the Analog Status's Draw Widget

As an example, the Analog Status tag has the following options in its
Draw widget:

T Draw Properties EI@

QD Tag
i Panel Font | Mo Tag Selected X
{3 Coordinates
T‘O Scaling 0 = Digits After Decimal Show Units
+-(Movement
O Opacity Type of Border
) No Button
® Button
Caolors
[Background] ‘
Disable Cpticns
[] Disable Trends
[] Disable Navigator Menu
[] Disable Tooltips

The matching parameters are declared as follows. (Parameters and vari-
ables for features that have not yet been covered in this chapter are
excluded).

Note the presence of the word "Panel" in the menu. The contents of this
display are controlled by a submodule of the widget named "Panel". You
will need to create this module for your tag.

The four numeric values after the module name and before the para-
meter list are used to specify the size of the module reference box. When
VTScada calls a module within a GUITransform, it scopes in and gets the
bounds of largest of the GUI within that module. Setting the default
graphic size avoids problems when there may be non-GUI graphics or
you want the drawing area bigger to be than the GUI’s within it. See: Mod-
ule Reference Boxes.

Draw

<
{
: : Yoo
{ Graphic module to display Text Description and vValue of the Input
}

{ 3

Draw

(0, 30, 200, 0)

(
Digits { Digits after the decimal point
¥
ShowUni ts { TRUE if display the units
It
Fontval { Font to display text in
I
Border { Border options: 0 = no button, 1 = but-
ton };
BgndcColor { color for background inside the button
’Disab1eTrend { Flag to disable trend windows
It
DisableNavigation { Flag to disable navigator menu
I
DisableTooltip { Flag to disable tool tips
1
)
[
Panel Module { Parameter editing module
It
offset { offset for graphics, based on width
35
color { Background color based on status of
point };
TextColor { Text color based on questionable data
,Buff { Text buffer holding string to display
It
ChosenFont { The font value chosen by the user
35
DrawFontobj { Object value of font to draw with
i
Format { Format for the number
I

{ Parameter definitions }
Constant #Digits

Constant #Showunits
Constant #Fontval

Constant #Border

Constant #BgndcColor
constant #DisableTrend
Constant #DisableNavigation
Constant #DisableTooltip

| | | | | A |
Nouvih WNRO

{ Panel dimensions }
Constant #Panelwd = 320;
Constant #PanelHt = 6 * Space + TitleSpace + 3 * CheckHt + 242;

Edit Mode versus Run Mode

When the application is in edit mode (Idea Studio), widgets should
respond to user clicks differently than when the application is in run

mode.
Right-click while in Edit mode Right-click while in Run mode
] N —
-'ﬂ HE||:|
P Fal: 73 ; []_[
'I]|;!3|3!|| i i l.ljl;!jl;glel ¥ Disable Low Alarm
4 1% Link 2 * v Disable High Alarm
u T %, Edit - Shelve Low Alarm
) Shelve High Alarm
Bring Forward 3 ;
Alarm Settings

5 Send Backward | ¥ View Alarms

Manual Data
+ Logging Deadband

% Group 4 B
) Questionable Data
€ Cut Plot Data
& Copy
Properties
X Delete

You can determine which mode the application is in by querying, Par-
entWindow()\Editing. VTScada will return a value of TRUE or FALSE
depending on the mode. You can then code your method to examine the
\Editing value before responding to a user's action.

An example can be seen with Page Hotboxes. When in Edit mode, these
display as a yellow rectangle, but when in run mode, they are invisible
until the user hovers the mouse pointer over them. You can emulate this
behavior by adding a GUIRectangle to your widget and coding its Vis-
ibility parameter to examine the current value of ParentWindow()\Editing.

The Properties Panel

If the widget includes parameters, it is strongly recommended that you
supply a Panel module. The purpose of this module is to control the lay-
out of the parameter elements in the properties dialog when the widget
is being edited.

The Panel module takes two parameters: Parms, which is a pointer to an
array containing the widgets parameters and PtrWaitClose, which is used
by VTScada when the properties dialog is being closed.

The Panel module will normally also have one internal variable, Trigger.
This will be used by VTScada when each field in the panel is edited by the
user.

Like the tag configuration dialog, the P* functions are commonly used
for the data entry fields.

For example, the entirety of the Analog Status tag's widget panel, as
shown in the preceding topic, is as follows:

<
{ Panel
}

Panel

(0, #PanelHt, #Panelwd, 0)

(
Parms;
PtrwaitClose { Pointer to Flag - TRUE to wait to close dlg };
Parmbefs { Array of page parameter definition structures };
DialogRoot { The calling dialog window };

Trigger { Edit fields trigger };
SubwWaitClose { waitClose flag for the datasource editor };
Height { Height of panel };
PageInst { Page instance };
contPageinfo { Container page information };
Modules { Array of modules to load in the ParameterEdit };
Parameters { Array of parameters for ParameterEdit modules };
Parmeditobj { Object value of the ParametereEdit control };
PEBottom { Bottom of the ParameterEdit };
FontParm; OldFontParm { Used for ParameterEdit };
]
Init [
If 1 PanelMain;
[
{***** Set defau1ts *****}
Parms[#Digits] = Pickvalid(Parms[#Digits], 1);
Parms [#ShowuUnits] = Pickvalid(Parms[#Showunits], 1);
Parms [#Border] = Pickvalid(Parms[#Border], 0);
Parms [#BgndColor] = Pickvalid(Parms[#BgndColor], \DialogBGColor);
Parms [#DisableTrend] = Pickvalid(Parms[#DisableTrend], 0);
Parms[#DisableNavigation] = Pickvalid(Parms[#DisableNavigation],
0);
Parms [#DisableTooltip] = Pickvalid(Parms[#DisableTooltip], 0);
{ Initialize the wait close flag to not wait }
*PtrwaitClose = FALSE;
{ Get info about the parms of the container page }
PageInst = \GetUserSession()\GraphicEditor\GetSelectedTabIitem();
CcontPageInfo = GetParamInfo(PageInst);
{ Set up variables for Parameteredit }
FontParm =
oldFontParm = Parms[#FontParm];
MetaData(FontParm, "Revision") = 0;
{ "Font" Parameteredit }

Modules = New(3);

Parameters = New(3);

{ Tag option }

Modules[0] = "ParmeditTag";
Parameters[0] = New(1l);
Parameters[0][0] = "Fontvalue";

{ Parameter option }

Modules[1l] = "ParmeditParmvalue";
Parameters[1l] = New(6);

Parameters[1][0] = ContPageInfo;
Parameters[1][1] = \#VTypeObject;
Parameters[1][2] = Invalid;

Parameters[1][3] = New(1l);

Parameters[1][3]1[0] = "Fontvalue";
Parameters[1][4] = 0; { No Scaling }
Parameters[1][5] = Invalid; { No default value }
{ Expression option }

Modules[2] = "ParmeEditExprNoNormalize";
Parameters[2] = New(2);

Parameters[2][0] = 1;
Parameters[2][1] = ContPageInfo;
]
]
PanelMain [
{#*%%% Let the caller know when its ok to close *%%%%*}
*PtrwaitClose = Pickvalid(Trigger, 1) == 0 || Pickvalid

(SubwaitClose, 0) == 1;
Height = 10*Space + 2*TitleSpace + PEBottom + SpinHt + BtnHt +
3*CheckHt + 65;
If watch(0, Height);
[
SetPanelRefBox(Self, 0, Height, #Panelwd, 0);
]
{***** Font *****}
GUITransform(0, 1, 1, O,
1-0,
2 * (EditHt + Space),
#Panelwd,
1-0,
i, 0, 0, 1, 0, O, O, O,
ParmeditObj = \ParameterEdit(FontParm { Parameter value },
ParmDefs [#FontParm] { Parameter Definition },
1 { Enable Flag },
\FontLabel { Title },
Modules { Array of Parm Edit Modules },
\Code { Contexts for Edit Modules },
Parameters { Parameters for Edit Modules 1},
TextAttribs(\FontLabel, _DialogFont, 0) { Title width },
Invalid { Index value },
SubwaitClose { wait to close },
DialogRoot { calling dialog window }));
If FontParm != OldFontParm ||
valid(FontParm) != valid(oldFontParm);
[
oldFontParm =
Parms [#FontParm] = RootValue(FontParm) ;

PEBottom = Pickvalid(Parmeditobj\Height, 2 * (EditHt + Space));
{***** Digits *****}
GUITransform(0, 1, 1, O,
1-0,
Space + PEBottom + SpinHt,
170,
1 - (Space + PEBottom),
i, 0, 0, 1, 0, O, O, O,
\DialogLibrary\PSpinBox(#Digits, \DigitsAfterDecLabel, 1 { box
on left },
0, 9 { 1imits }, 3 { left, centered }, 0 { autosize },
0 { no edit }, 3 { 1D }, Invalid, Invalid, Trigger {Trigger}));
{***** ShOW units *****}
GUITransform(O, 1, 1, O,
1 - 180,
Space + PEBottom + CheckHt + 4,
#Panelwd,
1 - (Space + PEBottom + 4),
i, o, 0, 1, 0, O, O, O,
\DialogLibrary\PCheckBox (#ShowUnits, \ShowuUnitsLabel, 1 { box
on left },
3 { left, centered }, 4 { ID }));
{***** Type of border *****}
GUITransform(0, 1, 1, O,
1-0,
2*Space + PEBottom + SpinHt + 65,
#Panelwd,
1 - (2*Space + PEBottom + SpinHt),
i, o, 0, 1, 0, O, O, O,
\DialogLibrary\PRadioButtons (#Border, 8 { to 10 - ID },
1 { border }, \TypeofBorderLabel, 1 { btns on left }, 1 { align
title },
\NoButtonLabel, \ButtonLabel));
{***** CO]OFS *****}
\System\Bevel (0,
5*Space + TitleSpace + PEBottom + SpinHt + BtnHt + 65,

#Panelwd,
3*Space + PEBottom + SpinHt + 65,
\ColorsLabel);
{***** Background CO]OF *****}
GUITransform(O, 1, 1, O,
1 - Space,
4*Space + TitleSpace + PEBottom + SpinHt + BtnHt + 65,
260,

1 - (4*Space + TitleSpace + PEBottom + SpinHt + 65),
1, o, 0, 1, 0, O, O, O,
\DialogLibrary\PColorSelect(#BgndColor, \BackgroundLabel, 1 {
btn on Teft },
1 { standard size }, 1 { centered }, 12 { ID }));
{***** Disab]e options *****}
\System\Bevel (0,
10*Space + 2*TitleSpace + PEBottom + SpinHt + BtnHt + 3*CheckHt
+ 65,
#Panelwd,
6*Space + TitleSpace + PEBottom + SpinHt + BthnHt + 65,
\DisableOptionsLabel);
{****% Disable Trends Check Box #**¥***}

GUITransform(O, 1, 1, O,
1 - Space,
7*Space + 2*TitleSpace + PEBottom + SpinHt + BtnHt + CheckHt +
65,
#Panelwd - Space,
1 - (7*Space + 2*TitleSpace + PEBottom + SpinHt + BtnHt + 65),
i, o, 0, 1, 0, O, O, O,
\DialogLibrary\PCheckBox (#DisableTrend, \DisableTrendLabel,
1 { box on left },
3 { Teft, centered 1},
13 { ID }));
{***** pDisable Navigation Check Box *#**¥%}
GUITransform(O, 1, 1, O,
1 - Space,
8*Space + 2*TitleSpace + PEBottom + SpinHt + BtnHt + 2*CheckHt
+ 65,
#Panelwd - Space,
1 - (8*Space + 2*TitleSpace + PEBottom + SpinHt + BtnHt +
CheckHt + 65),
i, o, 0, 1, 0, O, O, O,
\DialogLibrary\PCheckBox (#DisableNavigation, \Dis-
ableNavigationLabel,
1 { box on Teft },
3 { Teft, centered 1},
14 { 1D }));
{#*%*%** Disable Tooltip Check Box #*#*¥%**}
GUITransform(0, 1, 1, O,
1 - Space,
9*Space + 2*TitleSpace + PEBottom + SpinHt + BtnHt + 3*CheckHt
+ 65,
#Panelwd - Space,
1 - (9*Space + 2*TitleSpace + PEBottom + SpinHt + BtnHt +
2*CheckHt + 65),
i, 0, 0, 1, 0, O, O, O,
\DialogLibrary\PCheckBox (#DisableTooltip, \DisableTooltipLabel,
1 { box on left 1},
3 { left, centered 1},
15 { ID }));
]

{ End of Draw\Panel }

Widget States

Most widget modules will contain two states: one used to initialize the
parameter values and one to display the tag's value and other graphics
on a page.

The display functions must monitor properties of the tag. If the tag's
units or scaling change, the widget will need to update its appearance to
match the new format. It should also be able to display the Questionable
or Manual Value markers if those exist and are set in the tag. (An

example of the code to do this can be seen in Create a Custom Tag Wid-
get.)

Finally, the tag's main state must launch a call to the tag's Common mod-
ule if it is to support tool tips, trend windows or right-click navigation
menus.

An abbreviated version of the states found in the Analog Status tag's
Draw widget is presented here as an example. Features such as the alarm
display have not yet been covered in this chapter and so are excluded
from the example.

Init [
If 1 Main;
[
{*#%*% set defaults for the parms *#****}
Digits = Pickvalid(Digits, 0);
Showunits = Pickvalid(Showunits, 1);
Border = Pickvalid(Border, 1;
BgndcColor = Pickvalid(BgndColor, \DialogBGColor);
DisableTrend = Pickvalid(DisableTrend, 0);
DisableNavigation = Pickvalid(DisableNavigation, 0);
DisableTooltip = Pickvalid(DisableTooltip, 0);
]
]
Main [
{*¥***%% work format for display of value ****%*}

Format = Concat(valid(\value) ? Concat("%0.", Pickvalid(bigits, 1),
II_FII)
: Concat("*.", MakeBuff(Pickvalid

(Digits,
1), 0x2A { * character
), o
Pickvalid(\Questionable, 0) ? "?" : "",
valid(\Manualvalue) ? "!" : "",
Pickvalid(\Questionable, 0) ||
valid(\Manualvalue) ? " " : "",
Pickvalid(showunits, 0) ? "%s" : "",
)
{#**** Figure out what the text Tooks Tike ****=*}
If watch(l, Format, \ScaledMax, \Units);
[

{*#*%**% Get the full string - number, decimal, units and all
Buff = Buffstream("");
Sswrite(Buff, Format,
Pickvalid(Pickvalid(\Scaledmax, \value), \uUnits), \Units);

{*¥*¥%%% Convert font point text name into an object and a font

JORORORORON
WRRNR

If watch(l, Fontval);

[
DrawFontOobj = ValueType(Fontval) == 7 { Tag object } ?
Fontval : Scope(\Code, Fontval);

]

ChosenFont = Font(DrawFontObj\FontName, DrawFontObj\CharactersSet,
DrawFontObj\Height,
DrawFontObj\Rotation, DrawFontObj\weight,
DrawFontobj\Italic, DrawFontobj\Fixed) ;

QualityIssue = Pickvalid(Scope(Root, Quality)\value != 0, 0);

TextColor = Pickvalid(Questionable, 0) ? \ButtonShadow :
(Color == \ButtonTextColor ? 15 : \ButtonTextColor);

{ Background Button }
GUIButton(0, 30, 200, O,
i, 1, 1, 1, 1,
0, 0, Border, 0, 0, 0, O,
BgndColor, \ButtonHighlight , \ButtonShadow, -1,
41 01 “"1 “"1 01 01 11 2)1
{ Description }
GUIText(4, 30, 200, O,
1, 1, 1, 1, 1,
0, 0, Border, 1,
0, 0, O,
-1, \ButtonTextColor, Pickvalid(DrawFontObj\value, _Dia-
TogFont),
2, 4, { Alignment }
\Description);
{ The indented box }
GUIButton(130, 26, 196, 4,
1, 1, 1, 1, 1,
0, 0, Border, 0, 0, 0, O,
-1, \ButtonShadow, \ButtonHighlight, -1,
4’ 0’ ““1 ““1 0’ 0’ 1’ 2)1

{:’::’::’::’:7’: D-lsp'lay the number :'::'::'::'::':}
GUIText(0, 1, 1, O,
1 - (Border ? 131 : 0), Border ? 25 : 30,
Border ? 195 : 200, 1 - (Border ? 5 : 0), 1,
0, 0, 1, 1,
0, 0, O,
Color, TextColor,
Pickvalid(DrawFontObj\value, _DialogFont),
4, 4, { Alignment }
Format, Pickvalid(\value, \Units), \units);
{7’:7’:7’:7’:7’: D1Sp1ay common -Featur-es Fedede
\Common(0, 30, 200, O, DisableTrend, DisableNavigation, Dis-
ableTooltip);
]

Indicating Questionable and Manual Data

The unlinked widget, question mark and exclamation mark graphics,
used to indicate any of these tag states in a widget, are created by the
module TaglconMarker.

This module places a set of icons on the screen centered over a given
rectangular region. The icon displayed is cycled with each passage of the
period, measured in seconds. The images are provided by the module,
but you are free to add your own symbols.

Centering the symbol within the user-defined drawing area requires
some calculation. For more information about this function and an
example taken from a VTScada tag widget, see IconMarker in the
VTScada Function List.

The following example places a set of icons on the screen centered over
a given rectangular region. The icon displayed is cycled with each pas-
sage of the period, measured in seconds.

{***** Signify when data is questionable #**¥%**}
GUITransform(0, 100, 100, O,
1, 1, 1, 1, 1 { scaling },
0, 0 { Movement 1},
1, 0 { visibility, Reserved },
0, 0, 0 { selectability },
Variable("Code\Library")\TagIconMarker(\Root, FALSE));

Related functions:
...TaglconMarker

. lconMarker
Rules for Tag Widgets

« Drawing modules (modules within the tag that provide a method for dis-
playing the value of the tag on the system pages of your application) must
always be declared in the GRAPHICS class.

« Create a Panel module within any of the tag widget modules that have para-
meters. The Panel module performs a task similar to that of the ConfigFolder
module (see number 8 above), except that it is responsible for the editing of
the tag widget module's parameters, rather than the parameters for the tag
as a whole. A Panel module is not required if the tag's widget module has no

parameters. If a tag widget module doesn't have a Panel module, a default
parameter configuration dialog box is instantiated when the object is placed
on the screen.

The Panel module takes two parameters: Parms - A pointer to an array that
contains the initial values of the tag's parameters, and that will be modified to
contain the values entered by the user while using the tag properties dialog.
PtrWaitClose - A pointer to a flag - TRUE to wait to close dialog.

The Parms parameter is handled in the same manner as the first parameter
for the ConfigFolder module (please refer to the Dialog Library Tools section
for details on how to build this module to create the dialog box). This dialog
box differs from the ConfigFolder dialog in that it is not a tabbed dialog box,
but it does have a preview window at the bottom to allow users to view an
image of how the completed tag widget will appear when placed on the sys-
tem page. The size of the dialog box is automatically determined by calling
code in VTScada so that it is the minimum sized window that will contain all
of the GUI objects used.

Use the "ParentWindow()\ Editing" variable to prevent control actions within
the Idea Studio window. The \Editing variable is set to true within the context
of the editor window. Preventing control dialogs or other mouse actions from
being acted upon when this value is true will prevent unintended control
when an object is selected for editing.

If a widget for an object is normally invisible, you should use the Par-
entWindow() \ Editing variable in the visibility parameter of a GUIRectangle in
order to display a yellow box around the perimeter of the area so that it can
be seen during editing and can be selected.

Inside the drawing module, you may define variables called DrawWidth and
DrawHeight that can be used to set the width and height of the object placed
on the screen during configuration. This is useful in setting the size of an
image that is different than the size given by the GUIBitmap reference box.
These variables are typically set in the "Main" module, according to the cur-
rent parameters set for the graphic object.

Add a constant definition for "DrawlLabel" with a default value to each draw-
ing module. This variable's default value specifies the name of a variable in
the configuration that defines the label to place on the drawing object's pre-

views during configuration. If this variable is not present, the drawing mod-
ule's name is used.

Common Module

Various user-interface features are common to the VTScada tag widgets.

The widgets will issue calls to the Common module of the associated tag

in order to provide the contents and functionality of the interface fea-

ture. These may include a call to the Navigator module, the ToolTip mod-

ule, and the PkTrend module. Any external graphic modules must make a

call to the Common module within the tag. The Common module takes

four parameters that define the area of the screen occupied by the draw-

ing object and three that allow an instance of a tag to disable the user

interface elements. The seven parameters of the Common module are:

Left - Any numeric expression for the object's left side coordinate.
Bottom - Any numeric expression for the object's bottom coordinate.
Right - Any numeric expression for the object's right side coordinate.
Top - Any numeric expression for the object's top coordinate.
DisableTrend - Any Boolean expression for disabling the trend window
DisableNavigation - Any Boolean for disabling the right-click menu

DisableTooltip - Any Boolean expression to disable the tooltip display

For example, most widgets will display a pop-up menu in response to a

right-click.

ﬁ@lﬁ?é Help

The menu that appears is under your control via the Navigator module. It

¥ Disable Alarm
Wiew Alarms

Manual Data
Questionable Data
Plot Data

Properties

is up to you to decide what to include in this module for your custom

tags and what each entry should do.

Related Information:

...Navigator Calls (Shortcut Menu)
...ToolTip Contents

...0pening an HDV (PKTrend) Window
...Common Module Example

...Rules for the Common Module

Navigator Calls (Shortcut Menu)

Calls to the Navigator result in a shortcut menu being associated with a
tag type. When the user right clicks on the graphic object representing
the value of a tag, the shortcut menu opens and enables the user to con-
figure the tag's properties. Tag properties modified using the shortcut
menu are automatically written to the tag properties database, following
a call to the "Refresh"” module.

Access to the shortcut menu is controlled by the Security Manager, which
has a specific system bit set aside for this purpose (\Se-
curityManager\PrivBitConfigure). The Security Manager handles the priv-
ileges granted to the logged on user, and disables any shortcut menu
options or tag properties for which the logged on user is not authorized.
See: Security Features for Tags.

Related Information:

...Navigator Module Parameters
Navigator Module Parameters

The activation of the Navigator should not occur when a tag's widget is in
preview mode or when the Navigator module is called from a container's
drawing module.

The first parameter for the Navigator module (Enable), detects if the sys-
tem is in preview mode, or if the Navigator module is being called by a
container module.)

Parameters of the Navigator module:

Enable - The Enable parameter is set to 1 (true) when the shortcut menu may
appear. The shortcut menu is disabled during the preview and placement pro-
cess.

Left - The left coordinate of the object to click upon to open the shortcut
menu.

Bottom - The bottom coordinate of the object to click upon to open the
shortcut menu.
Right - The right coordinate of the object to click upon to open the shortcut

menu.

Top - The top coordinate of the object to click upon to open the shortcut
menu.

The Navigator takes groups of four additional significant parameters that

describe the menu items and their actions. These parameters are appen-

ded to the end of the parameter list in groups of four. One group of four

defines one line in the shortcut menu.

« NavContents - The shortcut menu option's name. If the name is set equal to
"--",a beveled ruling line is placed in the menu, rather than a selectable text
option.

NavToggles - A pointer to a value that is a toggle option (i.e. each time this
shortcut menu option is selected in the shortcut menu, it is toggled on or off
(i.e. is logically inverted)). When the value of the variable pointed to is true,
the shortcut menu option is toggled on, and a checkmark appears to its left.
When the value of the variable pointed to is false, the shortcut menu option is
toggled off, and no check mark appears to its left. Any element may be
invalid if not used. If the NavTabNums element is used to open the tag's prop-
erties folder, this value must be invalid. If the variable pointed to by this para-
meter is in a module other than the one pointed to by the "Root" parameter
(please see previous section), the NavTabNums parameter contains the
object value of that other tag.

The NavToggles parameter can also serve a very different purpose if it con-
tains an object value, in which case it will be the tag instance to use to launch
the TabNums parameter actions within. This can be used to allow direct
access to sub-tag parameter configuration folders, or to launch modules
within other contexts. This cannot be used in combination with the TabNums

parameter value being invalid, since the TabLabels will not correspond to the
correct tag properties folder.

« NavDisabled - A status value that enables you to disable any menu item. An
invalid entry in this parameter is treated as the item being enabled.

« NavTabNums - An index that indicates the tab number (of the tag properties
folder) to display if the shortcut menu option is selected (tag properties
folder tabs are labeled starting at 0). If this value is invalid, the entire tag
properties dialog is opened (i.e. rather than a single tab displayed as a win-
dow, the tag properties dialog will open to the ID tab, and will additionally
reveal its other tabs).

If this value is a text string, a module by that name is launched within
the scope of the calling tag. If the corresponding NavToggles entry has
an object value, the module is launched within the scope of that object
value.

If the variable pointed to by the NavToggles parameter is in a module
other than the one pointed to by the "Root" parameter, the NavTabNums
parameter contains the object value of that other tag.

If the NavToggles parameter is a pointer to a parameter of a tag that is
not in that current tag, this value must be the object value of the tag
where that toggled parameter exists.

To summarize, there are the following modes for these parameters:

Action NavToggles NavTabNums
Full tag properties folder Invalid Invalid
Single tab tag properties folder Invalid Tab number
Toggle parm in this tag Pointer to the parm Invalid
Toggle parm in another tag Pointer to the parm Object value of other tag
Launch module in tag scope Invalid Module name (text)
Launch module in other scope Scope in which to run Module name (text)

ToolTip Contents

When the user holds the mouse pointer over a widget, the normal
VTScada behavior is to display the associated tag's name and description.
You can control what text will be displayed for your tag by including a
call to WinToolTipCtrl in your tag's Common module.

If your Common module does not include a call to WinToolTipCtrl, then
there won't be a tool-tip.

The target for the tool-tip should be the same as the area parameters
passed to the Common module. If this point is contained within another
object and the container calls this Draw module, then you do not want
this tool tip note to display. This is typically indicated by the calling con-
tainer's drawing module adding one additional parameter to the list. By
detecting that the number of parameters that the Draw is called with is
not the same as the number of formal parameters, you can prevent the
tool tip note from appearing. This will also prevent the note from appear-
ing during preview and placement which is also desirable.

For example:

winTooltipctrl(Left, Bottom, Right, Top,
WTTS_FLAG_TRACKINACTIVE + (Pickvalid(\NoBalloonTi ps,

0) ?

0 : WTTS_FLAG_BALLOON),

\Description, \Name, Invalid,

\ShowTip && ! IsAPreview && ! \GetUserSession
(O \NavActive

&& Pickvalid(! DisableTooltip, 1),
\TipFont\Value);

Opening an HDV (PKTrend) Window

If your tag contains a value that can be trended, then you may include a
call to PKTrend in the Common module. This will watch for a left-click
within the area of the widget and open a Historical Data Viewer window
in response.

This code is generally incompatible with the control dialog code which
uses the same mouse button. The first four parameters should match the
area as indicated by Left, Bottom, Right & Top because they specify the

target area for the mouse. The last parameter is the object value of this
point instance.

This function will automatically be disabled when the page is in editing
mode.

For example:

\PkTrend(Left, Bottom, Right, Top, \Root,
I IsAPreview & & Pickvalid(! DisableTrend, 1)
{ Disable when called from a container's draw 1});

Common Module Example

The code to enable this menu for the Analog Status tag is as follows:

{ AnalogStatus\Common
}
{ This module handles the common actions associated with all drawing
3
{ modules for this point. It will be called by all external drawing
}
{ modules
}
{
(
Left { Area occupied by the drawing object
1
Bottom;
Right;
Top;
DisableTrend { Flag to disable trend windows
’Disab1eNavigation { Flag to disable navigator menu
’Disab1eToo1tip { Flag to disable tool tips
};
)
[
ManualDisabled { Manual Disabled flag
I
QuestionableDisabled { Questionable Disabled flag
1
Alarmbisabled { Low alarm Disabled flag
3
ISAPreview { Flag - TRUE if this is deemed a preview
I
1
Common [

{ This variable indicates if the widget calling this common
module is a preview. The value may be useful for disabling

certain
functionality. }
IsAPreview = IsDrawMethodPreview();

{**_

{ "Post-it" note section

=

}

winTooltipcCtrl(Left, Bottom, Right, Top,
WTTS_FLAG_TRACKINACTIVE +
(Pickvalid(\NoBalloonTips, 0) ? O : WTTS_FLAG_

B R A A R S AR N OO SR ORI K SRR S SRR S S R R S SRR S ORI S ACRR S AR K S SRR S R R K S ARORR S O K N ORI ON
Rk A e T A e i e T A e T i e T A e T i A T A T i ek Tl e T i e Tl A T A e ek Lol A Tl A i e ol e Tl i e T i Al Lol i e
o
=

BALLOON) ,
\Description, \Name, Invalid,
\ShowTip & & ! ISAPreview &&
I \GetUsersSession()\NavActive &&
Pickvalid(! DisableTooltip, 1),
\TipFont\Value) ;
{**_
*}

{ Navigator menu section

Tl ddehddedhdedhdefhdeNhdefhdefhdefehdefehdefehdefehdefehdedehddedededdeddeddedde e
{
w}

MahualDisabled = | pPickvalid(\SecurityManager\SecurityCheck

(\SecurityManager\PrivBitManualData, 1D, 0);
QuestionableDisabled = ! Pickvalid(\SecurityManager\SecurityCheck
(\SecurityManager\PrivBitQuestionable, 1), 0);
AlarmbDisabled = | pPickvalid(\SecurityManager\SecurityCheck
(\SecurityManager\PrivBitAlarmInhibit, 1), 0);
\Navigator(! IsAPreview &% Pickvalid(! DisableNavigation, 1)
{ opening condition for the folder },
Left, Bottom, Right, Top { Target area for opening -
same as the GUI statement

area 1},

{ Menu 1line 1} \HelpLabel, Invalid, 0,
"HelpLaunch",

{ Menu line 2} "--", Invalid, 0,
Invalid,

{ Menu 1line 3} \InhibitLowAlarmLabel, &(\InhibitLo), Alarmbisabled,
Invalid,

{ Menu 1line 4} \InhibitHighAlarmLabel,&(\InhibitHi), AlarmDisabled,
Invalid,

{ Menu 1line 5} \AlarmSettingsLabel, 1Invalid, AlarmbDisabled,
3,

{ Menu line 6} "--", Invalid, 0,
Invalid,

{ Menu 1line 7} \ManualDataLabel, Invalid, ManualDisabled,

1

’

{ Menu 1line 8} \LoggingbeadbandLabel, Invalid, MahualDisabled,
1,

{ Menu 1line 9} \QuestionableLabel, &(\Questionable), Ques-
tionableDisabled,Invalid,

{ Menu line 10} "--", Invalid, 0,
Invalid,

{ Menu 1line 11} \PropertiesLabel, Invalid, 0,
Invalid);
7':} . .

{ Trend window pop-up section
}
{**_
.:}

\PkTrend(Left, Bottom, Right, Top, \Root,
| IsAPreview &&
Pickvalid(\AITrendEnable, 1) &&
Pickvalid(! DisableTrend, 1)
{ Disable when called from a container's draw });

]

{ End of AnalogStatus\Common }
Rules for the Common Module

« A module called "Common" must be defined within the tag. The Common
module handles all of the common drawing object functions that are imple-
mented in the graphic drawing modules. These functions typically include a
call to the Navigator module, the ToolTip module, and the PKTrend module,
as well as calls to code for control dialog boxes. Any external graphic mod-
ules must make a call to the Common module within the tag.

« The Common module takes parameters that define the area of the screen
occupied by the drawing object and that enable or disable user interface fea-
tures. The seven parameters of the Common module are:

« Left - Any numeric expression for the object's left side coordinate.
« Bottom - Any numeric expression for the object's bottom coordinate.
« Right - Any numeric expression for the object's right side coordinate.

« Top - Any numeric expression for the object's top coordinate.

« DisableTrend - Any Boolean expression for disabling the trend window

. DisableNavigation - Any Boolean for disabling the right-click menu
« DisableTooltip - Any Boolean expression to disable the tooltip display
« Add the call to the "\Navigator" in each of the drawing modules so that when
the user right clicks upon the object, the shortcut menu opens and enables
the end user to modify the parameters of the selected tag. (Information on
the Navigator can be found in Navigator Calls (Shortcut Menu)).

Linking to a Driver

One of the parameters shown in an example at the beginning of this
chapter was:

DeviceTag <:TagField("SQL_VARCHAR(255)", "I/0 Device Name", 3,
FALSE, "SitePoint", "IODeviceLabel"):> = "*Driver";

When a user configures an instance of this tag, the name of the asso-
ciated 1/0 device driver will be stored in this parameter.

Rather than using this parameter directly within the tag code, it is com-
mon to use the tag's Variables section to specify a location where the
object value of the 1/0 device will be stored. Also, the raw value from the
I/0 tag will not be used directly as the tag's value - rather, it will be
stored in a local variable. When the raw |/O value changes, scaling or
other operations can be applied to find the tag's new value.

Updating the example code, the Variables section will now look like the
following, where the last line refers to the driver:

{ variables }

value (5) { Scaled value for this point. };
Rawvalue { Data value read from the IO
Root { Set to individual instance of this module
b
SitePoint { object value of IODevice parameter
i

The Main state will be responsible for linking the variable to the object
value of the 1/0 device tag:

AnalogInMain [
SitePoint = Scope(Root, DeviceTag);
]

The code examples just shown will suffice to link your tag to a 1/0 device
driver. It will be the job of your tag's Refresh module to add or remove
reads for the addresses in the device driver in response to any change in
parameters. Other modules will take care of handling data sent from the
driver.

You must also provide a way for the developer to specify the address to
use on the 1/0 device driver. The AddressEntry and PAddressEntry func-
tions both serve this purpose. These functions will display a standard
edit field, or if the driver includes an AddressAssist module, will display
the user-interface elements coded there. (see: Providing an AddressAss-
ist Window in the Communication Drivers chapter.)

Related Information:
...Triggering a Data Read
...The NewData Module
...Writing Data: The Set Module

Triggering a Data Read

Having established a link between your tag and a driver tag (previous
topic), your Refresh module must issue an AddRead request to the driver
in order to start receiving data. If any of the connection parameters
change, this request should be cleared and a fresh AddRead issued.
Once the AddRead has been issued to the driver instance, it is then up to
the driver code to poll the PLC at the Scanlnterval rate and send new val-
ues back to the specified destination. Note: The Refresh module is not
used to handle new values from the driver. For details on how the driver
sends values to your tag, see The NewData Module.

The following example (taken from the Analog Input tag's Refresh mod-
ule) shows how the AddRead function should be called. The tag's
RawValue parameter is used as the destination for the value read from
the driver. You may then write code that scales this before using the res-
ult as the tag's value or, if the manual data flag is set, ignores the raw
data value in favor of the manual data value. Note that this example is

for analog data - digital values are read using the same technique, but
would not be scaled.

Refresh [
If 1;
[

{***** Scan Interva] *****}
ScanInterval = Pickvalid(Cast(ScanInterval, 3),
GetDefaultvalue(&ScanInterval));

{*#****% The connection parameters were set or changed #***%*}

IfThen (Pickvalid(Parm[#I0Device] != DeviceTag, D ||
Pickvalid(Parm[#ScanInterval] != ScanInterval, 1) ||
Pickvalid(Parm[#Address], "") != Pickvalid(Address, ""),

{#*%%** Remove the previous read request (this will do nothing

if the parameters are invalid) #*#*#*#**}
Scope(Root, Parm[#IODevice])\Driver\DelRead(Parm[#Address],

&Rawvalue, Parm[#ScanIn-
tervall);

Rawvalue = Invalid { old value no longer valid };

{***** Add a hew read request *****}
Scope(Root, DeviceTag)\Driver\AddrRead(Address
{ Address in the PLC for the data },
1
{ Number of data elements to get 1,
&Rawvalue
{ Destination pointer for data read 1,
ScanInterval
{ Scan Interval P
E

{J_J_J_J_J_J_J_J_J_J_J_J_J_J_J_J-.L}
Rk e e A e i e A e i e i A e i e T A i i e i e e T e i A e T i e i A T i e T i e T A e T i e Tl e

{ Manualvalue

}
{**}
Manualvalue = Cast(Manualvalue, 3 { Float });
IfElse (valid(Manualvalue),
vValue = Manualvalue;
{ Else } IfThen (!Externalvalue,
Value = IsText ? Rawvalue : Scale(Rawvalue, UnscaledMin,

Unscaledmax, Scaledmin,
Scaledmax) ;

));
The NewData Module
While it is true that there is more than one method for reading values

from an 1/O driver, use of the NewData module is recommended for all
new tags.

If your tag includes a module named NewData, with the structure similar
to that shown in the following example, the I/O driver will use it to send
values from the device to the tag.

NewData should have the following five parameters where the last two,
Quality and ServiceSync, are optional.

NewData

(
Addr { Address we asked for };
TimeStamps { Single value or 1D array of UTC timestamps };
Data { Ssingle value or 1D array of unscaled data

values };

Quality { Single value or 1D array of Quality data };
ServiceSsync { used to denote that the NewbData call was made

as a result of a
server synchronization (the server has just
started up and this

)

For purposes of comparison, the body of the NewData Modules from

data has been taken from a running server) };

both the Analog Status tag and the Digital Status tag are reprinted here.
Items to note are:

« The RawValue is found in the first item of the Data array.

« The NeedValueUpdate variable scopes to the parent tag module. This is used
to alert the tag to the fact that a new value has been received and that the
tag's value should be updated.

« The largest portion of the module provides support for drivers that send his-
tory values. These are scaled and logged as required.

NewData() example for reading analog values:

<
{ NewData }
{ Subroutine that receives and processes incoming data from driver }
{ Refreshbata in VTSDriver guarantees that TimeStamps is a valid }
{ time stamp or an array of valid time stamps regardless of the }
{ validity of Data }
{ ks
NewData

(

Addr { Address we asked for };

TimeStamps { Single value or 1D array of UTC timestamps };

Data { Single value or 1D array of unscaled data

values };

)

[

I { General counting variable };

HistSizeRet { Size of history Tist returned };

MaxHistTS { Highest TS 1in history Tist };
LastHistPos { Index of newest data in history Tlist };
Historyvalues { Scaled history array to pass to data logger };
HistImgTimeStamps { For history use, 1D array, image of
TimeStamps };
HistImgData { For history use, 1D array, image of
Data };
NeedvalueUpdate = FALSE { TRUE if the tag needs to recalculate
value };
]
Main [

If 1;

IfElse (Pickvalid(Addr == currvalAddr, 0), Execute(
{ Current value data }
Rawvalue = Data[O0];
RawTS = Pickvalid(TimeStamps[0], CurrentTime(l));
NeedvalueUpdate = TRUE;
K
{ Else } 1IfThen (Pickvalid(Addr == HistoryAddr, 0),
{ History data might have been Recv'd as single value or as an
array }
{ Size of history array }
IfElse(valid(HistSizeRet = ArraySize(bData, 0)), Execute(
{ Data is an array }
HistImgTimeStamps = TimeStamps;
HistImgData = Data;
)
{ Else } Execute(
{ Data is a single value so copy to a single-value array }

HistSizeRet = 1;
HistImgTimeStamps = New(HistSizeRet);
HistImgData = New(HistSizeRet);
HistImgTimeStamps[0] = TimeStamps;
HistImgData[0] = Data;

));

{ 1f the current tag value comes from history }
IfThen (valueFromHist,
{ Extract Rawvalue & RawTS from history list if no
Current Value address defined }
{ Find the newest history TS }
MaxHistTS = AMax(HistImgTimeStamps[0], HistSizeRet);
{ only use it if greater than current value TS }
IfThen (MaxHistTS > Pickvalid(TimeStamp, 0),
{ Where is this in the array ? }
LastHistPos = Lookup(HistImgTimeStamps[0],
HistSizeRet, MaxHistTS);
{ Set our values to the newest history value }
Rawvalue = HistImgData[LastHistPos];
{ set the time as well }
RawTS = HistImgTimeStamps[LastHistPos];
NeedvalueUpdate = TRUE;

{ Scale the data & Tog it }
Historyvalues = New(HistSizeRet);
I =0;
wWhileLoop(I < HistSizeRet,
Historyvalues[I] = Scale(HistImgbata[I], UnscaledMin,
UnscaledMmax, ScaledMin, ScaledMmax) ;
I++;

);

{ Log history values }
\HistorianManager\WriteHistory(Root, HistImgTimeStamps,
Historyvalues);
));

IfThen(NeedvalueUpdate && !valid(Manualvalue),
Updatevalue(valueFromHist) ;
{ The parameter tells Updatevalue to not log Value if it came
from a history value; this has been logged already }
);

Return(0);
]
]

{ End of AnalogStatus\Newbata }
>

NewData() example for reading digital values:

<
{ NewData
}
{ Subroutine that receives and processes incoming channel data from
3
{ driver Refreshbata in VTSDriver guarantees that TimeStamps 1is a
}
{ valid time stamp or an array of valid time stamps regardless of
3
{ the validity of Data
3
{
=}
NewData
(
Addr { Address we asked for (not used)
It
TimeStamps { single value or 1D array of timestamps
35
Data { Ssingle value or 1D array of unscaled data
values
oo . .
Quality { Ssingle value or 1D array of Quality data
)
[

HistS1izeRet { Size of history Tist returned

15

MaxHistTS { Highest TS 1in history Tlist
iE
LastHistPos { Index of newest data in history Tlist
i
Historyvalues { Scaled history array to pass to data logger
i
HistImgTimeStamps { For history use, 1D array, image of
TimeStamps
};
HistImgData { For history use, 1D array, image of
Data
i
]
Main [
If 1;
[
IfElse (Pickvalid(Addr == BitOAddress, 0), Execute(
{ If b0 address }
RawvalueO = Datal[0];
RawTS = Pickvalid(TimeStamps[0] - Timezone(0), CurrentTime
());)
{’E1se - bl address } IfElse(Pickvalid(Addr == blvalAddr, 0),
Execute(
Rawvaluel = Datal[0];
RawTS = Pickvalid(TimeStamps[0] - Timezone(0), CurrentTime
0);

U
{ Else } 1fThen (Pickvalid(Addr == HistoryAddr, 0), { History
Address }
{ History data might have been Recvd as single value or as an
array }
{ Size of history array }
IfElse(valid(HistSizeRet = ArraySize(Data, 0)), Execute(
{ Data is an array }
HistImgTimeStamps = TimeStamps;
HistImgData = Data;
{ Else } Execute(
{ Data is a single value so copy to a single-value array }
HistSizeRet =Nk
HistImgTimeStamps New(HistSizeRet);
HistImgData New(HistSizeRet);
HistImgTimeStamps[0] TimeStamps;
HistImgData[0] Data;
D

{ If the current tag value comes from history }
IfThen (valueFromHist,
{ Extract Rawvalue & RawTS from history list if required }
{ Find the highest history TS }
MaxHistTS = AMax(HistImgTimeStamps[0], HistSizeRet);
{ only use it if greater than current value TS }
IfThen (MaxHistTS - Timezone(0) > Pickvalid(TimeStamp, 0),

{ Where is this in the array ? }
LastHistPos = Lookup(HistImgTimeStamps[0], HistSizeRet,
MaxHistTS) ;
{ Set our value to the newest history value }
RawvalueO HistImgData[LastHistPos];
RawTS HistImgTimeStamps[LastHistPos] - Timezone(0);

);
);

{ Invert the data & log it }
Historyvalues = New(HistSizeRet);
{ Make a copy of the data array. }
Arrayop2 (Historyvalues[0], HistImgbata[0], HistSizeRet, 0);

{ Some data massage required... }
{ Force all data to 0/1 values.

This first step actually returns the inverted data. }
ArrayOpl(Historyvalues[0], HistSizeRet, 0, 12 {==});
IfThen (!InvertInput,

{ Invert the data back to normal if not inverted }
Arrayopl(Historyvalues[0], HistSizeRet, 0, 12 {==});

{ Log history values }
\HistorianManager\WwriteHistory(Root, HistImgTimeStamps,
Historyvalues);
)));

Return(0);
]
]
{ End of NewData }
>

Writing Data: The Set Module

Tags that write data to a driver tag must have a subroutine module
named "Set". This module will perform 3 actions:
o Check that the value to be written is valid. Do not write an invalid value.
« Scale or invert the value for the PLC according to the tag's scaling para-
meters.
« Ensure that the value is sent to all workstations in the network with a call to
the RPCManager's Send function.
The return value from the Write() function will be the object value of the
write module launched. When this value becomes invalid, the caller can
assume that the write is complete. Note that, for a client machine on a
network, this value will always be invalid.
The following example is taken from the Analog Control tag:

Analogoutput\Set

This subroutine writes a value to SitePoint. The parameter 1is the

value to write, which may be inverted before writing. }

M
~+

Newvalue { value to write to the SitePoint

e AN AR A A

[

Writeobj { Object value of Taunched write
iE

writevalue { Actual value written
i
]
Set [

If 1;

[

Newvalue = Pickvalid(Limit(Newvalue, ScaledMin, ScaledMax),

Newvalue) ;

SavevValue = Value = Newvalue;
{**** pon't bother to write to the PLC if the value is invalid
IfThen (valid(value),

writevalue = Pickvalid(Scale(Newvalue, Scaledvmin, ScaledMmax,
UnscaledMin, Unscaledmax),

Newvalue) ;
Writeobj = SitePoint\Driver\write(Address, 1, &writevalue);
)
{#**** Send the value to everybody *****}

\RPCManager\Send(SitePoint\Driver\RPCService { service },
\LocalGUID { GUID },\RPC_ACCEPT_FILTER {mode cut-

off 1},
1 { server }, Invalid { machine }, 1 { clients },
0 { locally }, 1 { recursive }, "setvalue" { mod-

ule },
"RPCManager" { scope 3}, Root { queue data },
Invalid { InputSessionID },
{ Parameters: } \LocalGUID, Concat("vTSDB\",

Name) ,
"value", value);

Return(wWriteobj);
]
]

{ End of Analogoutput\Set }
>

Make a Custom Tag Visible to OPC Clients

When running VTScada as an OPC server, the values of standard tags are
available to clients. This will not be true of your custom tags unless you
add modules that specify what will be made available.
The following modules may be added. Examples of these follow.
OPCGetTagAttributes This tells the VTScada OPC server whether this tag
can be read from or written to, as well as the data

type it is to return. Required for the tag to be visible
to an OPC client.

OPCGetTagProperties Optional. Returns a dictionary of all the items that
will be available from the tag.

OPCReadTagValue Must be included if the tag is to be readable.

OPCWriteTagValue Only required if the tag is writeable.
For any OPC constants that are not defined locally, you should be able to
add a backslash in order to obtain it from VTScada.
UpdateOPCData() is a VTScada module. As with the constants, if it is not
in the immediate scope, you can add the backslash operator.
example:

IfThen(valid(\oPCServerHandle),
\UpdateoPcbata(Sself(), \OPC_PROP_RAW_VALUE, Rawvalue);

This will tell the server code to update the RawValue attribute, since it
has changed. OPCServerHandle is set higher up the scope tree when the
OPC server is enabled - this prevents that code from being called if it is
not present.

Make the tag's value available to OPC clients. If included, your tag's main
state should call \UpdateOPCData(Self()); whenever the value changes.

<
{ OPCReadTagvalue

{ Subroutine that returns the current value, quality, and timestamp
of this }
{ tag for OPC purposes. }

=======}
OPCReadTagvalue
(
pvalue { (output) The value of the tag, must be a valid
value };
pQuality { (output) The quality of the value
’pTimestamp { (output) The timestamp of the value
1

pTimestampIsUTC { (Output) Indicates whether the timestamp 1is in
UTC };

)
Main [
If 1;
[
*pvalue = Pickvalid(value, valid(Cast(value, \#VvTypeText)) ?
mnn : O) ;
*pTimestamp = Timestamp - TimezZone(0);
*pQuality = Operational
? (Operable && valid(Manvalue))
? \OPC_QUALITY_GOOD_LOCAL_OVERRIDE
: valid(value)
? \OPC_QUALITY_GOOD
: \OPC_QUALITY_BAD
: \OPC_QUALITY_UNCERTAIN;
Return(Invalid);
]
]
{ End of OPCReadTagvalue }
>

This will be called when an OPC client is requesting the values. The para-
meter, pValue, is what you want it to show, normally gained from Value
The following module example creates a dictionary of properties that will
be available to OPC clients. Remove any properties that you do not intent
to make available. For example, if you don’t need OPC_PROP_
DESCRIPTION declared then remove the line within this module. A com-
plete list of OPC values can be found in Properties of Tag OPC Items.

<

{ OPCGetTagProperties

{ Subroutine that returns a dictionary of OPC properties and values

3

{ supported by this tag. The dictionary is keyed by property ID.

3

{ .
=======} .

OPCGetTagProperties

[

PropDict;

]
Main [
If 1;
[
PropDict = Dictionary();
PrOpDiCt[OPC_PROP_EU_UNITS] = Units;
PropDict[OPC_PROP_DESCRIPTION] = Description;
PropDict[OPC_PROP_HIGH_EU] = Scaledmax;
PropDict[OPC_PROP_LOW_EU] = ScaledMin;
PropDict [OPC_PROP_HIGH_INSTRUMENT] = Unscaledmax;
PropDict[OPC_PROP_LOW_INSTRUMENT] = UnscaledMin;
PropDiCt[OPC_PROP_TIMEZONE_MINUTE_OFFSET] = TimezZone(0)/60;
PropDict[OPC_PROP_AREA] = Area;
PropDict[OPC_PROP_DEVICE_TAG] = DeviceTag;
PropDict[OPC_PROP_ADDRESS] = Address;
PropDict[OPC_PROP_RAW_VALUE] = Rawvalue;
PropDict[OPC_PROP_LOW_ALARM] = Cast(AlarmLo,3); {
In case AlarmLo is a tag or expression }
PropDict[OPC_PROP_HIGH_ALARM] = Cast(AlarmHi,3); {
In case AlarmHi 1is a tag or expression }
Return(PropDict);
]
]
{ End of OPCGetTagProperties }
>

Example to define whether the tag can be read from or written to by the
OPC client:

<
{ OPCGetTagAttributes
ks
{ Subroutine that returns the OPC attributes of this tag.
}
{
=======} .
OPCGetTagAttributes
(

pAccessRights { (output) The read/writeability of the tag
};

pDataType { (output) The coM datatype of the value of the
tag };
)
Main [

If 1;

[

*pAccessRights = output ? \OPC_ACCESS_READWRITEABLE : \OPC_
ACCESS_READABLE;
*pDataType = Vvalid(value)
? valid(cast(value, \#VTypeText))
? \VT_BSTR
: \VT_R8
: \VT_EMPTY;
Return(Invalid);

]
]

{ End of OPCGetTagAttributes }
>

pAccessRights defines whether the tag's value can be read or written to
according to the assignment of one of the following constants:

CONSTANT OPC_ACCESS_READABLE =1;

CONSTANT OPC_ACCESS_WRITEABLE = 2;

CONSTANT OPC_ACCESS_READWRITEABLE = 3;
pDataType sets the data type of the tag to one of the following for com-
patibility with component object model standards:

CONSTANT VT_EMPTY= 0;

CONSTANT VT_NULL=T1;

CONSTANT VT_I12= 2;

CONSTANT VT_l4= 3;

CONSTANT VT_R4= 4;

CONSTANT VT_R8= 5;

CONSTANT VT_CY= 6;

CONSTANT VT_DATE= 7;

CONSTANT VT_BSTR= §;

CONSTANT VT_BOOL= 11;

CONSTANT VT_VARIANT= 12
If your tag will allow OPC Write access, you will need a module similar to
the following example. Note that this example does not provide for any
checking of the request - something may wish to add.

<

{ OPCWriteTagvalue

3

{ Subroutine called when an OPC client wants to wr